blkio: Implement dynamic io controlling policy registration
[safe/jmp/linux-2.6] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/jiffies.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15 #include <linux/blktrace_api.h>
16 #include "blk-cgroup.h"
17
18 /*
19  * tunables
20  */
21 /* max queue in one round of service */
22 static const int cfq_quantum = 4;
23 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
24 /* maximum backwards seek, in KiB */
25 static const int cfq_back_max = 16 * 1024;
26 /* penalty of a backwards seek */
27 static const int cfq_back_penalty = 2;
28 static const int cfq_slice_sync = HZ / 10;
29 static int cfq_slice_async = HZ / 25;
30 static const int cfq_slice_async_rq = 2;
31 static int cfq_slice_idle = HZ / 125;
32 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
33 static const int cfq_hist_divisor = 4;
34
35 /*
36  * offset from end of service tree
37  */
38 #define CFQ_IDLE_DELAY          (HZ / 5)
39
40 /*
41  * below this threshold, we consider thinktime immediate
42  */
43 #define CFQ_MIN_TT              (2)
44
45 /*
46  * Allow merged cfqqs to perform this amount of seeky I/O before
47  * deciding to break the queues up again.
48  */
49 #define CFQQ_COOP_TOUT          (HZ)
50
51 #define CFQ_SLICE_SCALE         (5)
52 #define CFQ_HW_QUEUE_MIN        (5)
53 #define CFQ_SERVICE_SHIFT       12
54
55 #define RQ_CIC(rq)              \
56         ((struct cfq_io_context *) (rq)->elevator_private)
57 #define RQ_CFQQ(rq)             (struct cfq_queue *) ((rq)->elevator_private2)
58
59 static struct kmem_cache *cfq_pool;
60 static struct kmem_cache *cfq_ioc_pool;
61
62 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
63 static struct completion *ioc_gone;
64 static DEFINE_SPINLOCK(ioc_gone_lock);
65
66 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
67 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
68 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
69
70 #define sample_valid(samples)   ((samples) > 80)
71 #define rb_entry_cfqg(node)     rb_entry((node), struct cfq_group, rb_node)
72
73 /*
74  * Most of our rbtree usage is for sorting with min extraction, so
75  * if we cache the leftmost node we don't have to walk down the tree
76  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
77  * move this into the elevator for the rq sorting as well.
78  */
79 struct cfq_rb_root {
80         struct rb_root rb;
81         struct rb_node *left;
82         unsigned count;
83         u64 min_vdisktime;
84         struct rb_node *active;
85         unsigned total_weight;
86 };
87 #define CFQ_RB_ROOT     (struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
88
89 /*
90  * Per process-grouping structure
91  */
92 struct cfq_queue {
93         /* reference count */
94         atomic_t ref;
95         /* various state flags, see below */
96         unsigned int flags;
97         /* parent cfq_data */
98         struct cfq_data *cfqd;
99         /* service_tree member */
100         struct rb_node rb_node;
101         /* service_tree key */
102         unsigned long rb_key;
103         /* prio tree member */
104         struct rb_node p_node;
105         /* prio tree root we belong to, if any */
106         struct rb_root *p_root;
107         /* sorted list of pending requests */
108         struct rb_root sort_list;
109         /* if fifo isn't expired, next request to serve */
110         struct request *next_rq;
111         /* requests queued in sort_list */
112         int queued[2];
113         /* currently allocated requests */
114         int allocated[2];
115         /* fifo list of requests in sort_list */
116         struct list_head fifo;
117
118         /* time when queue got scheduled in to dispatch first request. */
119         unsigned long dispatch_start;
120         unsigned int allocated_slice;
121         /* time when first request from queue completed and slice started. */
122         unsigned long slice_start;
123         unsigned long slice_end;
124         long slice_resid;
125         unsigned int slice_dispatch;
126
127         /* pending metadata requests */
128         int meta_pending;
129         /* number of requests that are on the dispatch list or inside driver */
130         int dispatched;
131
132         /* io prio of this group */
133         unsigned short ioprio, org_ioprio;
134         unsigned short ioprio_class, org_ioprio_class;
135
136         unsigned int seek_samples;
137         u64 seek_total;
138         sector_t seek_mean;
139         sector_t last_request_pos;
140         unsigned long seeky_start;
141
142         pid_t pid;
143
144         struct cfq_rb_root *service_tree;
145         struct cfq_queue *new_cfqq;
146         struct cfq_group *cfqg;
147         struct cfq_group *orig_cfqg;
148         /* Sectors dispatched in current dispatch round */
149         unsigned long nr_sectors;
150 };
151
152 /*
153  * First index in the service_trees.
154  * IDLE is handled separately, so it has negative index
155  */
156 enum wl_prio_t {
157         BE_WORKLOAD = 0,
158         RT_WORKLOAD = 1,
159         IDLE_WORKLOAD = 2,
160 };
161
162 /*
163  * Second index in the service_trees.
164  */
165 enum wl_type_t {
166         ASYNC_WORKLOAD = 0,
167         SYNC_NOIDLE_WORKLOAD = 1,
168         SYNC_WORKLOAD = 2
169 };
170
171 /* This is per cgroup per device grouping structure */
172 struct cfq_group {
173         /* group service_tree member */
174         struct rb_node rb_node;
175
176         /* group service_tree key */
177         u64 vdisktime;
178         unsigned int weight;
179         bool on_st;
180
181         /* number of cfqq currently on this group */
182         int nr_cfqq;
183
184         /* Per group busy queus average. Useful for workload slice calc. */
185         unsigned int busy_queues_avg[2];
186         /*
187          * rr lists of queues with requests, onle rr for each priority class.
188          * Counts are embedded in the cfq_rb_root
189          */
190         struct cfq_rb_root service_trees[2][3];
191         struct cfq_rb_root service_tree_idle;
192
193         unsigned long saved_workload_slice;
194         enum wl_type_t saved_workload;
195         enum wl_prio_t saved_serving_prio;
196         struct blkio_group blkg;
197 #ifdef CONFIG_CFQ_GROUP_IOSCHED
198         struct hlist_node cfqd_node;
199         atomic_t ref;
200 #endif
201 };
202
203 /*
204  * Per block device queue structure
205  */
206 struct cfq_data {
207         struct request_queue *queue;
208         /* Root service tree for cfq_groups */
209         struct cfq_rb_root grp_service_tree;
210         struct cfq_group root_group;
211         /* Number of active cfq groups on group service tree */
212         int nr_groups;
213
214         /*
215          * The priority currently being served
216          */
217         enum wl_prio_t serving_prio;
218         enum wl_type_t serving_type;
219         unsigned long workload_expires;
220         struct cfq_group *serving_group;
221         bool noidle_tree_requires_idle;
222
223         /*
224          * Each priority tree is sorted by next_request position.  These
225          * trees are used when determining if two or more queues are
226          * interleaving requests (see cfq_close_cooperator).
227          */
228         struct rb_root prio_trees[CFQ_PRIO_LISTS];
229
230         unsigned int busy_queues;
231
232         int rq_in_driver[2];
233         int sync_flight;
234
235         /*
236          * queue-depth detection
237          */
238         int rq_queued;
239         int hw_tag;
240         /*
241          * hw_tag can be
242          * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
243          *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
244          *  0 => no NCQ
245          */
246         int hw_tag_est_depth;
247         unsigned int hw_tag_samples;
248
249         /*
250          * idle window management
251          */
252         struct timer_list idle_slice_timer;
253         struct work_struct unplug_work;
254
255         struct cfq_queue *active_queue;
256         struct cfq_io_context *active_cic;
257
258         /*
259          * async queue for each priority case
260          */
261         struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
262         struct cfq_queue *async_idle_cfqq;
263
264         sector_t last_position;
265
266         /*
267          * tunables, see top of file
268          */
269         unsigned int cfq_quantum;
270         unsigned int cfq_fifo_expire[2];
271         unsigned int cfq_back_penalty;
272         unsigned int cfq_back_max;
273         unsigned int cfq_slice[2];
274         unsigned int cfq_slice_async_rq;
275         unsigned int cfq_slice_idle;
276         unsigned int cfq_latency;
277         unsigned int cfq_group_isolation;
278
279         struct list_head cic_list;
280
281         /*
282          * Fallback dummy cfqq for extreme OOM conditions
283          */
284         struct cfq_queue oom_cfqq;
285
286         unsigned long last_end_sync_rq;
287
288         /* List of cfq groups being managed on this device*/
289         struct hlist_head cfqg_list;
290 };
291
292 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
293
294 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
295                                             enum wl_prio_t prio,
296                                             enum wl_type_t type,
297                                             struct cfq_data *cfqd)
298 {
299         if (!cfqg)
300                 return NULL;
301
302         if (prio == IDLE_WORKLOAD)
303                 return &cfqg->service_tree_idle;
304
305         return &cfqg->service_trees[prio][type];
306 }
307
308 enum cfqq_state_flags {
309         CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
310         CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
311         CFQ_CFQQ_FLAG_must_dispatch,    /* must be allowed a dispatch */
312         CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
313         CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
314         CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
315         CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
316         CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
317         CFQ_CFQQ_FLAG_sync,             /* synchronous queue */
318         CFQ_CFQQ_FLAG_coop,             /* cfqq is shared */
319         CFQ_CFQQ_FLAG_deep,             /* sync cfqq experienced large depth */
320         CFQ_CFQQ_FLAG_wait_busy,        /* Waiting for next request */
321         CFQ_CFQQ_FLAG_wait_busy_done,   /* Got new request. Expire the queue */
322 };
323
324 #define CFQ_CFQQ_FNS(name)                                              \
325 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
326 {                                                                       \
327         (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);                   \
328 }                                                                       \
329 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
330 {                                                                       \
331         (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                  \
332 }                                                                       \
333 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
334 {                                                                       \
335         return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;      \
336 }
337
338 CFQ_CFQQ_FNS(on_rr);
339 CFQ_CFQQ_FNS(wait_request);
340 CFQ_CFQQ_FNS(must_dispatch);
341 CFQ_CFQQ_FNS(must_alloc_slice);
342 CFQ_CFQQ_FNS(fifo_expire);
343 CFQ_CFQQ_FNS(idle_window);
344 CFQ_CFQQ_FNS(prio_changed);
345 CFQ_CFQQ_FNS(slice_new);
346 CFQ_CFQQ_FNS(sync);
347 CFQ_CFQQ_FNS(coop);
348 CFQ_CFQQ_FNS(deep);
349 CFQ_CFQQ_FNS(wait_busy);
350 CFQ_CFQQ_FNS(wait_busy_done);
351 #undef CFQ_CFQQ_FNS
352
353 #ifdef CONFIG_DEBUG_CFQ_IOSCHED
354 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
355         blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
356                         cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
357                         blkg_path(&(cfqq)->cfqg->blkg), ##args);
358
359 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)                          \
360         blk_add_trace_msg((cfqd)->queue, "%s " fmt,                     \
361                                 blkg_path(&(cfqg)->blkg), ##args);      \
362
363 #else
364 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
365         blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
366 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)          do {} while (0);
367 #endif
368 #define cfq_log(cfqd, fmt, args...)     \
369         blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
370
371 /* Traverses through cfq group service trees */
372 #define for_each_cfqg_st(cfqg, i, j, st) \
373         for (i = 0; i <= IDLE_WORKLOAD; i++) \
374                 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
375                         : &cfqg->service_tree_idle; \
376                         (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
377                         (i == IDLE_WORKLOAD && j == 0); \
378                         j++, st = i < IDLE_WORKLOAD ? \
379                         &cfqg->service_trees[i][j]: NULL) \
380
381
382 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
383 {
384         if (cfq_class_idle(cfqq))
385                 return IDLE_WORKLOAD;
386         if (cfq_class_rt(cfqq))
387                 return RT_WORKLOAD;
388         return BE_WORKLOAD;
389 }
390
391
392 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
393 {
394         if (!cfq_cfqq_sync(cfqq))
395                 return ASYNC_WORKLOAD;
396         if (!cfq_cfqq_idle_window(cfqq))
397                 return SYNC_NOIDLE_WORKLOAD;
398         return SYNC_WORKLOAD;
399 }
400
401 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
402                                         struct cfq_data *cfqd,
403                                         struct cfq_group *cfqg)
404 {
405         if (wl == IDLE_WORKLOAD)
406                 return cfqg->service_tree_idle.count;
407
408         return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
409                 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
410                 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
411 }
412
413 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
414                                         struct cfq_group *cfqg)
415 {
416         return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
417                 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
418 }
419
420 static void cfq_dispatch_insert(struct request_queue *, struct request *);
421 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
422                                        struct io_context *, gfp_t);
423 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
424                                                 struct io_context *);
425
426 static inline int rq_in_driver(struct cfq_data *cfqd)
427 {
428         return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
429 }
430
431 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
432                                             bool is_sync)
433 {
434         return cic->cfqq[is_sync];
435 }
436
437 static inline void cic_set_cfqq(struct cfq_io_context *cic,
438                                 struct cfq_queue *cfqq, bool is_sync)
439 {
440         cic->cfqq[is_sync] = cfqq;
441 }
442
443 /*
444  * We regard a request as SYNC, if it's either a read or has the SYNC bit
445  * set (in which case it could also be direct WRITE).
446  */
447 static inline bool cfq_bio_sync(struct bio *bio)
448 {
449         return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
450 }
451
452 /*
453  * scheduler run of queue, if there are requests pending and no one in the
454  * driver that will restart queueing
455  */
456 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
457 {
458         if (cfqd->busy_queues) {
459                 cfq_log(cfqd, "schedule dispatch");
460                 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
461         }
462 }
463
464 static int cfq_queue_empty(struct request_queue *q)
465 {
466         struct cfq_data *cfqd = q->elevator->elevator_data;
467
468         return !cfqd->rq_queued;
469 }
470
471 /*
472  * Scale schedule slice based on io priority. Use the sync time slice only
473  * if a queue is marked sync and has sync io queued. A sync queue with async
474  * io only, should not get full sync slice length.
