cfq-iosched: change dispatch logic to deal with single requests at the time
[safe/jmp/linux-2.6] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/rbtree.h>
13 #include <linux/ioprio.h>
14 #include <linux/blktrace_api.h>
15
16 /*
17  * tunables
18  */
19 /* max queue in one round of service */
20 static const int cfq_quantum = 4;
21 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
22 /* maximum backwards seek, in KiB */
23 static const int cfq_back_max = 16 * 1024;
24 /* penalty of a backwards seek */
25 static const int cfq_back_penalty = 2;
26 static const int cfq_slice_sync = HZ / 10;
27 static int cfq_slice_async = HZ / 25;
28 static const int cfq_slice_async_rq = 2;
29 static int cfq_slice_idle = HZ / 125;
30
31 /*
32  * offset from end of service tree
33  */
34 #define CFQ_IDLE_DELAY          (HZ / 5)
35
36 /*
37  * below this threshold, we consider thinktime immediate
38  */
39 #define CFQ_MIN_TT              (2)
40
41 #define CFQ_SLICE_SCALE         (5)
42 #define CFQ_HW_QUEUE_MIN        (5)
43
44 #define RQ_CIC(rq)              \
45         ((struct cfq_io_context *) (rq)->elevator_private)
46 #define RQ_CFQQ(rq)             (struct cfq_queue *) ((rq)->elevator_private2)
47
48 static struct kmem_cache *cfq_pool;
49 static struct kmem_cache *cfq_ioc_pool;
50
51 static DEFINE_PER_CPU(unsigned long, ioc_count);
52 static struct completion *ioc_gone;
53 static DEFINE_SPINLOCK(ioc_gone_lock);
54
55 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
56 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
57 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
58
59 #define ASYNC                   (0)
60 #define SYNC                    (1)
61
62 #define sample_valid(samples)   ((samples) > 80)
63
64 /*
65  * Most of our rbtree usage is for sorting with min extraction, so
66  * if we cache the leftmost node we don't have to walk down the tree
67  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
68  * move this into the elevator for the rq sorting as well.
69  */
70 struct cfq_rb_root {
71         struct rb_root rb;
72         struct rb_node *left;
73 };
74 #define CFQ_RB_ROOT     (struct cfq_rb_root) { RB_ROOT, NULL, }
75
76 /*
77  * Per block device queue structure
78  */
79 struct cfq_data {
80         struct request_queue *queue;
81
82         /*
83          * rr list of queues with requests and the count of them
84          */
85         struct cfq_rb_root service_tree;
86         unsigned int busy_queues;
87         /*
88          * Used to track any pending rt requests so we can pre-empt current
89          * non-RT cfqq in service when this value is non-zero.
90          */
91         unsigned int busy_rt_queues;
92
93         int rq_in_driver;
94         int sync_flight;
95
96         /*
97          * queue-depth detection
98          */
99         int rq_queued;
100         int hw_tag;
101         int hw_tag_samples;
102         int rq_in_driver_peak;
103
104         /*
105          * idle window management
106          */
107         struct timer_list idle_slice_timer;
108         struct work_struct unplug_work;
109
110         struct cfq_queue *active_queue;
111         struct cfq_io_context *active_cic;
112
113         /*
114          * async queue for each priority case
115          */
116         struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
117         struct cfq_queue *async_idle_cfqq;
118
119         sector_t last_position;
120         unsigned long last_end_request;
121
122         /*
123          * tunables, see top of file
124          */
125         unsigned int cfq_quantum;
126         unsigned int cfq_fifo_expire[2];
127         unsigned int cfq_back_penalty;
128         unsigned int cfq_back_max;
129         unsigned int cfq_slice[2];
130         unsigned int cfq_slice_async_rq;
131         unsigned int cfq_slice_idle;
132
133         struct list_head cic_list;
134 };
135
136 /*
137  * Per process-grouping structure
138  */
139 struct cfq_queue {
140         /* reference count */
141         atomic_t ref;
142         /* various state flags, see below */
143         unsigned int flags;
144         /* parent cfq_data */
145         struct cfq_data *cfqd;
146         /* service_tree member */
147         struct rb_node rb_node;
148         /* service_tree key */
149         unsigned long rb_key;
150         /* sorted list of pending requests */
151         struct rb_root sort_list;
152         /* if fifo isn't expired, next request to serve */
153         struct request *next_rq;
154         /* requests queued in sort_list */
155         int queued[2];
156         /* currently allocated requests */
157         int allocated[2];
158         /* fifo list of requests in sort_list */
159         struct list_head fifo;
160
161         unsigned long slice_end;
162         long slice_resid;
163         unsigned int slice_dispatch;
164
165         /* pending metadata requests */
166         int meta_pending;
167         /* number of requests that are on the dispatch list or inside driver */
168         int dispatched;
169
170         /* io prio of this group */
171         unsigned short ioprio, org_ioprio;
172         unsigned short ioprio_class, org_ioprio_class;
173
174         pid_t pid;
175 };
176
177 enum cfqq_state_flags {
178         CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
179         CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
180         CFQ_CFQQ_FLAG_must_alloc,       /* must be allowed rq alloc */
181         CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
182         CFQ_CFQQ_FLAG_must_dispatch,    /* must dispatch, even if expired */
183         CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
184         CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
185         CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
186         CFQ_CFQQ_FLAG_queue_new,        /* queue never been serviced */
187         CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
188         CFQ_CFQQ_FLAG_sync,             /* synchronous queue */
189 };
190
191 #define CFQ_CFQQ_FNS(name)                                              \
192 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
193 {                                                                       \
194         (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);                   \
195 }                                                                       \
196 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
197 {                                                                       \
198         (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                  \
199 }                                                                       \
200 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
201 {                                                                       \
202         return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;      \
203 }
204
205 CFQ_CFQQ_FNS(on_rr);
206 CFQ_CFQQ_FNS(wait_request);
207 CFQ_CFQQ_FNS(must_alloc);
208 CFQ_CFQQ_FNS(must_alloc_slice);
209 CFQ_CFQQ_FNS(must_dispatch);
210 CFQ_CFQQ_FNS(fifo_expire);
211 CFQ_CFQQ_FNS(idle_window);
212 CFQ_CFQQ_FNS(prio_changed);
213 CFQ_CFQQ_FNS(queue_new);
214 CFQ_CFQQ_FNS(slice_new);
215 CFQ_CFQQ_FNS(sync);
216 #undef CFQ_CFQQ_FNS
217
218 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
219         blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
220 #define cfq_log(cfqd, fmt, args...)     \
221         blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
222
223 static void cfq_dispatch_insert(struct request_queue *, struct request *);
224 static struct cfq_queue *cfq_get_queue(struct cfq_data *, int,
225                                        struct io_context *, gfp_t);
226 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
227                                                 struct io_context *);
228
229 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
230                                             int is_sync)
231 {
232         return cic->cfqq[!!is_sync];
233 }
234
235 static inline void cic_set_cfqq(struct cfq_io_context *cic,
236                                 struct cfq_queue *cfqq, int is_sync)
237 {
238         cic->cfqq[!!is_sync] = cfqq;
239 }
240
241 /*
242  * We regard a request as SYNC, if it's either a read or has the SYNC bit
243  * set (in which case it could also be direct WRITE).
244  */
245 static inline int cfq_bio_sync(struct bio *bio)
246 {
247         if (bio_data_dir(bio) == READ || bio_sync(bio))
248                 return 1;
249
250         return 0;
251 }
252
253 /*
254  * scheduler run of queue, if there are requests pending and no one in the
255  * driver that will restart queueing
256  */
257 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
258 {
259         if (cfqd->busy_queues) {
260                 cfq_log(cfqd, "schedule dispatch");
261                 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
262         }
263 }
264
265 static int cfq_queue_empty(struct request_queue *q)
266 {
267         struct cfq_data *cfqd = q->elevator->elevator_data;
268
269         return !cfqd->busy_queues;
270 }
271
272 /*
273  * Scale schedule slice based on io priority. Use the sync time slice only
274  * if a queue is marked sync and has sync io queued. A sync queue with async
275  * io only, should not get full sync slice length.
276  */
277 static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
278                                  unsigned short prio)
279 {
280         const int base_slice = cfqd->cfq_slice[sync];
281
282         WARN_ON(prio >= IOPRIO_BE_NR);
283
284         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
285 }
286
287 static inline int
288 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
289 {
290         return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
291 }
292
293 static inline void
294 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
295 {
296         cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
297         cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
298 }
299
300 /*
301  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
302  * isn't valid until the first request from the dispatch is activated
303  * and the slice time set.
304  */
305 static inline int cfq_slice_used(struct cfq_queue *cfqq)
306 {
307         if (cfq_cfqq_slice_new(cfqq))
308                 return 0;
309         if (time_before(jiffies, cfqq->slice_end))
310                 return 0;
311
312         return 1;
313 }
314
315 /*
316  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
317  * We choose the request that is closest to the head right now. Distance
318  * behind the head is penalized and only allowed to a certain extent.
