blkio: Introduce per cfq group weights and vdisktime calculations
[safe/jmp/linux-2.6] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/jiffies.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15 #include <linux/blktrace_api.h>
16 #include "blk-cgroup.h"
17
18 /*
19  * tunables
20  */
21 /* max queue in one round of service */
22 static const int cfq_quantum = 4;
23 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
24 /* maximum backwards seek, in KiB */
25 static const int cfq_back_max = 16 * 1024;
26 /* penalty of a backwards seek */
27 static const int cfq_back_penalty = 2;
28 static const int cfq_slice_sync = HZ / 10;
29 static int cfq_slice_async = HZ / 25;
30 static const int cfq_slice_async_rq = 2;
31 static int cfq_slice_idle = HZ / 125;
32 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
33 static const int cfq_hist_divisor = 4;
34
35 /*
36  * offset from end of service tree
37  */
38 #define CFQ_IDLE_DELAY          (HZ / 5)
39
40 /*
41  * below this threshold, we consider thinktime immediate
42  */
43 #define CFQ_MIN_TT              (2)
44
45 /*
46  * Allow merged cfqqs to perform this amount of seeky I/O before
47  * deciding to break the queues up again.
48  */
49 #define CFQQ_COOP_TOUT          (HZ)
50
51 #define CFQ_SLICE_SCALE         (5)
52 #define CFQ_HW_QUEUE_MIN        (5)
53 #define CFQ_SERVICE_SHIFT       12
54
55 #define RQ_CIC(rq)              \
56         ((struct cfq_io_context *) (rq)->elevator_private)
57 #define RQ_CFQQ(rq)             (struct cfq_queue *) ((rq)->elevator_private2)
58
59 static struct kmem_cache *cfq_pool;
60 static struct kmem_cache *cfq_ioc_pool;
61
62 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
63 static struct completion *ioc_gone;
64 static DEFINE_SPINLOCK(ioc_gone_lock);
65
66 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
67 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
68 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
69
70 #define sample_valid(samples)   ((samples) > 80)
71 #define rb_entry_cfqg(node)     rb_entry((node), struct cfq_group, rb_node)
72
73 /*
74  * Most of our rbtree usage is for sorting with min extraction, so
75  * if we cache the leftmost node we don't have to walk down the tree
76  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
77  * move this into the elevator for the rq sorting as well.
78  */
79 struct cfq_rb_root {
80         struct rb_root rb;
81         struct rb_node *left;
82         unsigned count;
83         u64 min_vdisktime;
84         struct rb_node *active;
85 };
86 #define CFQ_RB_ROOT     (struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
87
88 /*
89  * Per process-grouping structure
90  */
91 struct cfq_queue {
92         /* reference count */
93         atomic_t ref;
94         /* various state flags, see below */
95         unsigned int flags;
96         /* parent cfq_data */
97         struct cfq_data *cfqd;
98         /* service_tree member */
99         struct rb_node rb_node;
100         /* service_tree key */
101         unsigned long rb_key;
102         /* prio tree member */
103         struct rb_node p_node;
104         /* prio tree root we belong to, if any */
105         struct rb_root *p_root;
106         /* sorted list of pending requests */
107         struct rb_root sort_list;
108         /* if fifo isn't expired, next request to serve */
109         struct request *next_rq;
110         /* requests queued in sort_list */
111         int queued[2];
112         /* currently allocated requests */
113         int allocated[2];
114         /* fifo list of requests in sort_list */
115         struct list_head fifo;
116
117         unsigned long slice_end;
118         long slice_resid;
119         unsigned int slice_dispatch;
120
121         /* pending metadata requests */
122         int meta_pending;
123         /* number of requests that are on the dispatch list or inside driver */
124         int dispatched;
125
126         /* io prio of this group */
127         unsigned short ioprio, org_ioprio;
128         unsigned short ioprio_class, org_ioprio_class;
129
130         unsigned int seek_samples;
131         u64 seek_total;
132         sector_t seek_mean;
133         sector_t last_request_pos;
134         unsigned long seeky_start;
135
136         pid_t pid;
137
138         struct cfq_rb_root *service_tree;
139         struct cfq_queue *new_cfqq;
140         struct cfq_group *cfqg;
141 };
142
143 /*
144  * First index in the service_trees.
145  * IDLE is handled separately, so it has negative index
146  */
147 enum wl_prio_t {
148         BE_WORKLOAD = 0,
149         RT_WORKLOAD = 1,
150         IDLE_WORKLOAD = 2,
151 };
152
153 /*
154  * Second index in the service_trees.
155  */
156 enum wl_type_t {
157         ASYNC_WORKLOAD = 0,
158         SYNC_NOIDLE_WORKLOAD = 1,
159         SYNC_WORKLOAD = 2
160 };
161
162 /* This is per cgroup per device grouping structure */
163 struct cfq_group {
164         /* group service_tree member */
165         struct rb_node rb_node;
166
167         /* group service_tree key */
168         u64 vdisktime;
169         unsigned int weight;
170         bool on_st;
171
172         /* number of cfqq currently on this group */
173         int nr_cfqq;
174
175         /*
176          * rr lists of queues with requests, onle rr for each priority class.
