[PATCH] cfq-iosched: style cleanups and comments
[safe/jmp/linux-2.6] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/hash.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15
16 /*
17  * tunables
18  */
19 static const int cfq_quantum = 4;               /* max queue in one round of service */
20 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
21 static const int cfq_back_max = 16 * 1024;      /* maximum backwards seek, in KiB */
22 static const int cfq_back_penalty = 2;          /* penalty of a backwards seek */
23
24 static const int cfq_slice_sync = HZ / 10;
25 static int cfq_slice_async = HZ / 25;
26 static const int cfq_slice_async_rq = 2;
27 static int cfq_slice_idle = HZ / 125;
28
29 /*
30  * grace period before allowing idle class to get disk access
31  */
32 #define CFQ_IDLE_GRACE          (HZ / 10)
33
34 /*
35  * below this threshold, we consider thinktime immediate
36  */
37 #define CFQ_MIN_TT              (2)
38
39 #define CFQ_SLICE_SCALE         (5)
40
41 #define CFQ_KEY_ASYNC           (0)
42
43 /*
44  * for the hash of cfqq inside the cfqd
45  */
46 #define CFQ_QHASH_SHIFT         6
47 #define CFQ_QHASH_ENTRIES       (1 << CFQ_QHASH_SHIFT)
48 #define list_entry_qhash(entry) hlist_entry((entry), struct cfq_queue, cfq_hash)
49
50 #define list_entry_cfqq(ptr)    list_entry((ptr), struct cfq_queue, cfq_list)
51
52 #define RQ_CIC(rq)              ((struct cfq_io_context*)(rq)->elevator_private)
53 #define RQ_CFQQ(rq)             ((rq)->elevator_private2)
54
55 static struct kmem_cache *cfq_pool;
56 static struct kmem_cache *cfq_ioc_pool;
57
58 static DEFINE_PER_CPU(unsigned long, ioc_count);
59 static struct completion *ioc_gone;
60
61 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
62 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
63 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
64
65 #define ASYNC                   (0)
66 #define SYNC                    (1)
67
68 #define cfq_cfqq_sync(cfqq)     ((cfqq)->key != CFQ_KEY_ASYNC)
69
70 #define sample_valid(samples)   ((samples) > 80)
71
72 /*
73  * Most of our rbtree usage is for sorting with min extraction, so
74  * if we cache the leftmost node we don't have to walk down the tree
75  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
76  * move this into the elevator for the rq sorting as well.
77  */
78 struct cfq_rb_root {
79         struct rb_root rb;
80         struct rb_node *left;
81 };
82 #define CFQ_RB_ROOT     (struct cfq_rb_root) { RB_ROOT, NULL, }
83
84 /*
85  * Per block device queue structure
86  */
87 struct cfq_data {
88         request_queue_t *queue;
89
90         /*
91          * rr list of queues with requests and the count of them
92          */
93         struct cfq_rb_root service_tree;
94         struct list_head cur_rr;
95         unsigned int busy_queues;
96
97         /*
98          * cfqq lookup hash
99          */
100         struct hlist_head *cfq_hash;
101
102         int rq_in_driver;
103         int hw_tag;
104
105         /*
106          * idle window management
107          */
108         struct timer_list idle_slice_timer;
109         struct work_struct unplug_work;
110
111         struct cfq_queue *active_queue;
112         struct cfq_io_context *active_cic;
113         unsigned int dispatch_slice;
114
115         struct timer_list idle_class_timer;
116
117         sector_t last_position;
118         unsigned long last_end_request;
119
120         /*
121          * tunables, see top of file
122          */
123         unsigned int cfq_quantum;
124         unsigned int cfq_fifo_expire[2];
125         unsigned int cfq_back_penalty;
126         unsigned int cfq_back_max;
127         unsigned int cfq_slice[2];
128         unsigned int cfq_slice_async_rq;
129         unsigned int cfq_slice_idle;
130
131         struct list_head cic_list;
132
133         sector_t new_seek_mean;
134         u64 new_seek_total;
135 };
136
137 /*
138  * Per process-grouping structure
139  */
140 struct cfq_queue {
141         /* reference count */
142         atomic_t ref;
143         /* parent cfq_data */
144         struct cfq_data *cfqd;
145         /* cfqq lookup hash */
146         struct hlist_node cfq_hash;
147         /* hash key */
148         unsigned int key;
149         /* member of the rr/busy/cur/idle cfqd list */
150         struct list_head cfq_list;
151         /* service_tree member */
152         struct rb_node rb_node;
153         /* service_tree key */
154         unsigned long rb_key;
155         /* sorted list of pending requests */
156         struct rb_root sort_list;
157         /* if fifo isn't expired, next request to serve */
158         struct request *next_rq;
159         /* requests queued in sort_list */
160         int queued[2];
161         /* currently allocated requests */
162         int allocated[2];
163         /* pending metadata requests */
164         int meta_pending;
165         /* fifo list of requests in sort_list */
166         struct list_head fifo;
167
168         unsigned long slice_end;
169         long slice_resid;
170
171         /* number of requests that are on the dispatch list or inside driver */
172         int dispatched;
173
174         /* io prio of this group */
175         unsigned short ioprio, org_ioprio;
176         unsigned short ioprio_class, org_ioprio_class;
177
178         /* various state flags, see below */
179         unsigned int flags;
180
181         sector_t last_request_pos;
182 };
183
184 enum cfqq_state_flags {
185         CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
186         CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
187         CFQ_CFQQ_FLAG_must_alloc,       /* must be allowed rq alloc */
188         CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
189         CFQ_CFQQ_FLAG_must_dispatch,    /* must dispatch, even if expired */
190         CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
191         CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
192         CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
193         CFQ_CFQQ_FLAG_queue_new,        /* queue never been serviced */
194         CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
195 };
196
197 #define CFQ_CFQQ_FNS(name)                                              \
198 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
199 {                                                                       \
200         cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name);                     \
201 }                                                                       \
202 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
203 {                                                                       \
204         cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                    \
205 }                                                                       \
206 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
207 {                                                                       \
208         return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;        \
209 }
210
211 CFQ_CFQQ_FNS(on_rr);
212 CFQ_CFQQ_FNS(wait_request);
213 CFQ_CFQQ_FNS(must_alloc);
214 CFQ_CFQQ_FNS(must_alloc_slice);
215 CFQ_CFQQ_FNS(must_dispatch);
216 CFQ_CFQQ_FNS(fifo_expire);
217 CFQ_CFQQ_FNS(idle_window);
218 CFQ_CFQQ_FNS(prio_changed);
219 CFQ_CFQQ_FNS(queue_new);
220 CFQ_CFQQ_FNS(slice_new);
221 #undef CFQ_CFQQ_FNS
222
223 static struct cfq_queue *cfq_find_cfq_hash(struct cfq_data *, unsigned int, unsigned short);
224 static void cfq_dispatch_insert(request_queue_t *, struct request *);
225 static struct cfq_queue *cfq_get_queue(struct cfq_data *, unsigned int, struct task_struct *, gfp_t);
226
227 /*
228  * scheduler run of queue, if there are requests pending and no one in the
229  * driver that will restart queueing
230  */
231 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
232 {
233         if (cfqd->busy_queues)
234                 kblockd_schedule_work(&cfqd->unplug_work);
235 }
236
237 static int cfq_queue_empty(request_queue_t *q)
238 {
239         struct cfq_data *cfqd = q->elevator->elevator_data;
240
241         return !cfqd->busy_queues;
242 }
243
244 static inline pid_t cfq_queue_pid(struct task_struct *task, int rw, int is_sync)
245 {
246         /*
247          * Use the per-process queue, for read requests and syncronous writes
248          */
249         if (!(rw & REQ_RW) || is_sync)
250                 return task->pid;
251
252         return CFQ_KEY_ASYNC;
253 }
254
255 /*
256  * Scale schedule slice based on io priority. Use the sync time slice only
257  * if a queue is marked sync and has sync io queued. A sync queue with async
258  * io only, should not get full sync slice length.
259  */
260 static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
261                                  unsigned short prio)
262 {
263         const int base_slice = cfqd->cfq_slice[sync];
264
265         WARN_ON(prio >= IOPRIO_BE_NR);
266
267         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
268 }
269
270 static inline int
271 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
272 {
273         return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
274 }
275
276 static inline void
277 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
278 {
279         cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
280 }
281
282 /*
283  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
284  * isn't valid until the first request from the dispatch is activated
285  * and the slice time set.
286  */
287 static inline int cfq_slice_used(struct cfq_queue *cfqq)
288 {
289         if (cfq_cfqq_slice_new(cfqq))
290                 return 0;
291         if (time_before(jiffies, cfqq->slice_end))
292                 return 0;
293
294         return 1;
295 }
296
297 /*
298  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
299  * We choose the request that is closest to the head right now. Distance
300  * behind the head is penalized and only allowed to a certain extent.