319  */
320 static struct request *
321 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
322 {
323         sector_t last, s1, s2, d1 = 0, d2 = 0;
324         unsigned long back_max;
325 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
326 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
327         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
328
329         if (rq1 == NULL || rq1 == rq2)
330                 return rq2;
331         if (rq2 == NULL)
332                 return rq1;
333
334         if (rq_is_sync(rq1) && !rq_is_sync(rq2))
335                 return rq1;
336         else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
337                 return rq2;
338         if (rq_is_meta(rq1) && !rq_is_meta(rq2))
339                 return rq1;
340         else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
341                 return rq2;
342
343         s1 = rq1->sector;
344         s2 = rq2->sector;
345
346         last = cfqd->last_position;
347
348         /*
349          * by definition, 1KiB is 2 sectors
350          */
351         back_max = cfqd->cfq_back_max * 2;
352
353         /*
354          * Strict one way elevator _except_ in the case where we allow
355          * short backward seeks which are biased as twice the cost of a
356          * similar forward seek.
357          */
358         if (s1 >= last)
359                 d1 = s1 - last;
360         else if (s1 + back_max >= last)
361                 d1 = (last - s1) * cfqd->cfq_back_penalty;
362         else
363                 wrap |= CFQ_RQ1_WRAP;
364
365         if (s2 >= last)
366                 d2 = s2 - last;
367         else if (s2 + back_max >= last)
368                 d2 = (last - s2) * cfqd->cfq_back_penalty;
369         else
370                 wrap |= CFQ_RQ2_WRAP;
371
372         /* Found required data */
373
374         /*
375          * By doing switch() on the bit mask "wrap" we avoid having to
376          * check two variables for all permutations: --> faster!
377          */
378         switch (wrap) {
379         case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
380                 if (d1 < d2)
381                         return rq1;
382                 else if (d2 < d1)
383                         return rq2;
384                 else {
385                         if (s1 >= s2)
386                                 return rq1;
387                         else
388                                 return rq2;
389                 }
390
391         case CFQ_RQ2_WRAP:
392                 return rq1;
393         case CFQ_RQ1_WRAP:
394                 return rq2;
395         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
396         default:
397                 /*
398                  * Since both rqs are wrapped,
399                  * start with the one that's further behind head
400                  * (--> only *one* back seek required),
401                  * since back seek takes more time than forward.
402                  */
403                 if (s1 <= s2)
404                         return rq1;
405                 else
406                         return rq2;
407         }
408 }
409
410 /*
411  * The below is leftmost cache rbtree addon
412  */
413 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
414 {
415         if (!root->left)
416                 root->left = rb_first(&root->rb);
417
418         if (root->left)
419                 return rb_entry(root->left, struct cfq_queue, rb_node);
420
421         return NULL;
422 }
423
424 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
425 {
426         if (root->left == n)
427                 root->left = NULL;
428
429         rb_erase(n, &root->rb);
430         RB_CLEAR_NODE(n);
431 }
432
433 /*
434  * would be nice to take fifo expire time into account as well
435  */
436 static struct request *
437 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
438                   struct request *last)
439 {
440         struct rb_node *rbnext = rb_next(&last->rb_node);
441         struct rb_node *rbprev = rb_prev(&last->rb_node);
442         struct request *next = NULL, *prev = NULL;
443
444         BUG_ON(RB_EMPTY_NODE(&last->rb_node));
445
446         if (rbprev)
447                 prev = rb_entry_rq(rbprev);
448
449         if (rbnext)
450                 next = rb_entry_rq(rbnext);
451         else {
452                 rbnext = rb_first(&cfqq->sort_list);
453                 if (rbnext && rbnext != &last->rb_node)
454                         next = rb_entry_rq(rbnext);
455         }
456
457         return cfq_choose_req(cfqd, next, prev);
458 }
459
460 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
461                                       struct cfq_queue *cfqq)
462 {
463         /*
464          * just an approximation, should be ok.
465          */
466         return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
467                        cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
468 }
469
470 /*
471  * The cfqd->service_tree holds all pending cfq_queue's that have
472  * requests waiting to be processed. It is sorted in the order that
473  * we will service the queues.
474  */
475 static void cfq_service_tree_add(struct cfq_data *cfqd,
476                                     struct cfq_queue *cfqq, int add_front)
477 {
478         struct rb_node **p, *parent;
479         struct cfq_queue *__cfqq;
480         unsigned long rb_key;
481         int left;
482
483         if (cfq_class_idle(cfqq)) {
484                 rb_key = CFQ_IDLE_DELAY;
485                 parent = rb_last(&cfqd->service_tree.rb);
486                 if (parent && parent != &cfqq->rb_node) {
487                         __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
488                         rb_key += __cfqq->rb_key;
489                 } else
490                         rb_key += jiffies;
491         } else if (!add_front) {
492                 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
493                 rb_key += cfqq->slice_resid;
494                 cfqq->slice_resid = 0;
495         } else
496                 rb_key = 0;
497
498         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
499                 /*
500                  * same position, nothing more to do
501                  */
502                 if (rb_key == cfqq->rb_key)
503                         return;
504
505                 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
506         }
507
508         left = 1;
509         parent = NULL;
510         p = &cfqd->service_tree.rb.rb_node;
511         while (*p) {
512                 struct rb_node **n;
513
514                 parent = *p;
515                 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
516
517                 /*
518                  * sort RT queues first, we always want to give
519                  * preference to them. IDLE queues goes to the back.
520                  * after that, sort on the next service time.
521                  */
522                 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
523                         n = &(*p)->rb_left;
524                 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
525                         n = &(*p)->rb_right;
526                 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
527                         n = &(*p)->rb_left;
528                 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
529                         n = &(*p)->rb_right;
530                 else if (rb_key < __cfqq->rb_key)
531                         n = &(*p)->rb_left;
532                 else
533                         n = &(*p)->rb_right;
534
535                 if (n == &(*p)->rb_right)
536                         left = 0;
537
538                 p = n;
539         }
540
541         if (left)
542                 cfqd->service_tree.left = &cfqq->rb_node;
543
544         cfqq->rb_key = rb_key;
545         rb_link_node(&cfqq->rb_node, parent, p);
546         rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
547 }
548
549 /*
550  * Update cfqq's position in the service tree.
551  */
552 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
553 {
554         /*
555          * Resorting requires the cfqq to be on the RR list already.
556          */
557         if (cfq_cfqq_on_rr(cfqq))
558                 cfq_service_tree_add(cfqd, cfqq, 0);
559 }
560
561 /*
562  * add to busy list of queues for service, trying to be fair in ordering
563  * the pending list according to last request service
564  */
565 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
566 {
567         cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
568         BUG_ON(cfq_cfqq_on_rr(cfqq));
569         cfq_mark_cfqq_on_rr(cfqq);
570         cfqd->busy_queues++;
571         if (cfq_class_rt(cfqq))
572                 cfqd->busy_rt_queues++;
573
574         cfq_resort_rr_list(cfqd, cfqq);
575 }
576
577 /*
578  * Called when the cfqq no longer has requests pending, remove it from
579  * the service tree.
580  */
581 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
582 {
583         cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
584         BUG_ON(!cfq_cfqq_on_rr(cfqq));
585         cfq_clear_cfqq_on_rr(cfqq);
586
587         if (!RB_EMPTY_NODE(&cfqq->rb_node))
588                 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
589
590         BUG_ON(!cfqd->busy_queues);
591         cfqd->busy_queues--;
592         if (cfq_class_rt(cfqq))
593                 cfqd->busy_rt_queues--;
594 }
595
596 /*
597  * rb tree support functions
598  */
599 static void cfq_del_rq_rb(struct request *rq)
600 {
601         struct cfq_queue *cfqq = RQ_CFQQ(rq);
602         struct cfq_data *cfqd = cfqq->cfqd;
603         const int sync = rq_is_sync(rq);
604
605         BUG_ON(!cfqq->queued[sync]);
606         cfqq->queued[sync]--;
607
608         elv_rb_del(&cfqq->sort_list, rq);
609
610         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
611                 cfq_del_cfqq_rr(cfqd, cfqq);
612 }
613
614 static void cfq_add_rq_rb(struct request *rq)
615 {
616         struct cfq_queue *cfqq = RQ_CFQQ(rq);
617         struct cfq_data *cfqd = cfqq->cfqd;
618         struct request *__alias;
619
620         cfqq->queued[rq_is_sync(rq)]++;
621
622         /*
623          * looks a little odd, but the first insert might return an alias.