177          * Counts are embedded in the cfq_rb_root
178          */
179         struct cfq_rb_root service_trees[2][3];
180         struct cfq_rb_root service_tree_idle;
181 };
182
183 /*
184  * Per block device queue structure
185  */
186 struct cfq_data {
187         struct request_queue *queue;
188         /* Root service tree for cfq_groups */
189         struct cfq_rb_root grp_service_tree;
190         struct cfq_group root_group;
191
192         /*
193          * The priority currently being served
194          */
195         enum wl_prio_t serving_prio;
196         enum wl_type_t serving_type;
197         unsigned long workload_expires;
198         struct cfq_group *serving_group;
199         bool noidle_tree_requires_idle;
200
201         /*
202          * Each priority tree is sorted by next_request position.  These
203          * trees are used when determining if two or more queues are
204          * interleaving requests (see cfq_close_cooperator).
205          */
206         struct rb_root prio_trees[CFQ_PRIO_LISTS];
207
208         unsigned int busy_queues;
209         unsigned int busy_queues_avg[2];
210
211         int rq_in_driver[2];
212         int sync_flight;
213
214         /*
215          * queue-depth detection
216          */
217         int rq_queued;
218         int hw_tag;
219         /*
220          * hw_tag can be
221          * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
222          *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
223          *  0 => no NCQ
224          */
225         int hw_tag_est_depth;
226         unsigned int hw_tag_samples;
227
228         /*
229          * idle window management
230          */
231         struct timer_list idle_slice_timer;
232         struct work_struct unplug_work;
233
234         struct cfq_queue *active_queue;
235         struct cfq_io_context *active_cic;
236
237         /*
238          * async queue for each priority case
239          */
240         struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
241         struct cfq_queue *async_idle_cfqq;
242
243         sector_t last_position;
244
245         /*
246          * tunables, see top of file
247          */
248         unsigned int cfq_quantum;
249         unsigned int cfq_fifo_expire[2];
250         unsigned int cfq_back_penalty;
251         unsigned int cfq_back_max;
252         unsigned int cfq_slice[2];
253         unsigned int cfq_slice_async_rq;
254         unsigned int cfq_slice_idle;
255         unsigned int cfq_latency;
256
257         struct list_head cic_list;
258
259         /*
260          * Fallback dummy cfqq for extreme OOM conditions
261          */
262         struct cfq_queue oom_cfqq;
263
264         unsigned long last_end_sync_rq;
265 };
266
267 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
268                                             enum wl_prio_t prio,
269                                             enum wl_type_t type,
270                                             struct cfq_data *cfqd)
271 {
272         if (!cfqg)
273                 return NULL;
274
275         if (prio == IDLE_WORKLOAD)
276                 return &cfqg->service_tree_idle;
277
278         return &cfqg->service_trees[prio][type];
279 }
280
281 enum cfqq_state_flags {
282         CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
283         CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
284         CFQ_CFQQ_FLAG_must_dispatch,    /* must be allowed a dispatch */
285         CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
286         CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
287         CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
288         CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
289         CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
290         CFQ_CFQQ_FLAG_sync,             /* synchronous queue */
291         CFQ_CFQQ_FLAG_coop,             /* cfqq is shared */
292         CFQ_CFQQ_FLAG_deep,             /* sync cfqq experienced large depth */
293 };
294
295 #define CFQ_CFQQ_FNS(name)                                              \
296 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
297 {                                                                       \
298         (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);                   \
299 }                                                                       \
300 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
301 {                                                                       \
302         (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                  \
303 }                                                                       \
304 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
305 {                                                                       \
306         return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;      \
307 }
308
309 CFQ_CFQQ_FNS(on_rr);
310 CFQ_CFQQ_FNS(wait_request);
311 CFQ_CFQQ_FNS(must_dispatch);
312 CFQ_CFQQ_FNS(must_alloc_slice);
313 CFQ_CFQQ_FNS(fifo_expire);
314 CFQ_CFQQ_FNS(idle_window);
315 CFQ_CFQQ_FNS(prio_changed);
316 CFQ_CFQQ_FNS(slice_new);
317 CFQ_CFQQ_FNS(sync);
318 CFQ_CFQQ_FNS(coop);
319 CFQ_CFQQ_FNS(deep);
320 #undef CFQ_CFQQ_FNS
321
322 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
323         blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
324 #define cfq_log(cfqd, fmt, args...)     \
325         blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
326
327 /* Traverses through cfq group service trees */
328 #define for_each_cfqg_st(cfqg, i, j, st) \
329         for (i = 0; i <= IDLE_WORKLOAD; i++) \
330                 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
331                         : &cfqg->service_tree_idle; \
332                         (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
333                         (i == IDLE_WORKLOAD && j == 0); \
334                         j++, st = i < IDLE_WORKLOAD ? \
335                         &cfqg->service_trees[i][j]: NULL) \
336
337
338 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
339 {
340         if (cfq_class_idle(cfqq))
341                 return IDLE_WORKLOAD;
342         if (cfq_class_rt(cfqq))
343                 return RT_WORKLOAD;
344         return BE_WORKLOAD;
345 }
346
347
348 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
349 {
350         if (!cfq_cfqq_sync(cfqq))
351                 return ASYNC_WORKLOAD;
352         if (!cfq_cfqq_idle_window(cfqq))
353                 return SYNC_NOIDLE_WORKLOAD;
354         return SYNC_WORKLOAD;
355 }
356
357 static inline int cfq_busy_queues_wl(enum wl_prio_t wl, struct cfq_data *cfqd)
358 {
359         struct cfq_group *cfqg = &cfqd->root_group;
360
361         if (wl == IDLE_WORKLOAD)
362                 return cfqg->service_tree_idle.count;
363
364         return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
365                 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
366                 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
367 }
368
369 static void cfq_dispatch_insert(struct request_queue *, struct request *);
370 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
371                                        struct io_context *, gfp_t);
372 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
373                                                 struct io_context *);
374
375 static inline int rq_in_driver(struct cfq_data *cfqd)
376 {
377         return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
378 }
379
380 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
381                                             bool is_sync)
382 {
383         return cic->cfqq[is_sync];
384 }
385
386 static inline void cic_set_cfqq(struct cfq_io_context *cic,
387                                 struct cfq_queue *cfqq, bool is_sync)
388 {
389         cic->cfqq[is_sync] = cfqq;
390 }
391
392 /*
393  * We regard a request as SYNC, if it's either a read or has the SYNC bit
394  * set (in which case it could also be direct WRITE).
