cfq-iosched: delay async IO dispatch, if sync IO was just done
[safe/jmp/linux-2.6] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/rbtree.h>
13 #include <linux/ioprio.h>
14 #include <linux/blktrace_api.h>
15
16 /*
17  * tunables
18  */
19 /* max queue in one round of service */
20 static const int cfq_quantum = 4;
21 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
22 /* maximum backwards seek, in KiB */
23 static const int cfq_back_max = 16 * 1024;
24 /* penalty of a backwards seek */
25 static const int cfq_back_penalty = 2;
26 static const int cfq_slice_sync = HZ / 10;
27 static int cfq_slice_async = HZ / 25;
28 static const int cfq_slice_async_rq = 2;
29 static int cfq_slice_idle = HZ / 125;
30
31 /*
32  * offset from end of service tree
33  */
34 #define CFQ_IDLE_DELAY          (HZ / 5)
35
36 /*
37  * below this threshold, we consider thinktime immediate
38  */
39 #define CFQ_MIN_TT              (2)
40
41 #define CFQ_SLICE_SCALE         (5)
42 #define CFQ_HW_QUEUE_MIN        (5)
43
44 #define RQ_CIC(rq)              \
45         ((struct cfq_io_context *) (rq)->elevator_private)
46 #define RQ_CFQQ(rq)             (struct cfq_queue *) ((rq)->elevator_private2)
47
48 static struct kmem_cache *cfq_pool;
49 static struct kmem_cache *cfq_ioc_pool;
50
51 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
52 static struct completion *ioc_gone;
53 static DEFINE_SPINLOCK(ioc_gone_lock);
54
55 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
56 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
57 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
58
59 #define sample_valid(samples)   ((samples) > 80)
60
61 /*
62  * Most of our rbtree usage is for sorting with min extraction, so
63  * if we cache the leftmost node we don't have to walk down the tree
64  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
65  * move this into the elevator for the rq sorting as well.
66  */
67 struct cfq_rb_root {
68         struct rb_root rb;
69         struct rb_node *left;
70 };
71 #define CFQ_RB_ROOT     (struct cfq_rb_root) { RB_ROOT, NULL, }
72
73 /*
74  * Per process-grouping structure
75  */
76 struct cfq_queue {
77         /* reference count */
78         atomic_t ref;
79         /* various state flags, see below */
80         unsigned int flags;
81         /* parent cfq_data */
82         struct cfq_data *cfqd;
83         /* service_tree member */
84         struct rb_node rb_node;
85         /* service_tree key */
86         unsigned long rb_key;
87         /* prio tree member */
88         struct rb_node p_node;
89         /* prio tree root we belong to, if any */
90         struct rb_root *p_root;
91         /* sorted list of pending requests */
92         struct rb_root sort_list;
93         /* if fifo isn't expired, next request to serve */
94         struct request *next_rq;
95         /* requests queued in sort_list */
96         int queued[2];
97         /* currently allocated requests */
98         int allocated[2];
99         /* fifo list of requests in sort_list */
100         struct list_head fifo;
101
102         unsigned long slice_end;
103         long slice_resid;
104         unsigned int slice_dispatch;
105
106         /* pending metadata requests */
107         int meta_pending;
108         /* number of requests that are on the dispatch list or inside driver */
109         int dispatched;
110
111         /* io prio of this group */
112         unsigned short ioprio, org_ioprio;
113         unsigned short ioprio_class, org_ioprio_class;
114
115         pid_t pid;
116 };
117
118 /*
119  * Per block device queue structure
120  */
121 struct cfq_data {
122         struct request_queue *queue;
123
124         /*
125          * rr list of queues with requests and the count of them
126          */
127         struct cfq_rb_root service_tree;
128
129         /*
130          * Each priority tree is sorted by next_request position.  These
131          * trees are used when determining if two or more queues are
132          * interleaving requests (see cfq_close_cooperator).
133          */
134         struct rb_root prio_trees[CFQ_PRIO_LISTS];
135
136         unsigned int busy_queues;
137
138         int rq_in_driver[2];
139         int sync_flight;
140
141         /*
142          * queue-depth detection
143          */
144         int rq_queued;
145         int hw_tag;
146         int hw_tag_samples;
147         int rq_in_driver_peak;
148
149         /*
150          * idle window management
151          */
152         struct timer_list idle_slice_timer;
153         struct work_struct unplug_work;
154
155         struct cfq_queue *active_queue;
156         struct cfq_io_context *active_cic;
157
158         /*
159          * async queue for each priority case
160          */
161         struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
162         struct cfq_queue *async_idle_cfqq;
163
164         sector_t last_position;
165
166         /*
167          * tunables, see top of file
168          */
169         unsigned int cfq_quantum;
170         unsigned int cfq_fifo_expire[2];
171         unsigned int cfq_back_penalty;
172         unsigned int cfq_back_max;
173         unsigned int cfq_slice[2];
174         unsigned int cfq_slice_async_rq;
175         unsigned int cfq_slice_idle;
176         unsigned int cfq_desktop;
177
178         struct list_head cic_list;
179
180         /*
181          * Fallback dummy cfqq for extreme OOM conditions
182          */
183         struct cfq_queue oom_cfqq;
184
185         unsigned long last_end_sync_rq;
186 };
187
188 enum cfqq_state_flags {
189         CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
190         CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
191         CFQ_CFQQ_FLAG_must_dispatch,    /* must be allowed a dispatch */
192         CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
193         CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
194         CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
195         CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
196         CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
197         CFQ_CFQQ_FLAG_sync,             /* synchronous queue */
198         CFQ_CFQQ_FLAG_coop,             /* has done a coop jump of the queue */
199 };
200
201 #define CFQ_CFQQ_FNS(name)                                              \
202 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
203 {                                                                       \
204         (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);                   \
205 }                                                                       \
206 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
207 {                                                                       \
208         (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                  \
209 }                                                                       \
210 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
211 {                                                                       \
212         return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;      \
213 }
214
215 CFQ_CFQQ_FNS(on_rr);
216 CFQ_CFQQ_FNS(wait_request);
217 CFQ_CFQQ_FNS(must_dispatch);
218 CFQ_CFQQ_FNS(must_alloc_slice);
219 CFQ_CFQQ_FNS(fifo_expire);
220 CFQ_CFQQ_FNS(idle_window);
221 CFQ_CFQQ_FNS(prio_changed);
222 CFQ_CFQQ_FNS(slice_new);
223 CFQ_CFQQ_FNS(sync);
224 CFQ_CFQQ_FNS(coop);
225 #undef CFQ_CFQQ_FNS
226
227 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
228         blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
229 #define cfq_log(cfqd, fmt, args...)     \
230         blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
231
232 static void cfq_dispatch_insert(struct request_queue *, struct request *);
233 static struct cfq_queue *cfq_get_queue(struct cfq_data *, int,
234                                        struct io_context *, gfp_t);
235 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
236                                                 struct io_context *);
237
238 static inline int rq_in_driver(struct cfq_data *cfqd)
239 {
240         return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
241 }
242
243 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
244                                             int is_sync)
245 {
246         return cic->cfqq[!!is_sync];
247 }
248
249 static inline void cic_set_cfqq(struct cfq_io_context *cic,
250                                 struct cfq_queue *cfqq, int is_sync)
251 {
252         cic->cfqq[!!is_sync] = cfqq;
253 }
254
255 /*
256  * We regard a request as SYNC, if it's either a read or has the SYNC bit
257  * set (in which case it could also be direct WRITE).
258  */
259 static inline int cfq_bio_sync(struct bio *bio)
260 {
261         if (bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO))
262                 return 1;
263
264         return 0;
265 }
266
267 /*
268  * scheduler run of queue, if there are requests pending and no one in the
269  * driver that will restart queueing
270  */
271 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
272 {
273         if (cfqd->busy_queues) {
274                 cfq_log(cfqd, "schedule dispatch");
275                 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
276         }
277 }
278
279 static int cfq_queue_empty(struct request_queue *q)
280 {
281         struct cfq_data *cfqd = q->elevator->elevator_data;
282
283         return !cfqd->busy_queues;
284 }
285
286 /*
287  * Scale schedule slice based on io priority. Use the sync time slice only
288  * if a queue is marked sync and has sync io queued. A sync queue with async
289  * io only, should not get full sync slice length.
290  */
291 static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
292                                  unsigned short prio)
293 {
294         const int base_slice = cfqd->cfq_slice[sync];
295
296         WARN_ON(prio >= IOPRIO_BE_NR);
297
298         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
299 }
300
301 static inline int
302 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
303 {
304         return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
305 }
306
307 static inline void
308 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
309 {
310         cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
311         cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
312 }
313
314 /*
315  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
316  * isn't valid until the first request from the dispatch is activated
317  * and the slice time set.
318  */
319 static inline int cfq_slice_used(struct cfq_queue *cfqq)
320 {
321         if (cfq_cfqq_slice_new(cfqq))
322                 return 0;
323         if (time_before(jiffies, cfqq->slice_end))
324                 return 0;
325
326         return 1;
327 }
328
329 /*
330  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
331  * We choose the request that is closest to the head right now. Distance
332  * behind the head is penalized and only allowed to a certain extent.
333  */
334 static struct request *
335 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
336 {
337         sector_t last, s1, s2, d1 = 0, d2 = 0;
338         unsigned long back_max;
339 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
340 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
341         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
342
343         if (rq1 == NULL || rq1 == rq2)
344                 return rq2;
345         if (rq2 == NULL)
346                 return rq1;
347
348         if (rq_is_sync(rq1) && !rq_is_sync(rq2))
349                 return rq1;
350         else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
351                 return rq2;
352         if (rq_is_meta(rq1) && !rq_is_meta(rq2))
353                 return rq1;
354         else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
355                 return rq2;
356
357         s1 = blk_rq_pos(rq1);
358         s2 = blk_rq_pos(rq2);
359
360         last = cfqd->last_position;
361
362         /*
363          * by definition, 1KiB is 2 sectors
364          */
365         back_max = cfqd->cfq_back_max * 2;
366
367         /*
368          * Strict one way elevator _except_ in the case where we allow
369          * short backward seeks which are biased as twice the cost of a
370          * similar forward seek.