475  */
476 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
477                                  unsigned short prio)
478 {
479         const int base_slice = cfqd->cfq_slice[sync];
480
481         WARN_ON(prio >= IOPRIO_BE_NR);
482
483         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
484 }
485
486 static inline int
487 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
488 {
489         return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
490 }
491
492 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
493 {
494         u64 d = delta << CFQ_SERVICE_SHIFT;
495
496         d = d * BLKIO_WEIGHT_DEFAULT;
497         do_div(d, cfqg->weight);
498         return d;
499 }
500
501 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
502 {
503         s64 delta = (s64)(vdisktime - min_vdisktime);
504         if (delta > 0)
505                 min_vdisktime = vdisktime;
506
507         return min_vdisktime;
508 }
509
510 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
511 {
512         s64 delta = (s64)(vdisktime - min_vdisktime);
513         if (delta < 0)
514                 min_vdisktime = vdisktime;
515
516         return min_vdisktime;
517 }
518
519 static void update_min_vdisktime(struct cfq_rb_root *st)
520 {
521         u64 vdisktime = st->min_vdisktime;
522         struct cfq_group *cfqg;
523
524         if (st->active) {
525                 cfqg = rb_entry_cfqg(st->active);
526                 vdisktime = cfqg->vdisktime;
527         }
528
529         if (st->left) {
530                 cfqg = rb_entry_cfqg(st->left);
531                 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
532         }
533
534         st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
535 }
536
537 /*
538  * get averaged number of queues of RT/BE priority.
539  * average is updated, with a formula that gives more weight to higher numbers,
540  * to quickly follows sudden increases and decrease slowly
541  */
542
543 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
544                                         struct cfq_group *cfqg, bool rt)
545 {
546         unsigned min_q, max_q;
547         unsigned mult  = cfq_hist_divisor - 1;
548         unsigned round = cfq_hist_divisor / 2;
549         unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
550
551         min_q = min(cfqg->busy_queues_avg[rt], busy);
552         max_q = max(cfqg->busy_queues_avg[rt], busy);
553         cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
554                 cfq_hist_divisor;
555         return cfqg->busy_queues_avg[rt];
556 }
557
558 static inline unsigned
559 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
560 {
561         struct cfq_rb_root *st = &cfqd->grp_service_tree;
562
563         return cfq_target_latency * cfqg->weight / st->total_weight;
564 }
565
566 static inline void
567 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
568 {
569         unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
570         if (cfqd->cfq_latency) {
571                 /*
572                  * interested queues (we consider only the ones with the same
573                  * priority class in the cfq group)
574                  */
575                 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
576                                                 cfq_class_rt(cfqq));
577                 unsigned sync_slice = cfqd->cfq_slice[1];
578                 unsigned expect_latency = sync_slice * iq;
579                 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
580
581                 if (expect_latency > group_slice) {
582                         unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
583                         /* scale low_slice according to IO priority
584                          * and sync vs async */
585                         unsigned low_slice =
586                                 min(slice, base_low_slice * slice / sync_slice);
587                         /* the adapted slice value is scaled to fit all iqs
588                          * into the target latency */
589                         slice = max(slice * group_slice / expect_latency,
590                                     low_slice);
591                 }
592         }
593         cfqq->slice_start = jiffies;
594         cfqq->slice_end = jiffies + slice;
595         cfqq->allocated_slice = slice;
596         cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
597 }
598
599 /*
600  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
601  * isn't valid until the first request from the dispatch is activated
602  * and the slice time set.
603  */
604 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
605 {
606         if (cfq_cfqq_slice_new(cfqq))
607                 return 0;
608         if (time_before(jiffies, cfqq->slice_end))
609                 return 0;
610
611         return 1;
612 }
613
614 /*
615  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
616  * We choose the request that is closest to the head right now. Distance
617  * behind the head is penalized and only allowed to a certain extent.
618  */
619 static struct request *
620 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
621 {
622         sector_t s1, s2, d1 = 0, d2 = 0;
623         unsigned long back_max;
624 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
625 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
626         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
627
628         if (rq1 == NULL || rq1 == rq2)
629                 return rq2;
630         if (rq2 == NULL)
631                 return rq1;
632
633         if (rq_is_sync(rq1) && !rq_is_sync(rq2))
634                 return rq1;
635         else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
636                 return rq2;
637         if (rq_is_meta(rq1) && !rq_is_meta(rq2))
638                 return rq1;
639         else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
640                 return rq2;
641
642         s1 = blk_rq_pos(rq1);
643         s2 = blk_rq_pos(rq2);
644
645         /*
646          * by definition, 1KiB is 2 sectors
647          */
648         back_max = cfqd->cfq_back_max * 2;
649
650         /*
651          * Strict one way elevator _except_ in the case where we allow
652          * short backward seeks which are biased as twice the cost of a
653          * similar forward seek.
654          */
655         if (s1 >= last)
656                 d1 = s1 - last;
657         else if (s1 + back_max >= last)
658                 d1 = (last - s1) * cfqd->cfq_back_penalty;
659         else
660                 wrap |= CFQ_RQ1_WRAP;
661
662         if (s2 >= last)
663                 d2 = s2 - last;
664         else if (s2 + back_max >= last)
665                 d2 = (last - s2) * cfqd->cfq_back_penalty;
666         else
667                 wrap |= CFQ_RQ2_WRAP;
668
669         /* Found required data */
670
671         /*
672          * By doing switch() on the bit mask "wrap" we avoid having to
673          * check two variables for all permutations: --> faster!
674          */
675         switch (wrap) {
676         case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
677                 if (d1 < d2)
678                         return rq1;
679                 else if (d2 < d1)
680                         return rq2;
681                 else {
682                         if (s1 >= s2)
683                                 return rq1;
684                         else
685                                 return rq2;
686                 }
687
688         case CFQ_RQ2_WRAP:
689                 return rq1;
690         case CFQ_RQ1_WRAP:
691                 return rq2;
692         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
693         default:
694                 /*
695                  * Since both rqs are wrapped,
696                  * start with the one that's further behind head
697                  * (--> only *one* back seek required),
698                  * since back seek takes more time than forward.
699                  */
700                 if (s1 <= s2)
701                         return rq1;
702                 else
703                         return rq2;
704         }
705 }
706
707 /*
708  * The below is leftmost cache rbtree addon
709  */
710 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
711 {
712         /* Service tree is empty */
713         if (!root->count)
714                 return NULL;
715
716         if (!root->left)
717                 root->left = rb_first(&root->rb);
718
719         if (root->left)
720                 return rb_entry(root->left, struct cfq_queue, rb_node);
721
722         return NULL;
723 }
724
725 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
726 {
727         if (!root->left)
728                 root->left = rb_first(&root->rb);
729
730         if (root->left)
731                 return rb_entry_cfqg(root->left);
732
733         return NULL;
734 }
735
736 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
737 {
738         rb_erase(n, root);
739         RB_CLEAR_NODE(n);
740 }
741
742 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
743 {
744         if (root->left == n)
745                 root->left = NULL;
746         rb_erase_init(n, &root->rb);
747         --root->count;
748 }
749
750 /*
751  * would be nice to take fifo expire time into account as well
752  */
753 static struct request *
754 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
755                   struct request *last)
756 {
757         struct rb_node *rbnext = rb_next(&last->rb_node);
758         struct rb_node *rbprev = rb_prev(&last->rb_node);
759         struct request *next = NULL, *prev = NULL;
760
761         BUG_ON(RB_EMPTY_NODE(&last->rb_node));
762
763         if (rbprev)
764                 prev = rb_entry_rq(rbprev);
765
766         if (rbnext)
767                 next = rb_entry_rq(rbnext);
768         else {
769                 rbnext = rb_first(&cfqq->sort_list);
770                 if (rbnext && rbnext != &last->rb_node)
771                         next = rb_entry_rq(rbnext);
772         }
773
774         return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
775 }
776
777 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
778                                       struct cfq_queue *cfqq)
779 {
780         /*
781          * just an approximation, should be ok.
782          */
783         return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
784                        cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
785 }
786
787 static inline s64
788 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
789 {
790         return cfqg->vdisktime - st->min_vdisktime;
791 }
792
793 static void
794 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
795 {
796         struct rb_node **node = &st->rb.rb_node;
797         struct rb_node *parent = NULL;
798         struct cfq_group *__cfqg;
799         s64 key = cfqg_key(st, cfqg);
800         int left = 1;
801
802         while (*node != NULL) {
803                 parent = *node;
804                 __cfqg = rb_entry_cfqg(parent);
805
806                 if (key < cfqg_key(st, __cfqg))
807                         node = &parent->rb_left;
808                 else {
809                         node = &parent->rb_right;
810                         left = 0;
811                 }
812         }
813
814         if (left)
815                 st->left = &cfqg->rb_node;
816
817         rb_link_node(&cfqg->rb_node, parent, node);
818         rb_insert_color(&cfqg->rb_node, &st->rb);
819 }
820
821 static void
822 cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
823 {
824         struct cfq_rb_root *st = &cfqd->grp_service_tree;
825         struct cfq_group *__cfqg;
826         struct rb_node *n;
827
828         cfqg->nr_cfqq++;
829         if (cfqg->on_st)
830                 return;
831
832         /*
833          * Currently put the group at the end. Later implement something
834          * so that groups get lesser vtime based on their weights, so that
835          * if group does not loose all if it was not continously backlogged.
836          */
837         n = rb_last(&st->rb);
838         if (n) {
839                 __cfqg = rb_entry_cfqg(n);
840                 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
841         } else
842                 cfqg->vdisktime = st->min_vdisktime;
843
844         __cfq_group_service_tree_add(st, cfqg);
845         cfqg->on_st = true;
846         cfqd->nr_groups++;
847         st->total_weight += cfqg->weight;
848 }
849
850 static void
851 cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
852 {
853         struct cfq_rb_root *st = &cfqd->grp_service_tree;
854
855         if (st->active == &cfqg->rb_node)
856                 st->active = NULL;
857
858         BUG_ON(cfqg->nr_cfqq < 1);
859         cfqg->nr_cfqq--;
860
861         /* If there are other cfq queues under this group, don't delete it */
862         if (cfqg->nr_cfqq)
863                 return;
864
865         cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
866         cfqg->on_st = false;
867         cfqd->nr_groups--;
868         st->total_weight -= cfqg->weight;
869         if (!RB_EMPTY_NODE(&cfqg->rb_node))
870                 cfq_rb_erase(&cfqg->rb_node, st);
871         cfqg->saved_workload_slice = 0;
872         blkiocg_update_blkio_group_dequeue_stats(&cfqg->blkg, 1);
873 }
874
875 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
876 {
877         unsigned int slice_used;
878
879         /*
880          * Queue got expired before even a single request completed or
881          * got expired immediately after first request completion.
882          */
883         if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
884                 /*
885                  * Also charge the seek time incurred to the group, otherwise
886                  * if there are mutiple queues in the group, each can dispatch
887                  * a single request on seeky media and cause lots of seek time
888                  * and group will never know it.
889                  */
890                 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
891                                         1);
892         } else {
893                 slice_used = jiffies - cfqq->slice_start;
894                 if (slice_used > cfqq->allocated_slice)
895                         slice_used = cfqq->allocated_slice;
896         }
897
898         cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u sect=%lu", slice_used,
899                                 cfqq->nr_sectors);
900         return slice_used;
901 }
902
903 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
904                                 struct cfq_queue *cfqq)
905 {
906         struct cfq_rb_root *st = &cfqd->grp_service_tree;
907         unsigned int used_sl, charge_sl;
908         int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
909                         - cfqg->service_tree_idle.count;
910
911         BUG_ON(nr_sync < 0);
912         used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
913
914         if (!cfq_cfqq_sync(cfqq) && !nr_sync)
915                 charge_sl = cfqq->allocated_slice;
916
917         /* Can't update vdisktime while group is on service tree */
918         cfq_rb_erase(&cfqg->rb_node, st);
919         cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
920         __cfq_group_service_tree_add(st, cfqg);
921
922         /* This group is being expired. Save the context */
923         if (time_after(cfqd->workload_expires, jiffies)) {
924                 cfqg->saved_workload_slice = cfqd->workload_expires
925                                                 - jiffies;
926                 cfqg->saved_workload = cfqd->serving_type;
927                 cfqg->saved_serving_prio = cfqd->serving_prio;
928         } else
929                 cfqg->saved_workload_slice = 0;
930
931         cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
932                                         st->min_vdisktime);
933         blkiocg_update_blkio_group_stats(&cfqg->blkg, used_sl,
934                                                 cfqq->nr_sectors);
935 }
936
937 #ifdef CONFIG_CFQ_GROUP_IOSCHED
938 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
939 {
940         if (blkg)
941                 return container_of(blkg, struct cfq_group, blkg);
942         return NULL;
943 }
944
945 void
946 cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
947 {
948         cfqg_of_blkg(blkg)->weight = weight;
949 }
950
951 static struct cfq_group *
952 cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
953 {
954         struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
955         struct cfq_group *cfqg = NULL;
956         void *key = cfqd;
957         int i, j;
958         struct cfq_rb_root *st;
959         struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
960         unsigned int major, minor;
961
962         /* Do we need to take this reference */
963         if (!blkiocg_css_tryget(blkcg))
964                 return NULL;;
965
966         cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
967         if (cfqg || !create)
968                 goto done;
969
970         cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
971         if (!cfqg)
972                 goto done;
973
974         cfqg->weight = blkcg->weight;
975         for_each_cfqg_st(cfqg, i, j, st)
976                 *st = CFQ_RB_ROOT;
977         RB_CLEAR_NODE(&cfqg->rb_node);
978
979         /*
980          * Take the initial reference that will be released on destroy
981          * This can be thought of a joint reference by cgroup and
982          * elevator which will be dropped by either elevator exit
983          * or cgroup deletion path depending on who is exiting first.
984          */
985         atomic_set(&cfqg->ref, 1);
986
987         /* Add group onto cgroup list */
988         sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
989         blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
990                                         MKDEV(major, minor));
991
992         /* Add group on cfqd list */
993         hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
994
995 done:
996         blkiocg_css_put(blkcg);
997         return cfqg;
998 }
999
1000 /*
1001  * Search for the cfq group current task belongs to. If create = 1, then also
1002  * create the cfq group if it does not exist. request_queue lock must be held.
1003  */
1004 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1005 {
1006         struct cgroup *cgroup;
1007         struct cfq_group *cfqg = NULL;
1008
1009         rcu_read_lock();
1010         cgroup = task_cgroup(current, blkio_subsys_id);
1011         cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
1012         if (!cfqg && create)
1013                 cfqg = &cfqd->root_group;
1014         rcu_read_unlock();
1015         return cfqg;
1016 }
1017
1018 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1019 {
1020         /* Currently, all async queues are mapped to root group */
1021         if (!cfq_cfqq_sync(cfqq))
1022                 cfqg = &cfqq->cfqd->root_group;
1023
1024         cfqq->cfqg = cfqg;
1025         /* cfqq reference on cfqg */
1026         atomic_inc(&cfqq->cfqg->ref);
1027 }
1028
1029 static void cfq_put_cfqg(struct cfq_group *cfqg)
1030 {
1031         struct cfq_rb_root *st;
1032         int i, j;
1033
1034         BUG_ON(atomic_read(&cfqg->ref) <= 0);
1035         if (!atomic_dec_and_test(&cfqg->ref))
1036                 return;
1037         for_each_cfqg_st(cfqg, i, j, st)
1038                 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1039         kfree(cfqg);
1040 }
1041
1042 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1043 {
1044         /* Something wrong if we are trying to remove same group twice */
1045         BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1046
1047         hlist_del_init(&cfqg->cfqd_node);
1048
1049         /*
1050          * Put the reference taken at the time of creation so that when all
1051          * queues are gone, group can be destroyed.