395  */
396 static inline bool cfq_bio_sync(struct bio *bio)
397 {
398         return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
399 }
400
401 /*
402  * scheduler run of queue, if there are requests pending and no one in the
403  * driver that will restart queueing
404  */
405 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
406 {
407         if (cfqd->busy_queues) {
408                 cfq_log(cfqd, "schedule dispatch");
409                 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
410         }
411 }
412
413 static int cfq_queue_empty(struct request_queue *q)
414 {
415         struct cfq_data *cfqd = q->elevator->elevator_data;
416
417         return !cfqd->rq_queued;
418 }
419
420 /*
421  * Scale schedule slice based on io priority. Use the sync time slice only
422  * if a queue is marked sync and has sync io queued. A sync queue with async
423  * io only, should not get full sync slice length.
424  */
425 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
426                                  unsigned short prio)
427 {
428         const int base_slice = cfqd->cfq_slice[sync];
429
430         WARN_ON(prio >= IOPRIO_BE_NR);
431
432         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
433 }
434
435 static inline int
436 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
437 {
438         return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
439 }
440
441 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
442 {
443         u64 d = delta << CFQ_SERVICE_SHIFT;
444
445         d = d * BLKIO_WEIGHT_DEFAULT;
446         do_div(d, cfqg->weight);
447         return d;
448 }
449
450 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
451 {
452         s64 delta = (s64)(vdisktime - min_vdisktime);
453         if (delta > 0)
454                 min_vdisktime = vdisktime;
455
456         return min_vdisktime;
457 }
458
459 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
460 {
461         s64 delta = (s64)(vdisktime - min_vdisktime);
462         if (delta < 0)
463                 min_vdisktime = vdisktime;
464
465         return min_vdisktime;
466 }
467
468 static void update_min_vdisktime(struct cfq_rb_root *st)
469 {
470         u64 vdisktime = st->min_vdisktime;
471         struct cfq_group *cfqg;
472
473         if (st->active) {
474                 cfqg = rb_entry_cfqg(st->active);
475                 vdisktime = cfqg->vdisktime;
476         }
477
478         if (st->left) {
479                 cfqg = rb_entry_cfqg(st->left);
480                 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
481         }
482
483         st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
484 }
485
486 /*
487  * get averaged number of queues of RT/BE priority.
488  * average is updated, with a formula that gives more weight to higher numbers,
489  * to quickly follows sudden increases and decrease slowly
490  */
491
492 static inline unsigned cfq_get_avg_queues(struct cfq_data *cfqd, bool rt)
493 {
494         unsigned min_q, max_q;
495         unsigned mult  = cfq_hist_divisor - 1;
496         unsigned round = cfq_hist_divisor / 2;
497         unsigned busy = cfq_busy_queues_wl(rt, cfqd);
498
499         min_q = min(cfqd->busy_queues_avg[rt], busy);
500         max_q = max(cfqd->busy_queues_avg[rt], busy);
501         cfqd->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
502                 cfq_hist_divisor;
503         return cfqd->busy_queues_avg[rt];
504 }
505
506 static inline void
507 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
508 {
509         unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
510         if (cfqd->cfq_latency) {
511                 /* interested queues (we consider only the ones with the same
512                  * priority class) */
513                 unsigned iq = cfq_get_avg_queues(cfqd, cfq_class_rt(cfqq));
514                 unsigned sync_slice = cfqd->cfq_slice[1];
515                 unsigned expect_latency = sync_slice * iq;
516                 if (expect_latency > cfq_target_latency) {
517                         unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
518                         /* scale low_slice according to IO priority
519                          * and sync vs async */
520                         unsigned low_slice =
521                                 min(slice, base_low_slice * slice / sync_slice);
522                         /* the adapted slice value is scaled to fit all iqs
523                          * into the target latency */
524                         slice = max(slice * cfq_target_latency / expect_latency,
525                                     low_slice);
526                 }
527         }
528         cfqq->slice_end = jiffies + slice;
529         cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
530 }
531
532 /*
533  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
534  * isn't valid until the first request from the dispatch is activated
535  * and the slice time set.