371          */
372         if (s1 >= last)
373                 d1 = s1 - last;
374         else if (s1 + back_max >= last)
375                 d1 = (last - s1) * cfqd->cfq_back_penalty;
376         else
377                 wrap |= CFQ_RQ1_WRAP;
378
379         if (s2 >= last)
380                 d2 = s2 - last;
381         else if (s2 + back_max >= last)
382                 d2 = (last - s2) * cfqd->cfq_back_penalty;
383         else
384                 wrap |= CFQ_RQ2_WRAP;
385
386         /* Found required data */
387
388         /*
389          * By doing switch() on the bit mask "wrap" we avoid having to
390          * check two variables for all permutations: --> faster!
391          */
392         switch (wrap) {
393         case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
394                 if (d1 < d2)
395                         return rq1;
396                 else if (d2 < d1)
397                         return rq2;
398                 else {
399                         if (s1 >= s2)
400                                 return rq1;
401                         else
402                                 return rq2;
403                 }
404
405         case CFQ_RQ2_WRAP:
406                 return rq1;
407         case CFQ_RQ1_WRAP:
408                 return rq2;
409         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
410         default:
411                 /*
412                  * Since both rqs are wrapped,
413                  * start with the one that's further behind head
414                  * (--> only *one* back seek required),
415                  * since back seek takes more time than forward.
416                  */
417                 if (s1 <= s2)
418                         return rq1;
419                 else
420                         return rq2;
421         }
422 }
423
424 /*
425  * The below is leftmost cache rbtree addon
426  */
427 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
428 {
429         if (!root->left)
430                 root->left = rb_first(&root->rb);
431
432         if (root->left)
433                 return rb_entry(root->left, struct cfq_queue, rb_node);
434
435         return NULL;
436 }
437
438 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
439 {
440         rb_erase(n, root);
441         RB_CLEAR_NODE(n);
442 }
443
444 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
445 {
446         if (root->left == n)
447                 root->left = NULL;
448         rb_erase_init(n, &root->rb);
449 }
450
451 /*
452  * would be nice to take fifo expire time into account as well
453  */
454 static struct request *
455 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
456                   struct request *last)
457 {
458         struct rb_node *rbnext = rb_next(&last->rb_node);
459         struct rb_node *rbprev = rb_prev(&last->rb_node);
460         struct request *next = NULL, *prev = NULL;
461
462         BUG_ON(RB_EMPTY_NODE(&last->rb_node));
463
464         if (rbprev)
465                 prev = rb_entry_rq(rbprev);
466
467         if (rbnext)
468                 next = rb_entry_rq(rbnext);
469         else {
470                 rbnext = rb_first(&cfqq->sort_list);
471                 if (rbnext && rbnext != &last->rb_node)
472                         next = rb_entry_rq(rbnext);
473         }
474
475         return cfq_choose_req(cfqd, next, prev);
476 }
477
478 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
479                                       struct cfq_queue *cfqq)
480 {
481         /*
482          * just an approximation, should be ok.
483          */
484         return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
485                        cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
486 }
487
488 /*
489  * The cfqd->service_tree holds all pending cfq_queue's that have
490  * requests waiting to be processed. It is sorted in the order that
491  * we will service the queues.
492  */
493 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
494                                  int add_front)
495 {
496         struct rb_node **p, *parent;
497         struct cfq_queue *__cfqq;
498         unsigned long rb_key;
499         int left;
500
501         if (cfq_class_idle(cfqq)) {
502                 rb_key = CFQ_IDLE_DELAY;
503                 parent = rb_last(&cfqd->service_tree.rb);
504                 if (parent && parent != &cfqq->rb_node) {
505                         __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
506                         rb_key += __cfqq->rb_key;
507                 } else
508                         rb_key += jiffies;
509         } else if (!add_front) {
510                 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
511                 rb_key += cfqq->slice_resid;
512                 cfqq->slice_resid = 0;
513         } else
514                 rb_key = 0;
515
516         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
517                 /*
518                  * same position, nothing more to do
519                  */
520                 if (rb_key == cfqq->rb_key)
521                         return;
522
523                 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
524         }
525
526         left = 1;
527         parent = NULL;
528         p = &cfqd->service_tree.rb.rb_node;
529         while (*p) {
530                 struct rb_node **n;
531
532                 parent = *p;
533                 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
534
535                 /*
536                  * sort RT queues first, we always want to give
537                  * preference to them. IDLE queues goes to the back.
538                  * after that, sort on the next service time.
539                  */
540                 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
541                         n = &(*p)->rb_left;
542                 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
543                         n = &(*p)->rb_right;
544                 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
545                         n = &(*p)->rb_left;
546                 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
547                         n = &(*p)->rb_right;
548                 else if (rb_key < __cfqq->rb_key)
549                         n = &(*p)->rb_left;
550                 else
551                         n = &(*p)->rb_right;
552
553                 if (n == &(*p)->rb_right)
554                         left = 0;
555
556                 p = n;
557         }
558
559         if (left)
560                 cfqd->service_tree.left = &cfqq->rb_node;
561
562         cfqq->rb_key = rb_key;
563         rb_link_node(&cfqq->rb_node, parent, p);
564         rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
565 }
566
567 static struct cfq_queue *
568 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
569                      sector_t sector, struct rb_node **ret_parent,
570                      struct rb_node ***rb_link)
571 {
572         struct rb_node **p, *parent;
573         struct cfq_queue *cfqq = NULL;
574
575         parent = NULL;
576         p = &root->rb_node;
577         while (*p) {
578                 struct rb_node **n;
579
580                 parent = *p;
581                 cfqq = rb_entry(parent, struct cfq_queue, p_node);
582
583                 /*
584                  * Sort strictly based on sector.  Smallest to the left,
585                  * largest to the right.
586                  */
587                 if (sector > blk_rq_pos(cfqq->next_rq))
588                         n = &(*p)->rb_right;
589                 else if (sector < blk_rq_pos(cfqq->next_rq))
590                         n = &(*p)->rb_left;
591                 else
592                         break;
593                 p = n;
594                 cfqq = NULL;
595         }
596
597         *ret_parent = parent;
598         if (rb_link)
599                 *rb_link = p;
600         return cfqq;
601 }
602
603 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
604 {
605         struct rb_node **p, *parent;
606         struct cfq_queue *__cfqq;
607
608         if (cfqq->p_root) {
609                 rb_erase(&cfqq->p_node, cfqq->p_root);
610                 cfqq->p_root = NULL;
611         }
612
613         if (cfq_class_idle(cfqq))
614                 return;
615         if (!cfqq->next_rq)
616                 return;
617
618         cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
619         __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
620                                       blk_rq_pos(cfqq->next_rq), &parent, &p);
621         if (!__cfqq) {
622                 rb_link_node(&cfqq->p_node, parent, p);
623                 rb_insert_color(&cfqq->p_node, cfqq->p_root);
624         } else
625                 cfqq->p_root = NULL;
626 }
627
628 /*
629  * Update cfqq's position in the service tree.
630  */
631 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
632 {
633         /*
634          * Resorting requires the cfqq to be on the RR list already.
635          */
636         if (cfq_cfqq_on_rr(cfqq)) {
637                 cfq_service_tree_add(cfqd, cfqq, 0);
638                 cfq_prio_tree_add(cfqd, cfqq);
639         }
640 }
641
642 /*
643  * add to busy list of queues for service, trying to be fair in ordering
644  * the pending list according to last request service
645  */
646 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
647 {
648         cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
649         BUG_ON(cfq_cfqq_on_rr(cfqq));
650         cfq_mark_cfqq_on_rr(cfqq);
651         cfqd->busy_queues++;
652
653         cfq_resort_rr_list(cfqd, cfqq);
654 }
655
656 /*
657  * Called when the cfqq no longer has requests pending, remove it from
658  * the service tree.
659  */
660 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
661 {
662         cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
663         BUG_ON(!cfq_cfqq_on_rr(cfqq));
664         cfq_clear_cfqq_on_rr(cfqq);
665
666         if (!RB_EMPTY_NODE(&cfqq->rb_node))
667                 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
668         if (cfqq->p_root) {
669                 rb_erase(&cfqq->p_node, cfqq->p_root);
670                 cfqq->p_root = NULL;
671         }
672
673         BUG_ON(!cfqd->busy_queues);
674         cfqd->busy_queues--;
675 }
676
677 /*
678  * rb tree support functions
679  */
680 static void cfq_del_rq_rb(struct request *rq)
681 {
682         struct cfq_queue *cfqq = RQ_CFQQ(rq);
683         struct cfq_data *cfqd = cfqq->cfqd;
684         const int sync = rq_is_sync(rq);
685
686         BUG_ON(!cfqq->queued[sync]);
687         cfqq->queued[sync]--;
688
689         elv_rb_del(&cfqq->sort_list, rq);
690
691         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
692                 cfq_del_cfqq_rr(cfqd, cfqq);
693 }
694
695 static void cfq_add_rq_rb(struct request *rq)
696 {
697         struct cfq_queue *cfqq = RQ_CFQQ(rq);
698         struct cfq_data *cfqd = cfqq->cfqd;
699         struct request *__alias, *prev;
700
701         cfqq->queued[rq_is_sync(rq)]++;
702
703         /*
704          * looks a little odd, but the first insert might return an alias.