1052          */
1053         cfq_put_cfqg(cfqg);
1054 }
1055
1056 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1057 {
1058         struct hlist_node *pos, *n;
1059         struct cfq_group *cfqg;
1060
1061         hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1062                 /*
1063                  * If cgroup removal path got to blk_group first and removed
1064                  * it from cgroup list, then it will take care of destroying
1065                  * cfqg also.
1066                  */
1067                 if (!blkiocg_del_blkio_group(&cfqg->blkg))
1068                         cfq_destroy_cfqg(cfqd, cfqg);
1069         }
1070 }
1071
1072 /*
1073  * Blk cgroup controller notification saying that blkio_group object is being
1074  * delinked as associated cgroup object is going away. That also means that
1075  * no new IO will come in this group. So get rid of this group as soon as
1076  * any pending IO in the group is finished.
1077  *
1078  * This function is called under rcu_read_lock(). key is the rcu protected
1079  * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1080  * read lock.
1081  *
1082  * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1083  * it should not be NULL as even if elevator was exiting, cgroup deltion
1084  * path got to it first.
1085  */
1086 void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1087 {
1088         unsigned long  flags;
1089         struct cfq_data *cfqd = key;
1090
1091         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1092         cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1093         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1094 }
1095
1096 #else /* GROUP_IOSCHED */
1097 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1098 {
1099         return &cfqd->root_group;
1100 }
1101 static inline void
1102 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1103         cfqq->cfqg = cfqg;
1104 }
1105
1106 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1107 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1108
1109 #endif /* GROUP_IOSCHED */
1110
1111 /*
1112  * The cfqd->service_trees holds all pending cfq_queue's that have
1113  * requests waiting to be processed. It is sorted in the order that
1114  * we will service the queues.
1115  */
1116 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1117                                  bool add_front)
1118 {
1119         struct rb_node **p, *parent;
1120         struct cfq_queue *__cfqq;
1121         unsigned long rb_key;
1122         struct cfq_rb_root *service_tree;
1123         int left;
1124         int new_cfqq = 1;
1125         int group_changed = 0;
1126
1127 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1128         if (!cfqd->cfq_group_isolation
1129             && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1130             && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1131                 /* Move this cfq to root group */
1132                 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1133                 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1134                         cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1135                 cfqq->orig_cfqg = cfqq->cfqg;
1136                 cfqq->cfqg = &cfqd->root_group;
1137                 atomic_inc(&cfqd->root_group.ref);
1138                 group_changed = 1;
1139         } else if (!cfqd->cfq_group_isolation
1140                    && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1141                 /* cfqq is sequential now needs to go to its original group */
1142                 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1143                 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1144                         cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1145                 cfq_put_cfqg(cfqq->cfqg);
1146                 cfqq->cfqg = cfqq->orig_cfqg;
1147                 cfqq->orig_cfqg = NULL;
1148                 group_changed = 1;
1149                 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1150         }
1151 #endif
1152
1153         service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1154                                                 cfqq_type(cfqq), cfqd);
1155         if (cfq_class_idle(cfqq)) {
1156                 rb_key = CFQ_IDLE_DELAY;
1157                 parent = rb_last(&service_tree->rb);
1158                 if (parent && parent != &cfqq->rb_node) {
1159                         __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1160                         rb_key += __cfqq->rb_key;
1161                 } else
1162                         rb_key += jiffies;
1163         } else if (!add_front) {
1164                 /*
1165                  * Get our rb key offset. Subtract any residual slice
1166                  * value carried from last service. A negative resid
1167                  * count indicates slice overrun, and this should position
1168                  * the next service time further away in the tree.
1169                  */
1170                 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1171                 rb_key -= cfqq->slice_resid;
1172                 cfqq->slice_resid = 0;
1173         } else {
1174                 rb_key = -HZ;
1175                 __cfqq = cfq_rb_first(service_tree);
1176                 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1177         }
1178
1179         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1180                 new_cfqq = 0;
1181                 /*
1182                  * same position, nothing more to do
1183                  */
1184                 if (rb_key == cfqq->rb_key &&
1185                     cfqq->service_tree == service_tree)
1186                         return;
1187
1188                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1189                 cfqq->service_tree = NULL;
1190         }
1191
1192         left = 1;
1193         parent = NULL;
1194         cfqq->service_tree = service_tree;
1195         p = &service_tree->rb.rb_node;
1196         while (*p) {
1197                 struct rb_node **n;
1198
1199                 parent = *p;
1200                 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1201
1202                 /*
1203                  * sort by key, that represents service time.
1204                  */
1205                 if (time_before(rb_key, __cfqq->rb_key))
1206                         n = &(*p)->rb_left;
1207                 else {
1208                         n = &(*p)->rb_right;
1209                         left = 0;
1210                 }
1211
1212                 p = n;
1213         }
1214
1215         if (left)
1216                 service_tree->left = &cfqq->rb_node;
1217
1218         cfqq->rb_key = rb_key;
1219         rb_link_node(&cfqq->rb_node, parent, p);
1220         rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1221         service_tree->count++;
1222         if ((add_front || !new_cfqq) && !group_changed)
1223                 return;
1224         cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1225 }
1226
1227 static struct cfq_queue *
1228 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1229                      sector_t sector, struct rb_node **ret_parent,
1230                      struct rb_node ***rb_link)
1231 {
1232         struct rb_node **p, *parent;
1233         struct cfq_queue *cfqq = NULL;
1234
1235         parent = NULL;
1236         p = &root->rb_node;
1237         while (*p) {
1238                 struct rb_node **n;
1239
1240                 parent = *p;
1241                 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1242
1243                 /*
1244                  * Sort strictly based on sector.  Smallest to the left,
1245                  * largest to the right.
1246                  */
1247                 if (sector > blk_rq_pos(cfqq->next_rq))
1248                         n = &(*p)->rb_right;
1249                 else if (sector < blk_rq_pos(cfqq->next_rq))
1250                         n = &(*p)->rb_left;
1251                 else
1252                         break;
1253                 p = n;
1254                 cfqq = NULL;
1255         }
1256
1257         *ret_parent = parent;
1258         if (rb_link)
1259                 *rb_link = p;
1260         return cfqq;
1261 }
1262
1263 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1264 {
1265         struct rb_node **p, *parent;
1266         struct cfq_queue *__cfqq;
1267
1268         if (cfqq->p_root) {
1269                 rb_erase(&cfqq->p_node, cfqq->p_root);
1270                 cfqq->p_root = NULL;
1271         }
1272
1273         if (cfq_class_idle(cfqq))
1274                 return;
1275         if (!cfqq->next_rq)
1276                 return;
1277
1278         cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1279         __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1280                                       blk_rq_pos(cfqq->next_rq), &parent, &p);
1281         if (!__cfqq) {
1282                 rb_link_node(&cfqq->p_node, parent, p);
1283                 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1284         } else
1285                 cfqq->p_root = NULL;
1286 }
1287
1288 /*
1289  * Update cfqq's position in the service tree.
1290  */
1291 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1292 {
1293         /*
1294          * Resorting requires the cfqq to be on the RR list already.
1295          */
1296         if (cfq_cfqq_on_rr(cfqq)) {
1297                 cfq_service_tree_add(cfqd, cfqq, 0);
1298                 cfq_prio_tree_add(cfqd, cfqq);
1299         }
1300 }
1301
1302 /*
1303  * add to busy list of queues for service, trying to be fair in ordering
1304  * the pending list according to last request service
1305  */
1306 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1307 {
1308         cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1309         BUG_ON(cfq_cfqq_on_rr(cfqq));
1310         cfq_mark_cfqq_on_rr(cfqq);
1311         cfqd->busy_queues++;
1312
1313         cfq_resort_rr_list(cfqd, cfqq);
1314 }
1315
1316 /*
1317  * Called when the cfqq no longer has requests pending, remove it from
1318  * the service tree.
1319  */
1320 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1321 {
1322         cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1323         BUG_ON(!cfq_cfqq_on_rr(cfqq));
1324         cfq_clear_cfqq_on_rr(cfqq);
1325
1326         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1327                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1328                 cfqq->service_tree = NULL;
1329         }
1330         if (cfqq->p_root) {
1331                 rb_erase(&cfqq->p_node, cfqq->p_root);
1332                 cfqq->p_root = NULL;
1333         }
1334
1335         cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1336         BUG_ON(!cfqd->busy_queues);
1337         cfqd->busy_queues--;
1338 }
1339
1340 /*
1341  * rb tree support functions
1342  */
1343 static void cfq_del_rq_rb(struct request *rq)
1344 {
1345         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1346         const int sync = rq_is_sync(rq);
1347
1348         BUG_ON(!cfqq->queued[sync]);
1349         cfqq->queued[sync]--;
1350
1351         elv_rb_del(&cfqq->sort_list, rq);
1352
1353         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1354                 /*
1355                  * Queue will be deleted from service tree when we actually
1356                  * expire it later. Right now just remove it from prio tree
1357                  * as it is empty.
1358                  */
1359                 if (cfqq->p_root) {
1360                         rb_erase(&cfqq->p_node, cfqq->p_root);
1361                         cfqq->p_root = NULL;
1362                 }
1363         }
1364 }
1365
1366 static void cfq_add_rq_rb(struct request *rq)
1367 {
1368         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1369         struct cfq_data *cfqd = cfqq->cfqd;
1370         struct request *__alias, *prev;
1371
1372         cfqq->queued[rq_is_sync(rq)]++;
1373
1374         /*
1375          * looks a little odd, but the first insert might return an alias.
1376          * if that happens, put the alias on the dispatch list
1377          */
1378         while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1379                 cfq_dispatch_insert(cfqd->queue, __alias);
1380
1381         if (!cfq_cfqq_on_rr(cfqq))
1382                 cfq_add_cfqq_rr(cfqd, cfqq);
1383
1384         /*
1385          * check if this request is a better next-serve candidate
1386          */
1387         prev = cfqq->next_rq;
1388         cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1389
1390         /*
1391          * adjust priority tree position, if ->next_rq changes
1392          */
1393         if (prev != cfqq->next_rq)
1394                 cfq_prio_tree_add(cfqd, cfqq);
1395
1396         BUG_ON(!cfqq->next_rq);
1397 }
1398
1399 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1400 {
1401         elv_rb_del(&cfqq->sort_list, rq);
1402         cfqq->queued[rq_is_sync(rq)]--;
1403         cfq_add_rq_rb(rq);
1404 }
1405
1406 static struct request *
1407 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1408 {
1409         struct task_struct *tsk = current;
1410         struct cfq_io_context *cic;
1411         struct cfq_queue *cfqq;
1412
1413         cic = cfq_cic_lookup(cfqd, tsk->io_context);
1414         if (!cic)
1415                 return NULL;
1416
1417         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1418         if (cfqq) {
1419                 sector_t sector = bio->bi_sector + bio_sectors(bio);
1420
1421                 return elv_rb_find(&cfqq->sort_list, sector);
1422         }
1423
1424         return NULL;
1425 }
1426
1427 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1428 {
1429         struct cfq_data *cfqd = q->elevator->elevator_data;
1430
1431         cfqd->rq_in_driver[rq_is_sync(rq)]++;
1432         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1433                                                 rq_in_driver(cfqd));
1434
1435         cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1436 }
1437
1438 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1439 {
1440         struct cfq_data *cfqd = q->elevator->elevator_data;
1441         const int sync = rq_is_sync(rq);
1442
1443         WARN_ON(!cfqd->rq_in_driver[sync]);
1444         cfqd->rq_in_driver[sync]--;
1445         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1446                                                 rq_in_driver(cfqd));
1447 }
1448
1449 static void cfq_remove_request(struct request *rq)
1450 {
1451         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1452
1453         if (cfqq->next_rq == rq)
1454                 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1455
1456         list_del_init(&rq->queuelist);
1457         cfq_del_rq_rb(rq);
1458
1459         cfqq->cfqd->rq_queued--;
1460         if (rq_is_meta(rq)) {
1461                 WARN_ON(!cfqq->meta_pending);
1462                 cfqq->meta_pending--;
1463         }
1464 }
1465
1466 static int cfq_merge(struct request_queue *q, struct request **req,
1467                      struct bio *bio)
1468 {
1469         struct cfq_data *cfqd = q->elevator->elevator_data;
1470         struct request *__rq;
1471
1472         __rq = cfq_find_rq_fmerge(cfqd, bio);
1473         if (__rq && elv_rq_merge_ok(__rq, bio)) {
1474                 *req = __rq;
1475                 return ELEVATOR_FRONT_MERGE;
1476         }
1477
1478         return ELEVATOR_NO_MERGE;
1479 }
1480
1481 static void cfq_merged_request(struct request_queue *q, struct request *req,
1482                                int type)
1483 {
1484         if (type == ELEVATOR_FRONT_MERGE) {
1485                 struct cfq_queue *cfqq = RQ_CFQQ(req);
1486
1487                 cfq_reposition_rq_rb(cfqq, req);
1488         }
1489 }
1490
1491 static void
1492 cfq_merged_requests(struct request_queue *q, struct request *rq,
1493                     struct request *next)
1494 {
1495         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1496         /*
1497          * reposition in fifo if next is older than rq
1498          */
1499         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1500             time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1501                 list_move(&rq->queuelist, &next->queuelist);
1502                 rq_set_fifo_time(rq, rq_fifo_time(next));
1503         }
1504
1505         if (cfqq->next_rq == next)
1506                 cfqq->next_rq = rq;
1507         cfq_remove_request(next);
1508 }
1509
1510 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1511                            struct bio *bio)
1512 {
1513         struct cfq_data *cfqd = q->elevator->elevator_data;
1514         struct cfq_io_context *cic;
1515         struct cfq_queue *cfqq;
1516
1517         /* Deny merge if bio and rq don't belong to same cfq group */
1518         if ((RQ_CFQQ(rq))->cfqg != cfq_get_cfqg(cfqd, 0))
1519                 return false;
1520         /*
1521          * Disallow merge of a sync bio into an async request.
1522          */
1523         if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1524                 return false;
1525
1526         /*
1527          * Lookup the cfqq that this bio will be queued with. Allow
1528          * merge only if rq is queued there.