536  */
537 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
538 {
539         if (cfq_cfqq_slice_new(cfqq))
540                 return 0;
541         if (time_before(jiffies, cfqq->slice_end))
542                 return 0;
543
544         return 1;
545 }
546
547 /*
548  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
549  * We choose the request that is closest to the head right now. Distance
550  * behind the head is penalized and only allowed to a certain extent.
551  */
552 static struct request *
553 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
554 {
555         sector_t s1, s2, d1 = 0, d2 = 0;
556         unsigned long back_max;
557 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
558 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
559         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
560
561         if (rq1 == NULL || rq1 == rq2)
562                 return rq2;
563         if (rq2 == NULL)
564                 return rq1;
565
566         if (rq_is_sync(rq1) && !rq_is_sync(rq2))
567                 return rq1;
568         else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
569                 return rq2;
570         if (rq_is_meta(rq1) && !rq_is_meta(rq2))
571                 return rq1;
572         else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
573                 return rq2;
574
575         s1 = blk_rq_pos(rq1);
576         s2 = blk_rq_pos(rq2);
577
578         /*
579          * by definition, 1KiB is 2 sectors
580          */
581         back_max = cfqd->cfq_back_max * 2;
582
583         /*
584          * Strict one way elevator _except_ in the case where we allow
585          * short backward seeks which are biased as twice the cost of a
586          * similar forward seek.
587          */
588         if (s1 >= last)
589                 d1 = s1 - last;
590         else if (s1 + back_max >= last)
591                 d1 = (last - s1) * cfqd->cfq_back_penalty;
592         else
593                 wrap |= CFQ_RQ1_WRAP;
594
595         if (s2 >= last)
596                 d2 = s2 - last;
597         else if (s2 + back_max >= last)
598                 d2 = (last - s2) * cfqd->cfq_back_penalty;
599         else
600                 wrap |= CFQ_RQ2_WRAP;
601
602         /* Found required data */
603
604         /*
605          * By doing switch() on the bit mask "wrap" we avoid having to
606          * check two variables for all permutations: --> faster!
607          */
608         switch (wrap) {
609         case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
610                 if (d1 < d2)
611                         return rq1;
612                 else if (d2 < d1)
613                         return rq2;
614                 else {
615                         if (s1 >= s2)
616                                 return rq1;
617                         else
618                                 return rq2;
619                 }
620
621         case CFQ_RQ2_WRAP:
622                 return rq1;
623         case CFQ_RQ1_WRAP:
624                 return rq2;
625         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
626         default:
627                 /*
628                  * Since both rqs are wrapped,
629                  * start with the one that's further behind head
630                  * (--> only *one* back seek required),
631                  * since back seek takes more time than forward.
632                  */
633                 if (s1 <= s2)
634                         return rq1;
635                 else
636                         return rq2;
637         }
638 }
639
640 /*
641  * The below is leftmost cache rbtree addon
642  */
643 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
644 {
645         /* Service tree is empty */
646         if (!root->count)
647                 return NULL;
648
649         if (!root->left)
650                 root->left = rb_first(&root->rb);
651
652         if (root->left)
653                 return rb_entry(root->left, struct cfq_queue, rb_node);
654
655         return NULL;
656 }
657
658 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
659 {
660         if (!root->left)
661                 root->left = rb_first(&root->rb);
662
663         if (root->left)
664                 return rb_entry_cfqg(root->left);
665
666         return NULL;
667 }
668
669 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
670 {
671         rb_erase(n, root);
672         RB_CLEAR_NODE(n);
673 }
674
675 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
676 {
677         if (root->left == n)
678                 root->left = NULL;
679         rb_erase_init(n, &root->rb);
680         --root->count;
681 }
682
683 /*
684  * would be nice to take fifo expire time into account as well
685  */
686 static struct request *
687 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
688                   struct request *last)
689 {
690         struct rb_node *rbnext = rb_next(&last->rb_node);
691         struct rb_node *rbprev = rb_prev(&last->rb_node);
692         struct request *next = NULL, *prev = NULL;
693
694         BUG_ON(RB_EMPTY_NODE(&last->rb_node));
695
696         if (rbprev)
697                 prev = rb_entry_rq(rbprev);
698
699         if (rbnext)
700                 next = rb_entry_rq(rbnext);
701         else {
702                 rbnext = rb_first(&cfqq->sort_list);
703                 if (rbnext && rbnext != &last->rb_node)
704                         next = rb_entry_rq(rbnext);
705         }
706
707         return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
708 }
709
710 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
711                                       struct cfq_queue *cfqq)
712 {
713         /*
714          * just an approximation, should be ok.
715          */
716         return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
717                        cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
718 }
719
720 static inline s64
721 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
722 {
723         return cfqg->vdisktime - st->min_vdisktime;
724 }
725
726 static void
727 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
728 {
729         struct rb_node **node = &st->rb.rb_node;
730         struct rb_node *parent = NULL;
731         struct cfq_group *__cfqg;
732         s64 key = cfqg_key(st, cfqg);
733         int left = 1;
734
735         while (*node != NULL) {
736                 parent = *node;
737                 __cfqg = rb_entry_cfqg(parent);
738
739                 if (key < cfqg_key(st, __cfqg))
740                         node = &parent->rb_left;
741                 else {
742                         node = &parent->rb_right;
743                         left = 0;
744                 }
745         }
746
747         if (left)
748                 st->left = &cfqg->rb_node;
749
750         rb_link_node(&cfqg->rb_node, parent, node);
751         rb_insert_color(&cfqg->rb_node, &st->rb);
752 }
753
754 static void
755 cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
756 {
757         struct cfq_rb_root *st = &cfqd->grp_service_tree;
758         struct cfq_group *__cfqg;
759         struct rb_node *n;
760
761         cfqg->nr_cfqq++;
762         if (cfqg->on_st)
763                 return;
764
765         /*
766          * Currently put the group at the end. Later implement something
767          * so that groups get lesser vtime based on their weights, so that
768          * if group does not loose all if it was not continously backlogged.