301  */
302 static struct request *
303 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
304 {
305         sector_t last, s1, s2, d1 = 0, d2 = 0;
306         unsigned long back_max;
307 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
308 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
309         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
310
311         if (rq1 == NULL || rq1 == rq2)
312                 return rq2;
313         if (rq2 == NULL)
314                 return rq1;
315
316         if (rq_is_sync(rq1) && !rq_is_sync(rq2))
317                 return rq1;
318         else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
319                 return rq2;
320         if (rq_is_meta(rq1) && !rq_is_meta(rq2))
321                 return rq1;
322         else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
323                 return rq2;
324
325         s1 = rq1->sector;
326         s2 = rq2->sector;
327
328         last = cfqd->last_position;
329
330         /*
331          * by definition, 1KiB is 2 sectors
332          */
333         back_max = cfqd->cfq_back_max * 2;
334
335         /*
336          * Strict one way elevator _except_ in the case where we allow
337          * short backward seeks which are biased as twice the cost of a
338          * similar forward seek.
339          */
340         if (s1 >= last)
341                 d1 = s1 - last;
342         else if (s1 + back_max >= last)
343                 d1 = (last - s1) * cfqd->cfq_back_penalty;
344         else
345                 wrap |= CFQ_RQ1_WRAP;
346
347         if (s2 >= last)
348                 d2 = s2 - last;
349         else if (s2 + back_max >= last)
350                 d2 = (last - s2) * cfqd->cfq_back_penalty;
351         else
352                 wrap |= CFQ_RQ2_WRAP;
353
354         /* Found required data */
355
356         /*
357          * By doing switch() on the bit mask "wrap" we avoid having to
358          * check two variables for all permutations: --> faster!
359          */
360         switch (wrap) {
361         case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
362                 if (d1 < d2)
363                         return rq1;
364                 else if (d2 < d1)
365                         return rq2;
366                 else {
367                         if (s1 >= s2)
368                                 return rq1;
369                         else
370                                 return rq2;
371                 }
372
373         case CFQ_RQ2_WRAP:
374                 return rq1;
375         case CFQ_RQ1_WRAP:
376                 return rq2;
377         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
378         default:
379                 /*
380                  * Since both rqs are wrapped,
381                  * start with the one that's further behind head
382                  * (--> only *one* back seek required),
383                  * since back seek takes more time than forward.
384                  */
385                 if (s1 <= s2)
386                         return rq1;
387                 else
388                         return rq2;
389         }
390 }
391
392 /*
393  * The below is leftmost cache rbtree addon
394  */
395 static struct rb_node *cfq_rb_first(struct cfq_rb_root *root)
396 {
397         if (!root->left)
398                 root->left = rb_first(&root->rb);
399
400         return root->left;
401 }
402
403 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
404 {
405         if (root->left == n)
406                 root->left = NULL;
407
408         rb_erase(n, &root->rb);
409         RB_CLEAR_NODE(n);
410 }
411
412 /*
413  * would be nice to take fifo expire time into account as well
414  */
415 static struct request *
416 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
417                   struct request *last)
418 {
419         struct rb_node *rbnext = rb_next(&last->rb_node);
420         struct rb_node *rbprev = rb_prev(&last->rb_node);
421         struct request *next = NULL, *prev = NULL;
422
423         BUG_ON(RB_EMPTY_NODE(&last->rb_node));
424
425         if (rbprev)
426                 prev = rb_entry_rq(rbprev);
427
428         if (rbnext)
429                 next = rb_entry_rq(rbnext);
430         else {
431                 rbnext = rb_first(&cfqq->sort_list);
432                 if (rbnext && rbnext != &last->rb_node)
433                         next = rb_entry_rq(rbnext);
434         }
435
436         return cfq_choose_req(cfqd, next, prev);
437 }
438
439 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
440                                       struct cfq_queue *cfqq)
441 {
442         /*
443          * just an approximation, should be ok.
444          */
445         return ((cfqd->busy_queues - 1) * cfq_prio_slice(cfqd, 1, 0));
446 }
447
448 /*
449  * The cfqd->service_tree holds all pending cfq_queue's that have
450  * requests waiting to be processed. It is sorted in the order that
451  * we will service the queues.
452  */
453 static void cfq_service_tree_add(struct cfq_data *cfqd,
454                                     struct cfq_queue *cfqq)
455 {
456         struct rb_node **p = &cfqd->service_tree.rb.rb_node;
457         struct rb_node *parent = NULL;
458         unsigned long rb_key;
459         int left;
460
461         rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
462         rb_key += cfqq->slice_resid;
463         cfqq->slice_resid = 0;
464
465         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
466                 /*
467                  * same position, nothing more to do
468                  */
469                 if (rb_key == cfqq->rb_key)
470                         return;
471
472                 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
473         }
474
475         left = 1;
476         while (*p) {
477                 struct cfq_queue *__cfqq;
478                 struct rb_node **n;
479
480                 parent = *p;
481                 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
482
483                 /*
484                  * sort RT queues first, we always want to give
485                  * preference to them. IDLE queues goes to the back.
486                  * after that, sort on the next service time.
487                  */
488                 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
489                         n = &(*p)->rb_left;
490                 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
491                         n = &(*p)->rb_right;
492                 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
493                         n = &(*p)->rb_left;
494                 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
495                         n = &(*p)->rb_right;
496                 else if (rb_key < __cfqq->rb_key)
497                         n = &(*p)->rb_left;
498                 else
499                         n = &(*p)->rb_right;
500
501                 if (n == &(*p)->rb_right)
502                         left = 0;
503
504                 p = n;
505         }
506
507         if (left)
508                 cfqd->service_tree.left = &cfqq->rb_node;
509
510         cfqq->rb_key = rb_key;
511         rb_link_node(&cfqq->rb_node, parent, p);
512         rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
513 }
514
515 /*
516  * Update cfqq's position in the service tree.
517  */
518 static void cfq_resort_rr_list(struct cfq_queue *cfqq, int preempted)
519 {
520         /*
521          * Resorting requires the cfqq to be on the RR list already.
522          */
523         if (cfq_cfqq_on_rr(cfqq))
524                 cfq_service_tree_add(cfqq->cfqd, cfqq);
525 }
526
527 /*
528  * add to busy list of queues for service, trying to be fair in ordering
529  * the pending list according to last request service
530  */
531 static inline void
532 cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
533 {
534         BUG_ON(cfq_cfqq_on_rr(cfqq));
535         cfq_mark_cfqq_on_rr(cfqq);
536         cfqd->busy_queues++;
537
538         cfq_resort_rr_list(cfqq, 0);
539 }
540
541 /*
542  * Called when the cfqq no longer has requests pending, remove it from
543  * the service tree.
544  */
545 static inline void
546 cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
547 {
548         BUG_ON(!cfq_cfqq_on_rr(cfqq));
549         cfq_clear_cfqq_on_rr(cfqq);
550         list_del_init(&cfqq->cfq_list);
551
552         if (!RB_EMPTY_NODE(&cfqq->rb_node))
553                 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
554
555         BUG_ON(!cfqd->busy_queues);
556         cfqd->busy_queues--;
557 }
558
559 /*
560  * rb tree support functions
561  */
562 static inline void cfq_del_rq_rb(struct request *rq)
563 {
564         struct cfq_queue *cfqq = RQ_CFQQ(rq);
565         struct cfq_data *cfqd = cfqq->cfqd;
566         const int sync = rq_is_sync(rq);
567
568         BUG_ON(!cfqq->queued[sync]);
569         cfqq->queued[sync]--;
570
571         elv_rb_del(&cfqq->sort_list, rq);
572
573         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
574                 cfq_del_cfqq_rr(cfqd, cfqq);
575 }
576
577 static void cfq_add_rq_rb(struct request *rq)
578 {
579         struct cfq_queue *cfqq = RQ_CFQQ(rq);
580         struct cfq_data *cfqd = cfqq->cfqd;
581         struct request *__alias;
582
583         cfqq->queued[rq_is_sync(rq)]++;
584
585         /*
586          * looks a little odd, but the first insert might return an alias.
587          * if that happens, put the alias on the dispatch list
588          */
589         while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
590                 cfq_dispatch_insert(cfqd->queue, __alias);
591
592         if (!cfq_cfqq_on_rr(cfqq))
593                 cfq_add_cfqq_rr(cfqd, cfqq);
594
595         /*
596          * check if this request is a better next-serve candidate
597          */
598         cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
599         BUG_ON(!cfqq->next_rq);
600 }
601
602 static inline void
603 cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
604 {
605         elv_rb_del(&cfqq->sort_list, rq);
606         cfqq->queued[rq_is_sync(rq)]--;
607         cfq_add_rq_rb(rq);
608 }
609
610 static struct request *
611 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
612 {
613         struct task_struct *tsk = current;
614         pid_t key = cfq_queue_pid(tsk, bio_data_dir(bio), bio_sync(bio));
615         struct cfq_queue *cfqq;
616
617         cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
618         if (cfqq) {
619                 sector_t sector = bio->bi_sector + bio_sectors(bio);
620
621                 return elv_rb_find(&cfqq->sort_list, sector);
622         }
623
624         return NULL;
625 }
626
627 static void cfq_activate_request(request_queue_t *q, struct request *rq)
628 {
629         struct cfq_data *cfqd = q->elevator->elevator_data;
630
631         cfqd->rq_in_driver++;
632
633         /*
634          * If the depth is larger 1, it really could be queueing. But lets
635          * make the mark a little higher - idling could still be good for
636          * low queueing, and a low queueing number could also just indicate
637          * a SCSI mid layer like behaviour where limit+1 is often seen.