705          * if that happens, put the alias on the dispatch list
706          */
707         while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
708                 cfq_dispatch_insert(cfqd->queue, __alias);
709
710         if (!cfq_cfqq_on_rr(cfqq))
711                 cfq_add_cfqq_rr(cfqd, cfqq);
712
713         /*
714          * check if this request is a better next-serve candidate
715          */
716         prev = cfqq->next_rq;
717         cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
718
719         /*
720          * adjust priority tree position, if ->next_rq changes
721          */
722         if (prev != cfqq->next_rq)
723                 cfq_prio_tree_add(cfqd, cfqq);
724
725         BUG_ON(!cfqq->next_rq);
726 }
727
728 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
729 {
730         elv_rb_del(&cfqq->sort_list, rq);
731         cfqq->queued[rq_is_sync(rq)]--;
732         cfq_add_rq_rb(rq);
733 }
734
735 static struct request *
736 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
737 {
738         struct task_struct *tsk = current;
739         struct cfq_io_context *cic;
740         struct cfq_queue *cfqq;
741
742         cic = cfq_cic_lookup(cfqd, tsk->io_context);
743         if (!cic)
744                 return NULL;
745
746         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
747         if (cfqq) {
748                 sector_t sector = bio->bi_sector + bio_sectors(bio);
749
750                 return elv_rb_find(&cfqq->sort_list, sector);
751         }
752
753         return NULL;
754 }
755
756 static void cfq_activate_request(struct request_queue *q, struct request *rq)
757 {
758         struct cfq_data *cfqd = q->elevator->elevator_data;
759
760         cfqd->rq_in_driver[rq_is_sync(rq)]++;
761         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
762                                                 rq_in_driver(cfqd));
763
764         cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
765 }
766
767 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
768 {
769         struct cfq_data *cfqd = q->elevator->elevator_data;
770         const int sync = rq_is_sync(rq);
771
772         WARN_ON(!cfqd->rq_in_driver[sync]);
773         cfqd->rq_in_driver[sync]--;
774         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
775                                                 rq_in_driver(cfqd));
776 }
777
778 static void cfq_remove_request(struct request *rq)
779 {
780         struct cfq_queue *cfqq = RQ_CFQQ(rq);
781
782         if (cfqq->next_rq == rq)
783                 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
784
785         list_del_init(&rq->queuelist);
786         cfq_del_rq_rb(rq);
787
788         cfqq->cfqd->rq_queued--;
789         if (rq_is_meta(rq)) {
790                 WARN_ON(!cfqq->meta_pending);
791                 cfqq->meta_pending--;
792         }
793 }
794
795 static int cfq_merge(struct request_queue *q, struct request **req,
796                      struct bio *bio)
797 {
798         struct cfq_data *cfqd = q->elevator->elevator_data;
799         struct request *__rq;
800
801         __rq = cfq_find_rq_fmerge(cfqd, bio);
802         if (__rq && elv_rq_merge_ok(__rq, bio)) {
803                 *req = __rq;
804                 return ELEVATOR_FRONT_MERGE;
805         }
806
807         return ELEVATOR_NO_MERGE;
808 }
809
810 static void cfq_merged_request(struct request_queue *q, struct request *req,
811                                int type)
812 {
813         if (type == ELEVATOR_FRONT_MERGE) {
814                 struct cfq_queue *cfqq = RQ_CFQQ(req);
815
816                 cfq_reposition_rq_rb(cfqq, req);
817         }
818 }
819
820 static void
821 cfq_merged_requests(struct request_queue *q, struct request *rq,
822                     struct request *next)
823 {
824         /*
825          * reposition in fifo if next is older than rq
826          */
827         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
828             time_before(next->start_time, rq->start_time))
829                 list_move(&rq->queuelist, &next->queuelist);
830
831         cfq_remove_request(next);
832 }
833
834 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
835                            struct bio *bio)
836 {
837         struct cfq_data *cfqd = q->elevator->elevator_data;
838         struct cfq_io_context *cic;
839         struct cfq_queue *cfqq;
840
841         /*
842          * Disallow merge of a sync bio into an async request.
843          */
844         if (cfq_bio_sync(bio) && !rq_is_sync(rq))
845                 return 0;
846
847         /*
848          * Lookup the cfqq that this bio will be queued with. Allow
849          * merge only if rq is queued there.
850          */
851         cic = cfq_cic_lookup(cfqd, current->io_context);
852         if (!cic)
853                 return 0;
854
855         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
856         if (cfqq == RQ_CFQQ(rq))
857                 return 1;
858
859         return 0;
860 }
861
862 static void __cfq_set_active_queue(struct cfq_data *cfqd,
863                                    struct cfq_queue *cfqq)
864 {
865         if (cfqq) {
866                 cfq_log_cfqq(cfqd, cfqq, "set_active");
867                 cfqq->slice_end = 0;
868                 cfqq->slice_dispatch = 0;
869
870                 cfq_clear_cfqq_wait_request(cfqq);
871                 cfq_clear_cfqq_must_dispatch(cfqq);
872                 cfq_clear_cfqq_must_alloc_slice(cfqq);
873                 cfq_clear_cfqq_fifo_expire(cfqq);
874                 cfq_mark_cfqq_slice_new(cfqq);
875
876                 del_timer(&cfqd->idle_slice_timer);
877         }
878
879         cfqd->active_queue = cfqq;
880 }
881
882 /*
883  * current cfqq expired its slice (or was too idle), select new one
884  */
885 static void
886 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
887                     int timed_out)
888 {
889         cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
890
891         if (cfq_cfqq_wait_request(cfqq))
892                 del_timer(&cfqd->idle_slice_timer);
893
894         cfq_clear_cfqq_wait_request(cfqq);
895
896         /*
897          * store what was left of this slice, if the queue idled/timed out
898          */
899         if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
900                 cfqq->slice_resid = cfqq->slice_end - jiffies;
901                 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
902         }
903
904         cfq_resort_rr_list(cfqd, cfqq);
905
906         if (cfqq == cfqd->active_queue)
907                 cfqd->active_queue = NULL;
908
909         if (cfqd->active_cic) {
910                 put_io_context(cfqd->active_cic->ioc);
911                 cfqd->active_cic = NULL;
912         }
913 }
914
915 static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
916 {
917         struct cfq_queue *cfqq = cfqd->active_queue;
918
919         if (cfqq)
920                 __cfq_slice_expired(cfqd, cfqq, timed_out);
921 }
922
923 /*
924  * Get next queue for service. Unless we have a queue preemption,
925  * we'll simply select the first cfqq in the service tree.
926  */
927 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
928 {
929         if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
930                 return NULL;
931
932         return cfq_rb_first(&cfqd->service_tree);
933 }
934
935 /*
936  * Get and set a new active queue for service.
937  */
938 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
939                                               struct cfq_queue *cfqq)
940 {
941         if (!cfqq) {
942                 cfqq = cfq_get_next_queue(cfqd);
943                 if (cfqq)
944                         cfq_clear_cfqq_coop(cfqq);
945         }
946
947         __cfq_set_active_queue(cfqd, cfqq);
948         return cfqq;
949 }
950
951 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
952                                           struct request *rq)
953 {
954         if (blk_rq_pos(rq) >= cfqd->last_position)
955                 return blk_rq_pos(rq) - cfqd->last_position;
956         else
957                 return cfqd->last_position - blk_rq_pos(rq);
958 }
959
960 #define CIC_SEEK_THR    8 * 1024
961 #define CIC_SEEKY(cic)  ((cic)->seek_mean > CIC_SEEK_THR)
962
963 static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
964 {
965         struct cfq_io_context *cic = cfqd->active_cic;
966         sector_t sdist = cic->seek_mean;
967
968         if (!sample_valid(cic->seek_samples))
969                 sdist = CIC_SEEK_THR;
970
971         return cfq_dist_from_last(cfqd, rq) <= sdist;
972 }
973
974 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
975                                     struct cfq_queue *cur_cfqq)
976 {
977         struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
978         struct rb_node *parent, *node;
979         struct cfq_queue *__cfqq;
980         sector_t sector = cfqd->last_position;
981
982         if (RB_EMPTY_ROOT(root))
983                 return NULL;
984
985         /*
986          * First, if we find a request starting at the end of the last
987          * request, choose it.
988          */
989         __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
990         if (__cfqq)
991                 return __cfqq;
992
993         /*
994          * If the exact sector wasn't found, the parent of the NULL leaf
995          * will contain the closest sector.
996          */
997         __cfqq = rb_entry(parent, struct cfq_queue, p_node);
998         if (cfq_rq_close(cfqd, __cfqq->next_rq))
999                 return __cfqq;
1000
1001         if (blk_rq_pos(__cfqq->next_rq) < sector)
1002                 node = rb_next(&__cfqq->p_node);
1003         else
1004                 node = rb_prev(&__cfqq->p_node);
1005         if (!node)
1006                 return NULL;
1007
1008         __cfqq = rb_entry(node, struct cfq_queue, p_node);
1009         if (cfq_rq_close(cfqd, __cfqq->next_rq))
1010                 return __cfqq;
1011
1012         return NULL;
1013 }
1014
1015 /*
1016  * cfqd - obvious
1017  * cur_cfqq - passed in so that we don't decide that the current queue is
1018  *            closely cooperating with itself.
1019  *
1020  * So, basically we're assuming that that cur_cfqq has dispatched at least
1021  * one request, and that cfqd->last_position reflects a position on the disk
1022  * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1023  * assumption.
1024  */
1025 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1026                                               struct cfq_queue *cur_cfqq,
1027                                               int probe)
1028 {
1029         struct cfq_queue *cfqq;
1030
1031         /*
1032          * A valid cfq_io_context is necessary to compare requests against
1033          * the seek_mean of the current cfqq.
1034          */
1035         if (!cfqd->active_cic)
1036                 return NULL;
1037
1038         /*
1039          * We should notice if some of the queues are cooperating, eg
1040          * working closely on the same area of the disk. In that case,
1041          * we can group them together and don't waste time idling.
1042          */
1043         cfqq = cfqq_close(cfqd, cur_cfqq);
1044         if (!cfqq)
1045                 return NULL;
1046
1047         if (cfq_cfqq_coop(cfqq))
1048                 return NULL;
1049
1050         if (!probe)
1051                 cfq_mark_cfqq_coop(cfqq);
1052         return cfqq;
1053 }
1054
1055 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1056 {
1057         struct cfq_queue *cfqq = cfqd->active_queue;
1058         struct cfq_io_context *cic;
1059         unsigned long sl;
1060
1061         /*
1062          * SSD device without seek penalty, disable idling. But only do so
1063          * for devices that support queuing, otherwise we still have a problem
1064          * with sync vs async workloads.