624          * if that happens, put the alias on the dispatch list
625          */
626         while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
627                 cfq_dispatch_insert(cfqd->queue, __alias);
628
629         if (!cfq_cfqq_on_rr(cfqq))
630                 cfq_add_cfqq_rr(cfqd, cfqq);
631
632         /*
633          * check if this request is a better next-serve candidate
634          */
635         cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
636         BUG_ON(!cfqq->next_rq);
637 }
638
639 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
640 {
641         elv_rb_del(&cfqq->sort_list, rq);
642         cfqq->queued[rq_is_sync(rq)]--;
643         cfq_add_rq_rb(rq);
644 }
645
646 static struct request *
647 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
648 {
649         struct task_struct *tsk = current;
650         struct cfq_io_context *cic;
651         struct cfq_queue *cfqq;
652
653         cic = cfq_cic_lookup(cfqd, tsk->io_context);
654         if (!cic)
655                 return NULL;
656
657         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
658         if (cfqq) {
659                 sector_t sector = bio->bi_sector + bio_sectors(bio);
660
661                 return elv_rb_find(&cfqq->sort_list, sector);
662         }
663
664         return NULL;
665 }
666
667 static void cfq_activate_request(struct request_queue *q, struct request *rq)
668 {
669         struct cfq_data *cfqd = q->elevator->elevator_data;
670
671         cfqd->rq_in_driver++;
672         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
673                                                 cfqd->rq_in_driver);
674
675         cfqd->last_position = rq->hard_sector + rq->hard_nr_sectors;
676 }
677
678 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
679 {
680         struct cfq_data *cfqd = q->elevator->elevator_data;
681
682         WARN_ON(!cfqd->rq_in_driver);
683         cfqd->rq_in_driver--;
684         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
685                                                 cfqd->rq_in_driver);
686 }
687
688 static void cfq_remove_request(struct request *rq)
689 {
690         struct cfq_queue *cfqq = RQ_CFQQ(rq);
691
692         if (cfqq->next_rq == rq)
693                 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
694
695         list_del_init(&rq->queuelist);
696         cfq_del_rq_rb(rq);
697
698         cfqq->cfqd->rq_queued--;
699         if (rq_is_meta(rq)) {
700                 WARN_ON(!cfqq->meta_pending);
701                 cfqq->meta_pending--;
702         }
703 }
704
705 static int cfq_merge(struct request_queue *q, struct request **req,
706                      struct bio *bio)
707 {
708         struct cfq_data *cfqd = q->elevator->elevator_data;
709         struct request *__rq;
710
711         __rq = cfq_find_rq_fmerge(cfqd, bio);
712         if (__rq && elv_rq_merge_ok(__rq, bio)) {
713                 *req = __rq;
714                 return ELEVATOR_FRONT_MERGE;
715         }
716
717         return ELEVATOR_NO_MERGE;
718 }
719
720 static void cfq_merged_request(struct request_queue *q, struct request *req,
721                                int type)
722 {
723         if (type == ELEVATOR_FRONT_MERGE) {
724                 struct cfq_queue *cfqq = RQ_CFQQ(req);
725
726                 cfq_reposition_rq_rb(cfqq, req);
727         }
728 }
729
730 static void
731 cfq_merged_requests(struct request_queue *q, struct request *rq,
732                     struct request *next)
733 {
734         /*
735          * reposition in fifo if next is older than rq
736          */
737         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
738             time_before(next->start_time, rq->start_time))
739                 list_move(&rq->queuelist, &next->queuelist);
740
741         cfq_remove_request(next);
742 }
743
744 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
745                            struct bio *bio)
746 {
747         struct cfq_data *cfqd = q->elevator->elevator_data;
748         struct cfq_io_context *cic;
749         struct cfq_queue *cfqq;
750
751         /*
752          * Disallow merge of a sync bio into an async request.
753          */
754         if (cfq_bio_sync(bio) && !rq_is_sync(rq))
755                 return 0;
756
757         /*
758          * Lookup the cfqq that this bio will be queued with. Allow
759          * merge only if rq is queued there.
760          */
761         cic = cfq_cic_lookup(cfqd, current->io_context);
762         if (!cic)
763                 return 0;
764
765         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
766         if (cfqq == RQ_CFQQ(rq))
767                 return 1;
768
769         return 0;
770 }
771
772 static void __cfq_set_active_queue(struct cfq_data *cfqd,
773                                    struct cfq_queue *cfqq)
774 {
775         if (cfqq) {
776                 cfq_log_cfqq(cfqd, cfqq, "set_active");
777                 cfqq->slice_end = 0;
778                 cfqq->slice_dispatch = 0;
779
780                 cfq_clear_cfqq_must_dispatch(cfqq);
781                 cfq_clear_cfqq_wait_request(cfqq);
782                 cfq_clear_cfqq_must_alloc_slice(cfqq);
783                 cfq_clear_cfqq_fifo_expire(cfqq);
784                 cfq_mark_cfqq_slice_new(cfqq);
785                 cfq_clear_cfqq_queue_new(cfqq);
786
787                 del_timer(&cfqd->idle_slice_timer);
788         }
789
790         cfqd->active_queue = cfqq;
791 }
792
793 /*
794  * current cfqq expired its slice (or was too idle), select new one
795  */
796 static void
797 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
798                     int timed_out)
799 {
800         cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
801
802         if (cfq_cfqq_wait_request(cfqq))
803                 del_timer(&cfqd->idle_slice_timer);
804
805         cfq_clear_cfqq_must_dispatch(cfqq);
806         cfq_clear_cfqq_wait_request(cfqq);
807
808         /*
809          * store what was left of this slice, if the queue idled/timed out
810          */
811         if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
812                 cfqq->slice_resid = cfqq->slice_end - jiffies;
813                 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
814         }
815
816         cfq_resort_rr_list(cfqd, cfqq);
817
818         if (cfqq == cfqd->active_queue)
819                 cfqd->active_queue = NULL;
820
821         if (cfqd->active_cic) {
822                 put_io_context(cfqd->active_cic->ioc);
823                 cfqd->active_cic = NULL;
824         }
825 }
826
827 static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
828 {
829         struct cfq_queue *cfqq = cfqd->active_queue;
830
831         if (cfqq)
832                 __cfq_slice_expired(cfqd, cfqq, timed_out);
833 }
834
835 /*
836  * Get next queue for service. Unless we have a queue preemption,
837  * we'll simply select the first cfqq in the service tree.
838  */
839 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
840 {
841         if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
842                 return NULL;
843
844         return cfq_rb_first(&cfqd->service_tree);
845 }
846
847 /*
848  * Get and set a new active queue for service.
849  */
850 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
851 {
852         struct cfq_queue *cfqq;
853
854         cfqq = cfq_get_next_queue(cfqd);
855         __cfq_set_active_queue(cfqd, cfqq);
856         return cfqq;
857 }
858
859 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
860                                           struct request *rq)
861 {
862         if (rq->sector >= cfqd->last_position)
863                 return rq->sector - cfqd->last_position;
864         else
865                 return cfqd->last_position - rq->sector;
866 }
867
868 static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
869 {
870         struct cfq_io_context *cic = cfqd->active_cic;
871
872         if (!sample_valid(cic->seek_samples))
873                 return 0;
874
875         return cfq_dist_from_last(cfqd, rq) <= cic->seek_mean;
876 }
877
878 static int cfq_close_cooperator(struct cfq_data *cfq_data,
879                                 struct cfq_queue *cfqq)
880 {
881         /*
882          * We should notice if some of the queues are cooperating, eg
883          * working closely on the same area of the disk. In that case,
884          * we can group them together and don't waste time idling.
885          */
886         return 0;
887 }
888
889 #define CIC_SEEKY(cic) ((cic)->seek_mean > (8 * 1024))
890
891 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
892 {
893         struct cfq_queue *cfqq = cfqd->active_queue;
894         struct cfq_io_context *cic;
895         unsigned long sl;
896
897         /*
898          * SSD device without seek penalty, disable idling. But only do so
899          * for devices that support queuing, otherwise we still have a problem
900          * with sync vs async workloads.
901          */
902         if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
903                 return;
904
905         WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
906         WARN_ON(cfq_cfqq_slice_new(cfqq));
907
908         /*
909          * idle is disabled, either manually or by past process history
910          */
911         if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
912                 return;
913
914         /*
915          * still requests with the driver, don't idle
916          */
917         if (cfqd->rq_in_driver)
918                 return;
919
920         /*
921          * task has exited, don't wait
922          */
923         cic = cfqd->active_cic;
924         if (!cic || !atomic_read(&cic->ioc->nr_tasks))
925                 return;
926
927         /*
928          * See if this prio level has a good candidate
929          */
930         if (cfq_close_cooperator(cfqd, cfqq) &&
931             (sample_valid(cic->ttime_samples) && cic->ttime_mean > 2))
932                 return;
933
934         cfq_mark_cfqq_must_dispatch(cfqq);
935         cfq_mark_cfqq_wait_request(cfqq);
936
937         /*
938          * we don't want to idle for seeks, but we do want to allow
939          * fair distribution of slice time for a process doing back-to-back
940          * seeks. so allow a little bit of time for him to submit a new rq
941          */
942         sl = cfqd->cfq_slice_idle;
943         if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
944                 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
945
946         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
947         cfq_log(cfqd, "arm_idle: %lu", sl);
948 }
949
950 /*
951  * Move request from internal lists to the request queue dispatch list.
952  */
953 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
954 {
955         struct cfq_data *cfqd = q->elevator->elevator_data;
956         struct cfq_queue *cfqq = RQ_CFQQ(rq);
957
958         cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
959
960         cfq_remove_request(rq);
961         cfqq->dispatched++;
962         elv_dispatch_sort(q, rq);
963
964         if (cfq_cfqq_sync(cfqq))
965                 cfqd->sync_flight++;
966 }
967
968 /*
969  * return expired entry, or NULL to just start from scratch in rbtree
970  */
971 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
972 {
973         struct cfq_data *cfqd = cfqq->cfqd;
974         struct request *rq;
975         int fifo;
976
977         if (cfq_cfqq_fifo_expire(cfqq))
978                 return NULL;
979
980         cfq_mark_cfqq_fifo_expire(cfqq);
981
982         if (list_empty(&cfqq->fifo))
983                 return NULL;
984
985         fifo = cfq_cfqq_sync(cfqq);
986         rq = rq_entry_fifo(cfqq->fifo.next);
987
988         if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
989                 rq = NULL;
990
991         cfq_log_cfqq(cfqd, cfqq, "fifo=%p", rq);
992         return rq;
993 }
994
995 static inline int
996 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
997 {
998         const int base_rq = cfqd->cfq_slice_async_rq;
999
1000         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1001
1002         return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1003 }
1004
1005 /*
1006  * Select a queue for service. If we have a current active queue,
1007  * check whether to continue servicing it, or retrieve and set a new one.