1529          */
1530         cic = cfq_cic_lookup(cfqd, current->io_context);
1531         if (!cic)
1532                 return false;
1533
1534         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1535         return cfqq == RQ_CFQQ(rq);
1536 }
1537
1538 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1539                                    struct cfq_queue *cfqq)
1540 {
1541         if (cfqq) {
1542                 cfq_log_cfqq(cfqd, cfqq, "set_active");
1543                 cfqq->slice_start = 0;
1544                 cfqq->dispatch_start = jiffies;
1545                 cfqq->allocated_slice = 0;
1546                 cfqq->slice_end = 0;
1547                 cfqq->slice_dispatch = 0;
1548                 cfqq->nr_sectors = 0;
1549
1550                 cfq_clear_cfqq_wait_request(cfqq);
1551                 cfq_clear_cfqq_must_dispatch(cfqq);
1552                 cfq_clear_cfqq_must_alloc_slice(cfqq);
1553                 cfq_clear_cfqq_fifo_expire(cfqq);
1554                 cfq_mark_cfqq_slice_new(cfqq);
1555
1556                 del_timer(&cfqd->idle_slice_timer);
1557         }
1558
1559         cfqd->active_queue = cfqq;
1560 }
1561
1562 /*
1563  * current cfqq expired its slice (or was too idle), select new one
1564  */
1565 static void
1566 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1567                     bool timed_out)
1568 {
1569         cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1570
1571         if (cfq_cfqq_wait_request(cfqq))
1572                 del_timer(&cfqd->idle_slice_timer);
1573
1574         cfq_clear_cfqq_wait_request(cfqq);
1575         cfq_clear_cfqq_wait_busy(cfqq);
1576         cfq_clear_cfqq_wait_busy_done(cfqq);
1577
1578         /*
1579          * store what was left of this slice, if the queue idled/timed out
1580          */
1581         if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1582                 cfqq->slice_resid = cfqq->slice_end - jiffies;
1583                 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1584         }
1585
1586         cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1587
1588         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1589                 cfq_del_cfqq_rr(cfqd, cfqq);
1590
1591         cfq_resort_rr_list(cfqd, cfqq);
1592
1593         if (cfqq == cfqd->active_queue)
1594                 cfqd->active_queue = NULL;
1595
1596         if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1597                 cfqd->grp_service_tree.active = NULL;
1598
1599         if (cfqd->active_cic) {
1600                 put_io_context(cfqd->active_cic->ioc);
1601                 cfqd->active_cic = NULL;
1602         }
1603 }
1604
1605 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1606 {
1607         struct cfq_queue *cfqq = cfqd->active_queue;
1608
1609         if (cfqq)
1610                 __cfq_slice_expired(cfqd, cfqq, timed_out);
1611 }
1612
1613 /*
1614  * Get next queue for service. Unless we have a queue preemption,
1615  * we'll simply select the first cfqq in the service tree.
1616  */
1617 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1618 {
1619         struct cfq_rb_root *service_tree =
1620                 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1621                                         cfqd->serving_type, cfqd);
1622
1623         if (!cfqd->rq_queued)
1624                 return NULL;
1625
1626         /* There is nothing to dispatch */
1627         if (!service_tree)
1628                 return NULL;
1629         if (RB_EMPTY_ROOT(&service_tree->rb))
1630                 return NULL;
1631         return cfq_rb_first(service_tree);
1632 }
1633
1634 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1635 {
1636         struct cfq_group *cfqg;
1637         struct cfq_queue *cfqq;
1638         int i, j;
1639         struct cfq_rb_root *st;
1640
1641         if (!cfqd->rq_queued)
1642                 return NULL;
1643
1644         cfqg = cfq_get_next_cfqg(cfqd);
1645         if (!cfqg)
1646                 return NULL;
1647
1648         for_each_cfqg_st(cfqg, i, j, st)
1649                 if ((cfqq = cfq_rb_first(st)) != NULL)
1650                         return cfqq;
1651         return NULL;
1652 }
1653
1654 /*
1655  * Get and set a new active queue for service.
1656  */
1657 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1658                                               struct cfq_queue *cfqq)
1659 {
1660         if (!cfqq)
1661                 cfqq = cfq_get_next_queue(cfqd);
1662
1663         __cfq_set_active_queue(cfqd, cfqq);
1664         return cfqq;
1665 }
1666
1667 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1668                                           struct request *rq)
1669 {
1670         if (blk_rq_pos(rq) >= cfqd->last_position)
1671                 return blk_rq_pos(rq) - cfqd->last_position;
1672         else
1673                 return cfqd->last_position - blk_rq_pos(rq);
1674 }
1675
1676 #define CFQQ_SEEK_THR           8 * 1024
1677 #define CFQQ_SEEKY(cfqq)        ((cfqq)->seek_mean > CFQQ_SEEK_THR)
1678
1679 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1680                                struct request *rq)
1681 {
1682         sector_t sdist = cfqq->seek_mean;
1683
1684         if (!sample_valid(cfqq->seek_samples))
1685                 sdist = CFQQ_SEEK_THR;
1686
1687         return cfq_dist_from_last(cfqd, rq) <= sdist;
1688 }
1689
1690 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1691                                     struct cfq_queue *cur_cfqq)
1692 {
1693         struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1694         struct rb_node *parent, *node;
1695         struct cfq_queue *__cfqq;
1696         sector_t sector = cfqd->last_position;
1697
1698         if (RB_EMPTY_ROOT(root))
1699                 return NULL;
1700
1701         /*
1702          * First, if we find a request starting at the end of the last
1703          * request, choose it.
1704          */
1705         __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1706         if (__cfqq)
1707                 return __cfqq;
1708
1709         /*
1710          * If the exact sector wasn't found, the parent of the NULL leaf
1711          * will contain the closest sector.
1712          */
1713         __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1714         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1715                 return __cfqq;
1716
1717         if (blk_rq_pos(__cfqq->next_rq) < sector)
1718                 node = rb_next(&__cfqq->p_node);
1719         else
1720                 node = rb_prev(&__cfqq->p_node);
1721         if (!node)
1722                 return NULL;
1723
1724         __cfqq = rb_entry(node, struct cfq_queue, p_node);
1725         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1726                 return __cfqq;
1727
1728         return NULL;
1729 }
1730
1731 /*
1732  * cfqd - obvious
1733  * cur_cfqq - passed in so that we don't decide that the current queue is
1734  *            closely cooperating with itself.
1735  *
1736  * So, basically we're assuming that that cur_cfqq has dispatched at least
1737  * one request, and that cfqd->last_position reflects a position on the disk
1738  * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1739  * assumption.
1740  */
1741 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1742                                               struct cfq_queue *cur_cfqq)
1743 {
1744         struct cfq_queue *cfqq;
1745
1746         if (!cfq_cfqq_sync(cur_cfqq))
1747                 return NULL;
1748         if (CFQQ_SEEKY(cur_cfqq))
1749                 return NULL;
1750
1751         /*
1752          * We should notice if some of the queues are cooperating, eg
1753          * working closely on the same area of the disk. In that case,
1754          * we can group them together and don't waste time idling.
1755          */
1756         cfqq = cfqq_close(cfqd, cur_cfqq);
1757         if (!cfqq)
1758                 return NULL;
1759
1760         /* If new queue belongs to different cfq_group, don't choose it */
1761         if (cur_cfqq->cfqg != cfqq->cfqg)
1762                 return NULL;
1763
1764         /*
1765          * It only makes sense to merge sync queues.
1766          */
1767         if (!cfq_cfqq_sync(cfqq))
1768                 return NULL;
1769         if (CFQQ_SEEKY(cfqq))
1770                 return NULL;
1771
1772         /*
1773          * Do not merge queues of different priority classes
1774          */
1775         if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1776                 return NULL;
1777
1778         return cfqq;
1779 }
1780
1781 /*
1782  * Determine whether we should enforce idle window for this queue.
1783  */
1784
1785 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1786 {
1787         enum wl_prio_t prio = cfqq_prio(cfqq);
1788         struct cfq_rb_root *service_tree = cfqq->service_tree;
1789
1790         BUG_ON(!service_tree);
1791         BUG_ON(!service_tree->count);
1792
1793         /* We never do for idle class queues. */
1794         if (prio == IDLE_WORKLOAD)
1795                 return false;
1796
1797         /* We do for queues that were marked with idle window flag. */
1798         if (cfq_cfqq_idle_window(cfqq) &&
1799            !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1800                 return true;
1801
1802         /*
1803          * Otherwise, we do only if they are the last ones
1804          * in their service tree.
1805          */
1806         return service_tree->count == 1;
1807 }
1808
1809 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1810 {
1811         struct cfq_queue *cfqq = cfqd->active_queue;
1812         struct cfq_io_context *cic;
1813         unsigned long sl;
1814
1815         /*
1816          * SSD device without seek penalty, disable idling. But only do so
1817          * for devices that support queuing, otherwise we still have a problem
1818          * with sync vs async workloads.
1819          */
1820         if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1821                 return;
1822
1823         WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1824         WARN_ON(cfq_cfqq_slice_new(cfqq));
1825
1826         /*
1827          * idle is disabled, either manually or by past process history
1828          */
1829         if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
1830                 return;
1831
1832         /*
1833          * still active requests from this queue, don't idle
1834          */
1835         if (cfqq->dispatched)
1836                 return;
1837
1838         /*
1839          * task has exited, don't wait
1840          */
1841         cic = cfqd->active_cic;
1842         if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1843                 return;
1844
1845         /*
1846          * If our average think time is larger than the remaining time
1847          * slice, then don't idle. This avoids overrunning the allotted
1848          * time slice.
1849          */
1850         if (sample_valid(cic->ttime_samples) &&
1851             (cfqq->slice_end - jiffies < cic->ttime_mean))
1852                 return;
1853
1854         cfq_mark_cfqq_wait_request(cfqq);
1855
1856         sl = cfqd->cfq_slice_idle;
1857
1858         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1859         cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1860 }
1861
1862 /*
1863  * Move request from internal lists to the request queue dispatch list.
1864  */
1865 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1866 {
1867         struct cfq_data *cfqd = q->elevator->elevator_data;
1868         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1869
1870         cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1871
1872         cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1873         cfq_remove_request(rq);
1874         cfqq->dispatched++;
1875         elv_dispatch_sort(q, rq);
1876
1877         if (cfq_cfqq_sync(cfqq))
1878                 cfqd->sync_flight++;
1879         cfqq->nr_sectors += blk_rq_sectors(rq);
1880 }
1881
1882 /*
1883  * return expired entry, or NULL to just start from scratch in rbtree
1884  */
1885 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1886 {
1887         struct request *rq = NULL;
1888
1889         if (cfq_cfqq_fifo_expire(cfqq))
1890                 return NULL;
1891
1892         cfq_mark_cfqq_fifo_expire(cfqq);
1893
1894         if (list_empty(&cfqq->fifo))
1895                 return NULL;
1896
1897         rq = rq_entry_fifo(cfqq->fifo.next);
1898         if (time_before(jiffies, rq_fifo_time(rq)))
1899                 rq = NULL;
1900
1901         cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1902         return rq;
1903 }
1904
1905 static inline int
1906 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1907 {
1908         const int base_rq = cfqd->cfq_slice_async_rq;
1909
1910         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1911
1912         return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1913 }
1914
1915 /*
1916  * Must be called with the queue_lock held.
1917  */
1918 static int cfqq_process_refs(struct cfq_queue *cfqq)
1919 {
1920         int process_refs, io_refs;
1921
1922         io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1923         process_refs = atomic_read(&cfqq->ref) - io_refs;
1924         BUG_ON(process_refs < 0);
1925         return process_refs;
1926 }
1927
1928 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1929 {
1930         int process_refs, new_process_refs;
1931         struct cfq_queue *__cfqq;
1932
1933         /* Avoid a circular list and skip interim queue merges */
1934         while ((__cfqq = new_cfqq->new_cfqq)) {
1935                 if (__cfqq == cfqq)
1936                         return;
1937                 new_cfqq = __cfqq;
1938         }
1939
1940         process_refs = cfqq_process_refs(cfqq);
1941         /*
1942          * If the process for the cfqq has gone away, there is no
1943          * sense in merging the queues.
1944          */
1945         if (process_refs == 0)
1946                 return;
1947
1948         /*
1949          * Merge in the direction of the lesser amount of work.
1950          */
1951         new_process_refs = cfqq_process_refs(new_cfqq);
1952         if (new_process_refs >= process_refs) {
1953                 cfqq->new_cfqq = new_cfqq;
1954                 atomic_add(process_refs, &new_cfqq->ref);
1955         } else {
1956                 new_cfqq->new_cfqq = cfqq;
1957                 atomic_add(new_process_refs, &cfqq->ref);
1958         }
1959 }
1960
1961 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1962                                 struct cfq_group *cfqg, enum wl_prio_t prio,
1963                                 bool prio_changed)
1964 {
1965         struct cfq_queue *queue;
1966         int i;
1967         bool key_valid = false;
1968         unsigned long lowest_key = 0;
1969         enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1970
1971         if (prio_changed) {
1972                 /*
1973                  * When priorities switched, we prefer starting
1974                  * from SYNC_NOIDLE (first choice), or just SYNC
1975                  * over ASYNC
1976                  */
1977                 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1978                         return cur_best;
1979                 cur_best = SYNC_WORKLOAD;
1980                 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1981                         return cur_best;
1982
1983                 return ASYNC_WORKLOAD;
1984         }
1985
1986         for (i = 0; i < 3; ++i) {
1987                 /* otherwise, select the one with lowest rb_key */
1988                 queue = cfq_rb_first(service_tree_for(cfqg, prio, i, cfqd));
1989                 if (queue &&
1990                     (!key_valid || time_before(queue->rb_key, lowest_key))) {
1991                         lowest_key = queue->rb_key;
1992                         cur_best = i;
1993                         key_valid = true;
1994                 }
1995         }
1996
1997         return cur_best;
1998 }
1999
2000 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2001 {
2002         enum wl_prio_t previous_prio = cfqd->serving_prio;
2003         bool prio_changed;
2004         unsigned slice;
2005         unsigned count;
2006         struct cfq_rb_root *st;
2007         unsigned group_slice;
2008
2009         if (!cfqg) {
2010                 cfqd->serving_prio = IDLE_WORKLOAD;
2011                 cfqd->workload_expires = jiffies + 1;
2012                 return;
2013         }
2014
2015         /* Choose next priority. RT > BE > IDLE */
2016         if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2017                 cfqd->serving_prio = RT_WORKLOAD;
2018         else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2019                 cfqd->serving_prio = BE_WORKLOAD;
2020         else {
2021                 cfqd->serving_prio = IDLE_WORKLOAD;
2022                 cfqd->workload_expires = jiffies + 1;
2023                 return;
2024         }
2025
2026         /*
2027          * For RT and BE, we have to choose also the type
2028          * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2029          * expiration time
2030          */
2031         prio_changed = (cfqd->serving_prio != previous_prio);
2032         st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
2033                                 cfqd);
2034         count = st->count;
2035
2036         /*
2037          * If priority didn't change, check workload expiration,
2038          * and that we still have other queues ready
2039          */
2040         if (!prio_changed && count &&
2041             !time_after(jiffies, cfqd->workload_expires))
2042                 return;
2043
2044         /* otherwise select new workload type */
2045         cfqd->serving_type =
2046                 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio, prio_changed);
2047         st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
2048                                 cfqd);
2049         count = st->count;
2050
2051         /*
2052          * the workload slice is computed as a fraction of target latency
2053          * proportional to the number of queues in that workload, over
2054          * all the queues in the same priority class
2055          */
2056         group_slice = cfq_group_slice(cfqd, cfqg);
2057
2058         slice = group_slice * count /
2059                 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2060                       cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2061
2062         if (cfqd->serving_type == ASYNC_WORKLOAD) {
2063                 unsigned int tmp;
2064
2065                 /*
2066                  * Async queues are currently system wide. Just taking
2067                  * proportion of queues with-in same group will lead to higher
2068                  * async ratio system wide as generally root group is going
2069                  * to have higher weight. A more accurate thing would be to
2070                  * calculate system wide asnc/sync ratio.