638          */
639         if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
640                 cfqd->hw_tag = 1;
641
642         cfqd->last_position = rq->hard_sector + rq->hard_nr_sectors;
643 }
644
645 static void cfq_deactivate_request(request_queue_t *q, struct request *rq)
646 {
647         struct cfq_data *cfqd = q->elevator->elevator_data;
648
649         WARN_ON(!cfqd->rq_in_driver);
650         cfqd->rq_in_driver--;
651 }
652
653 static void cfq_remove_request(struct request *rq)
654 {
655         struct cfq_queue *cfqq = RQ_CFQQ(rq);
656
657         if (cfqq->next_rq == rq)
658                 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
659
660         list_del_init(&rq->queuelist);
661         cfq_del_rq_rb(rq);
662
663         if (rq_is_meta(rq)) {
664                 WARN_ON(!cfqq->meta_pending);
665                 cfqq->meta_pending--;
666         }
667 }
668
669 static int cfq_merge(request_queue_t *q, struct request **req, struct bio *bio)
670 {
671         struct cfq_data *cfqd = q->elevator->elevator_data;
672         struct request *__rq;
673
674         __rq = cfq_find_rq_fmerge(cfqd, bio);
675         if (__rq && elv_rq_merge_ok(__rq, bio)) {
676                 *req = __rq;
677                 return ELEVATOR_FRONT_MERGE;
678         }
679
680         return ELEVATOR_NO_MERGE;
681 }
682
683 static void cfq_merged_request(request_queue_t *q, struct request *req,
684                                int type)
685 {
686         if (type == ELEVATOR_FRONT_MERGE) {
687                 struct cfq_queue *cfqq = RQ_CFQQ(req);
688
689                 cfq_reposition_rq_rb(cfqq, req);
690         }
691 }
692
693 static void
694 cfq_merged_requests(request_queue_t *q, struct request *rq,
695                     struct request *next)
696 {
697         /*
698          * reposition in fifo if next is older than rq
699          */
700         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
701             time_before(next->start_time, rq->start_time))
702                 list_move(&rq->queuelist, &next->queuelist);
703
704         cfq_remove_request(next);
705 }
706
707 static int cfq_allow_merge(request_queue_t *q, struct request *rq,
708                            struct bio *bio)
709 {
710         struct cfq_data *cfqd = q->elevator->elevator_data;
711         const int rw = bio_data_dir(bio);
712         struct cfq_queue *cfqq;
713         pid_t key;
714
715         /*
716          * Disallow merge of a sync bio into an async request.
717          */
718         if ((bio_data_dir(bio) == READ || bio_sync(bio)) && !rq_is_sync(rq))
719                 return 0;
720
721         /*
722          * Lookup the cfqq that this bio will be queued with. Allow
723          * merge only if rq is queued there.
724          */
725         key = cfq_queue_pid(current, rw, bio_sync(bio));
726         cfqq = cfq_find_cfq_hash(cfqd, key, current->ioprio);
727
728         if (cfqq == RQ_CFQQ(rq))
729                 return 1;
730
731         return 0;
732 }
733
734 static inline void
735 __cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
736 {
737         if (cfqq) {
738                 /*
739                  * stop potential idle class queues waiting service
740                  */
741                 del_timer(&cfqd->idle_class_timer);
742
743                 cfqq->slice_end = 0;
744                 cfq_clear_cfqq_must_alloc_slice(cfqq);
745                 cfq_clear_cfqq_fifo_expire(cfqq);
746                 cfq_mark_cfqq_slice_new(cfqq);
747                 cfq_clear_cfqq_queue_new(cfqq);
748         }
749
750         cfqd->active_queue = cfqq;
751 }
752
753 /*
754  * current cfqq expired its slice (or was too idle), select new one
755  */
756 static void
757 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
758                     int preempted, int timed_out)
759 {
760         if (cfq_cfqq_wait_request(cfqq))
761                 del_timer(&cfqd->idle_slice_timer);
762
763         cfq_clear_cfqq_must_dispatch(cfqq);
764         cfq_clear_cfqq_wait_request(cfqq);
765
766         /*
767          * store what was left of this slice, if the queue idled out
768          * or was preempted
769          */
770         if (timed_out && !cfq_cfqq_slice_new(cfqq))
771                 cfqq->slice_resid = cfqq->slice_end - jiffies;
772
773         cfq_resort_rr_list(cfqq, preempted);
774
775         if (cfqq == cfqd->active_queue)
776                 cfqd->active_queue = NULL;
777
778         if (cfqd->active_cic) {
779                 put_io_context(cfqd->active_cic->ioc);
780                 cfqd->active_cic = NULL;
781         }
782
783         cfqd->dispatch_slice = 0;
784 }
785
786 static inline void cfq_slice_expired(struct cfq_data *cfqd, int preempted,
787                                      int timed_out)
788 {
789         struct cfq_queue *cfqq = cfqd->active_queue;
790
791         if (cfqq)
792                 __cfq_slice_expired(cfqd, cfqq, preempted, timed_out);
793 }
794
795 /*
796  * Get next queue for service. Unless we have a queue preemption,
797  * we'll simply select the first cfqq in the service tree.
798  */
799 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
800 {
801         struct cfq_queue *cfqq = NULL;
802
803         if (!list_empty(&cfqd->cur_rr)) {
804                 /*
805                  * if current list is non-empty, grab first entry.
806                  */
807                 cfqq = list_entry_cfqq(cfqd->cur_rr.next);
808         } else if (!RB_EMPTY_ROOT(&cfqd->service_tree.rb)) {
809                 struct rb_node *n = cfq_rb_first(&cfqd->service_tree);
810
811                 cfqq = rb_entry(n, struct cfq_queue, rb_node);
812                 if (cfq_class_idle(cfqq)) {
813                         unsigned long end;
814
815                         /*
816                          * if we have idle queues and no rt or be queues had
817                          * pending requests, either allow immediate service if
818                          * the grace period has passed or arm the idle grace
819                          * timer
820                          */
821                         end = cfqd->last_end_request + CFQ_IDLE_GRACE;
822                         if (time_before(jiffies, end)) {
823                                 mod_timer(&cfqd->idle_class_timer, end);
824                                 cfqq = NULL;
825                         }
826                 }
827         }
828
829         return cfqq;
830 }
831
832 /*
833  * Get and set a new active queue for service.
834  */
835 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
836 {
837         struct cfq_queue *cfqq;
838
839         cfqq = cfq_get_next_queue(cfqd);
840         __cfq_set_active_queue(cfqd, cfqq);
841         return cfqq;
842 }
843
844 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
845                                           struct request *rq)
846 {
847         if (rq->sector >= cfqd->last_position)
848                 return rq->sector - cfqd->last_position;
849         else
850                 return cfqd->last_position - rq->sector;
851 }
852
853 static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
854 {
855         struct cfq_io_context *cic = cfqd->active_cic;
856
857         if (!sample_valid(cic->seek_samples))
858                 return 0;
859
860         return cfq_dist_from_last(cfqd, rq) <= cic->seek_mean;
861 }
862
863 static int cfq_close_cooperator(struct cfq_data *cfq_data,
864                                 struct cfq_queue *cfqq)
865 {
866         /*
867          * We should notice if some of the queues are cooperating, eg
868          * working closely on the same area of the disk. In that case,
869          * we can group them together and don't waste time idling.
870          */
871         return 0;
872 }
873
874 #define CIC_SEEKY(cic) ((cic)->seek_mean > (8 * 1024))
875
876 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
877 {
878         struct cfq_queue *cfqq = cfqd->active_queue;
879         struct cfq_io_context *cic;
880         unsigned long sl;
881
882         WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
883         WARN_ON(cfq_cfqq_slice_new(cfqq));
884
885         /*
886          * idle is disabled, either manually or by past process history
887          */
888         if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
889                 return;
890
891         /*
892          * task has exited, don't wait
893          */
894         cic = cfqd->active_cic;
895         if (!cic || !cic->ioc->task)
896                 return;
897
898         /*
899          * See if this prio level has a good candidate
900          */
901         if (cfq_close_cooperator(cfqd, cfqq) &&
902             (sample_valid(cic->ttime_samples) && cic->ttime_mean > 2))
903                 return;
904
905         cfq_mark_cfqq_must_dispatch(cfqq);
906         cfq_mark_cfqq_wait_request(cfqq);
907
908         /*
909          * we don't want to idle for seeks, but we do want to allow
910          * fair distribution of slice time for a process doing back-to-back
911          * seeks. so allow a little bit of time for him to submit a new rq
912          */
913         sl = cfqd->cfq_slice_idle;
914         if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
915                 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
916
917         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
918 }
919
920 /*
921  * Move request from internal lists to the request queue dispatch list.