1008  */
1009 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1010 {
1011         struct cfq_queue *cfqq;
1012
1013         cfqq = cfqd->active_queue;
1014         if (!cfqq)
1015                 goto new_queue;
1016
1017         /*
1018          * The active queue has run out of time, expire it and select new.
1019          */
1020         if (cfq_slice_used(cfqq))
1021                 goto expire;
1022
1023         /*
1024          * If we have a RT cfqq waiting, then we pre-empt the current non-rt
1025          * cfqq.
1026          */
1027         if (!cfq_class_rt(cfqq) && cfqd->busy_rt_queues) {
1028                 /*
1029                  * We simulate this as cfqq timed out so that it gets to bank
1030                  * the remaining of its time slice.
1031                  */
1032                 cfq_log_cfqq(cfqd, cfqq, "preempt");
1033                 cfq_slice_expired(cfqd, 1);
1034                 goto new_queue;
1035         }
1036
1037         /*
1038          * The active queue has requests and isn't expired, allow it to
1039          * dispatch.
1040          */
1041         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1042                 goto keep_queue;
1043
1044         /*
1045          * No requests pending. If the active queue still has requests in
1046          * flight or is idling for a new request, allow either of these
1047          * conditions to happen (or time out) before selecting a new queue.
1048          */
1049         if (timer_pending(&cfqd->idle_slice_timer) ||
1050             (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
1051                 cfqq = NULL;
1052                 goto keep_queue;
1053         }
1054
1055 expire:
1056         cfq_slice_expired(cfqd, 0);
1057 new_queue:
1058         cfqq = cfq_set_active_queue(cfqd);
1059 keep_queue:
1060         return cfqq;
1061 }
1062
1063 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1064 {
1065         int dispatched = 0;
1066
1067         while (cfqq->next_rq) {
1068                 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1069                 dispatched++;
1070         }
1071
1072         BUG_ON(!list_empty(&cfqq->fifo));
1073         return dispatched;
1074 }
1075
1076 /*
1077  * Drain our current requests. Used for barriers and when switching
1078  * io schedulers on-the-fly.
1079  */
1080 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1081 {
1082         struct cfq_queue *cfqq;
1083         int dispatched = 0;
1084
1085         while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
1086                 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1087
1088         cfq_slice_expired(cfqd, 0);
1089
1090         BUG_ON(cfqd->busy_queues);
1091
1092         cfq_log(cfqd, "forced_dispatch=%d\n", dispatched);
1093         return dispatched;
1094 }
1095
1096 /*
1097  * Dispatch a request from cfqq, moving them to the request queue
1098  * dispatch list.
1099  */
1100 static void cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1101 {
1102         struct request *rq;
1103
1104         BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1105
1106         /*
1107          * follow expired path, else get first next available
1108          */
1109         rq = cfq_check_fifo(cfqq);
1110         if (!rq)
1111                 rq = cfqq->next_rq;
1112
1113         /*
1114          * insert request into driver dispatch list
1115          */
1116         cfq_dispatch_insert(cfqd->queue, rq);
1117
1118         if (!cfqd->active_cic) {
1119                 struct cfq_io_context *cic = RQ_CIC(rq);
1120
1121                 atomic_inc(&cic->ioc->refcount);
1122                 cfqd->active_cic = cic;
1123         }
1124 }
1125
1126 /*
1127  * Find the cfqq that we need to service and move a request from that to the
1128  * dispatch list
1129  */
1130 static int cfq_dispatch_requests(struct request_queue *q, int force)
1131 {
1132         struct cfq_data *cfqd = q->elevator->elevator_data;
1133         struct cfq_queue *cfqq;
1134         unsigned int max_dispatch;
1135
1136         if (!cfqd->busy_queues)
1137                 return 0;
1138
1139         if (unlikely(force))
1140                 return cfq_forced_dispatch(cfqd);
1141
1142         cfqq = cfq_select_queue(cfqd);
1143         if (!cfqq)
1144                 return 0;
1145
1146         /*
1147          * If this is an async queue and we have sync IO in flight, let it wait
1148          */
1149         if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1150                 return 0;
1151
1152         max_dispatch = cfqd->cfq_quantum;
1153         if (cfq_class_idle(cfqq))
1154                 max_dispatch = 1;
1155
1156         /*
1157          * Does this cfqq already have too much IO in flight?
1158          */
1159         if (cfqq->dispatched >= max_dispatch) {
1160                 /*
1161                  * idle queue must always only have a single IO in flight
1162                  */
1163                 if (cfq_class_idle(cfqq))
1164                         return 0;
1165
1166                 /*
1167                  * We have other queues, don't allow more IO from this one
1168                  */
1169                 if (cfqd->busy_queues > 1)
1170                         return 0;
1171
1172                 /*
1173                  * we are the only queue, allow up to 4 times of 'quantum'
1174                  */
1175                 if (cfqq->dispatched >= 4 * max_dispatch)
1176                         return 0;
1177         }
1178
1179         /*
1180          * Dispatch a request from this cfqq
1181          */
1182         cfq_dispatch_request(cfqd, cfqq);
1183         cfqq->slice_dispatch++;
1184
1185         /*
1186          * expire an async queue immediately if it has used up its slice. idle
1187          * queue always expire after 1 dispatch round.
1188          */
1189         if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1190             cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1191             cfq_class_idle(cfqq))) {
1192                 cfqq->slice_end = jiffies + 1;
1193                 cfq_slice_expired(cfqd, 0);
1194         }
1195
1196         cfq_log(cfqd, "dispatched a request");
1197         return 1;
1198 }
1199
1200 /*
1201  * task holds one reference to the queue, dropped when task exits. each rq
1202  * in-flight on this queue also holds a reference, dropped when rq is freed.
1203  *
1204  * queue lock must be held here.
1205  */
1206 static void cfq_put_queue(struct cfq_queue *cfqq)
1207 {
1208         struct cfq_data *cfqd = cfqq->cfqd;
1209
1210         BUG_ON(atomic_read(&cfqq->ref) <= 0);
1211
1212         if (!atomic_dec_and_test(&cfqq->ref))
1213                 return;
1214
1215         cfq_log_cfqq(cfqd, cfqq, "put_queue");
1216         BUG_ON(rb_first(&cfqq->sort_list));
1217         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1218         BUG_ON(cfq_cfqq_on_rr(cfqq));
1219
1220         if (unlikely(cfqd->active_queue == cfqq)) {
1221                 __cfq_slice_expired(cfqd, cfqq, 0);
1222                 cfq_schedule_dispatch(cfqd);
1223         }
1224
1225         kmem_cache_free(cfq_pool, cfqq);
1226 }
1227
1228 /*
1229  * Must always be called with the rcu_read_lock() held
1230  */
1231 static void
1232 __call_for_each_cic(struct io_context *ioc,
1233                     void (*func)(struct io_context *, struct cfq_io_context *))
1234 {
1235         struct cfq_io_context *cic;
1236         struct hlist_node *n;
1237
1238         hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1239                 func(ioc, cic);
1240 }
1241
1242 /*
1243  * Call func for each cic attached to this ioc.
1244  */
1245 static void
1246 call_for_each_cic(struct io_context *ioc,
1247                   void (*func)(struct io_context *, struct cfq_io_context *))
1248 {
1249         rcu_read_lock();
1250         __call_for_each_cic(ioc, func);
1251         rcu_read_unlock();
1252 }
1253
1254 static void cfq_cic_free_rcu(struct rcu_head *head)
1255 {
1256         struct cfq_io_context *cic;
1257
1258         cic = container_of(head, struct cfq_io_context, rcu_head);
1259
1260         kmem_cache_free(cfq_ioc_pool, cic);
1261         elv_ioc_count_dec(ioc_count);
1262
1263         if (ioc_gone) {
1264                 /*
1265                  * CFQ scheduler is exiting, grab exit lock and check
1266                  * the pending io context count. If it hits zero,
1267                  * complete ioc_gone and set it back to NULL
1268                  */
1269                 spin_lock(&ioc_gone_lock);
1270                 if (ioc_gone && !elv_ioc_count_read(ioc_count)) {
1271                         complete(ioc_gone);
1272                         ioc_gone = NULL;
1273                 }
1274                 spin_unlock(&ioc_gone_lock);
1275         }
1276 }
1277
1278 static void cfq_cic_free(struct cfq_io_context *cic)
1279 {
1280         call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1281 }
1282
1283 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1284 {
1285         unsigned long flags;
1286
1287         BUG_ON(!cic->dead_key);
1288
1289         spin_lock_irqsave(&ioc->lock, flags);
1290         radix_tree_delete(&ioc->radix_root, cic->dead_key);
1291         hlist_del_rcu(&cic->cic_list);
1292         spin_unlock_irqrestore(&ioc->lock, flags);
1293
1294         cfq_cic_free(cic);
1295 }
1296
1297 /*
1298  * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1299  * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1300  * and ->trim() which is called with the task lock held
1301  */
1302 static void cfq_free_io_context(struct io_context *ioc)
1303 {
1304         /*
1305          * ioc->refcount is zero here, or we are called from elv_unregister(),
1306          * so no more cic's are allowed to be linked into this ioc.  So it
1307          * should be ok to iterate over the known list, we will see all cic's
1308          * since no new ones are added.