769          */
770         n = rb_last(&st->rb);
771         if (n) {
772                 __cfqg = rb_entry_cfqg(n);
773                 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
774         } else
775                 cfqg->vdisktime = st->min_vdisktime;
776
777         __cfq_group_service_tree_add(st, cfqg);
778         cfqg->on_st = true;
779 }
780
781 static void
782 cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
783 {
784         struct cfq_rb_root *st = &cfqd->grp_service_tree;
785
786         if (st->active == &cfqg->rb_node)
787                 st->active = NULL;
788
789         BUG_ON(cfqg->nr_cfqq < 1);
790         cfqg->nr_cfqq--;
791
792         /* If there are other cfq queues under this group, don't delete it */
793         if (cfqg->nr_cfqq)
794                 return;
795
796         cfqg->on_st = false;
797         if (!RB_EMPTY_NODE(&cfqg->rb_node))
798                 cfq_rb_erase(&cfqg->rb_node, st);
799 }
800
801 /*
802  * The cfqd->service_trees holds all pending cfq_queue's that have
803  * requests waiting to be processed. It is sorted in the order that
804  * we will service the queues.
805  */
806 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
807                                  bool add_front)
808 {
809         struct rb_node **p, *parent;
810         struct cfq_queue *__cfqq;
811         unsigned long rb_key;
812         struct cfq_rb_root *service_tree;
813         int left;
814
815         service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
816                                                 cfqq_type(cfqq), cfqd);
817         if (cfq_class_idle(cfqq)) {
818                 rb_key = CFQ_IDLE_DELAY;
819                 parent = rb_last(&service_tree->rb);
820                 if (parent && parent != &cfqq->rb_node) {
821                         __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
822                         rb_key += __cfqq->rb_key;
823                 } else
824                         rb_key += jiffies;
825         } else if (!add_front) {
826                 /*
827                  * Get our rb key offset. Subtract any residual slice
828                  * value carried from last service. A negative resid
829                  * count indicates slice overrun, and this should position
830                  * the next service time further away in the tree.
831                  */
832                 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
833                 rb_key -= cfqq->slice_resid;
834                 cfqq->slice_resid = 0;
835         } else {
836                 rb_key = -HZ;
837                 __cfqq = cfq_rb_first(service_tree);
838                 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
839         }
840
841         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
842                 /*
843                  * same position, nothing more to do
844                  */
845                 if (rb_key == cfqq->rb_key &&
846                     cfqq->service_tree == service_tree)
847                         return;
848
849                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
850                 cfqq->service_tree = NULL;
851         }
852
853         left = 1;
854         parent = NULL;
855         cfqq->service_tree = service_tree;
856         p = &service_tree->rb.rb_node;
857         while (*p) {
858                 struct rb_node **n;
859
860                 parent = *p;
861                 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
862
863                 /*
864                  * sort by key, that represents service time.
865                  */
866                 if (time_before(rb_key, __cfqq->rb_key))
867                         n = &(*p)->rb_left;
868                 else {
869                         n = &(*p)->rb_right;
870                         left = 0;
871                 }
872
873                 p = n;
874         }
875
876         if (left)
877                 service_tree->left = &cfqq->rb_node;
878
879         cfqq->rb_key = rb_key;
880         rb_link_node(&cfqq->rb_node, parent, p);
881         rb_insert_color(&cfqq->rb_node, &service_tree->rb);
882         service_tree->count++;
883         cfq_group_service_tree_add(cfqd, cfqq->cfqg);
884 }
885
886 static struct cfq_queue *
887 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
888                      sector_t sector, struct rb_node **ret_parent,
889                      struct rb_node ***rb_link)
890 {
891         struct rb_node **p, *parent;
892         struct cfq_queue *cfqq = NULL;
893
894         parent = NULL;
895         p = &root->rb_node;
896         while (*p) {
897                 struct rb_node **n;
898
899                 parent = *p;
900                 cfqq = rb_entry(parent, struct cfq_queue, p_node);
901
902                 /*
903                  * Sort strictly based on sector.  Smallest to the left,
904                  * largest to the right.