1065          */
1066         if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1067                 return;
1068
1069         WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1070         WARN_ON(cfq_cfqq_slice_new(cfqq));
1071
1072         /*
1073          * idle is disabled, either manually or by past process history
1074          */
1075         if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
1076                 return;
1077
1078         /*
1079          * still requests with the driver, don't idle
1080          */
1081         if (rq_in_driver(cfqd))
1082                 return;
1083
1084         /*
1085          * task has exited, don't wait
1086          */
1087         cic = cfqd->active_cic;
1088         if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1089                 return;
1090
1091         cfq_mark_cfqq_wait_request(cfqq);
1092
1093         /*
1094          * we don't want to idle for seeks, but we do want to allow
1095          * fair distribution of slice time for a process doing back-to-back
1096          * seeks. so allow a little bit of time for him to submit a new rq
1097          */
1098         sl = cfqd->cfq_slice_idle;
1099         if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
1100                 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
1101
1102         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1103         cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1104 }
1105
1106 /*
1107  * Move request from internal lists to the request queue dispatch list.
1108  */
1109 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1110 {
1111         struct cfq_data *cfqd = q->elevator->elevator_data;
1112         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1113
1114         cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1115
1116         cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1117         cfq_remove_request(rq);
1118         cfqq->dispatched++;
1119         elv_dispatch_sort(q, rq);
1120
1121         if (cfq_cfqq_sync(cfqq))
1122                 cfqd->sync_flight++;
1123 }
1124
1125 /*
1126  * return expired entry, or NULL to just start from scratch in rbtree
1127  */
1128 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1129 {
1130         struct cfq_data *cfqd = cfqq->cfqd;
1131         struct request *rq;
1132         int fifo;
1133
1134         if (cfq_cfqq_fifo_expire(cfqq))
1135                 return NULL;
1136
1137         cfq_mark_cfqq_fifo_expire(cfqq);
1138
1139         if (list_empty(&cfqq->fifo))
1140                 return NULL;
1141
1142         fifo = cfq_cfqq_sync(cfqq);
1143         rq = rq_entry_fifo(cfqq->fifo.next);
1144
1145         if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
1146                 rq = NULL;
1147
1148         cfq_log_cfqq(cfqd, cfqq, "fifo=%p", rq);
1149         return rq;
1150 }
1151
1152 static inline int
1153 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1154 {
1155         const int base_rq = cfqd->cfq_slice_async_rq;
1156
1157         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1158
1159         return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1160 }
1161
1162 /*
1163  * Select a queue for service. If we have a current active queue,
1164  * check whether to continue servicing it, or retrieve and set a new one.
1165  */
1166 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1167 {
1168         struct cfq_queue *cfqq, *new_cfqq = NULL;
1169
1170         cfqq = cfqd->active_queue;
1171         if (!cfqq)
1172                 goto new_queue;
1173
1174         /*
1175          * The active queue has run out of time, expire it and select new.
1176          */
1177         if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
1178                 goto expire;
1179
1180         /*
1181          * The active queue has requests and isn't expired, allow it to
1182          * dispatch.
1183          */
1184         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1185                 goto keep_queue;
1186
1187         /*
1188          * If another queue has a request waiting within our mean seek
1189          * distance, let it run.  The expire code will check for close
1190          * cooperators and put the close queue at the front of the service
1191          * tree.
1192          */
1193         new_cfqq = cfq_close_cooperator(cfqd, cfqq, 0);
1194         if (new_cfqq)
1195                 goto expire;
1196
1197         /*
1198          * No requests pending. If the active queue still has requests in
1199          * flight or is idling for a new request, allow either of these
1200          * conditions to happen (or time out) before selecting a new queue.
1201          */
1202         if (timer_pending(&cfqd->idle_slice_timer) ||
1203             (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
1204                 cfqq = NULL;
1205                 goto keep_queue;
1206         }
1207
1208 expire:
1209         cfq_slice_expired(cfqd, 0);
1210 new_queue:
1211         cfqq = cfq_set_active_queue(cfqd, new_cfqq);
1212 keep_queue:
1213         return cfqq;
1214 }
1215
1216 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1217 {
1218         int dispatched = 0;
1219
1220         while (cfqq->next_rq) {
1221                 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1222                 dispatched++;
1223         }
1224
1225         BUG_ON(!list_empty(&cfqq->fifo));
1226         return dispatched;
1227 }
1228
1229 /*
1230  * Drain our current requests. Used for barriers and when switching
1231  * io schedulers on-the-fly.
1232  */
1233 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1234 {
1235         struct cfq_queue *cfqq;
1236         int dispatched = 0;
1237
1238         while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
1239                 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1240
1241         cfq_slice_expired(cfqd, 0);
1242
1243         BUG_ON(cfqd->busy_queues);
1244
1245         cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1246         return dispatched;
1247 }
1248
1249 /*
1250  * Dispatch a request from cfqq, moving them to the request queue
1251  * dispatch list.
1252  */
1253 static void cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1254 {
1255         struct request *rq;
1256
1257         BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1258
1259         /*
1260          * follow expired path, else get first next available
1261          */
1262         rq = cfq_check_fifo(cfqq);
1263         if (!rq)
1264                 rq = cfqq->next_rq;
1265
1266         /*
1267          * insert request into driver dispatch list
1268          */
1269         cfq_dispatch_insert(cfqd->queue, rq);
1270
1271         if (!cfqd->active_cic) {
1272                 struct cfq_io_context *cic = RQ_CIC(rq);
1273
1274                 atomic_long_inc(&cic->ioc->refcount);
1275                 cfqd->active_cic = cic;
1276         }
1277 }
1278
1279 /*
1280  * Find the cfqq that we need to service and move a request from that to the
1281  * dispatch list
1282  */
1283 static int cfq_dispatch_requests(struct request_queue *q, int force)
1284 {
1285         struct cfq_data *cfqd = q->elevator->elevator_data;
1286         struct cfq_queue *cfqq;
1287         unsigned int max_dispatch;
1288
1289         if (!cfqd->busy_queues)
1290                 return 0;
1291
1292         if (unlikely(force))
1293                 return cfq_forced_dispatch(cfqd);
1294
1295         cfqq = cfq_select_queue(cfqd);
1296         if (!cfqq)
1297                 return 0;
1298
1299         /*
1300          * Drain async requests before we start sync IO
1301          */
1302         if (cfq_cfqq_idle_window(cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
1303                 return 0;
1304
1305         /*
1306          * If this is an async queue and we have sync IO in flight, let it wait
1307          */
1308         if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1309                 return 0;
1310
1311         max_dispatch = cfqd->cfq_quantum;
1312         if (cfq_class_idle(cfqq))
1313                 max_dispatch = 1;
1314
1315         /*
1316          * Does this cfqq already have too much IO in flight?
1317          */
1318         if (cfqq->dispatched >= max_dispatch) {
1319                 unsigned long load_at = cfqd->last_end_sync_rq + cfq_slice_sync;
1320
1321                 /*
1322                  * idle queue must always only have a single IO in flight
1323                  */
1324                 if (cfq_class_idle(cfqq))
1325                         return 0;
1326
1327                 /*
1328                  * We have other queues, don't allow more IO from this one
1329                  */
1330                 if (cfqd->busy_queues > 1)
1331                         return 0;
1332
1333                 /*
1334                  * If a sync request has completed recently, don't overload
1335                  * the dispatch queue yet with async requests.
1336                  */
1337                 if (cfqd->cfq_desktop && !cfq_cfqq_sync(cfqq)
1338                     && time_before(jiffies, load_at))
1339                         return 0;
1340
1341                 /*
1342                  * we are the only queue, allow up to 4 times of 'quantum'
1343                  */
1344                 if (cfqq->dispatched >= 4 * max_dispatch)
1345                         return 0;
1346         }
1347
1348         /*
1349          * Dispatch a request from this cfqq
1350          */
1351         cfq_dispatch_request(cfqd, cfqq);
1352         cfqq->slice_dispatch++;
1353         cfq_clear_cfqq_must_dispatch(cfqq);
1354
1355         /*
1356          * expire an async queue immediately if it has used up its slice. idle
1357          * queue always expire after 1 dispatch round.
1358          */
1359         if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1360             cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1361             cfq_class_idle(cfqq))) {
1362                 cfqq->slice_end = jiffies + 1;
1363                 cfq_slice_expired(cfqd, 0);
1364         }
1365
1366         cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
1367         return 1;
1368 }
1369
1370 /*
1371  * task holds one reference to the queue, dropped when task exits. each rq
1372  * in-flight on this queue also holds a reference, dropped when rq is freed.
1373  *
1374  * queue lock must be held here.
1375  */
1376 static void cfq_put_queue(struct cfq_queue *cfqq)
1377 {
1378         struct cfq_data *cfqd = cfqq->cfqd;
1379
1380         BUG_ON(atomic_read(&cfqq->ref) <= 0);
1381
1382         if (!atomic_dec_and_test(&cfqq->ref))
1383                 return;
1384
1385         cfq_log_cfqq(cfqd, cfqq, "put_queue");
1386         BUG_ON(rb_first(&cfqq->sort_list));
1387         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1388         BUG_ON(cfq_cfqq_on_rr(cfqq));
1389
1390         if (unlikely(cfqd->active_queue == cfqq)) {
1391                 __cfq_slice_expired(cfqd, cfqq, 0);
1392                 cfq_schedule_dispatch(cfqd);
1393         }
1394
1395         kmem_cache_free(cfq_pool, cfqq);
1396 }
1397
1398 /*
1399  * Must always be called with the rcu_read_lock() held
1400  */
1401 static void
1402 __call_for_each_cic(struct io_context *ioc,
1403                     void (*func)(struct io_context *, struct cfq_io_context *))
1404 {
1405         struct cfq_io_context *cic;
1406         struct hlist_node *n;
1407
1408         hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1409                 func(ioc, cic);
1410 }
1411
1412 /*
1413  * Call func for each cic attached to this ioc.