2071                  */
2072                 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2073                 tmp = tmp/cfqd->busy_queues;
2074                 slice = min_t(unsigned, slice, tmp);
2075
2076                 /* async workload slice is scaled down according to
2077                  * the sync/async slice ratio. */
2078                 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2079         } else
2080                 /* sync workload slice is at least 2 * cfq_slice_idle */
2081                 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2082
2083         slice = max_t(unsigned, slice, CFQ_MIN_TT);
2084         cfqd->workload_expires = jiffies + slice;
2085         cfqd->noidle_tree_requires_idle = false;
2086 }
2087
2088 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2089 {
2090         struct cfq_rb_root *st = &cfqd->grp_service_tree;
2091         struct cfq_group *cfqg;
2092
2093         if (RB_EMPTY_ROOT(&st->rb))
2094                 return NULL;
2095         cfqg = cfq_rb_first_group(st);
2096         st->active = &cfqg->rb_node;
2097         update_min_vdisktime(st);
2098         return cfqg;
2099 }
2100
2101 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2102 {
2103         struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2104
2105         cfqd->serving_group = cfqg;
2106
2107         /* Restore the workload type data */
2108         if (cfqg->saved_workload_slice) {
2109                 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2110                 cfqd->serving_type = cfqg->saved_workload;
2111                 cfqd->serving_prio = cfqg->saved_serving_prio;
2112         }
2113         choose_service_tree(cfqd, cfqg);
2114 }
2115
2116 /*
2117  * Select a queue for service. If we have a current active queue,
2118  * check whether to continue servicing it, or retrieve and set a new one.
2119  */
2120 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2121 {
2122         struct cfq_queue *cfqq, *new_cfqq = NULL;
2123
2124         cfqq = cfqd->active_queue;
2125         if (!cfqq)
2126                 goto new_queue;
2127
2128         if (!cfqd->rq_queued)
2129                 return NULL;
2130         /*
2131          * The active queue has run out of time, expire it and select new.
2132          */
2133         if ((cfq_slice_used(cfqq) || cfq_cfqq_wait_busy_done(cfqq))
2134              && !cfq_cfqq_must_dispatch(cfqq))
2135                 goto expire;
2136
2137         /*
2138          * The active queue has requests and isn't expired, allow it to
2139          * dispatch.
2140          */
2141         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2142                 goto keep_queue;
2143
2144         /*
2145          * If another queue has a request waiting within our mean seek
2146          * distance, let it run.  The expire code will check for close
2147          * cooperators and put the close queue at the front of the service
2148          * tree.  If possible, merge the expiring queue with the new cfqq.
2149          */
2150         new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2151         if (new_cfqq) {
2152                 if (!cfqq->new_cfqq)
2153                         cfq_setup_merge(cfqq, new_cfqq);
2154                 goto expire;
2155         }
2156
2157         /*
2158          * No requests pending. If the active queue still has requests in
2159          * flight or is idling for a new request, allow either of these
2160          * conditions to happen (or time out) before selecting a new queue.
2161          */
2162         if (timer_pending(&cfqd->idle_slice_timer) ||
2163             (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
2164                 cfqq = NULL;
2165                 goto keep_queue;
2166         }
2167
2168 expire:
2169         cfq_slice_expired(cfqd, 0);
2170 new_queue:
2171         /*
2172          * Current queue expired. Check if we have to switch to a new
2173          * service tree
2174          */
2175         if (!new_cfqq)
2176                 cfq_choose_cfqg(cfqd);
2177
2178         cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2179 keep_queue:
2180         return cfqq;
2181 }
2182
2183 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2184 {
2185         int dispatched = 0;
2186
2187         while (cfqq->next_rq) {
2188                 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2189                 dispatched++;
2190         }
2191
2192         BUG_ON(!list_empty(&cfqq->fifo));
2193
2194         /* By default cfqq is not expired if it is empty. Do it explicitly */
2195         __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2196         return dispatched;
2197 }
2198
2199 /*
2200  * Drain our current requests. Used for barriers and when switching
2201  * io schedulers on-the-fly.
2202  */
2203 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2204 {
2205         struct cfq_queue *cfqq;
2206         int dispatched = 0;
2207
2208         while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
2209                 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2210
2211         cfq_slice_expired(cfqd, 0);
2212         BUG_ON(cfqd->busy_queues);
2213
2214         cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2215         return dispatched;
2216 }
2217
2218 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2219 {
2220         unsigned int max_dispatch;
2221
2222         /*
2223          * Drain async requests before we start sync IO
2224          */
2225         if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
2226                 return false;
2227
2228         /*
2229          * If this is an async queue and we have sync IO in flight, let it wait
2230          */
2231         if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
2232                 return false;
2233
2234         max_dispatch = cfqd->cfq_quantum;
2235         if (cfq_class_idle(cfqq))
2236                 max_dispatch = 1;
2237
2238         /*
2239          * Does this cfqq already have too much IO in flight?
2240          */
2241         if (cfqq->dispatched >= max_dispatch) {
2242                 /*
2243                  * idle queue must always only have a single IO in flight
2244                  */
2245                 if (cfq_class_idle(cfqq))
2246                         return false;
2247
2248                 /*
2249                  * We have other queues, don't allow more IO from this one
2250                  */
2251                 if (cfqd->busy_queues > 1)
2252                         return false;
2253
2254                 /*
2255                  * Sole queue user, no limit
2256                  */
2257                 max_dispatch = -1;
2258         }
2259
2260         /*
2261          * Async queues must wait a bit before being allowed dispatch.
2262          * We also ramp up the dispatch depth gradually for async IO,
2263          * based on the last sync IO we serviced
2264          */
2265         if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2266                 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
2267                 unsigned int depth;
2268
2269                 depth = last_sync / cfqd->cfq_slice[1];
2270                 if (!depth && !cfqq->dispatched)
2271                         depth = 1;
2272                 if (depth < max_dispatch)
2273                         max_dispatch = depth;
2274         }
2275
2276         /*
2277          * If we're below the current max, allow a dispatch
2278          */
2279         return cfqq->dispatched < max_dispatch;
2280 }
2281
2282 /*
2283  * Dispatch a request from cfqq, moving them to the request queue
2284  * dispatch list.
2285  */
2286 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2287 {
2288         struct request *rq;
2289
2290         BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2291
2292         if (!cfq_may_dispatch(cfqd, cfqq))
2293                 return false;
2294
2295         /*
2296          * follow expired path, else get first next available
2297          */
2298         rq = cfq_check_fifo(cfqq);
2299         if (!rq)
2300                 rq = cfqq->next_rq;
2301
2302         /*
2303          * insert request into driver dispatch list
2304          */
2305         cfq_dispatch_insert(cfqd->queue, rq);
2306
2307         if (!cfqd->active_cic) {
2308                 struct cfq_io_context *cic = RQ_CIC(rq);
2309
2310                 atomic_long_inc(&cic->ioc->refcount);
2311                 cfqd->active_cic = cic;
2312         }
2313
2314         return true;
2315 }
2316
2317 /*
2318  * Find the cfqq that we need to service and move a request from that to the
2319  * dispatch list
2320  */
2321 static int cfq_dispatch_requests(struct request_queue *q, int force)
2322 {
2323         struct cfq_data *cfqd = q->elevator->elevator_data;
2324         struct cfq_queue *cfqq;
2325
2326         if (!cfqd->busy_queues)
2327                 return 0;
2328
2329         if (unlikely(force))
2330                 return cfq_forced_dispatch(cfqd);
2331
2332         cfqq = cfq_select_queue(cfqd);
2333         if (!cfqq)
2334                 return 0;
2335
2336         /*
2337          * Dispatch a request from this cfqq, if it is allowed
2338          */
2339         if (!cfq_dispatch_request(cfqd, cfqq))
2340                 return 0;
2341
2342         cfqq->slice_dispatch++;
2343         cfq_clear_cfqq_must_dispatch(cfqq);
2344
2345         /*
2346          * expire an async queue immediately if it has used up its slice. idle
2347          * queue always expire after 1 dispatch round.
2348          */
2349         if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2350             cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2351             cfq_class_idle(cfqq))) {
2352                 cfqq->slice_end = jiffies + 1;
2353                 cfq_slice_expired(cfqd, 0);
2354         }
2355
2356         cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2357         return 1;
2358 }
2359
2360 /*
2361  * task holds one reference to the queue, dropped when task exits. each rq
2362  * in-flight on this queue also holds a reference, dropped when rq is freed.
2363  *
2364  * Each cfq queue took a reference on the parent group. Drop it now.
2365  * queue lock must be held here.
2366  */
2367 static void cfq_put_queue(struct cfq_queue *cfqq)
2368 {
2369         struct cfq_data *cfqd = cfqq->cfqd;
2370         struct cfq_group *cfqg;
2371
2372         BUG_ON(atomic_read(&cfqq->ref) <= 0);
2373
2374         if (!atomic_dec_and_test(&cfqq->ref))
2375                 return;
2376
2377         cfq_log_cfqq(cfqd, cfqq, "put_queue");
2378         BUG_ON(rb_first(&cfqq->sort_list));
2379         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2380         cfqg = cfqq->cfqg;
2381
2382         if (unlikely(cfqd->active_queue == cfqq)) {
2383                 __cfq_slice_expired(cfqd, cfqq, 0);
2384                 cfq_schedule_dispatch(cfqd);
2385         }
2386
2387         BUG_ON(cfq_cfqq_on_rr(cfqq));
2388         kmem_cache_free(cfq_pool, cfqq);
2389         cfq_put_cfqg(cfqg);
2390         if (cfqq->orig_cfqg)
2391                 cfq_put_cfqg(cfqq->orig_cfqg);
2392 }
2393
2394 /*
2395  * Must always be called with the rcu_read_lock() held
2396  */
2397 static void
2398 __call_for_each_cic(struct io_context *ioc,
2399                     void (*func)(struct io_context *, struct cfq_io_context *))
2400 {
2401         struct cfq_io_context *cic;
2402         struct hlist_node *n;
2403
2404         hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2405                 func(ioc, cic);
2406 }
2407
2408 /*
2409  * Call func for each cic attached to this ioc.
2410  */
2411 static void
2412 call_for_each_cic(struct io_context *ioc,
2413                   void (*func)(struct io_context *, struct cfq_io_context *))
2414 {
2415         rcu_read_lock();
2416         __call_for_each_cic(ioc, func);
2417         rcu_read_unlock();
2418 }
2419
2420 static void cfq_cic_free_rcu(struct rcu_head *head)
2421 {
2422         struct cfq_io_context *cic;
2423
2424         cic = container_of(head, struct cfq_io_context, rcu_head);
2425
2426         kmem_cache_free(cfq_ioc_pool, cic);
2427         elv_ioc_count_dec(cfq_ioc_count);
2428
2429         if (ioc_gone) {
2430                 /*
2431                  * CFQ scheduler is exiting, grab exit lock and check
2432                  * the pending io context count. If it hits zero,
2433                  * complete ioc_gone and set it back to NULL
2434                  */
2435                 spin_lock(&ioc_gone_lock);
2436                 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2437                         complete(ioc_gone);
2438                         ioc_gone = NULL;
2439                 }
2440                 spin_unlock(&ioc_gone_lock);
2441         }
2442 }
2443
2444 static void cfq_cic_free(struct cfq_io_context *cic)
2445 {
2446         call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2447 }
2448
2449 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2450 {
2451         unsigned long flags;
2452
2453         BUG_ON(!cic->dead_key);
2454
2455         spin_lock_irqsave(&ioc->lock, flags);
2456         radix_tree_delete(&ioc->radix_root, cic->dead_key);
2457         hlist_del_rcu(&cic->cic_list);
2458         spin_unlock_irqrestore(&ioc->lock, flags);
2459
2460         cfq_cic_free(cic);
2461 }
2462
2463 /*
2464  * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2465  * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2466  * and ->trim() which is called with the task lock held
2467  */
2468 static void cfq_free_io_context(struct io_context *ioc)
2469 {
2470         /*
2471          * ioc->refcount is zero here, or we are called from elv_unregister(),
2472          * so no more cic's are allowed to be linked into this ioc.  So it
2473          * should be ok to iterate over the known list, we will see all cic's
2474          * since no new ones are added.