905                  */
906                 if (sector > blk_rq_pos(cfqq->next_rq))
907                         n = &(*p)->rb_right;
908                 else if (sector < blk_rq_pos(cfqq->next_rq))
909                         n = &(*p)->rb_left;
910                 else
911                         break;
912                 p = n;
913                 cfqq = NULL;
914         }
915
916         *ret_parent = parent;
917         if (rb_link)
918                 *rb_link = p;
919         return cfqq;
920 }
921
922 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
923 {
924         struct rb_node **p, *parent;
925         struct cfq_queue *__cfqq;
926
927         if (cfqq->p_root) {
928                 rb_erase(&cfqq->p_node, cfqq->p_root);
929                 cfqq->p_root = NULL;
930         }
931
932         if (cfq_class_idle(cfqq))
933                 return;
934         if (!cfqq->next_rq)
935                 return;
936
937         cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
938         __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
939                                       blk_rq_pos(cfqq->next_rq), &parent, &p);
940         if (!__cfqq) {
941                 rb_link_node(&cfqq->p_node, parent, p);
942                 rb_insert_color(&cfqq->p_node, cfqq->p_root);
943         } else
944                 cfqq->p_root = NULL;
945 }
946
947 /*
948  * Update cfqq's position in the service tree.
949  */
950 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
951 {
952         /*
953          * Resorting requires the cfqq to be on the RR list already.
954          */
955         if (cfq_cfqq_on_rr(cfqq)) {
956                 cfq_service_tree_add(cfqd, cfqq, 0);
957                 cfq_prio_tree_add(cfqd, cfqq);
958         }
959 }
960
961 /*
962  * add to busy list of queues for service, trying to be fair in ordering
963  * the pending list according to last request service
964  */
965 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
966 {
967         cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
968         BUG_ON(cfq_cfqq_on_rr(cfqq));
969         cfq_mark_cfqq_on_rr(cfqq);
970         cfqd->busy_queues++;
971
972         cfq_resort_rr_list(cfqd, cfqq);
973 }
974
975 /*
976  * Called when the cfqq no longer has requests pending, remove it from
977  * the service tree.
978  */
979 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
980 {
981         cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
982         BUG_ON(!cfq_cfqq_on_rr(cfqq));
983         cfq_clear_cfqq_on_rr(cfqq);
984
985         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
986                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
987                 cfqq->service_tree = NULL;
988         }
989         if (cfqq->p_root) {
990                 rb_erase(&cfqq->p_node, cfqq->p_root);
991                 cfqq->p_root = NULL;
992         }
993
994         cfq_group_service_tree_del(cfqd, cfqq->cfqg);
995         BUG_ON(!cfqd->busy_queues);
996         cfqd->busy_queues--;
997 }
998
999 /*
1000  * rb tree support functions
1001  */
1002 static void cfq_del_rq_rb(struct request *rq)
1003 {
1004         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1005         const int sync = rq_is_sync(rq);
1006
1007         BUG_ON(!cfqq->queued[sync]);
1008         cfqq->queued[sync]--;
1009
1010         elv_rb_del(&cfqq->sort_list, rq);
1011
1012         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1013                 /*
1014                  * Queue will be deleted from service tree when we actually
1015                  * expire it later. Right now just remove it from prio tree
1016                  * as it is empty.
1017                  */
1018                 if (cfqq->p_root) {
1019                         rb_erase(&cfqq->p_node, cfqq->p_root);
1020                         cfqq->p_root = NULL;
1021                 }
1022         }
1023 }
1024
1025 static void cfq_add_rq_rb(struct request *rq)
1026 {
1027         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1028         struct cfq_data *cfqd = cfqq->cfqd;
1029         struct request *__alias, *prev;
1030
1031         cfqq->queued[rq_is_sync(rq)]++;
1032
1033         /*
1034          * looks a little odd, but the first insert might return an alias.
1035          * if that happens, put the alias on the dispatch list
1036          */
1037         while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1038                 cfq_dispatch_insert(cfqd->queue, __alias);
1039
1040         if (!cfq_cfqq_on_rr(cfqq))
1041                 cfq_add_cfqq_rr(cfqd, cfqq);
1042
1043         /*
1044          * check if this request is a better next-serve candidate
1045          */
1046         prev = cfqq->next_rq;
1047         cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1048
1049         /*
1050          * adjust priority tree position, if ->next_rq changes
1051          */
1052         if (prev != cfqq->next_rq)
1053                 cfq_prio_tree_add(cfqd, cfqq);
1054
1055         BUG_ON(!cfqq->next_rq);
1056 }
1057
1058 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1059 {
1060         elv_rb_del(&cfqq->sort_list, rq);
1061         cfqq->queued[rq_is_sync(rq)]--;
1062         cfq_add_rq_rb(rq);
1063 }
1064
1065 static struct request *
1066 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1067 {
1068         struct task_struct *tsk = current;
1069         struct cfq_io_context *cic;
1070         struct cfq_queue *cfqq;
1071
1072         cic = cfq_cic_lookup(cfqd, tsk->io_context);
1073         if (!cic)
1074                 return NULL;
1075
1076         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1077         if (cfqq) {
1078                 sector_t sector = bio->bi_sector + bio_sectors(bio);
1079
1080                 return elv_rb_find(&cfqq->sort_list, sector);
1081         }
1082
1083         return NULL;
1084 }
1085
1086 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1087 {