1414  */
1415 static void
1416 call_for_each_cic(struct io_context *ioc,
1417                   void (*func)(struct io_context *, struct cfq_io_context *))
1418 {
1419         rcu_read_lock();
1420         __call_for_each_cic(ioc, func);
1421         rcu_read_unlock();
1422 }
1423
1424 static void cfq_cic_free_rcu(struct rcu_head *head)
1425 {
1426         struct cfq_io_context *cic;
1427
1428         cic = container_of(head, struct cfq_io_context, rcu_head);
1429
1430         kmem_cache_free(cfq_ioc_pool, cic);
1431         elv_ioc_count_dec(cfq_ioc_count);
1432
1433         if (ioc_gone) {
1434                 /*
1435                  * CFQ scheduler is exiting, grab exit lock and check
1436                  * the pending io context count. If it hits zero,
1437                  * complete ioc_gone and set it back to NULL
1438                  */
1439                 spin_lock(&ioc_gone_lock);
1440                 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
1441                         complete(ioc_gone);
1442                         ioc_gone = NULL;
1443                 }
1444                 spin_unlock(&ioc_gone_lock);
1445         }
1446 }
1447
1448 static void cfq_cic_free(struct cfq_io_context *cic)
1449 {
1450         call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1451 }
1452
1453 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1454 {
1455         unsigned long flags;
1456
1457         BUG_ON(!cic->dead_key);
1458
1459         spin_lock_irqsave(&ioc->lock, flags);
1460         radix_tree_delete(&ioc->radix_root, cic->dead_key);
1461         hlist_del_rcu(&cic->cic_list);
1462         spin_unlock_irqrestore(&ioc->lock, flags);
1463
1464         cfq_cic_free(cic);
1465 }
1466
1467 /*
1468  * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1469  * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1470  * and ->trim() which is called with the task lock held
1471  */
1472 static void cfq_free_io_context(struct io_context *ioc)
1473 {
1474         /*
1475          * ioc->refcount is zero here, or we are called from elv_unregister(),
1476          * so no more cic's are allowed to be linked into this ioc.  So it
1477          * should be ok to iterate over the known list, we will see all cic's
1478          * since no new ones are added.
1479          */
1480         __call_for_each_cic(ioc, cic_free_func);
1481 }
1482
1483 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1484 {
1485         if (unlikely(cfqq == cfqd->active_queue)) {
1486                 __cfq_slice_expired(cfqd, cfqq, 0);
1487                 cfq_schedule_dispatch(cfqd);
1488         }
1489
1490         cfq_put_queue(cfqq);
1491 }
1492
1493 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1494                                          struct cfq_io_context *cic)
1495 {
1496         struct io_context *ioc = cic->ioc;
1497
1498         list_del_init(&cic->queue_list);
1499
1500         /*
1501          * Make sure key == NULL is seen for dead queues
1502          */
1503         smp_wmb();
1504         cic->dead_key = (unsigned long) cic->key;
1505         cic->key = NULL;
1506
1507         if (ioc->ioc_data == cic)
1508                 rcu_assign_pointer(ioc->ioc_data, NULL);
1509
1510         if (cic->cfqq[BLK_RW_ASYNC]) {
1511                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1512                 cic->cfqq[BLK_RW_ASYNC] = NULL;
1513         }
1514
1515         if (cic->cfqq[BLK_RW_SYNC]) {
1516                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1517                 cic->cfqq[BLK_RW_SYNC] = NULL;
1518         }
1519 }
1520
1521 static void cfq_exit_single_io_context(struct io_context *ioc,
1522                                        struct cfq_io_context *cic)
1523 {
1524         struct cfq_data *cfqd = cic->key;
1525
1526         if (cfqd) {
1527                 struct request_queue *q = cfqd->queue;
1528                 unsigned long flags;
1529
1530                 spin_lock_irqsave(q->queue_lock, flags);
1531
1532                 /*
1533                  * Ensure we get a fresh copy of the ->key to prevent
1534                  * race between exiting task and queue
1535                  */
1536                 smp_read_barrier_depends();
1537                 if (cic->key)
1538                         __cfq_exit_single_io_context(cfqd, cic);
1539
1540                 spin_unlock_irqrestore(q->queue_lock, flags);
1541         }
1542 }
1543
1544 /*
1545  * The process that ioc belongs to has exited, we need to clean up
1546  * and put the internal structures we have that belongs to that process.
1547  */
1548 static void cfq_exit_io_context(struct io_context *ioc)
1549 {
1550         call_for_each_cic(ioc, cfq_exit_single_io_context);
1551 }
1552
1553 static struct cfq_io_context *
1554 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1555 {
1556         struct cfq_io_context *cic;
1557
1558         cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1559                                                         cfqd->queue->node);
1560         if (cic) {
1561                 cic->last_end_request = jiffies;
1562                 INIT_LIST_HEAD(&cic->queue_list);
1563                 INIT_HLIST_NODE(&cic->cic_list);
1564                 cic->dtor = cfq_free_io_context;
1565                 cic->exit = cfq_exit_io_context;
1566                 elv_ioc_count_inc(cfq_ioc_count);
1567         }
1568
1569         return cic;
1570 }
1571
1572 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1573 {
1574         struct task_struct *tsk = current;
1575         int ioprio_class;
1576
1577         if (!cfq_cfqq_prio_changed(cfqq))
1578                 return;
1579
1580         ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1581         switch (ioprio_class) {
1582         default:
1583                 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1584         case IOPRIO_CLASS_NONE:
1585                 /*
1586                  * no prio set, inherit CPU scheduling settings
1587                  */
1588                 cfqq->ioprio = task_nice_ioprio(tsk);
1589                 cfqq->ioprio_class = task_nice_ioclass(tsk);
1590                 break;
1591         case IOPRIO_CLASS_RT:
1592                 cfqq->ioprio = task_ioprio(ioc);
1593                 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1594                 break;
1595         case IOPRIO_CLASS_BE:
1596                 cfqq->ioprio = task_ioprio(ioc);
1597                 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1598                 break;
1599         case IOPRIO_CLASS_IDLE:
1600                 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1601                 cfqq->ioprio = 7;
1602                 cfq_clear_cfqq_idle_window(cfqq);
1603                 break;
1604         }
1605
1606         /*
1607          * keep track of original prio settings in case we have to temporarily
1608          * elevate the priority of this queue
1609          */
1610         cfqq->org_ioprio = cfqq->ioprio;
1611         cfqq->org_ioprio_class = cfqq->ioprio_class;
1612         cfq_clear_cfqq_prio_changed(cfqq);
1613 }
1614
1615 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
1616 {
1617         struct cfq_data *cfqd = cic->key;
1618         struct cfq_queue *cfqq;
1619         unsigned long flags;
1620
1621         if (unlikely(!cfqd))
1622                 return;
1623
1624         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1625
1626         cfqq = cic->cfqq[BLK_RW_ASYNC];
1627         if (cfqq) {
1628                 struct cfq_queue *new_cfqq;
1629                 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
1630                                                 GFP_ATOMIC);
1631                 if (new_cfqq) {
1632                         cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
1633                         cfq_put_queue(cfqq);
1634                 }
1635         }
1636
1637         cfqq = cic->cfqq[BLK_RW_SYNC];
1638         if (cfqq)
1639                 cfq_mark_cfqq_prio_changed(cfqq);
1640
1641         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1642 }
1643
1644 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1645 {
1646         call_for_each_cic(ioc, changed_ioprio);
1647         ioc->ioprio_changed = 0;
1648 }
1649
1650 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1651                           pid_t pid, int is_sync)
1652 {
1653         RB_CLEAR_NODE(&cfqq->rb_node);
1654         RB_CLEAR_NODE(&cfqq->p_node);
1655         INIT_LIST_HEAD(&cfqq->fifo);
1656
1657         atomic_set(&cfqq->ref, 0);
1658         cfqq->cfqd = cfqd;
1659
1660         cfq_mark_cfqq_prio_changed(cfqq);
1661
1662         if (is_sync) {
1663                 if (!cfq_class_idle(cfqq))
1664                         cfq_mark_cfqq_idle_window(cfqq);
1665                 cfq_mark_cfqq_sync(cfqq);
1666         }
1667         cfqq->pid = pid;
1668 }
1669
1670 static struct cfq_queue *
1671 cfq_find_alloc_queue(struct cfq_data *cfqd, int is_sync,
1672                      struct io_context *ioc, gfp_t gfp_mask)
1673 {
1674         struct cfq_queue *cfqq, *new_cfqq = NULL;
1675         struct cfq_io_context *cic;
1676
1677 retry:
1678         cic = cfq_cic_lookup(cfqd, ioc);
1679         /* cic always exists here */
1680         cfqq = cic_to_cfqq(cic, is_sync);
1681
1682         /*
1683          * Always try a new alloc if we fell back to the OOM cfqq
1684          * originally, since it should just be a temporary situation.
1685          */
1686         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
1687                 cfqq = NULL;
1688                 if (new_cfqq) {
1689                         cfqq = new_cfqq;
1690                         new_cfqq = NULL;
1691                 } else if (gfp_mask & __GFP_WAIT) {
1692                         spin_unlock_irq(cfqd->queue->queue_lock);
1693                         new_cfqq = kmem_cache_alloc_node(cfq_pool,
1694                                         gfp_mask | __GFP_ZERO,
1695                                         cfqd->queue->node);
1696                         spin_lock_irq(cfqd->queue->queue_lock);
1697                         if (new_cfqq)
1698                                 goto retry;
1699                 } else {
1700                         cfqq = kmem_cache_alloc_node(cfq_pool,
1701                                         gfp_mask | __GFP_ZERO,
1702                                         cfqd->queue->node);
1703                 }
1704
1705                 if (cfqq) {
1706                         cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
1707                         cfq_init_prio_data(cfqq, ioc);
1708                         cfq_log_cfqq(cfqd, cfqq, "alloced");
1709                 } else
1710                         cfqq = &cfqd->oom_cfqq;
1711         }
1712
1713         if (new_cfqq)
1714                 kmem_cache_free(cfq_pool, new_cfqq);
1715
1716         return cfqq;
1717 }
1718
1719 static struct cfq_queue **
1720 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1721 {
1722         switch (ioprio_class) {
1723         case IOPRIO_CLASS_RT:
1724                 return &cfqd->async_cfqq[0][ioprio];
1725         case IOPRIO_CLASS_BE:
1726                 return &cfqd->async_cfqq[1][ioprio];
1727         case IOPRIO_CLASS_IDLE:
1728                 return &cfqd->async_idle_cfqq;
1729         default:
1730                 BUG();
1731         }
1732 }
1733
1734 static struct cfq_queue *
1735 cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct io_context *ioc,
1736               gfp_t gfp_mask)
1737 {
1738         const int ioprio = task_ioprio(ioc);
1739         const int ioprio_class = task_ioprio_class(ioc);
1740         struct cfq_queue **async_cfqq = NULL;
1741         struct cfq_queue *cfqq = NULL;
1742
1743         if (!is_sync) {
1744                 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1745                 cfqq = *async_cfqq;
1746         }
1747
1748         if (!cfqq)
1749                 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
1750
1751         /*
1752          * pin the queue now that it's allocated, scheduler exit will prune it
1753          */
1754         if (!is_sync && !(*async_cfqq)) {
1755                 atomic_inc(&cfqq->ref);
1756                 *async_cfqq = cfqq;
1757         }
1758
1759         atomic_inc(&cfqq->ref);
1760         return cfqq;
1761 }
1762
1763 /*
1764  * We drop cfq io contexts lazily, so we may find a dead one.