922  */
923 static void cfq_dispatch_insert(request_queue_t *q, struct request *rq)
924 {
925         struct cfq_queue *cfqq = RQ_CFQQ(rq);
926
927         cfq_remove_request(rq);
928         cfqq->dispatched++;
929         elv_dispatch_sort(q, rq);
930 }
931
932 /*
933  * return expired entry, or NULL to just start from scratch in rbtree
934  */
935 static inline struct request *cfq_check_fifo(struct cfq_queue *cfqq)
936 {
937         struct cfq_data *cfqd = cfqq->cfqd;
938         struct request *rq;
939         int fifo;
940
941         if (cfq_cfqq_fifo_expire(cfqq))
942                 return NULL;
943
944         cfq_mark_cfqq_fifo_expire(cfqq);
945
946         if (list_empty(&cfqq->fifo))
947                 return NULL;
948
949         fifo = cfq_cfqq_sync(cfqq);
950         rq = rq_entry_fifo(cfqq->fifo.next);
951
952         if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
953                 return NULL;
954
955         return rq;
956 }
957
958 static inline int
959 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
960 {
961         const int base_rq = cfqd->cfq_slice_async_rq;
962
963         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
964
965         return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
966 }
967
968 /*
969  * Select a queue for service. If we have a current active queue,
970  * check whether to continue servicing it, or retrieve and set a new one.
971  */
972 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
973 {
974         struct cfq_queue *cfqq;
975
976         cfqq = cfqd->active_queue;
977         if (!cfqq)
978                 goto new_queue;
979
980         /*
981          * The active queue has run out of time, expire it and select new.
982          */
983         if (cfq_slice_used(cfqq))
984                 goto expire;
985
986         /*
987          * The active queue has requests and isn't expired, allow it to
988          * dispatch.
989          */
990         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
991                 goto keep_queue;
992
993         /*
994          * No requests pending. If the active queue still has requests in
995          * flight or is idling for a new request, allow either of these
996          * conditions to happen (or time out) before selecting a new queue.
997          */
998         if (cfqq->dispatched || timer_pending(&cfqd->idle_slice_timer)) {
999                 cfqq = NULL;
1000                 goto keep_queue;
1001         }
1002
1003 expire:
1004         cfq_slice_expired(cfqd, 0, 0);
1005 new_queue:
1006         cfqq = cfq_set_active_queue(cfqd);
1007 keep_queue:
1008         return cfqq;
1009 }
1010
1011 /*
1012  * Dispatch some requests from cfqq, moving them to the request queue
1013  * dispatch list.
1014  */
1015 static int
1016 __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1017                         int max_dispatch)
1018 {
1019         int dispatched = 0;
1020
1021         BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1022
1023         do {
1024                 struct request *rq;
1025
1026                 /*
1027                  * follow expired path, else get first next available
1028                  */
1029                 if ((rq = cfq_check_fifo(cfqq)) == NULL)
1030                         rq = cfqq->next_rq;
1031
1032                 /*
1033                  * finally, insert request into driver dispatch list
1034                  */
1035                 cfq_dispatch_insert(cfqd->queue, rq);
1036
1037                 cfqd->dispatch_slice++;
1038                 dispatched++;
1039
1040                 if (!cfqd->active_cic) {
1041                         atomic_inc(&RQ_CIC(rq)->ioc->refcount);
1042                         cfqd->active_cic = RQ_CIC(rq);
1043                 }
1044
1045                 if (RB_EMPTY_ROOT(&cfqq->sort_list))
1046                         break;
1047
1048         } while (dispatched < max_dispatch);
1049
1050         /*
1051          * expire an async queue immediately if it has used up its slice. idle
1052          * queue always expire after 1 dispatch round.
1053          */
1054         if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1055             cfqd->dispatch_slice >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1056             cfq_class_idle(cfqq))) {
1057                 cfqq->slice_end = jiffies + 1;
1058                 cfq_slice_expired(cfqd, 0, 0);
1059         }
1060
1061         return dispatched;
1062 }
1063
1064 static inline int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1065 {
1066         int dispatched = 0;
1067
1068         while (cfqq->next_rq) {
1069                 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1070                 dispatched++;
1071         }
1072
1073         BUG_ON(!list_empty(&cfqq->fifo));
1074         return dispatched;
1075 }
1076
1077 static int cfq_forced_dispatch_cfqqs(struct list_head *list)
1078 {
1079         struct cfq_queue *cfqq, *next;
1080         int dispatched;
1081
1082         dispatched = 0;
1083         list_for_each_entry_safe(cfqq, next, list, cfq_list)
1084                 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1085
1086         return dispatched;
1087 }
1088
1089 /*
1090  * Drain our current requests. Used for barriers and when switching
1091  * io schedulers on-the-fly.
1092  */
1093 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1094 {
1095         int dispatched = 0;
1096         struct rb_node *n;
1097
1098         while ((n = cfq_rb_first(&cfqd->service_tree)) != NULL) {
1099                 struct cfq_queue *cfqq = rb_entry(n, struct cfq_queue, rb_node);
1100
1101                 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1102         }
1103
1104         dispatched += cfq_forced_dispatch_cfqqs(&cfqd->cur_rr);
1105
1106         cfq_slice_expired(cfqd, 0, 0);
1107
1108         BUG_ON(cfqd->busy_queues);
1109
1110         return dispatched;
1111 }
1112
1113 static int cfq_dispatch_requests(request_queue_t *q, int force)
1114 {
1115         struct cfq_data *cfqd = q->elevator->elevator_data;
1116         struct cfq_queue *cfqq;
1117         int dispatched;
1118
1119         if (!cfqd->busy_queues)
1120                 return 0;
1121
1122         if (unlikely(force))
1123                 return cfq_forced_dispatch(cfqd);
1124
1125         dispatched = 0;
1126         while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
1127                 int max_dispatch;
1128
1129                 if (cfqd->busy_queues > 1) {
1130                         /*
1131                          * So we have dispatched before in this round, if the
1132                          * next queue has idling enabled (must be sync), don't
1133                          * allow it service until the previous have completed.
1134                          */
1135                         if (cfqd->rq_in_driver && cfq_cfqq_idle_window(cfqq) &&
1136                             dispatched)
1137                                 break;
1138                         if (cfqq->dispatched >= cfqd->cfq_quantum)
1139                                 break;
1140                 }
1141
1142                 cfq_clear_cfqq_must_dispatch(cfqq);
1143                 cfq_clear_cfqq_wait_request(cfqq);
1144                 del_timer(&cfqd->idle_slice_timer);
1145
1146                 max_dispatch = cfqd->cfq_quantum;
1147                 if (cfq_class_idle(cfqq))
1148                         max_dispatch = 1;
1149
1150                 dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1151         }
1152
1153         return dispatched;
1154 }
1155
1156 /*
1157  * task holds one reference to the queue, dropped when task exits. each rq
1158  * in-flight on this queue also holds a reference, dropped when rq is freed.
1159  *
1160  * queue lock must be held here.