2475          */
2476         __call_for_each_cic(ioc, cic_free_func);
2477 }
2478
2479 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2480 {
2481         struct cfq_queue *__cfqq, *next;
2482
2483         if (unlikely(cfqq == cfqd->active_queue)) {
2484                 __cfq_slice_expired(cfqd, cfqq, 0);
2485                 cfq_schedule_dispatch(cfqd);
2486         }
2487
2488         /*
2489          * If this queue was scheduled to merge with another queue, be
2490          * sure to drop the reference taken on that queue (and others in
2491          * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
2492          */
2493         __cfqq = cfqq->new_cfqq;
2494         while (__cfqq) {
2495                 if (__cfqq == cfqq) {
2496                         WARN(1, "cfqq->new_cfqq loop detected\n");
2497                         break;
2498                 }
2499                 next = __cfqq->new_cfqq;
2500                 cfq_put_queue(__cfqq);
2501                 __cfqq = next;
2502         }
2503
2504         cfq_put_queue(cfqq);
2505 }
2506
2507 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2508                                          struct cfq_io_context *cic)
2509 {
2510         struct io_context *ioc = cic->ioc;
2511
2512         list_del_init(&cic->queue_list);
2513
2514         /*
2515          * Make sure key == NULL is seen for dead queues
2516          */
2517         smp_wmb();
2518         cic->dead_key = (unsigned long) cic->key;
2519         cic->key = NULL;
2520
2521         if (ioc->ioc_data == cic)
2522                 rcu_assign_pointer(ioc->ioc_data, NULL);
2523
2524         if (cic->cfqq[BLK_RW_ASYNC]) {
2525                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2526                 cic->cfqq[BLK_RW_ASYNC] = NULL;
2527         }
2528
2529         if (cic->cfqq[BLK_RW_SYNC]) {
2530                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2531                 cic->cfqq[BLK_RW_SYNC] = NULL;
2532         }
2533 }
2534
2535 static void cfq_exit_single_io_context(struct io_context *ioc,
2536                                        struct cfq_io_context *cic)
2537 {
2538         struct cfq_data *cfqd = cic->key;
2539
2540         if (cfqd) {
2541                 struct request_queue *q = cfqd->queue;
2542                 unsigned long flags;
2543
2544                 spin_lock_irqsave(q->queue_lock, flags);
2545
2546                 /*
2547                  * Ensure we get a fresh copy of the ->key to prevent
2548                  * race between exiting task and queue
2549                  */
2550                 smp_read_barrier_depends();
2551                 if (cic->key)
2552                         __cfq_exit_single_io_context(cfqd, cic);
2553
2554                 spin_unlock_irqrestore(q->queue_lock, flags);
2555         }
2556 }
2557
2558 /*
2559  * The process that ioc belongs to has exited, we need to clean up
2560  * and put the internal structures we have that belongs to that process.
2561  */
2562 static void cfq_exit_io_context(struct io_context *ioc)
2563 {
2564         call_for_each_cic(ioc, cfq_exit_single_io_context);
2565 }
2566
2567 static struct cfq_io_context *
2568 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2569 {
2570         struct cfq_io_context *cic;
2571
2572         cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2573                                                         cfqd->queue->node);
2574         if (cic) {
2575                 cic->last_end_request = jiffies;
2576                 INIT_LIST_HEAD(&cic->queue_list);
2577                 INIT_HLIST_NODE(&cic->cic_list);
2578                 cic->dtor = cfq_free_io_context;
2579                 cic->exit = cfq_exit_io_context;
2580                 elv_ioc_count_inc(cfq_ioc_count);
2581         }
2582
2583         return cic;
2584 }
2585
2586 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2587 {
2588         struct task_struct *tsk = current;
2589         int ioprio_class;
2590
2591         if (!cfq_cfqq_prio_changed(cfqq))
2592                 return;
2593
2594         ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2595         switch (ioprio_class) {
2596         default:
2597                 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2598         case IOPRIO_CLASS_NONE:
2599                 /*
2600                  * no prio set, inherit CPU scheduling settings
2601                  */
2602                 cfqq->ioprio = task_nice_ioprio(tsk);
2603                 cfqq->ioprio_class = task_nice_ioclass(tsk);
2604                 break;
2605         case IOPRIO_CLASS_RT:
2606                 cfqq->ioprio = task_ioprio(ioc);
2607                 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2608                 break;
2609         case IOPRIO_CLASS_BE:
2610                 cfqq->ioprio = task_ioprio(ioc);
2611                 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2612                 break;
2613         case IOPRIO_CLASS_IDLE:
2614                 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2615                 cfqq->ioprio = 7;
2616                 cfq_clear_cfqq_idle_window(cfqq);
2617                 break;
2618         }
2619
2620         /*
2621          * keep track of original prio settings in case we have to temporarily
2622          * elevate the priority of this queue
2623          */
2624         cfqq->org_ioprio = cfqq->ioprio;
2625         cfqq->org_ioprio_class = cfqq->ioprio_class;
2626         cfq_clear_cfqq_prio_changed(cfqq);
2627 }
2628
2629 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2630 {
2631         struct cfq_data *cfqd = cic->key;
2632         struct cfq_queue *cfqq;
2633         unsigned long flags;
2634
2635         if (unlikely(!cfqd))
2636                 return;
2637
2638         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2639
2640         cfqq = cic->cfqq[BLK_RW_ASYNC];
2641         if (cfqq) {
2642                 struct cfq_queue *new_cfqq;
2643                 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2644                                                 GFP_ATOMIC);
2645                 if (new_cfqq) {
2646                         cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2647                         cfq_put_queue(cfqq);
2648                 }
2649         }
2650
2651         cfqq = cic->cfqq[BLK_RW_SYNC];
2652         if (cfqq)
2653                 cfq_mark_cfqq_prio_changed(cfqq);
2654
2655         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2656 }
2657
2658 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2659 {
2660         call_for_each_cic(ioc, changed_ioprio);
2661         ioc->ioprio_changed = 0;
2662 }
2663
2664 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2665                           pid_t pid, bool is_sync)
2666 {
2667         RB_CLEAR_NODE(&cfqq->rb_node);
2668         RB_CLEAR_NODE(&cfqq->p_node);
2669         INIT_LIST_HEAD(&cfqq->fifo);
2670
2671         atomic_set(&cfqq->ref, 0);
2672         cfqq->cfqd = cfqd;
2673
2674         cfq_mark_cfqq_prio_changed(cfqq);
2675
2676         if (is_sync) {
2677                 if (!cfq_class_idle(cfqq))
2678                         cfq_mark_cfqq_idle_window(cfqq);
2679                 cfq_mark_cfqq_sync(cfqq);
2680         }
2681         cfqq->pid = pid;
2682 }
2683
2684 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2685 static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2686 {
2687         struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2688         struct cfq_data *cfqd = cic->key;
2689         unsigned long flags;
2690         struct request_queue *q;
2691
2692         if (unlikely(!cfqd))
2693                 return;
2694
2695         q = cfqd->queue;
2696
2697         spin_lock_irqsave(q->queue_lock, flags);
2698
2699         if (sync_cfqq) {
2700                 /*
2701                  * Drop reference to sync queue. A new sync queue will be
2702                  * assigned in new group upon arrival of a fresh request.
2703                  */
2704                 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2705                 cic_set_cfqq(cic, NULL, 1);
2706                 cfq_put_queue(sync_cfqq);
2707         }
2708
2709         spin_unlock_irqrestore(q->queue_lock, flags);
2710 }
2711
2712 static void cfq_ioc_set_cgroup(struct io_context *ioc)
2713 {
2714         call_for_each_cic(ioc, changed_cgroup);
2715         ioc->cgroup_changed = 0;
2716 }
2717 #endif  /* CONFIG_CFQ_GROUP_IOSCHED */
2718
2719 static struct cfq_queue *
2720 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2721                      struct io_context *ioc, gfp_t gfp_mask)
2722 {
2723         struct cfq_queue *cfqq, *new_cfqq = NULL;
2724         struct cfq_io_context *cic;
2725         struct cfq_group *cfqg;
2726
2727 retry:
2728         cfqg = cfq_get_cfqg(cfqd, 1);
2729         cic = cfq_cic_lookup(cfqd, ioc);
2730         /* cic always exists here */
2731         cfqq = cic_to_cfqq(cic, is_sync);
2732
2733         /*
2734          * Always try a new alloc if we fell back to the OOM cfqq
2735          * originally, since it should just be a temporary situation.
2736          */
2737         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2738                 cfqq = NULL;
2739                 if (new_cfqq) {
2740                         cfqq = new_cfqq;
2741                         new_cfqq = NULL;
2742                 } else if (gfp_mask & __GFP_WAIT) {
2743                         spin_unlock_irq(cfqd->queue->queue_lock);
2744                         new_cfqq = kmem_cache_alloc_node(cfq_pool,
2745                                         gfp_mask | __GFP_ZERO,
2746                                         cfqd->queue->node);
2747                         spin_lock_irq(cfqd->queue->queue_lock);
2748                         if (new_cfqq)
2749                                 goto retry;
2750                 } else {
2751                         cfqq = kmem_cache_alloc_node(cfq_pool,
2752                                         gfp_mask | __GFP_ZERO,
2753                                         cfqd->queue->node);
2754                 }
2755
2756                 if (cfqq) {
2757                         cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2758                         cfq_init_prio_data(cfqq, ioc);
2759                         cfq_link_cfqq_cfqg(cfqq, cfqg);
2760                         cfq_log_cfqq(cfqd, cfqq, "alloced");
2761                 } else
2762                         cfqq = &cfqd->oom_cfqq;
2763         }
2764
2765         if (new_cfqq)
2766                 kmem_cache_free(cfq_pool, new_cfqq);
2767
2768         return cfqq;
2769 }
2770
2771 static struct cfq_queue **
2772 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2773 {
2774         switch (ioprio_class) {
2775         case IOPRIO_CLASS_RT:
2776                 return &cfqd->async_cfqq[0][ioprio];
2777         case IOPRIO_CLASS_BE:
2778                 return &cfqd->async_cfqq[1][ioprio];
2779         case IOPRIO_CLASS_IDLE:
2780                 return &cfqd->async_idle_cfqq;
2781         default:
2782                 BUG();
2783         }
2784 }
2785
2786 static struct cfq_queue *
2787 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2788               gfp_t gfp_mask)
2789 {
2790         const int ioprio = task_ioprio(ioc);
2791         const int ioprio_class = task_ioprio_class(ioc);
2792         struct cfq_queue **async_cfqq = NULL;
2793         struct cfq_queue *cfqq = NULL;
2794
2795         if (!is_sync) {
2796                 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2797                 cfqq = *async_cfqq;
2798         }
2799
2800         if (!cfqq)
2801                 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2802
2803         /*
2804          * pin the queue now that it's allocated, scheduler exit will prune it
2805          */
2806         if (!is_sync && !(*async_cfqq)) {
2807                 atomic_inc(&cfqq->ref);
2808                 *async_cfqq = cfqq;
2809         }
2810
2811         atomic_inc(&cfqq->ref);
2812         return cfqq;
2813 }
2814
2815 /*
2816  * We drop cfq io contexts lazily, so we may find a dead one.
2817  */
2818 static void
2819 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2820                   struct cfq_io_context *cic)
2821 {
2822         unsigned long flags;
2823
2824         WARN_ON(!list_empty(&cic->queue_list));
2825
2826         spin_lock_irqsave(&ioc->lock, flags);
2827
2828         BUG_ON(ioc->ioc_data == cic);
2829
2830         radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2831         hlist_del_rcu(&cic->cic_list);
2832         spin_unlock_irqrestore(&ioc->lock, flags);
2833
2834         cfq_cic_free(cic);
2835 }
2836
2837 static struct cfq_io_context *
2838 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2839 {
2840         struct cfq_io_context *cic;
2841         unsigned long flags;
2842         void *k;
2843
2844         if (unlikely(!ioc))
2845                 return NULL;
2846
2847         rcu_read_lock();
2848
2849         /*
2850          * we maintain a last-hit cache, to avoid browsing over the tree
2851          */
2852         cic = rcu_dereference(ioc->ioc_data);
2853         if (cic && cic->key == cfqd) {
2854                 rcu_read_unlock();
2855                 return cic;
2856         }
2857
2858         do {
2859                 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2860                 rcu_read_unlock();
2861                 if (!cic)
2862                         break;
2863                 /* ->key must be copied to avoid race with cfq_exit_queue() */
2864                 k = cic->key;
2865                 if (unlikely(!k)) {
2866                         cfq_drop_dead_cic(cfqd, ioc, cic);
2867                         rcu_read_lock();
2868                         continue;
2869                 }
2870
2871                 spin_lock_irqsave(&ioc->lock, flags);
2872                 rcu_assign_pointer(ioc->ioc_data, cic);
2873                 spin_unlock_irqrestore(&ioc->lock, flags);
2874                 break;
2875         } while (1);
2876
2877         return cic;
2878 }
2879
2880 /*
2881  * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2882  * the process specific cfq io context when entered from the block layer.
2883  * Also adds the cic to a per-cfqd list, used when this queue is removed.
2884  */
2885 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2886                         struct cfq_io_context *cic, gfp_t gfp_mask)
2887 {
2888         unsigned long flags;
2889         int ret;
2890
2891         ret = radix_tree_preload(gfp_mask);
2892         if (!ret) {
2893                 cic->ioc = ioc;
2894                 cic->key = cfqd;
2895
2896                 spin_lock_irqsave(&ioc->lock, flags);
2897                 ret = radix_tree_insert(&ioc->radix_root,
2898                                                 (unsigned long) cfqd, cic);
2899                 if (!ret)
2900                         hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2901                 spin_unlock_irqrestore(&ioc->lock, flags);
2902
2903                 radix_tree_preload_end();
2904
2905                 if (!ret) {
2906                         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2907                         list_add(&cic->queue_list, &cfqd->cic_list);
2908                         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2909                 }
2910         }
2911
2912         if (ret)
2913                 printk(KERN_ERR "cfq: cic link failed!\n");
2914
2915         return ret;
2916 }
2917
2918 /*
2919  * Setup general io context and cfq io context. There can be several cfq
2920  * io contexts per general io context, if this process is doing io to more
2921  * than one device managed by cfq.
2922  */
2923 static struct cfq_io_context *
2924 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2925 {
2926         struct io_context *ioc = NULL;
2927         struct cfq_io_context *cic;
2928
2929         might_sleep_if(gfp_mask & __GFP_WAIT);
2930
2931         ioc = get_io_context(gfp_mask, cfqd->queue->node);
2932         if (!ioc)
2933                 return NULL;
2934
2935         cic = cfq_cic_lookup(cfqd, ioc);
2936         if (cic)
2937                 goto out;
2938
2939         cic = cfq_alloc_io_context(cfqd, gfp_mask);
2940         if (cic == NULL)
2941                 goto err;
2942
2943         if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2944                 goto err_free;
2945
2946 out:
2947         smp_read_barrier_depends();
2948         if (unlikely(ioc->ioprio_changed))
2949                 cfq_ioc_set_ioprio(ioc);
2950
2951 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2952         if (unlikely(ioc->cgroup_changed))
2953                 cfq_ioc_set_cgroup(ioc);
2954 #endif
2955         return cic;
2956 err_free:
2957         cfq_cic_free(cic);
2958 err:
2959         put_io_context(ioc);
2960         return NULL;
2961 }
2962
2963 static void
2964 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
2965 {
2966         unsigned long elapsed = jiffies - cic->last_end_request;
2967         unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2968
2969         cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2970         cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2971         cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2972 }
2973
2974 static void
2975 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2976                        struct request *rq)
2977 {
2978         sector_t sdist;
2979         u64 total;
2980
2981         if (!cfqq->last_request_pos)
2982                 sdist = 0;
2983         else if (cfqq->last_request_pos < blk_rq_pos(rq))
2984                 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2985         else
2986                 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2987
2988         /*
2989          * Don't allow the seek distance to get too large from the
2990          * odd fragment, pagein, etc
2991          */
2992         if (cfqq->seek_samples <= 60) /* second&third seek */
2993                 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
2994         else
2995                 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
2996
2997         cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
2998         cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
2999         total = cfqq->seek_total + (cfqq->seek_samples/2);
3000         do_div(total, cfqq->seek_samples);
3001         cfqq->seek_mean = (sector_t)total;
3002
3003         /*
3004          * If this cfqq is shared between multiple processes, check to
3005          * make sure that those processes are still issuing I/Os within
3006          * the mean seek distance.  If not, it may be time to break the
3007          * queues apart again.