1765  */
1766 static void
1767 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1768                   struct cfq_io_context *cic)
1769 {
1770         unsigned long flags;
1771
1772         WARN_ON(!list_empty(&cic->queue_list));
1773
1774         spin_lock_irqsave(&ioc->lock, flags);
1775
1776         BUG_ON(ioc->ioc_data == cic);
1777
1778         radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
1779         hlist_del_rcu(&cic->cic_list);
1780         spin_unlock_irqrestore(&ioc->lock, flags);
1781
1782         cfq_cic_free(cic);
1783 }
1784
1785 static struct cfq_io_context *
1786 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1787 {
1788         struct cfq_io_context *cic;
1789         unsigned long flags;
1790         void *k;
1791
1792         if (unlikely(!ioc))
1793                 return NULL;
1794
1795         rcu_read_lock();
1796
1797         /*
1798          * we maintain a last-hit cache, to avoid browsing over the tree
1799          */
1800         cic = rcu_dereference(ioc->ioc_data);
1801         if (cic && cic->key == cfqd) {
1802                 rcu_read_unlock();
1803                 return cic;
1804         }
1805
1806         do {
1807                 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
1808                 rcu_read_unlock();
1809                 if (!cic)
1810                         break;
1811                 /* ->key must be copied to avoid race with cfq_exit_queue() */
1812                 k = cic->key;
1813                 if (unlikely(!k)) {
1814                         cfq_drop_dead_cic(cfqd, ioc, cic);
1815                         rcu_read_lock();
1816                         continue;
1817                 }
1818
1819                 spin_lock_irqsave(&ioc->lock, flags);
1820                 rcu_assign_pointer(ioc->ioc_data, cic);
1821                 spin_unlock_irqrestore(&ioc->lock, flags);
1822                 break;
1823         } while (1);
1824
1825         return cic;
1826 }
1827
1828 /*
1829  * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1830  * the process specific cfq io context when entered from the block layer.
1831  * Also adds the cic to a per-cfqd list, used when this queue is removed.
1832  */
1833 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1834                         struct cfq_io_context *cic, gfp_t gfp_mask)
1835 {
1836         unsigned long flags;
1837         int ret;
1838
1839         ret = radix_tree_preload(gfp_mask);
1840         if (!ret) {
1841                 cic->ioc = ioc;
1842                 cic->key = cfqd;
1843
1844                 spin_lock_irqsave(&ioc->lock, flags);
1845                 ret = radix_tree_insert(&ioc->radix_root,
1846                                                 (unsigned long) cfqd, cic);
1847                 if (!ret)
1848                         hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
1849                 spin_unlock_irqrestore(&ioc->lock, flags);
1850
1851                 radix_tree_preload_end();
1852
1853                 if (!ret) {
1854                         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1855                         list_add(&cic->queue_list, &cfqd->cic_list);
1856                         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1857                 }
1858         }
1859
1860         if (ret)
1861                 printk(KERN_ERR "cfq: cic link failed!\n");
1862
1863         return ret;
1864 }
1865
1866 /*
1867  * Setup general io context and cfq io context. There can be several cfq
1868  * io contexts per general io context, if this process is doing io to more
1869  * than one device managed by cfq.
1870  */
1871 static struct cfq_io_context *
1872 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1873 {
1874         struct io_context *ioc = NULL;
1875         struct cfq_io_context *cic;
1876
1877         might_sleep_if(gfp_mask & __GFP_WAIT);
1878
1879         ioc = get_io_context(gfp_mask, cfqd->queue->node);
1880         if (!ioc)
1881                 return NULL;
1882
1883         cic = cfq_cic_lookup(cfqd, ioc);
1884         if (cic)
1885                 goto out;
1886
1887         cic = cfq_alloc_io_context(cfqd, gfp_mask);
1888         if (cic == NULL)
1889                 goto err;
1890
1891         if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
1892                 goto err_free;
1893
1894 out:
1895         smp_read_barrier_depends();
1896         if (unlikely(ioc->ioprio_changed))
1897                 cfq_ioc_set_ioprio(ioc);
1898
1899         return cic;
1900 err_free:
1901         cfq_cic_free(cic);
1902 err:
1903         put_io_context(ioc);
1904         return NULL;
1905 }
1906
1907 static void
1908 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1909 {
1910         unsigned long elapsed = jiffies - cic->last_end_request;
1911         unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1912
1913         cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1914         cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1915         cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1916 }
1917
1918 static void
1919 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1920                        struct request *rq)
1921 {
1922         sector_t sdist;
1923         u64 total;
1924
1925         if (!cic->last_request_pos)
1926                 sdist = 0;
1927         else if (cic->last_request_pos < blk_rq_pos(rq))
1928                 sdist = blk_rq_pos(rq) - cic->last_request_pos;
1929         else
1930                 sdist = cic->last_request_pos - blk_rq_pos(rq);
1931
1932         /*
1933          * Don't allow the seek distance to get too large from the
1934          * odd fragment, pagein, etc
1935          */
1936         if (cic->seek_samples <= 60) /* second&third seek */
1937                 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1938         else
1939                 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1940
1941         cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1942         cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1943         total = cic->seek_total + (cic->seek_samples/2);
1944         do_div(total, cic->seek_samples);
1945         cic->seek_mean = (sector_t)total;
1946 }
1947
1948 /*
1949  * Disable idle window if the process thinks too long or seeks so much that
1950  * it doesn't matter
1951  */
1952 static void
1953 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1954                        struct cfq_io_context *cic)
1955 {
1956         int old_idle, enable_idle;
1957
1958         /*
1959          * Don't idle for async or idle io prio class
1960          */
1961         if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1962                 return;
1963
1964         enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1965
1966         if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
1967             (!cfqd->cfq_desktop && cfqd->hw_tag && CIC_SEEKY(cic)))
1968                 enable_idle = 0;
1969         else if (sample_valid(cic->ttime_samples)) {
1970                 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1971                         enable_idle = 0;
1972                 else
1973                         enable_idle = 1;
1974         }
1975
1976         if (old_idle != enable_idle) {
1977                 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
1978                 if (enable_idle)
1979                         cfq_mark_cfqq_idle_window(cfqq);
1980                 else
1981                         cfq_clear_cfqq_idle_window(cfqq);
1982         }
1983 }
1984
1985 /*
1986  * Check if new_cfqq should preempt the currently active queue. Return 0 for
1987  * no or if we aren't sure, a 1 will cause a preempt.
1988  */
1989 static int
1990 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1991                    struct request *rq)
1992 {
1993         struct cfq_queue *cfqq;
1994
1995         cfqq = cfqd->active_queue;
1996         if (!cfqq)
1997                 return 0;
1998
1999         if (cfq_slice_used(cfqq))
2000                 return 1;
2001
2002         if (cfq_class_idle(new_cfqq))
2003                 return 0;
2004
2005         if (cfq_class_idle(cfqq))
2006                 return 1;
2007
2008         /*
2009          * if the new request is sync, but the currently running queue is
2010          * not, let the sync request have priority.
2011          */
2012         if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
2013                 return 1;
2014
2015         /*
2016          * So both queues are sync. Let the new request get disk time if
2017          * it's a metadata request and the current queue is doing regular IO.
2018          */
2019         if (rq_is_meta(rq) && !cfqq->meta_pending)
2020                 return 1;
2021
2022         /*
2023          * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2024          */
2025         if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2026                 return 1;
2027
2028         if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2029                 return 0;
2030
2031         /*
2032          * if this request is as-good as one we would expect from the
2033          * current cfqq, let it preempt
2034          */
2035         if (cfq_rq_close(cfqd, rq))
2036                 return 1;
2037
2038         return 0;
2039 }
2040
2041 /*
2042  * cfqq preempts the active queue. if we allowed preempt with no slice left,
2043  * let it have half of its nominal slice.
2044  */
2045 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2046 {
2047         cfq_log_cfqq(cfqd, cfqq, "preempt");
2048         cfq_slice_expired(cfqd, 1);
2049
2050         /*
2051          * Put the new queue at the front of the of the current list,
2052          * so we know that it will be selected next.
2053          */
2054         BUG_ON(!cfq_cfqq_on_rr(cfqq));
2055
2056         cfq_service_tree_add(cfqd, cfqq, 1);
2057
2058         cfqq->slice_end = 0;
2059         cfq_mark_cfqq_slice_new(cfqq);
2060 }
2061
2062 /*
2063  * Called when a new fs request (rq) is added (to cfqq). Check if there's
2064  * something we should do about it
2065  */
2066 static void
2067 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2068                 struct request *rq)
2069 {
2070         struct cfq_io_context *cic = RQ_CIC(rq);
2071
2072         cfqd->rq_queued++;
2073         if (rq_is_meta(rq))
2074                 cfqq->meta_pending++;
2075
2076         cfq_update_io_thinktime(cfqd, cic);
2077         cfq_update_io_seektime(cfqd, cic, rq);
2078         cfq_update_idle_window(cfqd, cfqq, cic);
2079
2080         cic->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
2081
2082         if (cfqq == cfqd->active_queue) {
2083                 /*
2084                  * Remember that we saw a request from this process, but
2085                  * don't start queuing just yet. Otherwise we risk seeing lots
2086                  * of tiny requests, because we disrupt the normal plugging
2087                  * and merging. If the request is already larger than a single
2088                  * page, let it rip immediately. For that case we assume that
2089                  * merging is already done. Ditto for a busy system that
2090                  * has other work pending, don't risk delaying until the
2091                  * idle timer unplug to continue working.