1161  */
1162 static void cfq_put_queue(struct cfq_queue *cfqq)
1163 {
1164         struct cfq_data *cfqd = cfqq->cfqd;
1165
1166         BUG_ON(atomic_read(&cfqq->ref) <= 0);
1167
1168         if (!atomic_dec_and_test(&cfqq->ref))
1169                 return;
1170
1171         BUG_ON(rb_first(&cfqq->sort_list));
1172         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1173         BUG_ON(cfq_cfqq_on_rr(cfqq));
1174
1175         if (unlikely(cfqd->active_queue == cfqq)) {
1176                 __cfq_slice_expired(cfqd, cfqq, 0, 0);
1177                 cfq_schedule_dispatch(cfqd);
1178         }
1179
1180         /*
1181          * it's on the empty list and still hashed
1182          */
1183         hlist_del(&cfqq->cfq_hash);
1184         kmem_cache_free(cfq_pool, cfqq);
1185 }
1186
1187 static struct cfq_queue *
1188 __cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned int prio,
1189                     const int hashval)
1190 {
1191         struct hlist_head *hash_list = &cfqd->cfq_hash[hashval];
1192         struct hlist_node *entry;
1193         struct cfq_queue *__cfqq;
1194
1195         hlist_for_each_entry(__cfqq, entry, hash_list, cfq_hash) {
1196                 const unsigned short __p = IOPRIO_PRIO_VALUE(__cfqq->org_ioprio_class, __cfqq->org_ioprio);
1197
1198                 if (__cfqq->key == key && (__p == prio || !prio))
1199                         return __cfqq;
1200         }
1201
1202         return NULL;
1203 }
1204
1205 static struct cfq_queue *
1206 cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned short prio)
1207 {
1208         return __cfq_find_cfq_hash(cfqd, key, prio, hash_long(key, CFQ_QHASH_SHIFT));
1209 }
1210
1211 static void cfq_free_io_context(struct io_context *ioc)
1212 {
1213         struct cfq_io_context *__cic;
1214         struct rb_node *n;
1215         int freed = 0;
1216
1217         while ((n = rb_first(&ioc->cic_root)) != NULL) {
1218                 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1219                 rb_erase(&__cic->rb_node, &ioc->cic_root);
1220                 kmem_cache_free(cfq_ioc_pool, __cic);
1221                 freed++;
1222         }
1223
1224         elv_ioc_count_mod(ioc_count, -freed);
1225
1226         if (ioc_gone && !elv_ioc_count_read(ioc_count))
1227                 complete(ioc_gone);
1228 }
1229
1230 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1231 {
1232         if (unlikely(cfqq == cfqd->active_queue)) {
1233                 __cfq_slice_expired(cfqd, cfqq, 0, 0);
1234                 cfq_schedule_dispatch(cfqd);
1235         }
1236
1237         cfq_put_queue(cfqq);
1238 }
1239
1240 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1241                                          struct cfq_io_context *cic)
1242 {
1243         list_del_init(&cic->queue_list);
1244         smp_wmb();
1245         cic->key = NULL;
1246
1247         if (cic->cfqq[ASYNC]) {
1248                 cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
1249                 cic->cfqq[ASYNC] = NULL;
1250         }
1251
1252         if (cic->cfqq[SYNC]) {
1253                 cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
1254                 cic->cfqq[SYNC] = NULL;
1255         }
1256 }
1257
1258 static void cfq_exit_single_io_context(struct cfq_io_context *cic)
1259 {
1260         struct cfq_data *cfqd = cic->key;
1261
1262         if (cfqd) {
1263                 request_queue_t *q = cfqd->queue;
1264
1265                 spin_lock_irq(q->queue_lock);
1266                 __cfq_exit_single_io_context(cfqd, cic);
1267                 spin_unlock_irq(q->queue_lock);
1268         }
1269 }
1270
1271 /*
1272  * The process that ioc belongs to has exited, we need to clean up
1273  * and put the internal structures we have that belongs to that process.
1274  */
1275 static void cfq_exit_io_context(struct io_context *ioc)
1276 {
1277         struct cfq_io_context *__cic;
1278         struct rb_node *n;
1279
1280         /*
1281          * put the reference this task is holding to the various queues
1282          */
1283
1284         n = rb_first(&ioc->cic_root);
1285         while (n != NULL) {
1286                 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1287
1288                 cfq_exit_single_io_context(__cic);
1289                 n = rb_next(n);
1290         }
1291 }
1292
1293 static struct cfq_io_context *
1294 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1295 {
1296         struct cfq_io_context *cic;
1297
1298         cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask, cfqd->queue->node);
1299         if (cic) {
1300                 memset(cic, 0, sizeof(*cic));
1301                 cic->last_end_request = jiffies;
1302                 INIT_LIST_HEAD(&cic->queue_list);
1303                 cic->dtor = cfq_free_io_context;
1304                 cic->exit = cfq_exit_io_context;
1305                 elv_ioc_count_inc(ioc_count);
1306         }
1307
1308         return cic;
1309 }
1310
1311 static void cfq_init_prio_data(struct cfq_queue *cfqq)
1312 {
1313         struct task_struct *tsk = current;
1314         int ioprio_class;
1315
1316         if (!cfq_cfqq_prio_changed(cfqq))
1317                 return;
1318
1319         ioprio_class = IOPRIO_PRIO_CLASS(tsk->ioprio);
1320         switch (ioprio_class) {
1321                 default:
1322                         printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1323                 case IOPRIO_CLASS_NONE:
1324                         /*
1325                          * no prio set, place us in the middle of the BE classes
1326                          */
1327                         cfqq->ioprio = task_nice_ioprio(tsk);
1328                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
1329                         break;
1330                 case IOPRIO_CLASS_RT:
1331                         cfqq->ioprio = task_ioprio(tsk);
1332                         cfqq->ioprio_class = IOPRIO_CLASS_RT;
1333                         break;
1334                 case IOPRIO_CLASS_BE:
1335                         cfqq->ioprio = task_ioprio(tsk);
1336                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
1337                         break;
1338                 case IOPRIO_CLASS_IDLE:
1339                         cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1340                         cfqq->ioprio = 7;
1341                         cfq_clear_cfqq_idle_window(cfqq);
1342                         break;
1343         }
1344
1345         /*
1346          * keep track of original prio settings in case we have to temporarily
1347          * elevate the priority of this queue
1348          */
1349         cfqq->org_ioprio = cfqq->ioprio;
1350         cfqq->org_ioprio_class = cfqq->ioprio_class;
1351         cfq_clear_cfqq_prio_changed(cfqq);
1352 }
1353
1354 static inline void changed_ioprio(struct cfq_io_context *cic)
1355 {
1356         struct cfq_data *cfqd = cic->key;
1357         struct cfq_queue *cfqq;
1358         unsigned long flags;
1359
1360         if (unlikely(!cfqd))
1361                 return;
1362
1363         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1364
1365         cfqq = cic->cfqq[ASYNC];
1366         if (cfqq) {
1367                 struct cfq_queue *new_cfqq;
1368                 new_cfqq = cfq_get_queue(cfqd, CFQ_KEY_ASYNC, cic->ioc->task,
1369                                          GFP_ATOMIC);
1370                 if (new_cfqq) {
1371                         cic->cfqq[ASYNC] = new_cfqq;
1372                         cfq_put_queue(cfqq);
1373                 }
1374         }
1375
1376         cfqq = cic->cfqq[SYNC];
1377         if (cfqq)
1378                 cfq_mark_cfqq_prio_changed(cfqq);
1379
1380         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1381 }
1382
1383 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1384 {
1385         struct cfq_io_context *cic;
1386         struct rb_node *n;
1387
1388         ioc->ioprio_changed = 0;
1389
1390         n = rb_first(&ioc->cic_root);
1391         while (n != NULL) {
1392                 cic = rb_entry(n, struct cfq_io_context, rb_node);
1393
1394                 changed_ioprio(cic);
1395                 n = rb_next(n);
1396         }
1397 }
1398
1399 static struct cfq_queue *
1400 cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk,
1401               gfp_t gfp_mask)
1402 {
1403         const int hashval = hash_long(key, CFQ_QHASH_SHIFT);
1404         struct cfq_queue *cfqq, *new_cfqq = NULL;
1405         unsigned short ioprio;
1406
1407 retry:
1408         ioprio = tsk->ioprio;
1409         cfqq = __cfq_find_cfq_hash(cfqd, key, ioprio, hashval);
1410
1411         if (!cfqq) {
1412                 if (new_cfqq) {
1413                         cfqq = new_cfqq;
1414                         new_cfqq = NULL;
1415                 } else if (gfp_mask & __GFP_WAIT) {
1416                         /*
1417                          * Inform the allocator of the fact that we will
1418                          * just repeat this allocation if it fails, to allow
1419                          * the allocator to do whatever it needs to attempt to
1420                          * free memory.
1421                          */
1422                         spin_unlock_irq(cfqd->queue->queue_lock);
1423                         new_cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask|__GFP_NOFAIL, cfqd->queue->node);
1424                         spin_lock_irq(cfqd->queue->queue_lock);
1425                         goto retry;
1426                 } else {
1427                         cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask, cfqd->queue->node);
1428                         if (!cfqq)
1429                                 goto out;
1430                 }
1431
1432                 memset(cfqq, 0, sizeof(*cfqq));
1433
1434                 INIT_HLIST_NODE(&cfqq->cfq_hash);
1435                 INIT_LIST_HEAD(&cfqq->cfq_list);
1436                 RB_CLEAR_NODE(&cfqq->rb_node);
1437                 INIT_LIST_HEAD(&cfqq->fifo);
1438
1439                 cfqq->key = key;
1440                 hlist_add_head(&cfqq->cfq_hash, &cfqd->cfq_hash[hashval]);
1441                 atomic_set(&cfqq->ref, 0);
1442                 cfqq->cfqd = cfqd;
1443
1444                 if (key != CFQ_KEY_ASYNC)
1445                         cfq_mark_cfqq_idle_window(cfqq);
1446
1447                 cfq_mark_cfqq_prio_changed(cfqq);
1448                 cfq_mark_cfqq_queue_new(cfqq);
1449                 cfq_init_prio_data(cfqq);
1450         }
1451
1452         if (new_cfqq)
1453                 kmem_cache_free(cfq_pool, new_cfqq);
1454
1455         atomic_inc(&cfqq->ref);
1456 out:
1457         WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1458         return cfqq;
1459 }
1460
1461 /*
1462  * We drop cfq io contexts lazily, so we may find a dead one.