3008          */
3009         if (cfq_cfqq_coop(cfqq)) {
3010                 if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
3011                         cfqq->seeky_start = jiffies;
3012                 else if (!CFQQ_SEEKY(cfqq))
3013                         cfqq->seeky_start = 0;
3014         }
3015 }
3016
3017 /*
3018  * Disable idle window if the process thinks too long or seeks so much that
3019  * it doesn't matter
3020  */
3021 static void
3022 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3023                        struct cfq_io_context *cic)
3024 {
3025         int old_idle, enable_idle;
3026
3027         /*
3028          * Don't idle for async or idle io prio class
3029          */
3030         if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3031                 return;
3032
3033         enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3034
3035         if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3036                 cfq_mark_cfqq_deep(cfqq);
3037
3038         if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3039             (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
3040              && CFQQ_SEEKY(cfqq)))
3041                 enable_idle = 0;
3042         else if (sample_valid(cic->ttime_samples)) {
3043                 if (cic->ttime_mean > cfqd->cfq_slice_idle)
3044                         enable_idle = 0;
3045                 else
3046                         enable_idle = 1;
3047         }
3048
3049         if (old_idle != enable_idle) {
3050                 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3051                 if (enable_idle)
3052                         cfq_mark_cfqq_idle_window(cfqq);
3053                 else
3054                         cfq_clear_cfqq_idle_window(cfqq);
3055         }
3056 }
3057
3058 /*
3059  * Check if new_cfqq should preempt the currently active queue. Return 0 for
3060  * no or if we aren't sure, a 1 will cause a preempt.
3061  */
3062 static bool
3063 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3064                    struct request *rq)
3065 {
3066         struct cfq_queue *cfqq;
3067
3068         cfqq = cfqd->active_queue;
3069         if (!cfqq)
3070                 return false;
3071
3072         if (cfq_class_idle(new_cfqq))
3073                 return false;
3074
3075         if (cfq_class_idle(cfqq))
3076                 return true;
3077
3078         /*
3079          * if the new request is sync, but the currently running queue is
3080          * not, let the sync request have priority.
3081          */
3082         if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3083                 return true;
3084
3085         if (new_cfqq->cfqg != cfqq->cfqg)
3086                 return false;
3087
3088         if (cfq_slice_used(cfqq))
3089                 return true;
3090
3091         /* Allow preemption only if we are idling on sync-noidle tree */
3092         if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3093             cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3094             new_cfqq->service_tree->count == 2 &&
3095             RB_EMPTY_ROOT(&cfqq->sort_list))
3096                 return true;
3097
3098         /*
3099          * So both queues are sync. Let the new request get disk time if
3100          * it's a metadata request and the current queue is doing regular IO.
3101          */
3102         if (rq_is_meta(rq) && !cfqq->meta_pending)
3103                 return true;
3104
3105         /*
3106          * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3107          */
3108         if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3109                 return true;
3110
3111         if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3112                 return false;
3113
3114         /*
3115          * if this request is as-good as one we would expect from the
3116          * current cfqq, let it preempt
3117          */
3118         if (cfq_rq_close(cfqd, cfqq, rq))
3119                 return true;
3120
3121         return false;
3122 }
3123
3124 /*
3125  * cfqq preempts the active queue. if we allowed preempt with no slice left,
3126  * let it have half of its nominal slice.
3127  */
3128 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3129 {
3130         cfq_log_cfqq(cfqd, cfqq, "preempt");
3131         cfq_slice_expired(cfqd, 1);
3132
3133         /*
3134          * Put the new queue at the front of the of the current list,
3135          * so we know that it will be selected next.
3136          */
3137         BUG_ON(!cfq_cfqq_on_rr(cfqq));
3138
3139         cfq_service_tree_add(cfqd, cfqq, 1);
3140
3141         cfqq->slice_end = 0;
3142         cfq_mark_cfqq_slice_new(cfqq);
3143 }
3144
3145 /*
3146  * Called when a new fs request (rq) is added (to cfqq). Check if there's
3147  * something we should do about it
3148  */
3149 static void
3150 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3151                 struct request *rq)
3152 {
3153         struct cfq_io_context *cic = RQ_CIC(rq);
3154
3155         cfqd->rq_queued++;
3156         if (rq_is_meta(rq))
3157                 cfqq->meta_pending++;
3158
3159         cfq_update_io_thinktime(cfqd, cic);
3160         cfq_update_io_seektime(cfqd, cfqq, rq);
3161         cfq_update_idle_window(cfqd, cfqq, cic);
3162
3163         cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3164
3165         if (cfqq == cfqd->active_queue) {
3166                 if (cfq_cfqq_wait_busy(cfqq)) {
3167                         cfq_clear_cfqq_wait_busy(cfqq);
3168                         cfq_mark_cfqq_wait_busy_done(cfqq);
3169                 }
3170                 /*
3171                  * Remember that we saw a request from this process, but
3172                  * don't start queuing just yet. Otherwise we risk seeing lots
3173                  * of tiny requests, because we disrupt the normal plugging
3174                  * and merging. If the request is already larger than a single
3175                  * page, let it rip immediately. For that case we assume that
3176                  * merging is already done. Ditto for a busy system that
3177                  * has other work pending, don't risk delaying until the
3178                  * idle timer unplug to continue working.
3179                  */
3180                 if (cfq_cfqq_wait_request(cfqq)) {
3181                         if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3182                             cfqd->busy_queues > 1) {
3183                                 del_timer(&cfqd->idle_slice_timer);
3184                                 __blk_run_queue(cfqd->queue);
3185                         } else
3186                                 cfq_mark_cfqq_must_dispatch(cfqq);
3187                 }
3188         } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3189                 /*
3190                  * not the active queue - expire current slice if it is
3191                  * idle and has expired it's mean thinktime or this new queue
3192                  * has some old slice time left and is of higher priority or
3193                  * this new queue is RT and the current one is BE
3194                  */
3195                 cfq_preempt_queue(cfqd, cfqq);
3196                 __blk_run_queue(cfqd->queue);
3197         }
3198 }
3199
3200 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3201 {
3202         struct cfq_data *cfqd = q->elevator->elevator_data;
3203         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3204
3205         cfq_log_cfqq(cfqd, cfqq, "insert_request");
3206         cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3207
3208         rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3209         list_add_tail(&rq->queuelist, &cfqq->fifo);
3210         cfq_add_rq_rb(rq);
3211
3212         cfq_rq_enqueued(cfqd, cfqq, rq);
3213 }
3214
3215 /*
3216  * Update hw_tag based on peak queue depth over 50 samples under
3217  * sufficient load.
3218  */
3219 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3220 {
3221         struct cfq_queue *cfqq = cfqd->active_queue;
3222
3223         if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
3224                 cfqd->hw_tag_est_depth = rq_in_driver(cfqd);
3225
3226         if (cfqd->hw_tag == 1)
3227                 return;
3228
3229         if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3230             rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
3231                 return;
3232
3233         /*
3234          * If active queue hasn't enough requests and can idle, cfq might not
3235          * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3236          * case
3237          */
3238         if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3239             cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3240             CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
3241                 return;
3242
3243         if (cfqd->hw_tag_samples++ < 50)
3244                 return;
3245
3246         if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3247                 cfqd->hw_tag = 1;
3248         else
3249                 cfqd->hw_tag = 0;
3250 }
3251
3252 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3253 {
3254         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3255         struct cfq_data *cfqd = cfqq->cfqd;
3256         const int sync = rq_is_sync(rq);
3257         unsigned long now;
3258
3259         now = jiffies;
3260         cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
3261
3262         cfq_update_hw_tag(cfqd);
3263
3264         WARN_ON(!cfqd->rq_in_driver[sync]);
3265         WARN_ON(!cfqq->dispatched);
3266         cfqd->rq_in_driver[sync]--;
3267         cfqq->dispatched--;
3268
3269         if (cfq_cfqq_sync(cfqq))
3270                 cfqd->sync_flight--;
3271
3272         if (sync) {
3273                 RQ_CIC(rq)->last_end_request = now;
3274                 cfqd->last_end_sync_rq = now;
3275         }
3276
3277         /*
3278          * If this is the active queue, check if it needs to be expired,
3279          * or if we want to idle in case it has no pending requests.
3280          */
3281         if (cfqd->active_queue == cfqq) {
3282                 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3283
3284                 if (cfq_cfqq_slice_new(cfqq)) {
3285                         cfq_set_prio_slice(cfqd, cfqq);
3286                         cfq_clear_cfqq_slice_new(cfqq);
3287                 }
3288
3289                 /*
3290                  * If this queue consumed its slice and this is last queue
3291                  * in the group, wait for next request before we expire
3292                  * the queue
3293                  */
3294                 if (cfq_slice_used(cfqq) && cfqq->cfqg->nr_cfqq == 1) {
3295                         cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
3296                         cfq_mark_cfqq_wait_busy(cfqq);
3297                 }
3298
3299                 /*
3300                  * Idling is not enabled on:
3301                  * - expired queues
3302                  * - idle-priority queues
3303                  * - async queues
3304                  * - queues with still some requests queued
3305                  * - when there is a close cooperator
3306                  */
3307                 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3308                         cfq_slice_expired(cfqd, 1);
3309                 else if (sync && cfqq_empty &&
3310                          !cfq_close_cooperator(cfqd, cfqq)) {
3311                         cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3312                         /*
3313                          * Idling is enabled for SYNC_WORKLOAD.
3314                          * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3315                          * only if we processed at least one !rq_noidle request
3316                          */
3317                         if (cfqd->serving_type == SYNC_WORKLOAD
3318                             || cfqd->noidle_tree_requires_idle
3319                             || cfqq->cfqg->nr_cfqq == 1)
3320                                 cfq_arm_slice_timer(cfqd);
3321                 }
3322         }
3323
3324         if (!rq_in_driver(cfqd))
3325                 cfq_schedule_dispatch(cfqd);
3326 }
3327
3328 /*
3329  * we temporarily boost lower priority queues if they are holding fs exclusive
3330  * resources. they are boosted to normal prio (CLASS_BE/4)
3331  */
3332 static void cfq_prio_boost(struct cfq_queue *cfqq)
3333 {
3334         if (has_fs_excl()) {
3335                 /*
3336                  * boost idle prio on transactions that would lock out other
3337                  * users of the filesystem
3338                  */
3339                 if (cfq_class_idle(cfqq))
3340                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
3341                 if (cfqq->ioprio > IOPRIO_NORM)
3342                         cfqq->ioprio = IOPRIO_NORM;
3343         } else {
3344                 /*
3345                  * unboost the queue (if needed)
3346                  */
3347                 cfqq->ioprio_class = cfqq->org_ioprio_class;
3348                 cfqq->ioprio = cfqq->org_ioprio;
3349         }
3350 }
3351
3352 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3353 {
3354         if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3355                 cfq_mark_cfqq_must_alloc_slice(cfqq);
3356                 return ELV_MQUEUE_MUST;
3357         }
3358
3359         return ELV_MQUEUE_MAY;
3360 }
3361
3362 static int cfq_may_queue(struct request_queue *q, int rw)
3363 {
3364         struct cfq_data *cfqd = q->elevator->elevator_data;
3365         struct task_struct *tsk = current;
3366         struct cfq_io_context *cic;
3367         struct cfq_queue *cfqq;
3368
3369         /*
3370          * don't force setup of a queue from here, as a call to may_queue
3371          * does not necessarily imply that a request actually will be queued.
3372          * so just lookup a possibly existing queue, or return 'may queue'
3373          * if that fails
3374          */
3375         cic = cfq_cic_lookup(cfqd, tsk->io_context);
3376         if (!cic)
3377                 return ELV_MQUEUE_MAY;
3378
3379         cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3380         if (cfqq) {
3381                 cfq_init_prio_data(cfqq, cic->ioc);
3382                 cfq_prio_boost(cfqq);
3383
3384                 return __cfq_may_queue(cfqq);
3385         }
3386
3387         return ELV_MQUEUE_MAY;
3388 }
3389
3390 /*
3391  * queue lock held here
3392  */
3393 static void cfq_put_request(struct request *rq)
3394 {
3395         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3396
3397         if (cfqq) {
3398                 const int rw = rq_data_dir(rq);
3399
3400                 BUG_ON(!cfqq->allocated[rw]);
3401                 cfqq->allocated[rw]--;
3402
3403                 put_io_context(RQ_CIC(rq)->ioc);
3404
3405                 rq->elevator_private = NULL;
3406                 rq->elevator_private2 = NULL;
3407
3408                 cfq_put_queue(cfqq);
3409         }
3410 }
3411
3412 static struct cfq_queue *
3413 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3414                 struct cfq_queue *cfqq)
3415 {
3416         cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3417         cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3418         cfq_mark_cfqq_coop(cfqq->new_cfqq);
3419         cfq_put_queue(cfqq);
3420         return cic_to_cfqq(cic, 1);
3421 }
3422
3423 static int should_split_cfqq(struct cfq_queue *cfqq)
3424 {
3425         if (cfqq->seeky_start &&
3426             time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
3427                 return 1;
3428         return 0;
3429 }
3430
3431 /*
3432  * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3433  * was the last process referring to said cfqq.
3434  */
3435 static struct cfq_queue *
3436 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3437 {
3438         if (cfqq_process_refs(cfqq) == 1) {
3439                 cfqq->seeky_start = 0;
3440                 cfqq->pid = current->pid;
3441                 cfq_clear_cfqq_coop(cfqq);
3442                 return cfqq;
3443         }
3444
3445         cic_set_cfqq(cic, NULL, 1);
3446         cfq_put_queue(cfqq);
3447         return NULL;
3448 }
3449 /*
3450  * Allocate cfq data structures associated with this request.