2092                  */
2093                 if (cfq_cfqq_wait_request(cfqq)) {
2094                         if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2095                             cfqd->busy_queues > 1) {
2096                                 del_timer(&cfqd->idle_slice_timer);
2097                         __blk_run_queue(cfqd->queue);
2098                         }
2099                         cfq_mark_cfqq_must_dispatch(cfqq);
2100                 }
2101         } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
2102                 /*
2103                  * not the active queue - expire current slice if it is
2104                  * idle and has expired it's mean thinktime or this new queue
2105                  * has some old slice time left and is of higher priority or
2106                  * this new queue is RT and the current one is BE
2107                  */
2108                 cfq_preempt_queue(cfqd, cfqq);
2109                 __blk_run_queue(cfqd->queue);
2110         }
2111 }
2112
2113 static void cfq_insert_request(struct request_queue *q, struct request *rq)
2114 {
2115         struct cfq_data *cfqd = q->elevator->elevator_data;
2116         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2117
2118         cfq_log_cfqq(cfqd, cfqq, "insert_request");
2119         cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
2120
2121         cfq_add_rq_rb(rq);
2122
2123         list_add_tail(&rq->queuelist, &cfqq->fifo);
2124
2125         cfq_rq_enqueued(cfqd, cfqq, rq);
2126 }
2127
2128 /*
2129  * Update hw_tag based on peak queue depth over 50 samples under
2130  * sufficient load.
2131  */
2132 static void cfq_update_hw_tag(struct cfq_data *cfqd)
2133 {
2134         if (rq_in_driver(cfqd) > cfqd->rq_in_driver_peak)
2135                 cfqd->rq_in_driver_peak = rq_in_driver(cfqd);
2136
2137         if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
2138             rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
2139                 return;
2140
2141         if (cfqd->hw_tag_samples++ < 50)
2142                 return;
2143
2144         if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
2145                 cfqd->hw_tag = 1;
2146         else
2147                 cfqd->hw_tag = 0;
2148
2149         cfqd->hw_tag_samples = 0;
2150         cfqd->rq_in_driver_peak = 0;
2151 }
2152
2153 static void cfq_completed_request(struct request_queue *q, struct request *rq)
2154 {
2155         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2156         struct cfq_data *cfqd = cfqq->cfqd;
2157         const int sync = rq_is_sync(rq);
2158         unsigned long now;
2159
2160         now = jiffies;
2161         cfq_log_cfqq(cfqd, cfqq, "complete");
2162
2163         cfq_update_hw_tag(cfqd);
2164
2165         WARN_ON(!cfqd->rq_in_driver[sync]);
2166         WARN_ON(!cfqq->dispatched);
2167         cfqd->rq_in_driver[sync]--;
2168         cfqq->dispatched--;
2169
2170         if (cfq_cfqq_sync(cfqq))
2171                 cfqd->sync_flight--;
2172
2173         if (sync) {
2174                 RQ_CIC(rq)->last_end_request = now;
2175                 cfqd->last_end_sync_rq = now;
2176         }
2177
2178         /*
2179          * If this is the active queue, check if it needs to be expired,
2180          * or if we want to idle in case it has no pending requests.
2181          */
2182         if (cfqd->active_queue == cfqq) {
2183                 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2184
2185                 if (cfq_cfqq_slice_new(cfqq)) {
2186                         cfq_set_prio_slice(cfqd, cfqq);
2187                         cfq_clear_cfqq_slice_new(cfqq);
2188                 }
2189                 /*
2190                  * If there are no requests waiting in this queue, and
2191                  * there are other queues ready to issue requests, AND
2192                  * those other queues are issuing requests within our
2193                  * mean seek distance, give them a chance to run instead
2194                  * of idling.
2195                  */
2196                 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
2197                         cfq_slice_expired(cfqd, 1);
2198                 else if (cfqq_empty && !cfq_close_cooperator(cfqd, cfqq, 1) &&
2199                          sync && !rq_noidle(rq))
2200                         cfq_arm_slice_timer(cfqd);
2201         }
2202
2203         if (!rq_in_driver(cfqd))
2204                 cfq_schedule_dispatch(cfqd);
2205 }
2206
2207 /*
2208  * we temporarily boost lower priority queues if they are holding fs exclusive
2209  * resources. they are boosted to normal prio (CLASS_BE/4)
2210  */
2211 static void cfq_prio_boost(struct cfq_queue *cfqq)
2212 {
2213         if (has_fs_excl()) {
2214                 /*
2215                  * boost idle prio on transactions that would lock out other
2216                  * users of the filesystem
2217                  */
2218                 if (cfq_class_idle(cfqq))
2219                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
2220                 if (cfqq->ioprio > IOPRIO_NORM)
2221                         cfqq->ioprio = IOPRIO_NORM;
2222         } else {
2223                 /*
2224                  * check if we need to unboost the queue
2225                  */
2226                 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
2227                         cfqq->ioprio_class = cfqq->org_ioprio_class;
2228                 if (cfqq->ioprio != cfqq->org_ioprio)
2229                         cfqq->ioprio = cfqq->org_ioprio;
2230         }
2231 }
2232
2233 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
2234 {
2235         if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
2236                 cfq_mark_cfqq_must_alloc_slice(cfqq);
2237                 return ELV_MQUEUE_MUST;
2238         }
2239
2240         return ELV_MQUEUE_MAY;
2241 }
2242
2243 static int cfq_may_queue(struct request_queue *q, int rw)
2244 {
2245         struct cfq_data *cfqd = q->elevator->elevator_data;
2246         struct task_struct *tsk = current;
2247         struct cfq_io_context *cic;
2248         struct cfq_queue *cfqq;
2249
2250         /*
2251          * don't force setup of a queue from here, as a call to may_queue
2252          * does not necessarily imply that a request actually will be queued.
2253          * so just lookup a possibly existing queue, or return 'may queue'
2254          * if that fails
2255          */
2256         cic = cfq_cic_lookup(cfqd, tsk->io_context);
2257         if (!cic)
2258                 return ELV_MQUEUE_MAY;
2259
2260         cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
2261         if (cfqq) {
2262                 cfq_init_prio_data(cfqq, cic->ioc);
2263                 cfq_prio_boost(cfqq);
2264
2265                 return __cfq_may_queue(cfqq);
2266         }
2267
2268         return ELV_MQUEUE_MAY;
2269 }
2270
2271 /*
2272  * queue lock held here
2273  */
2274 static void cfq_put_request(struct request *rq)
2275 {
2276         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2277
2278         if (cfqq) {
2279                 const int rw = rq_data_dir(rq);
2280
2281                 BUG_ON(!cfqq->allocated[rw]);
2282                 cfqq->allocated[rw]--;
2283
2284                 put_io_context(RQ_CIC(rq)->ioc);
2285
2286                 rq->elevator_private = NULL;
2287                 rq->elevator_private2 = NULL;
2288
2289                 cfq_put_queue(cfqq);
2290         }
2291 }
2292
2293 /*
2294  * Allocate cfq data structures associated with this request.
2295  */
2296 static int
2297 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
2298 {
2299         struct cfq_data *cfqd = q->elevator->elevator_data;
2300         struct cfq_io_context *cic;
2301         const int rw = rq_data_dir(rq);
2302         const int is_sync = rq_is_sync(rq);
2303         struct cfq_queue *cfqq;
2304         unsigned long flags;
2305
2306         might_sleep_if(gfp_mask & __GFP_WAIT);
2307
2308         cic = cfq_get_io_context(cfqd, gfp_mask);
2309
2310         spin_lock_irqsave(q->queue_lock, flags);
2311
2312         if (!cic)
2313                 goto queue_fail;
2314
2315         cfqq = cic_to_cfqq(cic, is_sync);
2316         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2317                 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2318                 cic_set_cfqq(cic, cfqq, is_sync);
2319         }
2320
2321         cfqq->allocated[rw]++;
2322         atomic_inc(&cfqq->ref);
2323
2324         spin_unlock_irqrestore(q->queue_lock, flags);
2325
2326         rq->elevator_private = cic;
2327         rq->elevator_private2 = cfqq;
2328         return 0;
2329
2330 queue_fail:
2331         if (cic)
2332                 put_io_context(cic->ioc);
2333
2334         cfq_schedule_dispatch(cfqd);
2335         spin_unlock_irqrestore(q->queue_lock, flags);
2336         cfq_log(cfqd, "set_request fail");
2337         return 1;
2338 }
2339
2340 static void cfq_kick_queue(struct work_struct *work)
2341 {
2342         struct cfq_data *cfqd =
2343                 container_of(work, struct cfq_data, unplug_work);
2344         struct request_queue *q = cfqd->queue;
2345
2346         spin_lock_irq(q->queue_lock);
2347         __blk_run_queue(cfqd->queue);
2348         spin_unlock_irq(q->queue_lock);
2349 }
2350
2351 /*
2352  * Timer running if the active_queue is currently idling inside its time slice
2353  */
2354 static void cfq_idle_slice_timer(unsigned long data)
2355 {
2356         struct cfq_data *cfqd = (struct cfq_data *) data;
2357         struct cfq_queue *cfqq;
2358         unsigned long flags;
2359         int timed_out = 1;
2360
2361         cfq_log(cfqd, "idle timer fired");
2362
2363         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2364
2365         cfqq = cfqd->active_queue;
2366         if (cfqq) {
2367                 timed_out = 0;
2368
2369                 /*
2370                  * We saw a request before the queue expired, let it through
2371                  */
2372                 if (cfq_cfqq_must_dispatch(cfqq))
2373                         goto out_kick;
2374
2375                 /*
2376                  * expired
2377                  */
2378                 if (cfq_slice_used(cfqq))
2379                         goto expire;
2380
2381                 /*
2382                  * only expire and reinvoke request handler, if there are
2383                  * other queues with pending requests
2384                  */
2385                 if (!cfqd->busy_queues)
2386                         goto out_cont;
2387
2388                 /*
2389                  * not expired and it has a request pending, let it dispatch
2390                  */
2391                 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2392                         goto out_kick;
2393         }
2394 expire:
2395         cfq_slice_expired(cfqd, timed_out);
2396 out_kick:
2397         cfq_schedule_dispatch(cfqd);
2398 out_cont:
2399         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2400 }
2401
2402 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2403 {
2404         del_timer_sync(&cfqd->idle_slice_timer);
2405         cancel_work_sync(&cfqd->unplug_work);
2406 }
2407
2408 static void cfq_put_async_queues(struct cfq_data *cfqd)
2409 {
2410         int i;
2411
2412         for (i = 0; i < IOPRIO_BE_NR; i++) {
2413                 if (cfqd->async_cfqq[0][i])
2414                         cfq_put_queue(cfqd->async_cfqq[0][i]);
2415                 if (cfqd->async_cfqq[1][i])
2416                         cfq_put_queue(cfqd->async_cfqq[1][i]);
2417         }
2418
2419         if (cfqd->async_idle_cfqq)
2420                 cfq_put_queue(cfqd->async_idle_cfqq);
2421 }
2422
2423 static void cfq_exit_queue(struct elevator_queue *e)
2424 {
2425         struct cfq_data *cfqd = e->elevator_data;
2426         struct request_queue *q = cfqd->queue;
2427
2428         cfq_shutdown_timer_wq(cfqd);
2429
2430         spin_lock_irq(q->queue_lock);
2431
2432         if (cfqd->active_queue)
2433                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2434
2435         while (!list_empty(&cfqd->cic_list)) {
2436                 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2437                                                         struct cfq_io_context,
2438                                                         queue_list);
2439
2440                 __cfq_exit_single_io_context(cfqd, cic);
2441         }
2442
2443         cfq_put_async_queues(cfqd);
2444
2445         spin_unlock_irq(q->queue_lock);
2446
2447         cfq_shutdown_timer_wq(cfqd);
2448
2449         kfree(cfqd);
2450 }
2451
2452 static void *cfq_init_queue(struct request_queue *q)
2453 {
2454         struct cfq_data *cfqd;
2455         int i;
2456
2457         cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2458         if (!cfqd)
2459                 return NULL;
2460
2461         cfqd->service_tree = CFQ_RB_ROOT;
2462
2463         /*
2464          * Not strictly needed (since RB_ROOT just clears the node and we
2465          * zeroed cfqd on alloc), but better be safe in case someone decides
2466          * to add magic to the rb code
2467          */
2468         for (i = 0; i < CFQ_PRIO_LISTS; i++)
2469                 cfqd->prio_trees[i] = RB_ROOT;
2470
2471         /*
2472          * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
2473          * Grab a permanent reference to it, so that the normal code flow
2474          * will not attempt to free it.