1309          */
1310         __call_for_each_cic(ioc, cic_free_func);
1311 }
1312
1313 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1314 {
1315         if (unlikely(cfqq == cfqd->active_queue)) {
1316                 __cfq_slice_expired(cfqd, cfqq, 0);
1317                 cfq_schedule_dispatch(cfqd);
1318         }
1319
1320         cfq_put_queue(cfqq);
1321 }
1322
1323 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1324                                          struct cfq_io_context *cic)
1325 {
1326         struct io_context *ioc = cic->ioc;
1327
1328         list_del_init(&cic->queue_list);
1329
1330         /*
1331          * Make sure key == NULL is seen for dead queues
1332          */
1333         smp_wmb();
1334         cic->dead_key = (unsigned long) cic->key;
1335         cic->key = NULL;
1336
1337         if (ioc->ioc_data == cic)
1338                 rcu_assign_pointer(ioc->ioc_data, NULL);
1339
1340         if (cic->cfqq[ASYNC]) {
1341                 cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
1342                 cic->cfqq[ASYNC] = NULL;
1343         }
1344
1345         if (cic->cfqq[SYNC]) {
1346                 cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
1347                 cic->cfqq[SYNC] = NULL;
1348         }
1349 }
1350
1351 static void cfq_exit_single_io_context(struct io_context *ioc,
1352                                        struct cfq_io_context *cic)
1353 {
1354         struct cfq_data *cfqd = cic->key;
1355
1356         if (cfqd) {
1357                 struct request_queue *q = cfqd->queue;
1358                 unsigned long flags;
1359
1360                 spin_lock_irqsave(q->queue_lock, flags);
1361
1362                 /*
1363                  * Ensure we get a fresh copy of the ->key to prevent
1364                  * race between exiting task and queue
1365                  */
1366                 smp_read_barrier_depends();
1367                 if (cic->key)
1368                         __cfq_exit_single_io_context(cfqd, cic);
1369
1370                 spin_unlock_irqrestore(q->queue_lock, flags);
1371         }
1372 }
1373
1374 /*
1375  * The process that ioc belongs to has exited, we need to clean up
1376  * and put the internal structures we have that belongs to that process.
1377  */
1378 static void cfq_exit_io_context(struct io_context *ioc)
1379 {
1380         call_for_each_cic(ioc, cfq_exit_single_io_context);
1381 }
1382
1383 static struct cfq_io_context *
1384 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1385 {
1386         struct cfq_io_context *cic;
1387
1388         cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1389                                                         cfqd->queue->node);
1390         if (cic) {
1391                 cic->last_end_request = jiffies;
1392                 INIT_LIST_HEAD(&cic->queue_list);
1393                 INIT_HLIST_NODE(&cic->cic_list);
1394                 cic->dtor = cfq_free_io_context;
1395                 cic->exit = cfq_exit_io_context;
1396                 elv_ioc_count_inc(ioc_count);
1397         }
1398
1399         return cic;
1400 }
1401
1402 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1403 {
1404         struct task_struct *tsk = current;
1405         int ioprio_class;
1406
1407         if (!cfq_cfqq_prio_changed(cfqq))
1408                 return;
1409
1410         ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1411         switch (ioprio_class) {
1412         default:
1413                 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1414         case IOPRIO_CLASS_NONE:
1415                 /*
1416                  * no prio set, inherit CPU scheduling settings
1417                  */
1418                 cfqq->ioprio = task_nice_ioprio(tsk);
1419                 cfqq->ioprio_class = task_nice_ioclass(tsk);
1420                 break;
1421         case IOPRIO_CLASS_RT:
1422                 cfqq->ioprio = task_ioprio(ioc);
1423                 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1424                 break;
1425         case IOPRIO_CLASS_BE:
1426                 cfqq->ioprio = task_ioprio(ioc);
1427                 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1428                 break;
1429         case IOPRIO_CLASS_IDLE:
1430                 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1431                 cfqq->ioprio = 7;
1432                 cfq_clear_cfqq_idle_window(cfqq);
1433                 break;
1434         }
1435
1436         /*
1437          * keep track of original prio settings in case we have to temporarily
1438          * elevate the priority of this queue
1439          */
1440         cfqq->org_ioprio = cfqq->ioprio;
1441         cfqq->org_ioprio_class = cfqq->ioprio_class;
1442         cfq_clear_cfqq_prio_changed(cfqq);
1443 }
1444
1445 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
1446 {
1447         struct cfq_data *cfqd = cic->key;
1448         struct cfq_queue *cfqq;
1449         unsigned long flags;
1450
1451         if (unlikely(!cfqd))
1452                 return;
1453
1454         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1455
1456         cfqq = cic->cfqq[ASYNC];
1457         if (cfqq) {
1458                 struct cfq_queue *new_cfqq;
1459                 new_cfqq = cfq_get_queue(cfqd, ASYNC, cic->ioc, GFP_ATOMIC);
1460                 if (new_cfqq) {
1461                         cic->cfqq[ASYNC] = new_cfqq;
1462                         cfq_put_queue(cfqq);
1463                 }
1464         }
1465
1466         cfqq = cic->cfqq[SYNC];
1467         if (cfqq)
1468                 cfq_mark_cfqq_prio_changed(cfqq);
1469
1470         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1471 }
1472
1473 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1474 {
1475         call_for_each_cic(ioc, changed_ioprio);
1476         ioc->ioprio_changed = 0;
1477 }
1478
1479 static struct cfq_queue *
1480 cfq_find_alloc_queue(struct cfq_data *cfqd, int is_sync,
1481                      struct io_context *ioc, gfp_t gfp_mask)
1482 {
1483         struct cfq_queue *cfqq, *new_cfqq = NULL;
1484         struct cfq_io_context *cic;
1485
1486 retry:
1487         cic = cfq_cic_lookup(cfqd, ioc);
1488         /* cic always exists here */
1489         cfqq = cic_to_cfqq(cic, is_sync);
1490
1491         if (!cfqq) {
1492                 if (new_cfqq) {
1493                         cfqq = new_cfqq;
1494                         new_cfqq = NULL;
1495                 } else if (gfp_mask & __GFP_WAIT) {
1496                         /*
1497                          * Inform the allocator of the fact that we will
1498                          * just repeat this allocation if it fails, to allow
1499                          * the allocator to do whatever it needs to attempt to
1500                          * free memory.
1501                          */
1502                         spin_unlock_irq(cfqd->queue->queue_lock);
1503                         new_cfqq = kmem_cache_alloc_node(cfq_pool,
1504                                         gfp_mask | __GFP_NOFAIL | __GFP_ZERO,
1505                                         cfqd->queue->node);
1506                         spin_lock_irq(cfqd->queue->queue_lock);
1507                         goto retry;
1508                 } else {
1509                         cfqq = kmem_cache_alloc_node(cfq_pool,
1510                                         gfp_mask | __GFP_ZERO,
1511                                         cfqd->queue->node);
1512                         if (!cfqq)
1513                                 goto out;
1514                 }
1515
1516                 RB_CLEAR_NODE(&cfqq->rb_node);
1517                 INIT_LIST_HEAD(&cfqq->fifo);
1518
1519                 atomic_set(&cfqq->ref, 0);
1520                 cfqq->cfqd = cfqd;
1521
1522                 cfq_mark_cfqq_prio_changed(cfqq);
1523                 cfq_mark_cfqq_queue_new(cfqq);
1524
1525                 cfq_init_prio_data(cfqq, ioc);
1526
1527                 if (is_sync) {
1528                         if (!cfq_class_idle(cfqq))
1529                                 cfq_mark_cfqq_idle_window(cfqq);
1530                         cfq_mark_cfqq_sync(cfqq);
1531                 }
1532                 cfqq->pid = current->pid;
1533                 cfq_log_cfqq(cfqd, cfqq, "alloced");
1534         }
1535
1536         if (new_cfqq)
1537                 kmem_cache_free(cfq_pool, new_cfqq);
1538
1539 out:
1540         WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1541         return cfqq;
1542 }
1543
1544 static struct cfq_queue **
1545 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1546 {
1547         switch (ioprio_class) {
1548         case IOPRIO_CLASS_RT:
1549                 return &cfqd->async_cfqq[0][ioprio];
1550         case IOPRIO_CLASS_BE:
1551                 return &cfqd->async_cfqq[1][ioprio];
1552         case IOPRIO_CLASS_IDLE:
1553                 return &cfqd->async_idle_cfqq;
1554         default:
1555                 BUG();
1556         }
1557 }
1558
1559 static struct cfq_queue *
1560 cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct io_context *ioc,
1561               gfp_t gfp_mask)
1562 {
1563         const int ioprio = task_ioprio(ioc);
1564         const int ioprio_class = task_ioprio_class(ioc);
1565         struct cfq_queue **async_cfqq = NULL;
1566         struct cfq_queue *cfqq = NULL;
1567
1568         if (!is_sync) {
1569                 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1570                 cfqq = *async_cfqq;
1571         }
1572
1573         if (!cfqq) {
1574                 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
1575                 if (!cfqq)
1576                         return NULL;
1577         }
1578
1579         /*
1580          * pin the queue now that it's allocated, scheduler exit will prune it
1581          */
1582         if (!is_sync && !(*async_cfqq)) {
1583                 atomic_inc(&cfqq->ref);
1584                 *async_cfqq = cfqq;
1585         }
1586
1587         atomic_inc(&cfqq->ref);
1588         return cfqq;
1589 }
1590
1591 /*
1592  * We drop cfq io contexts lazily, so we may find a dead one.