1463  */
1464 static void
1465 cfq_drop_dead_cic(struct io_context *ioc, struct cfq_io_context *cic)
1466 {
1467         WARN_ON(!list_empty(&cic->queue_list));
1468         rb_erase(&cic->rb_node, &ioc->cic_root);
1469         kmem_cache_free(cfq_ioc_pool, cic);
1470         elv_ioc_count_dec(ioc_count);
1471 }
1472
1473 static struct cfq_io_context *
1474 cfq_cic_rb_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1475 {
1476         struct rb_node *n;
1477         struct cfq_io_context *cic;
1478         void *k, *key = cfqd;
1479
1480 restart:
1481         n = ioc->cic_root.rb_node;
1482         while (n) {
1483                 cic = rb_entry(n, struct cfq_io_context, rb_node);
1484                 /* ->key must be copied to avoid race with cfq_exit_queue() */
1485                 k = cic->key;
1486                 if (unlikely(!k)) {
1487                         cfq_drop_dead_cic(ioc, cic);
1488                         goto restart;
1489                 }
1490
1491                 if (key < k)
1492                         n = n->rb_left;
1493                 else if (key > k)
1494                         n = n->rb_right;
1495                 else
1496                         return cic;
1497         }
1498
1499         return NULL;
1500 }
1501
1502 static inline void
1503 cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1504              struct cfq_io_context *cic)
1505 {
1506         struct rb_node **p;
1507         struct rb_node *parent;
1508         struct cfq_io_context *__cic;
1509         unsigned long flags;
1510         void *k;
1511
1512         cic->ioc = ioc;
1513         cic->key = cfqd;
1514
1515 restart:
1516         parent = NULL;
1517         p = &ioc->cic_root.rb_node;
1518         while (*p) {
1519                 parent = *p;
1520                 __cic = rb_entry(parent, struct cfq_io_context, rb_node);
1521                 /* ->key must be copied to avoid race with cfq_exit_queue() */
1522                 k = __cic->key;
1523                 if (unlikely(!k)) {
1524                         cfq_drop_dead_cic(ioc, __cic);
1525                         goto restart;
1526                 }
1527
1528                 if (cic->key < k)
1529                         p = &(*p)->rb_left;
1530                 else if (cic->key > k)
1531                         p = &(*p)->rb_right;
1532                 else
1533                         BUG();
1534         }
1535
1536         rb_link_node(&cic->rb_node, parent, p);
1537         rb_insert_color(&cic->rb_node, &ioc->cic_root);
1538
1539         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1540         list_add(&cic->queue_list, &cfqd->cic_list);
1541         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1542 }
1543
1544 /*
1545  * Setup general io context and cfq io context. There can be several cfq
1546  * io contexts per general io context, if this process is doing io to more
1547  * than one device managed by cfq.
1548  */
1549 static struct cfq_io_context *
1550 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1551 {
1552         struct io_context *ioc = NULL;
1553         struct cfq_io_context *cic;
1554
1555         might_sleep_if(gfp_mask & __GFP_WAIT);
1556
1557         ioc = get_io_context(gfp_mask, cfqd->queue->node);
1558         if (!ioc)
1559                 return NULL;
1560
1561         cic = cfq_cic_rb_lookup(cfqd, ioc);
1562         if (cic)
1563                 goto out;
1564
1565         cic = cfq_alloc_io_context(cfqd, gfp_mask);
1566         if (cic == NULL)
1567                 goto err;
1568
1569         cfq_cic_link(cfqd, ioc, cic);
1570 out:
1571         smp_read_barrier_depends();
1572         if (unlikely(ioc->ioprio_changed))
1573                 cfq_ioc_set_ioprio(ioc);
1574
1575         return cic;
1576 err:
1577         put_io_context(ioc);
1578         return NULL;
1579 }
1580
1581 static void
1582 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1583 {
1584         unsigned long elapsed = jiffies - cic->last_end_request;
1585         unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1586
1587         cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1588         cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1589         cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1590 }
1591
1592 static void
1593 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1594                        struct request *rq)
1595 {
1596         sector_t sdist;
1597         u64 total;
1598
1599         if (cic->last_request_pos < rq->sector)
1600                 sdist = rq->sector - cic->last_request_pos;
1601         else
1602                 sdist = cic->last_request_pos - rq->sector;
1603
1604         if (!cic->seek_samples) {
1605                 cfqd->new_seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1606                 cfqd->new_seek_mean = cfqd->new_seek_total / 256;
1607         }
1608
1609         /*
1610          * Don't allow the seek distance to get too large from the
1611          * odd fragment, pagein, etc
1612          */
1613         if (cic->seek_samples <= 60) /* second&third seek */
1614                 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1615         else
1616                 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1617
1618         cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1619         cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1620         total = cic->seek_total + (cic->seek_samples/2);
1621         do_div(total, cic->seek_samples);
1622         cic->seek_mean = (sector_t)total;
1623 }
1624
1625 /*
1626  * Disable idle window if the process thinks too long or seeks so much that
1627  * it doesn't matter
1628  */
1629 static void
1630 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1631                        struct cfq_io_context *cic)
1632 {
1633         int enable_idle = cfq_cfqq_idle_window(cfqq);
1634
1635         if (!cic->ioc->task || !cfqd->cfq_slice_idle ||
1636             (cfqd->hw_tag && CIC_SEEKY(cic)))
1637                 enable_idle = 0;
1638         else if (sample_valid(cic->ttime_samples)) {
1639                 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1640                         enable_idle = 0;
1641                 else
1642                         enable_idle = 1;
1643         }
1644
1645         if (enable_idle)
1646                 cfq_mark_cfqq_idle_window(cfqq);
1647         else
1648                 cfq_clear_cfqq_idle_window(cfqq);
1649 }
1650
1651 /*
1652  * Check if new_cfqq should preempt the currently active queue. Return 0 for
1653  * no or if we aren't sure, a 1 will cause a preempt.
1654  */
1655 static int
1656 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1657                    struct request *rq)
1658 {
1659         struct cfq_queue *cfqq;
1660
1661         cfqq = cfqd->active_queue;
1662         if (!cfqq)
1663                 return 0;
1664
1665         if (cfq_slice_used(cfqq))
1666                 return 1;
1667
1668         if (cfq_class_idle(new_cfqq))
1669                 return 0;
1670
1671         if (cfq_class_idle(cfqq))
1672                 return 1;
1673
1674         /*
1675          * if the new request is sync, but the currently running queue is
1676          * not, let the sync request have priority.
1677          */
1678         if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
1679                 return 1;
1680
1681         /*
1682          * So both queues are sync. Let the new request get disk time if
1683          * it's a metadata request and the current queue is doing regular IO.
1684          */
1685         if (rq_is_meta(rq) && !cfqq->meta_pending)
1686                 return 1;
1687
1688         if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
1689                 return 0;
1690
1691         /*
1692          * if this request is as-good as one we would expect from the
1693          * current cfqq, let it preempt
1694          */
1695         if (cfq_rq_close(cfqd, rq))
1696                 return 1;
1697
1698         return 0;
1699 }
1700
1701 /*
1702  * cfqq preempts the active queue. if we allowed preempt with no slice left,
1703  * let it have half of its nominal slice.
1704  */
1705 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1706 {
1707         cfq_slice_expired(cfqd, 1, 1);
1708
1709         /*
1710          * Put the new queue at the front of the of the current list,
1711          * so we know that it will be selected next.
1712          */
1713         BUG_ON(!cfq_cfqq_on_rr(cfqq));
1714         list_del_init(&cfqq->cfq_list);
1715         list_add(&cfqq->cfq_list, &cfqd->cur_rr);
1716
1717         cfqq->slice_end = 0;
1718         cfq_mark_cfqq_slice_new(cfqq);
1719 }
1720
1721 /*
1722  * Called when a new fs request (rq) is added (to cfqq). Check if there's
1723  * something we should do about it
1724  */
1725 static void
1726 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1727                 struct request *rq)
1728 {
1729         struct cfq_io_context *cic = RQ_CIC(rq);
1730
1731         if (rq_is_meta(rq))
1732                 cfqq->meta_pending++;
1733
1734         cfq_update_io_thinktime(cfqd, cic);
1735         cfq_update_io_seektime(cfqd, cic, rq);
1736         cfq_update_idle_window(cfqd, cfqq, cic);
1737
1738         cic->last_request_pos = rq->sector + rq->nr_sectors;
1739         cfqq->last_request_pos = cic->last_request_pos;
1740
1741         if (cfqq == cfqd->active_queue) {
1742                 /*
1743                  * if we are waiting for a request for this queue, let it rip
1744                  * immediately and flag that we must not expire this queue
1745                  * just now
1746                  */
1747                 if (cfq_cfqq_wait_request(cfqq)) {
1748                         cfq_mark_cfqq_must_dispatch(cfqq);
1749                         del_timer(&cfqd->idle_slice_timer);
1750                         blk_start_queueing(cfqd->queue);
1751                 }
1752         } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
1753                 /*
1754                  * not the active queue - expire current slice if it is
1755                  * idle and has expired it's mean thinktime or this new queue
1756                  * has some old slice time left and is of higher priority
1757                  */
1758                 cfq_preempt_queue(cfqd, cfqq);
1759                 cfq_mark_cfqq_must_dispatch(cfqq);
1760                 blk_start_queueing(cfqd->queue);
1761         }
1762 }
1763
1764 static void cfq_insert_request(request_queue_t *q, struct request *rq)
1765 {
1766         struct cfq_data *cfqd = q->elevator->elevator_data;
1767         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1768
1769         cfq_init_prio_data(cfqq);
1770
1771         cfq_add_rq_rb(rq);
1772
1773         list_add_tail(&rq->queuelist, &cfqq->fifo);
1774
1775         cfq_rq_enqueued(cfqd, cfqq, rq);
1776 }
1777
1778 static void cfq_completed_request(request_queue_t *q, struct request *rq)
1779 {
1780         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1781         struct cfq_data *cfqd = cfqq->cfqd;
1782         const int sync = rq_is_sync(rq);
1783         unsigned long now;
1784
1785         now = jiffies;
1786
1787         WARN_ON(!cfqd->rq_in_driver);
1788         WARN_ON(!cfqq->dispatched);
1789         cfqd->rq_in_driver--;
1790         cfqq->dispatched--;
1791
1792         if (!cfq_class_idle(cfqq))
1793                 cfqd->last_end_request = now;
1794
1795         if (sync)
1796                 RQ_CIC(rq)->last_end_request = now;
1797
1798         /*
1799          * If this is the active queue, check if it needs to be expired,
1800          * or if we want to idle in case it has no pending requests.