1088         struct cfq_data *cfqd = q->elevator->elevator_data;
1089
1090         cfqd->rq_in_driver[rq_is_sync(rq)]++;
1091         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1092                                                 rq_in_driver(cfqd));
1093
1094         cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1095 }
1096
1097 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1098 {
1099         struct cfq_data *cfqd = q->elevator->elevator_data;
1100         const int sync = rq_is_sync(rq);
1101
1102         WARN_ON(!cfqd->rq_in_driver[sync]);
1103         cfqd->rq_in_driver[sync]--;
1104         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1105                                                 rq_in_driver(cfqd));
1106 }
1107
1108 static void cfq_remove_request(struct request *rq)
1109 {
1110         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1111
1112         if (cfqq->next_rq == rq)
1113                 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1114
1115         list_del_init(&rq->queuelist);
1116         cfq_del_rq_rb(rq);
1117
1118         cfqq->cfqd->rq_queued--;
1119         if (rq_is_meta(rq)) {
1120                 WARN_ON(!cfqq->meta_pending);
1121                 cfqq->meta_pending--;
1122         }
1123 }
1124
1125 static int cfq_merge(struct request_queue *q, struct request **req,
1126                      struct bio *bio)
1127 {
1128         struct cfq_data *cfqd = q->elevator->elevator_data;
1129         struct request *__rq;
1130
1131         __rq = cfq_find_rq_fmerge(cfqd, bio);
1132         if (__rq && elv_rq_merge_ok(__rq, bio)) {
1133                 *req = __rq;
1134                 return ELEVATOR_FRONT_MERGE;
1135         }
1136
1137         return ELEVATOR_NO_MERGE;
1138 }
1139
1140 static void cfq_merged_request(struct request_queue *q, struct request *req,
1141                                int type)
1142 {
1143         if (type == ELEVATOR_FRONT_MERGE) {
1144                 struct cfq_queue *cfqq = RQ_CFQQ(req);
1145
1146                 cfq_reposition_rq_rb(cfqq, req);
1147         }
1148 }
1149
1150 static void
1151 cfq_merged_requests(struct request_queue *q, struct request *rq,
1152                     struct request *next)
1153 {
1154         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1155         /*
1156          * reposition in fifo if next is older than rq
1157          */
1158         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1159             time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1160                 list_move(&rq->queuelist, &next->queuelist);
1161                 rq_set_fifo_time(rq, rq_fifo_time(next));
1162         }
1163
1164         if (cfqq->next_rq == next)
1165                 cfqq->next_rq = rq;
1166         cfq_remove_request(next);
1167 }
1168
1169 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1170                            struct bio *bio)
1171 {
1172         struct cfq_data *cfqd = q->elevator->elevator_data;
1173         struct cfq_io_context *cic;
1174         struct cfq_queue *cfqq;
1175
1176         /*
1177          * Disallow merge of a sync bio into an async request.
1178          */
1179         if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1180                 return false;
1181
1182         /*
1183          * Lookup the cfqq that this bio will be queued with. Allow
1184          * merge only if rq is queued there.
1185          */
1186         cic = cfq_cic_lookup(cfqd, current->io_context);
1187         if (!cic)
1188                 return false;
1189
1190         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1191         return cfqq == RQ_CFQQ(rq);
1192 }
1193
1194 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1195                                    struct cfq_queue *cfqq)
1196 {
1197         if (cfqq) {
1198                 cfq_log_cfqq(cfqd, cfqq, "set_active");
1199                 cfqq->slice_end = 0;
1200                 cfqq->slice_dispatch = 0;
1201
1202                 cfq_clear_cfqq_wait_request(cfqq);
1203                 cfq_clear_cfqq_must_dispatch(cfqq);
1204                 cfq_clear_cfqq_must_alloc_slice(cfqq);
1205                 cfq_clear_cfqq_fifo_expire(cfqq);
1206                 cfq_mark_cfqq_slice_new(cfqq);
1207
1208                 del_timer(&cfqd->idle_slice_timer);
1209         }
1210
1211         cfqd->active_queue = cfqq;
1212 }
1213
1214 /*
1215  * current cfqq expired its slice (or was too idle), select new one
1216  */
1217 static void
1218 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1219                     bool timed_out)
1220 {
1221         cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1222
1223         if (cfq_cfqq_wait_request(cfqq))
1224                 del_timer(&cfqd->idle_slice_timer);
1225
1226         cfq_clear_cfqq_wait_request(cfqq);
1227
1228         /*
1229          * store what was left of this slice, if the queue idled/timed out
1230          */
1231         if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1232                 cfqq->slice_resid = cfqq->slice_end - jiffies;
1233                 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1234         }
1235
1236         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1237                 cfq_del_cfqq_rr(cfqd, cfqq);
1238
1239         cfq_resort_rr_list(cfqd, cfqq);
1240
1241         if (cfqq == cfqd->active_queue)
1242                 cfqd->active_queue = NULL;
1243
1244         if (cfqd->active_cic) {
1245                 put_io_context(cfqd->active_cic->ioc);
1246                 cfqd->active_cic = NULL;
1247         }
1248 }
1249
1250 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1251 {
1252         struct cfq_queue *cfqq = cfqd->active_queue;
1253
1254         if (cfqq)
1255                 __cfq_slice_expired(cfqd, cfqq, timed_out);
1256 }
1257
1258 /*
1259  * Get next queue for service. Unless we have a queue preemption,
1260  * we'll simply select the first cfqq in the service tree.