1593  */
1594 static void
1595 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1596                   struct cfq_io_context *cic)
1597 {
1598         unsigned long flags;
1599
1600         WARN_ON(!list_empty(&cic->queue_list));
1601
1602         spin_lock_irqsave(&ioc->lock, flags);
1603
1604         BUG_ON(ioc->ioc_data == cic);
1605
1606         radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
1607         hlist_del_rcu(&cic->cic_list);
1608         spin_unlock_irqrestore(&ioc->lock, flags);
1609
1610         cfq_cic_free(cic);
1611 }
1612
1613 static struct cfq_io_context *
1614 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1615 {
1616         struct cfq_io_context *cic;
1617         unsigned long flags;
1618         void *k;
1619
1620         if (unlikely(!ioc))
1621                 return NULL;
1622
1623         rcu_read_lock();
1624
1625         /*
1626          * we maintain a last-hit cache, to avoid browsing over the tree
1627          */
1628         cic = rcu_dereference(ioc->ioc_data);
1629         if (cic && cic->key == cfqd) {
1630                 rcu_read_unlock();
1631                 return cic;
1632         }
1633
1634         do {
1635                 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
1636                 rcu_read_unlock();
1637                 if (!cic)
1638                         break;
1639                 /* ->key must be copied to avoid race with cfq_exit_queue() */
1640                 k = cic->key;
1641                 if (unlikely(!k)) {
1642                         cfq_drop_dead_cic(cfqd, ioc, cic);
1643                         rcu_read_lock();
1644                         continue;
1645                 }
1646
1647                 spin_lock_irqsave(&ioc->lock, flags);
1648                 rcu_assign_pointer(ioc->ioc_data, cic);
1649                 spin_unlock_irqrestore(&ioc->lock, flags);
1650                 break;
1651         } while (1);
1652
1653         return cic;
1654 }
1655
1656 /*
1657  * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1658  * the process specific cfq io context when entered from the block layer.
1659  * Also adds the cic to a per-cfqd list, used when this queue is removed.
1660  */
1661 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1662                         struct cfq_io_context *cic, gfp_t gfp_mask)
1663 {
1664         unsigned long flags;
1665         int ret;
1666
1667         ret = radix_tree_preload(gfp_mask);
1668         if (!ret) {
1669                 cic->ioc = ioc;
1670                 cic->key = cfqd;
1671
1672                 spin_lock_irqsave(&ioc->lock, flags);
1673                 ret = radix_tree_insert(&ioc->radix_root,
1674                                                 (unsigned long) cfqd, cic);
1675                 if (!ret)
1676                         hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
1677                 spin_unlock_irqrestore(&ioc->lock, flags);
1678
1679                 radix_tree_preload_end();
1680
1681                 if (!ret) {
1682                         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1683                         list_add(&cic->queue_list, &cfqd->cic_list);
1684                         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1685                 }
1686         }
1687
1688         if (ret)
1689                 printk(KERN_ERR "cfq: cic link failed!\n");
1690
1691         return ret;
1692 }
1693
1694 /*
1695  * Setup general io context and cfq io context. There can be several cfq
1696  * io contexts per general io context, if this process is doing io to more
1697  * than one device managed by cfq.
1698  */
1699 static struct cfq_io_context *
1700 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1701 {
1702         struct io_context *ioc = NULL;
1703         struct cfq_io_context *cic;
1704
1705         might_sleep_if(gfp_mask & __GFP_WAIT);
1706
1707         ioc = get_io_context(gfp_mask, cfqd->queue->node);
1708         if (!ioc)
1709                 return NULL;
1710
1711         cic = cfq_cic_lookup(cfqd, ioc);
1712         if (cic)
1713                 goto out;
1714
1715         cic = cfq_alloc_io_context(cfqd, gfp_mask);
1716         if (cic == NULL)
1717                 goto err;
1718
1719         if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
1720                 goto err_free;
1721
1722 out:
1723         smp_read_barrier_depends();
1724         if (unlikely(ioc->ioprio_changed))
1725                 cfq_ioc_set_ioprio(ioc);
1726
1727         return cic;
1728 err_free:
1729         cfq_cic_free(cic);
1730 err:
1731         put_io_context(ioc);
1732         return NULL;
1733 }
1734
1735 static void
1736 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1737 {
1738         unsigned long elapsed = jiffies - cic->last_end_request;
1739         unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1740
1741         cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1742         cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1743         cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1744 }
1745
1746 static void
1747 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1748                        struct request *rq)
1749 {
1750         sector_t sdist;
1751         u64 total;
1752
1753         if (cic->last_request_pos < rq->sector)
1754                 sdist = rq->sector - cic->last_request_pos;
1755         else
1756                 sdist = cic->last_request_pos - rq->sector;
1757
1758         /*
1759          * Don't allow the seek distance to get too large from the
1760          * odd fragment, pagein, etc
1761          */
1762         if (cic->seek_samples <= 60) /* second&third seek */
1763                 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1764         else
1765                 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1766
1767         cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1768         cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1769         total = cic->seek_total + (cic->seek_samples/2);
1770         do_div(total, cic->seek_samples);
1771         cic->seek_mean = (sector_t)total;
1772 }
1773
1774 /*
1775  * Disable idle window if the process thinks too long or seeks so much that
1776  * it doesn't matter
1777  */
1778 static void
1779 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1780                        struct cfq_io_context *cic)
1781 {
1782         int old_idle, enable_idle;
1783
1784         /*
1785          * Don't idle for async or idle io prio class
1786          */
1787         if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1788                 return;
1789
1790         enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1791
1792         if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
1793             (cfqd->hw_tag && CIC_SEEKY(cic)))
1794                 enable_idle = 0;
1795         else if (sample_valid(cic->ttime_samples)) {
1796                 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1797                         enable_idle = 0;
1798                 else
1799                         enable_idle = 1;
1800         }
1801
1802         if (old_idle != enable_idle) {
1803                 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
1804                 if (enable_idle)
1805                         cfq_mark_cfqq_idle_window(cfqq);
1806                 else
1807                         cfq_clear_cfqq_idle_window(cfqq);
1808         }
1809 }
1810
1811 /*
1812  * Check if new_cfqq should preempt the currently active queue. Return 0 for
1813  * no or if we aren't sure, a 1 will cause a preempt.
1814  */
1815 static int
1816 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1817                    struct request *rq)
1818 {
1819         struct cfq_queue *cfqq;
1820
1821         cfqq = cfqd->active_queue;
1822         if (!cfqq)
1823                 return 0;
1824
1825         if (cfq_slice_used(cfqq))
1826                 return 1;
1827
1828         if (cfq_class_idle(new_cfqq))
1829                 return 0;
1830
1831         if (cfq_class_idle(cfqq))
1832                 return 1;
1833
1834         /*
1835          * if the new request is sync, but the currently running queue is
1836          * not, let the sync request have priority.
1837          */
1838         if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
1839                 return 1;
1840
1841         /*
1842          * So both queues are sync. Let the new request get disk time if
1843          * it's a metadata request and the current queue is doing regular IO.
1844          */
1845         if (rq_is_meta(rq) && !cfqq->meta_pending)
1846                 return 1;
1847
1848         /*
1849          * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
1850          */
1851         if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
1852                 return 1;
1853
1854         if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
1855                 return 0;
1856
1857         /*
1858          * if this request is as-good as one we would expect from the
1859          * current cfqq, let it preempt
1860          */
1861         if (cfq_rq_close(cfqd, rq))
1862                 return 1;
1863
1864         return 0;
1865 }
1866
1867 /*
1868  * cfqq preempts the active queue. if we allowed preempt with no slice left,
1869  * let it have half of its nominal slice.
1870  */
1871 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1872 {
1873         cfq_log_cfqq(cfqd, cfqq, "preempt");
1874         cfq_slice_expired(cfqd, 1);
1875
1876         /*
1877          * Put the new queue at the front of the of the current list,
1878          * so we know that it will be selected next.
1879          */
1880         BUG_ON(!cfq_cfqq_on_rr(cfqq));
1881
1882         cfq_service_tree_add(cfqd, cfqq, 1);
1883
1884         cfqq->slice_end = 0;
1885         cfq_mark_cfqq_slice_new(cfqq);
1886 }
1887
1888 /*
1889  * Called when a new fs request (rq) is added (to cfqq). Check if there's
1890  * something we should do about it
1891  */
1892 static void
1893 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1894                 struct request *rq)
1895 {
1896         struct cfq_io_context *cic = RQ_CIC(rq);
1897
1898         cfqd->rq_queued++;
1899         if (rq_is_meta(rq))
1900                 cfqq->meta_pending++;
1901
1902         cfq_update_io_thinktime(cfqd, cic);
1903         cfq_update_io_seektime(cfqd, cic, rq);
1904         cfq_update_idle_window(cfqd, cfqq, cic);
1905
1906         cic->last_request_pos = rq->sector + rq->nr_sectors;
1907
1908         if (cfqq == cfqd->active_queue) {
1909                 /*
1910                  * if we are waiting for a request for this queue, let it rip
1911                  * immediately and flag that we must not expire this queue
1912                  * just now
1913                  */
1914                 if (cfq_cfqq_wait_request(cfqq)) {
1915                         cfq_mark_cfqq_must_dispatch(cfqq);
1916                         del_timer(&cfqd->idle_slice_timer);
1917                         blk_start_queueing(cfqd->queue);
1918                 }
1919         } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
1920                 /*
1921                  * not the active queue - expire current slice if it is
1922                  * idle and has expired it's mean thinktime or this new queue
1923                  * has some old slice time left and is of higher priority or
1924                  * this new queue is RT and the current one is BE
1925                  */
1926                 cfq_preempt_queue(cfqd, cfqq);
1927                 cfq_mark_cfqq_must_dispatch(cfqq);
1928                 blk_start_queueing(cfqd->queue);
1929         }
1930 }
1931
1932 static void cfq_insert_request(struct request_queue *q, struct request *rq)
1933 {
1934         struct cfq_data *cfqd = q->elevator->elevator_data;
1935         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1936
1937         cfq_log_cfqq(cfqd, cfqq, "insert_request");
1938         cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1939
1940         cfq_add_rq_rb(rq);
1941
1942         list_add_tail(&rq->queuelist, &cfqq->fifo);
1943
1944         cfq_rq_enqueued(cfqd, cfqq, rq);
1945 }
1946
1947 /*
1948  * Update hw_tag based on peak queue depth over 50 samples under
1949  * sufficient load.