2475          */
2476         cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
2477         atomic_inc(&cfqd->oom_cfqq.ref);
2478
2479         INIT_LIST_HEAD(&cfqd->cic_list);
2480
2481         cfqd->queue = q;
2482
2483         init_timer(&cfqd->idle_slice_timer);
2484         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2485         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2486
2487         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2488
2489         cfqd->cfq_quantum = cfq_quantum;
2490         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2491         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2492         cfqd->cfq_back_max = cfq_back_max;
2493         cfqd->cfq_back_penalty = cfq_back_penalty;
2494         cfqd->cfq_slice[0] = cfq_slice_async;
2495         cfqd->cfq_slice[1] = cfq_slice_sync;
2496         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2497         cfqd->cfq_slice_idle = cfq_slice_idle;
2498         cfqd->cfq_desktop = 1;
2499         cfqd->hw_tag = 1;
2500         cfqd->last_end_sync_rq = jiffies;
2501         return cfqd;
2502 }
2503
2504 static void cfq_slab_kill(void)
2505 {
2506         /*
2507          * Caller already ensured that pending RCU callbacks are completed,
2508          * so we should have no busy allocations at this point.
2509          */
2510         if (cfq_pool)
2511                 kmem_cache_destroy(cfq_pool);
2512         if (cfq_ioc_pool)
2513                 kmem_cache_destroy(cfq_ioc_pool);
2514 }
2515
2516 static int __init cfq_slab_setup(void)
2517 {
2518         cfq_pool = KMEM_CACHE(cfq_queue, 0);
2519         if (!cfq_pool)
2520                 goto fail;
2521
2522         cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
2523         if (!cfq_ioc_pool)
2524                 goto fail;
2525
2526         return 0;
2527 fail:
2528         cfq_slab_kill();
2529         return -ENOMEM;
2530 }
2531
2532 /*
2533  * sysfs parts below -->
2534  */
2535 static ssize_t
2536 cfq_var_show(unsigned int var, char *page)
2537 {
2538         return sprintf(page, "%d\n", var);
2539 }
2540
2541 static ssize_t
2542 cfq_var_store(unsigned int *var, const char *page, size_t count)
2543 {
2544         char *p = (char *) page;
2545
2546         *var = simple_strtoul(p, &p, 10);
2547         return count;
2548 }
2549
2550 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
2551 static ssize_t __FUNC(struct elevator_queue *e, char *page)             \
2552 {                                                                       \
2553         struct cfq_data *cfqd = e->elevator_data;                       \
2554         unsigned int __data = __VAR;                                    \
2555         if (__CONV)                                                     \
2556                 __data = jiffies_to_msecs(__data);                      \
2557         return cfq_var_show(__data, (page));                            \
2558 }
2559 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2560 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2561 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2562 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2563 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2564 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2565 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2566 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2567 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2568 SHOW_FUNCTION(cfq_desktop_show, cfqd->cfq_desktop, 0);
2569 #undef SHOW_FUNCTION
2570
2571 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
2572 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
2573 {                                                                       \
2574         struct cfq_data *cfqd = e->elevator_data;                       \
2575         unsigned int __data;                                            \
2576         int ret = cfq_var_store(&__data, (page), count);                \
2577         if (__data < (MIN))                                             \
2578                 __data = (MIN);                                         \
2579         else if (__data > (MAX))                                        \
2580                 __data = (MAX);                                         \
2581         if (__CONV)                                                     \
2582                 *(__PTR) = msecs_to_jiffies(__data);                    \
2583         else                                                            \
2584                 *(__PTR) = __data;                                      \
2585         return ret;                                                     \
2586 }
2587 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2588 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
2589                 UINT_MAX, 1);
2590 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
2591                 UINT_MAX, 1);
2592 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2593 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
2594                 UINT_MAX, 0);
2595 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2596 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2597 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2598 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
2599                 UINT_MAX, 0);
2600 STORE_FUNCTION(cfq_desktop_store, &cfqd->cfq_desktop, 0, 1, 0);
2601 #undef STORE_FUNCTION
2602
2603 #define CFQ_ATTR(name) \
2604         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2605
2606 static struct elv_fs_entry cfq_attrs[] = {
2607         CFQ_ATTR(quantum),
2608         CFQ_ATTR(fifo_expire_sync),
2609         CFQ_ATTR(fifo_expire_async),
2610         CFQ_ATTR(back_seek_max),
2611         CFQ_ATTR(back_seek_penalty),
2612         CFQ_ATTR(slice_sync),
2613         CFQ_ATTR(slice_async),
2614         CFQ_ATTR(slice_async_rq),
2615         CFQ_ATTR(slice_idle),
2616         CFQ_ATTR(desktop),
2617         __ATTR_NULL
2618 };
2619
2620 static struct elevator_type iosched_cfq = {
2621         .ops = {
2622                 .elevator_merge_fn =            cfq_merge,
2623                 .elevator_merged_fn =           cfq_merged_request,
2624                 .elevator_merge_req_fn =        cfq_merged_requests,
2625                 .elevator_allow_merge_fn =      cfq_allow_merge,
2626                 .elevator_dispatch_fn =         cfq_dispatch_requests,
2627                 .elevator_add_req_fn =          cfq_insert_request,
2628                 .elevator_activate_req_fn =     cfq_activate_request,
2629                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
2630                 .elevator_queue_empty_fn =      cfq_queue_empty,
2631                 .elevator_completed_req_fn =    cfq_completed_request,
2632                 .elevator_former_req_fn =       elv_rb_former_request,
2633                 .elevator_latter_req_fn =       elv_rb_latter_request,
2634                 .elevator_set_req_fn =          cfq_set_request,
2635                 .elevator_put_req_fn =          cfq_put_request,
2636                 .elevator_may_queue_fn =        cfq_may_queue,
2637                 .elevator_init_fn =             cfq_init_queue,
2638                 .elevator_exit_fn =             cfq_exit_queue,
2639                 .trim =                         cfq_free_io_context,
2640         },
2641         .elevator_attrs =       cfq_attrs,
2642         .elevator_name =        "cfq",
2643         .elevator_owner =       THIS_MODULE,
2644 };
2645
2646 static int __init cfq_init(void)
2647 {
2648         /*
2649          * could be 0 on HZ < 1000 setups
2650          */
2651         if (!cfq_slice_async)
2652                 cfq_slice_async = 1;
2653         if (!cfq_slice_idle)
2654                 cfq_slice_idle = 1;
2655
2656         if (cfq_slab_setup())
2657                 return -ENOMEM;
2658
2659         elv_register(&iosched_cfq);
2660
2661         return 0;
2662 }
2663
2664 static void __exit cfq_exit(void)
2665 {
2666         DECLARE_COMPLETION_ONSTACK(all_gone);
2667         elv_unregister(&iosched_cfq);
2668         ioc_gone = &all_gone;
2669         /* ioc_gone's update must be visible before reading ioc_count */
2670         smp_wmb();
2671
2672         /*
2673          * this also protects us from entering cfq_slab_kill() with
2674          * pending RCU callbacks
2675          */
2676         if (elv_ioc_count_read(cfq_ioc_count))
2677                 wait_for_completion(&all_gone);
2678         cfq_slab_kill();
2679 }
2680
2681 module_init(cfq_init);
2682 module_exit(cfq_exit);
2683
2684 MODULE_AUTHOR("Jens Axboe");
2685 MODULE_LICENSE("GPL");
2686 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");