1801          */
1802         if (cfqd->active_queue == cfqq) {
1803                 if (cfq_cfqq_slice_new(cfqq)) {
1804                         cfq_set_prio_slice(cfqd, cfqq);
1805                         cfq_clear_cfqq_slice_new(cfqq);
1806                 }
1807                 if (cfq_slice_used(cfqq))
1808                         cfq_slice_expired(cfqd, 0, 1);
1809                 else if (sync && RB_EMPTY_ROOT(&cfqq->sort_list))
1810                         cfq_arm_slice_timer(cfqd);
1811         }
1812
1813         if (!cfqd->rq_in_driver)
1814                 cfq_schedule_dispatch(cfqd);
1815 }
1816
1817 /*
1818  * we temporarily boost lower priority queues if they are holding fs exclusive
1819  * resources. they are boosted to normal prio (CLASS_BE/4)
1820  */
1821 static void cfq_prio_boost(struct cfq_queue *cfqq)
1822 {
1823         if (has_fs_excl()) {
1824                 /*
1825                  * boost idle prio on transactions that would lock out other
1826                  * users of the filesystem
1827                  */
1828                 if (cfq_class_idle(cfqq))
1829                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
1830                 if (cfqq->ioprio > IOPRIO_NORM)
1831                         cfqq->ioprio = IOPRIO_NORM;
1832         } else {
1833                 /*
1834                  * check if we need to unboost the queue
1835                  */
1836                 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1837                         cfqq->ioprio_class = cfqq->org_ioprio_class;
1838                 if (cfqq->ioprio != cfqq->org_ioprio)
1839                         cfqq->ioprio = cfqq->org_ioprio;
1840         }
1841 }
1842
1843 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
1844 {
1845         if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1846             !cfq_cfqq_must_alloc_slice(cfqq)) {
1847                 cfq_mark_cfqq_must_alloc_slice(cfqq);
1848                 return ELV_MQUEUE_MUST;
1849         }
1850
1851         return ELV_MQUEUE_MAY;
1852 }
1853
1854 static int cfq_may_queue(request_queue_t *q, int rw)
1855 {
1856         struct cfq_data *cfqd = q->elevator->elevator_data;
1857         struct task_struct *tsk = current;
1858         struct cfq_queue *cfqq;
1859         unsigned int key;
1860
1861         key = cfq_queue_pid(tsk, rw, rw & REQ_RW_SYNC);
1862
1863         /*
1864          * don't force setup of a queue from here, as a call to may_queue
1865          * does not necessarily imply that a request actually will be queued.
1866          * so just lookup a possibly existing queue, or return 'may queue'
1867          * if that fails
1868          */
1869         cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
1870         if (cfqq) {
1871                 cfq_init_prio_data(cfqq);
1872                 cfq_prio_boost(cfqq);
1873
1874                 return __cfq_may_queue(cfqq);
1875         }
1876
1877         return ELV_MQUEUE_MAY;
1878 }
1879
1880 /*
1881  * queue lock held here
1882  */
1883 static void cfq_put_request(struct request *rq)
1884 {
1885         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1886
1887         if (cfqq) {
1888                 const int rw = rq_data_dir(rq);
1889
1890                 BUG_ON(!cfqq->allocated[rw]);
1891                 cfqq->allocated[rw]--;
1892
1893                 put_io_context(RQ_CIC(rq)->ioc);
1894
1895                 rq->elevator_private = NULL;
1896                 rq->elevator_private2 = NULL;
1897
1898                 cfq_put_queue(cfqq);
1899         }
1900 }
1901
1902 /*
1903  * Allocate cfq data structures associated with this request.
1904  */
1905 static int
1906 cfq_set_request(request_queue_t *q, struct request *rq, gfp_t gfp_mask)
1907 {
1908         struct cfq_data *cfqd = q->elevator->elevator_data;
1909         struct task_struct *tsk = current;
1910         struct cfq_io_context *cic;
1911         const int rw = rq_data_dir(rq);
1912         const int is_sync = rq_is_sync(rq);
1913         pid_t key = cfq_queue_pid(tsk, rw, is_sync);
1914         struct cfq_queue *cfqq;
1915         unsigned long flags;
1916
1917         might_sleep_if(gfp_mask & __GFP_WAIT);
1918
1919         cic = cfq_get_io_context(cfqd, gfp_mask);
1920
1921         spin_lock_irqsave(q->queue_lock, flags);
1922
1923         if (!cic)
1924                 goto queue_fail;
1925
1926         if (!cic->cfqq[is_sync]) {
1927                 cfqq = cfq_get_queue(cfqd, key, tsk, gfp_mask);
1928                 if (!cfqq)
1929                         goto queue_fail;
1930
1931                 cic->cfqq[is_sync] = cfqq;
1932         } else
1933                 cfqq = cic->cfqq[is_sync];
1934
1935         cfqq->allocated[rw]++;
1936         cfq_clear_cfqq_must_alloc(cfqq);
1937         atomic_inc(&cfqq->ref);
1938
1939         spin_unlock_irqrestore(q->queue_lock, flags);
1940
1941         rq->elevator_private = cic;
1942         rq->elevator_private2 = cfqq;
1943         return 0;
1944
1945 queue_fail:
1946         if (cic)
1947                 put_io_context(cic->ioc);
1948
1949         cfq_schedule_dispatch(cfqd);
1950         spin_unlock_irqrestore(q->queue_lock, flags);
1951         return 1;
1952 }
1953
1954 static void cfq_kick_queue(struct work_struct *work)
1955 {
1956         struct cfq_data *cfqd =
1957                 container_of(work, struct cfq_data, unplug_work);
1958         request_queue_t *q = cfqd->queue;
1959         unsigned long flags;
1960
1961         spin_lock_irqsave(q->queue_lock, flags);
1962         blk_start_queueing(q);
1963         spin_unlock_irqrestore(q->queue_lock, flags);
1964 }
1965
1966 /*
1967  * Timer running if the active_queue is currently idling inside its time slice
1968  */
1969 static void cfq_idle_slice_timer(unsigned long data)
1970 {
1971         struct cfq_data *cfqd = (struct cfq_data *) data;
1972         struct cfq_queue *cfqq;
1973         unsigned long flags;
1974         int timed_out = 1;
1975
1976         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1977
1978         if ((cfqq = cfqd->active_queue) != NULL) {
1979                 timed_out = 0;
1980
1981                 /*
1982                  * expired
1983                  */
1984                 if (cfq_slice_used(cfqq))
1985                         goto expire;
1986
1987                 /*
1988                  * only expire and reinvoke request handler, if there are
1989                  * other queues with pending requests
1990                  */
1991                 if (!cfqd->busy_queues)
1992                         goto out_cont;
1993
1994                 /*
1995                  * not expired and it has a request pending, let it dispatch
1996                  */
1997                 if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
1998                         cfq_mark_cfqq_must_dispatch(cfqq);
1999                         goto out_kick;
2000                 }
2001         }
2002 expire:
2003         cfq_slice_expired(cfqd, 0, timed_out);
2004 out_kick:
2005         cfq_schedule_dispatch(cfqd);
2006 out_cont:
2007         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2008 }
2009
2010 /*
2011  * Timer running if an idle class queue is waiting for service
2012  */
2013 static void cfq_idle_class_timer(unsigned long data)
2014 {
2015         struct cfq_data *cfqd = (struct cfq_data *) data;
2016         unsigned long flags, end;
2017
2018         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2019
2020         /*
2021          * race with a non-idle queue, reset timer
2022          */
2023         end = cfqd->last_end_request + CFQ_IDLE_GRACE;
2024         if (!time_after_eq(jiffies, end))
2025                 mod_timer(&cfqd->idle_class_timer, end);
2026         else
2027                 cfq_schedule_dispatch(cfqd);
2028
2029         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2030 }
2031
2032 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2033 {
2034         del_timer_sync(&cfqd->idle_slice_timer);
2035         del_timer_sync(&cfqd->idle_class_timer);
2036         blk_sync_queue(cfqd->queue);
2037 }
2038
2039 static void cfq_exit_queue(elevator_t *e)
2040 {
2041         struct cfq_data *cfqd = e->elevator_data;
2042         request_queue_t *q = cfqd->queue;
2043
2044         cfq_shutdown_timer_wq(cfqd);
2045
2046         spin_lock_irq(q->queue_lock);
2047
2048         if (cfqd->active_queue)
2049                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0, 0);
2050
2051         while (!list_empty(&cfqd->cic_list)) {
2052                 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2053                                                         struct cfq_io_context,
2054                                                         queue_list);
2055
2056                 __cfq_exit_single_io_context(cfqd, cic);
2057         }
2058
2059         spin_unlock_irq(q->queue_lock);
2060
2061         cfq_shutdown_timer_wq(cfqd);
2062
2063         kfree(cfqd->cfq_hash);
2064         kfree(cfqd);
2065 }
2066
2067 static void *cfq_init_queue(request_queue_t *q)