3451  */
3452 static int
3453 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3454 {
3455         struct cfq_data *cfqd = q->elevator->elevator_data;
3456         struct cfq_io_context *cic;
3457         const int rw = rq_data_dir(rq);
3458         const bool is_sync = rq_is_sync(rq);
3459         struct cfq_queue *cfqq;
3460         unsigned long flags;
3461
3462         might_sleep_if(gfp_mask & __GFP_WAIT);
3463
3464         cic = cfq_get_io_context(cfqd, gfp_mask);
3465
3466         spin_lock_irqsave(q->queue_lock, flags);
3467
3468         if (!cic)
3469                 goto queue_fail;
3470
3471 new_queue:
3472         cfqq = cic_to_cfqq(cic, is_sync);
3473         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3474                 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3475                 cic_set_cfqq(cic, cfqq, is_sync);
3476         } else {
3477                 /*
3478                  * If the queue was seeky for too long, break it apart.
3479                  */
3480                 if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
3481                         cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3482                         cfqq = split_cfqq(cic, cfqq);
3483                         if (!cfqq)
3484                                 goto new_queue;
3485                 }
3486
3487                 /*
3488                  * Check to see if this queue is scheduled to merge with
3489                  * another, closely cooperating queue.  The merging of
3490                  * queues happens here as it must be done in process context.
3491                  * The reference on new_cfqq was taken in merge_cfqqs.
3492                  */
3493                 if (cfqq->new_cfqq)
3494                         cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3495         }
3496
3497         cfqq->allocated[rw]++;
3498         atomic_inc(&cfqq->ref);
3499
3500         spin_unlock_irqrestore(q->queue_lock, flags);
3501
3502         rq->elevator_private = cic;
3503         rq->elevator_private2 = cfqq;
3504         return 0;
3505
3506 queue_fail:
3507         if (cic)
3508                 put_io_context(cic->ioc);
3509
3510         cfq_schedule_dispatch(cfqd);
3511         spin_unlock_irqrestore(q->queue_lock, flags);
3512         cfq_log(cfqd, "set_request fail");
3513         return 1;
3514 }
3515
3516 static void cfq_kick_queue(struct work_struct *work)
3517 {
3518         struct cfq_data *cfqd =
3519                 container_of(work, struct cfq_data, unplug_work);
3520         struct request_queue *q = cfqd->queue;
3521
3522         spin_lock_irq(q->queue_lock);
3523         __blk_run_queue(cfqd->queue);
3524         spin_unlock_irq(q->queue_lock);
3525 }
3526
3527 /*
3528  * Timer running if the active_queue is currently idling inside its time slice
3529  */
3530 static void cfq_idle_slice_timer(unsigned long data)
3531 {
3532         struct cfq_data *cfqd = (struct cfq_data *) data;
3533         struct cfq_queue *cfqq;
3534         unsigned long flags;
3535         int timed_out = 1;
3536
3537         cfq_log(cfqd, "idle timer fired");
3538
3539         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3540
3541         cfqq = cfqd->active_queue;
3542         if (cfqq) {
3543                 timed_out = 0;
3544
3545                 /*
3546                  * We saw a request before the queue expired, let it through
3547                  */
3548                 if (cfq_cfqq_must_dispatch(cfqq))
3549                         goto out_kick;
3550
3551                 /*
3552                  * expired
3553                  */
3554                 if (cfq_slice_used(cfqq))
3555                         goto expire;
3556
3557                 /*
3558                  * only expire and reinvoke request handler, if there are
3559                  * other queues with pending requests
3560                  */
3561                 if (!cfqd->busy_queues)
3562                         goto out_cont;
3563
3564                 /*
3565                  * not expired and it has a request pending, let it dispatch
3566                  */
3567                 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3568                         goto out_kick;
3569
3570                 /*
3571                  * Queue depth flag is reset only when the idle didn't succeed
3572                  */
3573                 cfq_clear_cfqq_deep(cfqq);
3574         }
3575 expire:
3576         cfq_slice_expired(cfqd, timed_out);
3577 out_kick:
3578         cfq_schedule_dispatch(cfqd);
3579 out_cont:
3580         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3581 }
3582
3583 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3584 {
3585         del_timer_sync(&cfqd->idle_slice_timer);
3586         cancel_work_sync(&cfqd->unplug_work);
3587 }
3588
3589 static void cfq_put_async_queues(struct cfq_data *cfqd)
3590 {
3591         int i;
3592
3593         for (i = 0; i < IOPRIO_BE_NR; i++) {
3594                 if (cfqd->async_cfqq[0][i])
3595                         cfq_put_queue(cfqd->async_cfqq[0][i]);
3596                 if (cfqd->async_cfqq[1][i])
3597                         cfq_put_queue(cfqd->async_cfqq[1][i]);
3598         }
3599
3600         if (cfqd->async_idle_cfqq)
3601                 cfq_put_queue(cfqd->async_idle_cfqq);
3602 }
3603
3604 static void cfq_exit_queue(struct elevator_queue *e)
3605 {
3606         struct cfq_data *cfqd = e->elevator_data;
3607         struct request_queue *q = cfqd->queue;
3608
3609         cfq_shutdown_timer_wq(cfqd);
3610
3611         spin_lock_irq(q->queue_lock);
3612
3613         if (cfqd->active_queue)
3614                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3615
3616         while (!list_empty(&cfqd->cic_list)) {
3617                 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3618                                                         struct cfq_io_context,
3619                                                         queue_list);
3620
3621                 __cfq_exit_single_io_context(cfqd, cic);
3622         }
3623
3624         cfq_put_async_queues(cfqd);
3625         cfq_release_cfq_groups(cfqd);
3626         blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3627
3628         spin_unlock_irq(q->queue_lock);
3629
3630         cfq_shutdown_timer_wq(cfqd);
3631
3632         /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3633         synchronize_rcu();
3634         kfree(cfqd);
3635 }
3636
3637 static void *cfq_init_queue(struct request_queue *q)
3638 {
3639         struct cfq_data *cfqd;
3640         int i, j;
3641         struct cfq_group *cfqg;
3642         struct cfq_rb_root *st;
3643
3644         cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3645         if (!cfqd)
3646                 return NULL;
3647
3648         /* Init root service tree */
3649         cfqd->grp_service_tree = CFQ_RB_ROOT;
3650
3651         /* Init root group */
3652         cfqg = &cfqd->root_group;
3653         for_each_cfqg_st(cfqg, i, j, st)
3654                 *st = CFQ_RB_ROOT;
3655         RB_CLEAR_NODE(&cfqg->rb_node);
3656
3657         /* Give preference to root group over other groups */
3658         cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3659
3660 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3661         /*
3662          * Take a reference to root group which we never drop. This is just
3663          * to make sure that cfq_put_cfqg() does not try to kfree root group
3664          */
3665         atomic_set(&cfqg->ref, 1);
3666         blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
3667                                         0);
3668 #endif
3669         /*
3670          * Not strictly needed (since RB_ROOT just clears the node and we
3671          * zeroed cfqd on alloc), but better be safe in case someone decides
3672          * to add magic to the rb code
3673          */
3674         for (i = 0; i < CFQ_PRIO_LISTS; i++)
3675                 cfqd->prio_trees[i] = RB_ROOT;
3676
3677         /*
3678          * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3679          * Grab a permanent reference to it, so that the normal code flow
3680          * will not attempt to free it.
3681          */
3682         cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3683         atomic_inc(&cfqd->oom_cfqq.ref);
3684         cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3685
3686         INIT_LIST_HEAD(&cfqd->cic_list);
3687
3688         cfqd->queue = q;
3689
3690         init_timer(&cfqd->idle_slice_timer);
3691         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3692         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3693
3694         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3695
3696         cfqd->cfq_quantum = cfq_quantum;
3697         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3698         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3699         cfqd->cfq_back_max = cfq_back_max;
3700         cfqd->cfq_back_penalty = cfq_back_penalty;
3701         cfqd->cfq_slice[0] = cfq_slice_async;
3702         cfqd->cfq_slice[1] = cfq_slice_sync;
3703         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3704         cfqd->cfq_slice_idle = cfq_slice_idle;
3705         cfqd->cfq_latency = 1;
3706         cfqd->cfq_group_isolation = 0;
3707         cfqd->hw_tag = -1;
3708         cfqd->last_end_sync_rq = jiffies;
3709         return cfqd;
3710 }
3711
3712 static void cfq_slab_kill(void)
3713 {
3714         /*
3715          * Caller already ensured that pending RCU callbacks are completed,
3716          * so we should have no busy allocations at this point.
3717          */
3718         if (cfq_pool)
3719                 kmem_cache_destroy(cfq_pool);
3720         if (cfq_ioc_pool)
3721                 kmem_cache_destroy(cfq_ioc_pool);
3722 }
3723
3724 static int __init cfq_slab_setup(void)
3725 {
3726         cfq_pool = KMEM_CACHE(cfq_queue, 0);
3727         if (!cfq_pool)
3728                 goto fail;
3729
3730         cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3731         if (!cfq_ioc_pool)
3732                 goto fail;
3733
3734         return 0;
3735 fail:
3736         cfq_slab_kill();
3737         return -ENOMEM;
3738 }
3739
3740 /*
3741  * sysfs parts below -->
3742  */
3743 static ssize_t
3744 cfq_var_show(unsigned int var, char *page)
3745 {
3746         return sprintf(page, "%d\n", var);
3747 }
3748
3749 static ssize_t
3750 cfq_var_store(unsigned int *var, const char *page, size_t count)
3751 {
3752         char *p = (char *) page;
3753
3754         *var = simple_strtoul(p, &p, 10);
3755         return count;
3756 }
3757
3758 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
3759 static ssize_t __FUNC(struct elevator_queue *e, char *page)             \
3760 {                                                                       \
3761         struct cfq_data *cfqd = e->elevator_data;                       \
3762         unsigned int __data = __VAR;                                    \
3763         if (__CONV)                                                     \
3764                 __data = jiffies_to_msecs(__data);                      \
3765         return cfq_var_show(__data, (page));                            \
3766 }
3767 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3768 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3769 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3770 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3771 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3772 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3773 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3774 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3775 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3776 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3777 SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
3778 #undef SHOW_FUNCTION
3779
3780 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
3781 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3782 {                                                                       \
3783         struct cfq_data *cfqd = e->elevator_data;                       \
3784         unsigned int __data;                                            \
3785         int ret = cfq_var_store(&__data, (page), count);                \
3786         if (__data < (MIN))                                             \
3787                 __data = (MIN);                                         \
3788         else if (__data > (MAX))                                        \
3789                 __data = (MAX);                                         \
3790         if (__CONV)                                                     \
3791                 *(__PTR) = msecs_to_jiffies(__data);                    \
3792         else                                                            \
3793                 *(__PTR) = __data;                                      \
3794         return ret;                                                     \
3795 }
3796 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3797 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3798                 UINT_MAX, 1);
3799 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3800                 UINT_MAX, 1);
3801 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3802 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3803                 UINT_MAX, 0);
3804 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3805 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3806 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3807 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3808                 UINT_MAX, 0);
3809 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3810 STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
3811 #undef STORE_FUNCTION
3812
3813 #define CFQ_ATTR(name) \
3814         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3815
3816 static struct elv_fs_entry cfq_attrs[] = {
3817         CFQ_ATTR(quantum),
3818         CFQ_ATTR(fifo_expire_sync),
3819         CFQ_ATTR(fifo_expire_async),
3820         CFQ_ATTR(back_seek_max),
3821         CFQ_ATTR(back_seek_penalty),
3822         CFQ_ATTR(slice_sync),
3823         CFQ_ATTR(slice_async),
3824         CFQ_ATTR(slice_async_rq),
3825         CFQ_ATTR(slice_idle),
3826         CFQ_ATTR(low_latency),
3827         CFQ_ATTR(group_isolation),
3828         __ATTR_NULL
3829 };
3830
3831 static struct elevator_type iosched_cfq = {
3832         .ops = {
3833                 .elevator_merge_fn =            cfq_merge,
3834                 .elevator_merged_fn =           cfq_merged_request,
3835                 .elevator_merge_req_fn =        cfq_merged_requests,
3836                 .elevator_allow_merge_fn =      cfq_allow_merge,
3837                 .elevator_dispatch_fn =         cfq_dispatch_requests,
3838                 .elevator_add_req_fn =          cfq_insert_request,
3839                 .elevator_activate_req_fn =     cfq_activate_request,
3840                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
3841                 .elevator_queue_empty_fn =      cfq_queue_empty,
3842                 .elevator_completed_req_fn =    cfq_completed_request,
3843                 .elevator_former_req_fn =       elv_rb_former_request,
3844                 .elevator_latter_req_fn =       elv_rb_latter_request,
3845                 .elevator_set_req_fn =          cfq_set_request,
3846                 .elevator_put_req_fn =          cfq_put_request,
3847                 .elevator_may_queue_fn =        cfq_may_queue,
3848                 .elevator_init_fn =             cfq_init_queue,
3849                 .elevator_exit_fn =             cfq_exit_queue,
3850                 .trim =                         cfq_free_io_context,
3851         },
3852         .elevator_attrs =       cfq_attrs,
3853         .elevator_name =        "cfq",
3854         .elevator_owner =       THIS_MODULE,
3855 };
3856
3857 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3858 static struct blkio_policy_type blkio_policy_cfq = {
3859         .ops = {
3860                 .blkio_unlink_group_fn =        cfq_unlink_blkio_group,
3861                 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
3862         },
3863 };
3864 #else
3865 static struct blkio_policy_type blkio_policy_cfq;
3866 #endif
3867
3868 static int __init cfq_init(void)
3869 {
3870         /*
3871          * could be 0 on HZ < 1000 setups
3872          */
3873         if (!cfq_slice_async)
3874                 cfq_slice_async = 1;
3875         if (!cfq_slice_idle)
3876                 cfq_slice_idle = 1;
3877
3878         if (cfq_slab_setup())
3879                 return -ENOMEM;
3880
3881         elv_register(&iosched_cfq);
3882         blkio_policy_register(&blkio_policy_cfq);
3883
3884         return 0;
3885 }
3886
3887 static void __exit cfq_exit(void)
3888 {
3889         DECLARE_COMPLETION_ONSTACK(all_gone);
3890         blkio_policy_unregister(&blkio_policy_cfq);
3891         elv_unregister(&iosched_cfq);
3892         ioc_gone = &all_gone;
3893         /* ioc_gone's update must be visible before reading ioc_count */
3894         smp_wmb();
3895
3896         /*
3897          * this also protects us from entering cfq_slab_kill() with
3898          * pending RCU callbacks
3899          */
3900         if (elv_ioc_count_read(cfq_ioc_count))
3901                 wait_for_completion(&all_gone);
3902         cfq_slab_kill();
3903 }
3904
3905 module_init(cfq_init);
3906 module_exit(cfq_exit);
3907
3908 MODULE_AUTHOR("Jens Axboe");
3909 MODULE_LICENSE("GPL");
3910 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");