1950  */
1951 static void cfq_update_hw_tag(struct cfq_data *cfqd)
1952 {
1953         if (cfqd->rq_in_driver > cfqd->rq_in_driver_peak)
1954                 cfqd->rq_in_driver_peak = cfqd->rq_in_driver;
1955
1956         if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
1957             cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
1958                 return;
1959
1960         if (cfqd->hw_tag_samples++ < 50)
1961                 return;
1962
1963         if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
1964                 cfqd->hw_tag = 1;
1965         else
1966                 cfqd->hw_tag = 0;
1967
1968         cfqd->hw_tag_samples = 0;
1969         cfqd->rq_in_driver_peak = 0;
1970 }
1971
1972 static void cfq_completed_request(struct request_queue *q, struct request *rq)
1973 {
1974         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1975         struct cfq_data *cfqd = cfqq->cfqd;
1976         const int sync = rq_is_sync(rq);
1977         unsigned long now;
1978
1979         now = jiffies;
1980         cfq_log_cfqq(cfqd, cfqq, "complete");
1981
1982         cfq_update_hw_tag(cfqd);
1983
1984         WARN_ON(!cfqd->rq_in_driver);
1985         WARN_ON(!cfqq->dispatched);
1986         cfqd->rq_in_driver--;
1987         cfqq->dispatched--;
1988
1989         if (cfq_cfqq_sync(cfqq))
1990                 cfqd->sync_flight--;
1991
1992         if (!cfq_class_idle(cfqq))
1993                 cfqd->last_end_request = now;
1994
1995         if (sync)
1996                 RQ_CIC(rq)->last_end_request = now;
1997
1998         /*
1999          * If this is the active queue, check if it needs to be expired,
2000          * or if we want to idle in case it has no pending requests.
2001          */
2002         if (cfqd->active_queue == cfqq) {
2003                 if (cfq_cfqq_slice_new(cfqq)) {
2004                         cfq_set_prio_slice(cfqd, cfqq);
2005                         cfq_clear_cfqq_slice_new(cfqq);
2006                 }
2007                 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
2008                         cfq_slice_expired(cfqd, 1);
2009                 else if (sync && !rq_noidle(rq) &&
2010                          RB_EMPTY_ROOT(&cfqq->sort_list)) {
2011                         cfq_arm_slice_timer(cfqd);
2012                 }
2013         }
2014
2015         if (!cfqd->rq_in_driver)
2016                 cfq_schedule_dispatch(cfqd);
2017 }
2018
2019 /*
2020  * we temporarily boost lower priority queues if they are holding fs exclusive
2021  * resources. they are boosted to normal prio (CLASS_BE/4)
2022  */
2023 static void cfq_prio_boost(struct cfq_queue *cfqq)
2024 {
2025         if (has_fs_excl()) {
2026                 /*
2027                  * boost idle prio on transactions that would lock out other
2028                  * users of the filesystem
2029                  */
2030                 if (cfq_class_idle(cfqq))
2031                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
2032                 if (cfqq->ioprio > IOPRIO_NORM)
2033                         cfqq->ioprio = IOPRIO_NORM;
2034         } else {
2035                 /*
2036                  * check if we need to unboost the queue
2037                  */
2038                 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
2039                         cfqq->ioprio_class = cfqq->org_ioprio_class;
2040                 if (cfqq->ioprio != cfqq->org_ioprio)
2041                         cfqq->ioprio = cfqq->org_ioprio;
2042         }
2043 }
2044
2045 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
2046 {
2047         if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
2048             !cfq_cfqq_must_alloc_slice(cfqq)) {
2049                 cfq_mark_cfqq_must_alloc_slice(cfqq);
2050                 return ELV_MQUEUE_MUST;
2051         }
2052
2053         return ELV_MQUEUE_MAY;
2054 }
2055
2056 static int cfq_may_queue(struct request_queue *q, int rw)
2057 {
2058         struct cfq_data *cfqd = q->elevator->elevator_data;
2059         struct task_struct *tsk = current;
2060         struct cfq_io_context *cic;
2061         struct cfq_queue *cfqq;
2062
2063         /*
2064          * don't force setup of a queue from here, as a call to may_queue
2065          * does not necessarily imply that a request actually will be queued.
2066          * so just lookup a possibly existing queue, or return 'may queue'
2067          * if that fails
2068          */
2069         cic = cfq_cic_lookup(cfqd, tsk->io_context);
2070         if (!cic)
2071                 return ELV_MQUEUE_MAY;
2072
2073         cfqq = cic_to_cfqq(cic, rw & REQ_RW_SYNC);
2074         if (cfqq) {
2075                 cfq_init_prio_data(cfqq, cic->ioc);
2076                 cfq_prio_boost(cfqq);
2077
2078                 return __cfq_may_queue(cfqq);
2079         }
2080
2081         return ELV_MQUEUE_MAY;
2082 }
2083
2084 /*
2085  * queue lock held here
2086  */
2087 static void cfq_put_request(struct request *rq)
2088 {
2089         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2090
2091         if (cfqq) {
2092                 const int rw = rq_data_dir(rq);
2093
2094                 BUG_ON(!cfqq->allocated[rw]);
2095                 cfqq->allocated[rw]--;
2096
2097                 put_io_context(RQ_CIC(rq)->ioc);
2098
2099                 rq->elevator_private = NULL;
2100                 rq->elevator_private2 = NULL;
2101
2102                 cfq_put_queue(cfqq);
2103         }
2104 }
2105
2106 /*
2107  * Allocate cfq data structures associated with this request.
2108  */
2109 static int
2110 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
2111 {
2112         struct cfq_data *cfqd = q->elevator->elevator_data;
2113         struct cfq_io_context *cic;
2114         const int rw = rq_data_dir(rq);
2115         const int is_sync = rq_is_sync(rq);
2116         struct cfq_queue *cfqq;
2117         unsigned long flags;
2118
2119         might_sleep_if(gfp_mask & __GFP_WAIT);
2120
2121         cic = cfq_get_io_context(cfqd, gfp_mask);
2122
2123         spin_lock_irqsave(q->queue_lock, flags);
2124
2125         if (!cic)
2126                 goto queue_fail;
2127
2128         cfqq = cic_to_cfqq(cic, is_sync);
2129         if (!cfqq) {
2130                 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2131
2132                 if (!cfqq)
2133                         goto queue_fail;
2134
2135                 cic_set_cfqq(cic, cfqq, is_sync);
2136         }
2137
2138         cfqq->allocated[rw]++;
2139         cfq_clear_cfqq_must_alloc(cfqq);
2140         atomic_inc(&cfqq->ref);
2141
2142         spin_unlock_irqrestore(q->queue_lock, flags);
2143
2144         rq->elevator_private = cic;
2145         rq->elevator_private2 = cfqq;
2146         return 0;
2147
2148 queue_fail:
2149         if (cic)
2150                 put_io_context(cic->ioc);
2151
2152         cfq_schedule_dispatch(cfqd);
2153         spin_unlock_irqrestore(q->queue_lock, flags);
2154         cfq_log(cfqd, "set_request fail");
2155         return 1;
2156 }
2157
2158 static void cfq_kick_queue(struct work_struct *work)
2159 {
2160         struct cfq_data *cfqd =
2161                 container_of(work, struct cfq_data, unplug_work);
2162         struct request_queue *q = cfqd->queue;
2163         unsigned long flags;
2164
2165         spin_lock_irqsave(q->queue_lock, flags);
2166         blk_start_queueing(q);
2167         spin_unlock_irqrestore(q->queue_lock, flags);
2168 }
2169
2170 /*
2171  * Timer running if the active_queue is currently idling inside its time slice
2172  */
2173 static void cfq_idle_slice_timer(unsigned long data)
2174 {
2175         struct cfq_data *cfqd = (struct cfq_data *) data;
2176         struct cfq_queue *cfqq;
2177         unsigned long flags;
2178         int timed_out = 1;
2179
2180         cfq_log(cfqd, "idle timer fired");
2181
2182         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2183
2184         cfqq = cfqd->active_queue;
2185         if (cfqq) {
2186                 timed_out = 0;
2187
2188                 /*
2189                  * expired
2190                  */
2191                 if (cfq_slice_used(cfqq))
2192                         goto expire;
2193
2194                 /*
2195                  * only expire and reinvoke request handler, if there are
2196                  * other queues with pending requests
2197                  */
2198                 if (!cfqd->busy_queues)
2199                         goto out_cont;
2200
2201                 /*
2202                  * not expired and it has a request pending, let it dispatch
2203                  */
2204                 if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
2205                         cfq_mark_cfqq_must_dispatch(cfqq);
2206                         goto out_kick;
2207                 }
2208         }
2209 expire:
2210         cfq_slice_expired(cfqd, timed_out);
2211 out_kick:
2212         cfq_schedule_dispatch(cfqd);
2213 out_cont:
2214         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2215 }
2216
2217 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2218 {
2219         del_timer_sync(&cfqd->idle_slice_timer);
2220         cancel_work_sync(&cfqd->unplug_work);
2221 }
2222
2223 static void cfq_put_async_queues(struct cfq_data *cfqd)
2224 {
2225         int i;
2226
2227         for (i = 0; i < IOPRIO_BE_NR; i++) {
2228                 if (cfqd->async_cfqq[0][i])
2229                         cfq_put_queue(cfqd->async_cfqq[0][i]);
2230                 if (cfqd->async_cfqq[1][i])
2231                         cfq_put_queue(cfqd->async_cfqq[1][i]);
2232         }
2233
2234         if (cfqd->async_idle_cfqq)