2068 {
2069         struct cfq_data *cfqd;
2070         int i;
2071
2072         cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
2073         if (!cfqd)
2074                 return NULL;
2075
2076         memset(cfqd, 0, sizeof(*cfqd));
2077
2078         cfqd->service_tree = CFQ_RB_ROOT;
2079         INIT_LIST_HEAD(&cfqd->cur_rr);
2080         INIT_LIST_HEAD(&cfqd->cic_list);
2081
2082         cfqd->cfq_hash = kmalloc_node(sizeof(struct hlist_head) * CFQ_QHASH_ENTRIES, GFP_KERNEL, q->node);
2083         if (!cfqd->cfq_hash)
2084                 goto out_free;
2085
2086         for (i = 0; i < CFQ_QHASH_ENTRIES; i++)
2087                 INIT_HLIST_HEAD(&cfqd->cfq_hash[i]);
2088
2089         cfqd->queue = q;
2090
2091         init_timer(&cfqd->idle_slice_timer);
2092         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2093         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2094
2095         init_timer(&cfqd->idle_class_timer);
2096         cfqd->idle_class_timer.function = cfq_idle_class_timer;
2097         cfqd->idle_class_timer.data = (unsigned long) cfqd;
2098
2099         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2100
2101         cfqd->cfq_quantum = cfq_quantum;
2102         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2103         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2104         cfqd->cfq_back_max = cfq_back_max;
2105         cfqd->cfq_back_penalty = cfq_back_penalty;
2106         cfqd->cfq_slice[0] = cfq_slice_async;
2107         cfqd->cfq_slice[1] = cfq_slice_sync;
2108         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2109         cfqd->cfq_slice_idle = cfq_slice_idle;
2110
2111         return cfqd;
2112 out_free:
2113         kfree(cfqd);
2114         return NULL;
2115 }
2116
2117 static void cfq_slab_kill(void)
2118 {
2119         if (cfq_pool)
2120                 kmem_cache_destroy(cfq_pool);
2121         if (cfq_ioc_pool)
2122                 kmem_cache_destroy(cfq_ioc_pool);
2123 }
2124
2125 static int __init cfq_slab_setup(void)
2126 {
2127         cfq_pool = kmem_cache_create("cfq_pool", sizeof(struct cfq_queue), 0, 0,
2128                                         NULL, NULL);
2129         if (!cfq_pool)
2130                 goto fail;
2131
2132         cfq_ioc_pool = kmem_cache_create("cfq_ioc_pool",
2133                         sizeof(struct cfq_io_context), 0, 0, NULL, NULL);
2134         if (!cfq_ioc_pool)
2135                 goto fail;
2136
2137         return 0;
2138 fail:
2139         cfq_slab_kill();
2140         return -ENOMEM;
2141 }
2142
2143 /*
2144  * sysfs parts below -->
2145  */
2146 static ssize_t
2147 cfq_var_show(unsigned int var, char *page)
2148 {
2149         return sprintf(page, "%d\n", var);
2150 }
2151
2152 static ssize_t
2153 cfq_var_store(unsigned int *var, const char *page, size_t count)
2154 {
2155         char *p = (char *) page;
2156
2157         *var = simple_strtoul(p, &p, 10);
2158         return count;
2159 }
2160
2161 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
2162 static ssize_t __FUNC(elevator_t *e, char *page)                        \
2163 {                                                                       \
2164         struct cfq_data *cfqd = e->elevator_data;                       \
2165         unsigned int __data = __VAR;                                    \
2166         if (__CONV)                                                     \
2167                 __data = jiffies_to_msecs(__data);                      \
2168         return cfq_var_show(__data, (page));                            \
2169 }
2170 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2171 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2172 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2173 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2174 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2175 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2176 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2177 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2178 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2179 #undef SHOW_FUNCTION
2180
2181 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
2182 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count)    \
2183 {                                                                       \
2184         struct cfq_data *cfqd = e->elevator_data;                       \
2185         unsigned int __data;                                            \
2186         int ret = cfq_var_store(&__data, (page), count);                \
2187         if (__data < (MIN))                                             \
2188                 __data = (MIN);                                         \
2189         else if (__data > (MAX))                                        \
2190                 __data = (MAX);                                         \
2191         if (__CONV)                                                     \
2192                 *(__PTR) = msecs_to_jiffies(__data);                    \
2193         else                                                            \
2194                 *(__PTR) = __data;                                      \
2195         return ret;                                                     \
2196 }
2197 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2198 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
2199 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
2200 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2201 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
2202 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2203 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2204 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2205 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
2206 #undef STORE_FUNCTION
2207
2208 #define CFQ_ATTR(name) \
2209         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2210
2211 static struct elv_fs_entry cfq_attrs[] = {
2212         CFQ_ATTR(quantum),
2213         CFQ_ATTR(fifo_expire_sync),
2214         CFQ_ATTR(fifo_expire_async),
2215         CFQ_ATTR(back_seek_max),
2216         CFQ_ATTR(back_seek_penalty),
2217         CFQ_ATTR(slice_sync),
2218         CFQ_ATTR(slice_async),
2219         CFQ_ATTR(slice_async_rq),
2220         CFQ_ATTR(slice_idle),
2221         __ATTR_NULL
2222 };
2223
2224 static struct elevator_type iosched_cfq = {
2225         .ops = {
2226                 .elevator_merge_fn =            cfq_merge,
2227                 .elevator_merged_fn =           cfq_merged_request,
2228                 .elevator_merge_req_fn =        cfq_merged_requests,
2229                 .elevator_allow_merge_fn =      cfq_allow_merge,
2230                 .elevator_dispatch_fn =         cfq_dispatch_requests,
2231                 .elevator_add_req_fn =          cfq_insert_request,
2232                 .elevator_activate_req_fn =     cfq_activate_request,
2233                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
2234                 .elevator_queue_empty_fn =      cfq_queue_empty,
2235                 .elevator_completed_req_fn =    cfq_completed_request,
2236                 .elevator_former_req_fn =       elv_rb_former_request,
2237                 .elevator_latter_req_fn =       elv_rb_latter_request,
2238                 .elevator_set_req_fn =          cfq_set_request,
2239                 .elevator_put_req_fn =          cfq_put_request,
2240                 .elevator_may_queue_fn =        cfq_may_queue,
2241                 .elevator_init_fn =             cfq_init_queue,
2242                 .elevator_exit_fn =             cfq_exit_queue,
2243                 .trim =                         cfq_free_io_context,
2244         },
2245         .elevator_attrs =       cfq_attrs,
2246         .elevator_name =        "cfq",
2247         .elevator_owner =       THIS_MODULE,
2248 };
2249
2250 static int __init cfq_init(void)
2251 {
2252         int ret;
2253
2254         /*
2255          * could be 0 on HZ < 1000 setups
2256          */
2257         if (!cfq_slice_async)
2258                 cfq_slice_async = 1;
2259         if (!cfq_slice_idle)
2260                 cfq_slice_idle = 1;
2261
2262         if (cfq_slab_setup())
2263                 return -ENOMEM;
2264
2265         ret = elv_register(&iosched_cfq);
2266         if (ret)
2267                 cfq_slab_kill();
2268
2269         return ret;
2270 }
2271
2272 static void __exit cfq_exit(void)
2273 {
2274         DECLARE_COMPLETION_ONSTACK(all_gone);
2275         elv_unregister(&iosched_cfq);
2276         ioc_gone = &all_gone;
2277         /* ioc_gone's update must be visible before reading ioc_count */
2278         smp_wmb();
2279         if (elv_ioc_count_read(ioc_count))
2280                 wait_for_completion(ioc_gone);
2281         synchronize_rcu();
2282         cfq_slab_kill();
2283 }
2284
2285 module_init(cfq_init);
2286 module_exit(cfq_exit);
2287
2288 MODULE_AUTHOR("Jens Axboe");
2289 MODULE_LICENSE("GPL");
2290 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");