2235                 cfq_put_queue(cfqd->async_idle_cfqq);
2236 }
2237
2238 static void cfq_exit_queue(struct elevator_queue *e)
2239 {
2240         struct cfq_data *cfqd = e->elevator_data;
2241         struct request_queue *q = cfqd->queue;
2242
2243         cfq_shutdown_timer_wq(cfqd);
2244
2245         spin_lock_irq(q->queue_lock);
2246
2247         if (cfqd->active_queue)
2248                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2249
2250         while (!list_empty(&cfqd->cic_list)) {
2251                 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2252                                                         struct cfq_io_context,
2253                                                         queue_list);
2254
2255                 __cfq_exit_single_io_context(cfqd, cic);
2256         }
2257
2258         cfq_put_async_queues(cfqd);
2259
2260         spin_unlock_irq(q->queue_lock);
2261
2262         cfq_shutdown_timer_wq(cfqd);
2263
2264         kfree(cfqd);
2265 }
2266
2267 static void *cfq_init_queue(struct request_queue *q)
2268 {
2269         struct cfq_data *cfqd;
2270
2271         cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2272         if (!cfqd)
2273                 return NULL;
2274
2275         cfqd->service_tree = CFQ_RB_ROOT;
2276         INIT_LIST_HEAD(&cfqd->cic_list);
2277
2278         cfqd->queue = q;
2279
2280         init_timer(&cfqd->idle_slice_timer);
2281         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2282         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2283
2284         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2285
2286         cfqd->last_end_request = jiffies;
2287         cfqd->cfq_quantum = cfq_quantum;
2288         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2289         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2290         cfqd->cfq_back_max = cfq_back_max;
2291         cfqd->cfq_back_penalty = cfq_back_penalty;
2292         cfqd->cfq_slice[0] = cfq_slice_async;
2293         cfqd->cfq_slice[1] = cfq_slice_sync;
2294         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2295         cfqd->cfq_slice_idle = cfq_slice_idle;
2296         cfqd->hw_tag = 1;
2297
2298         return cfqd;
2299 }
2300
2301 static void cfq_slab_kill(void)
2302 {
2303         /*
2304          * Caller already ensured that pending RCU callbacks are completed,
2305          * so we should have no busy allocations at this point.
2306          */
2307         if (cfq_pool)
2308                 kmem_cache_destroy(cfq_pool);
2309         if (cfq_ioc_pool)
2310                 kmem_cache_destroy(cfq_ioc_pool);
2311 }
2312
2313 static int __init cfq_slab_setup(void)
2314 {
2315         cfq_pool = KMEM_CACHE(cfq_queue, 0);
2316         if (!cfq_pool)
2317                 goto fail;
2318
2319         cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
2320         if (!cfq_ioc_pool)
2321                 goto fail;
2322
2323         return 0;
2324 fail:
2325         cfq_slab_kill();
2326         return -ENOMEM;
2327 }
2328
2329 /*
2330  * sysfs parts below -->
2331  */
2332 static ssize_t
2333 cfq_var_show(unsigned int var, char *page)
2334 {
2335         return sprintf(page, "%d\n", var);
2336 }
2337
2338 static ssize_t
2339 cfq_var_store(unsigned int *var, const char *page, size_t count)
2340 {
2341         char *p = (char *) page;
2342
2343         *var = simple_strtoul(p, &p, 10);
2344         return count;
2345 }
2346
2347 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
2348 static ssize_t __FUNC(struct elevator_queue *e, char *page)             \
2349 {                                                                       \
2350         struct cfq_data *cfqd = e->elevator_data;                       \
2351         unsigned int __data = __VAR;                                    \
2352         if (__CONV)                                                     \
2353                 __data = jiffies_to_msecs(__data);                      \
2354         return cfq_var_show(__data, (page));                            \
2355 }
2356 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2357 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2358 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2359 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2360 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2361 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2362 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2363 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2364 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2365 #undef SHOW_FUNCTION
2366
2367 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
2368 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
2369 {                                                                       \
2370         struct cfq_data *cfqd = e->elevator_data;                       \
2371         unsigned int __data;                                            \
2372         int ret = cfq_var_store(&__data, (page), count);                \
2373         if (__data < (MIN))                                             \
2374                 __data = (MIN);                                         \
2375         else if (__data > (MAX))                                        \
2376                 __data = (MAX);                                         \
2377         if (__CONV)                                                     \
2378                 *(__PTR) = msecs_to_jiffies(__data);                    \
2379         else                                                            \
2380                 *(__PTR) = __data;                                      \
2381         return ret;                                                     \
2382 }
2383 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2384 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
2385                 UINT_MAX, 1);
2386 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
2387                 UINT_MAX, 1);
2388 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2389 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
2390                 UINT_MAX, 0);
2391 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2392 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2393 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2394 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
2395                 UINT_MAX, 0);
2396 #undef STORE_FUNCTION
2397
2398 #define CFQ_ATTR(name) \
2399         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2400
2401 static struct elv_fs_entry cfq_attrs[] = {
2402         CFQ_ATTR(quantum),
2403         CFQ_ATTR(fifo_expire_sync),
2404         CFQ_ATTR(fifo_expire_async),
2405         CFQ_ATTR(back_seek_max),
2406         CFQ_ATTR(back_seek_penalty),
2407         CFQ_ATTR(slice_sync),
2408         CFQ_ATTR(slice_async),
2409         CFQ_ATTR(slice_async_rq),
2410         CFQ_ATTR(slice_idle),
2411         __ATTR_NULL
2412 };
2413
2414 static struct elevator_type iosched_cfq = {
2415         .ops = {
2416                 .elevator_merge_fn =            cfq_merge,
2417                 .elevator_merged_fn =           cfq_merged_request,
2418                 .elevator_merge_req_fn =        cfq_merged_requests,
2419                 .elevator_allow_merge_fn =      cfq_allow_merge,
2420                 .elevator_dispatch_fn =         cfq_dispatch_requests,
2421                 .elevator_add_req_fn =          cfq_insert_request,
2422                 .elevator_activate_req_fn =     cfq_activate_request,
2423                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
2424                 .elevator_queue_empty_fn =      cfq_queue_empty,
2425                 .elevator_completed_req_fn =    cfq_completed_request,
2426                 .elevator_former_req_fn =       elv_rb_former_request,
2427                 .elevator_latter_req_fn =       elv_rb_latter_request,
2428                 .elevator_set_req_fn =          cfq_set_request,
2429                 .elevator_put_req_fn =          cfq_put_request,
2430                 .elevator_may_queue_fn =        cfq_may_queue,
2431                 .elevator_init_fn =             cfq_init_queue,
2432                 .elevator_exit_fn =             cfq_exit_queue,
2433                 .trim =                         cfq_free_io_context,
2434         },
2435         .elevator_attrs =       cfq_attrs,
2436         .elevator_name =        "cfq",
2437         .elevator_owner =       THIS_MODULE,
2438 };
2439
2440 static int __init cfq_init(void)
2441 {
2442         /*
2443          * could be 0 on HZ < 1000 setups
2444          */
2445         if (!cfq_slice_async)
2446                 cfq_slice_async = 1;
2447         if (!cfq_slice_idle)
2448                 cfq_slice_idle = 1;
2449
2450         if (cfq_slab_setup())
2451                 return -ENOMEM;
2452
2453         elv_register(&iosched_cfq);
2454
2455         return 0;
2456 }
2457
2458 static void __exit cfq_exit(void)
2459 {
2460         DECLARE_COMPLETION_ONSTACK(all_gone);
2461         elv_unregister(&iosched_cfq);
2462         ioc_gone = &all_gone;
2463         /* ioc_gone's update must be visible before reading ioc_count */
2464         smp_wmb();
2465
2466         /*
2467          * this also protects us from entering cfq_slab_kill() with
2468          * pending RCU callbacks
2469          */
2470         if (elv_ioc_count_read(ioc_count))
2471                 wait_for_completion(&all_gone);
2472         cfq_slab_kill();
2473 }
2474
2475 module_init(cfq_init);
2476 module_exit(cfq_exit);
2477
2478 MODULE_AUTHOR("Jens Axboe");
2479 MODULE_LICENSE("GPL");
2480 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");