1261  */
1262 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1263 {
1264         struct cfq_rb_root *service_tree =
1265                 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1266                                         cfqd->serving_type, cfqd);
1267
1268         if (!cfqd->rq_queued)
1269                 return NULL;
1270
1271         /* There is nothing to dispatch */
1272         if (!service_tree)
1273                 return NULL;
1274         if (RB_EMPTY_ROOT(&service_tree->rb))
1275                 return NULL;
1276         return cfq_rb_first(service_tree);
1277 }
1278
1279 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1280 {
1281         struct cfq_group *cfqg = &cfqd->root_group;
1282         struct cfq_queue *cfqq;
1283         int i, j;
1284         struct cfq_rb_root *st;
1285
1286         if (!cfqd->rq_queued)
1287                 return NULL;
1288
1289         for_each_cfqg_st(cfqg, i, j, st)
1290                 if ((cfqq = cfq_rb_first(st)) != NULL)
1291                         return cfqq;
1292         return NULL;
1293 }
1294
1295 /*
1296  * Get and set a new active queue for service.
1297  */
1298 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1299                                               struct cfq_queue *cfqq)
1300 {
1301         if (!cfqq)
1302                 cfqq = cfq_get_next_queue(cfqd);
1303
1304         __cfq_set_active_queue(cfqd, cfqq);
1305         return cfqq;
1306 }
1307
1308 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1309                                           struct request *rq)
1310 {
1311         if (blk_rq_pos(rq) >= cfqd->last_position)
1312                 return blk_rq_pos(rq) - cfqd->last_position;
1313         else
1314                 return cfqd->last_position - blk_rq_pos(rq);
1315 }
1316
1317 #define CFQQ_SEEK_THR           8 * 1024
1318 #define CFQQ_SEEKY(cfqq)        ((cfqq)->seek_mean > CFQQ_SEEK_THR)
1319
1320 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1321                                struct request *rq)
1322 {
1323         sector_t sdist = cfqq->seek_mean;
1324
1325         if (!sample_valid(cfqq->seek_samples))
1326                 sdist = CFQQ_SEEK_THR;
1327
1328         return cfq_dist_from_last(cfqd, rq) <= sdist;
1329 }
1330
1331 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1332                                     struct cfq_queue *cur_cfqq)
1333 {
1334         struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1335         struct rb_node *parent, *node;
1336         struct cfq_queue *__cfqq;
1337         sector_t sector = cfqd->last_position;
1338
1339         if (RB_EMPTY_ROOT(root))
1340                 return NULL;
1341
1342         /*
1343          * First, if we find a request starting at the end of the last
1344          * request, choose it.
1345          */
1346         __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1347         if (__cfqq)
1348                 return __cfqq;
1349
1350         /*
1351          * If the exact sector wasn't found, the parent of the NULL leaf
1352          * will contain the closest sector.
1353          */
1354         __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1355         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1356                 return __cfqq;
1357
1358         if (blk_rq_pos(__cfqq->next_rq) < sector)
1359                 node = rb_next(&__cfqq->p_node);
1360         else
1361                 node = rb_prev(&__cfqq->p_node);
1362         if (!node)
1363                 return NULL;
1364
1365         __cfqq = rb_entry(node, struct cfq_queue, p_node);
1366         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1367                 return __cfqq;
1368
1369         return NULL;
1370 }
1371
1372 /*
1373  * cfqd - obvious
1374  * cur_cfqq - passed in so that we don't decide that the current queue is
1375  *            closely cooperating with itself.
1376  *
1377  * So, basically we're assuming that that cur_cfqq has dispatched at least
1378  * one request, and that cfqd->last_position reflects a position on the disk
1379  * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1380  * assumption.
1381  */
1382 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1383                                               struct cfq_queue *cur_cfqq)
1384 {
1385         struct cfq_queue *cfqq;
1386
1387         if (!cfq_cfqq_sync(cur_cfqq))
1388                 return NULL;
1389         if (CFQQ_SEEKY(cur_cfqq))
1390                 return NULL;
1391
1392         /*
1393          * We should notice if some of the queues are cooperating, eg
1394          * working closely on the same area of the disk. In that case,
1395          * we can group them together and don't waste time idling.
1396          */
1397         cfqq = cfqq_close(cfqd, cur_cfqq);
1398         if (!cfqq)
1399                 return NULL;
1400
1401         /*
1402          * It only makes sense to merge sync queues.
1403          */
1404         if (!cfq_cfqq_sync(cfqq))
1405                 return NULL;
1406         if (CFQQ_SEEKY(cfqq))
1407                 return NULL;
1408
1409         /*
1410          * Do not merge queues of different priority classes
1411          */
1412         if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1413                 return NULL;
1414
1415         return cfqq;
1416 }
1417
1418 /*
1419  * Determine whether we should enforce idle window for this queue.
1420  */
1421
1422 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1423 {
1424         enum wl_prio_t prio = cfqq_prio(cfqq);
1425         struct cfq_rb_root *service_tree = cfqq->service_tree;
1426
1427         BUG_ON(!service_tree);
1428         BUG_ON(!service_tree->count);
1429
1430         /* We never do for idle class queues. */
1431         if (prio == IDLE_WORKLOAD)
1432                 return false;
1433
1434         /* We do for queues that were marked with idle window flag. */
1435         if (cfq_cfqq_idle_window(cfqq))
1436                 return true;
1437
1438         /*
1439          * Otherwise, we do only if they are the last ones
1440          * in their service tree.
1441          */
1442         return service_tree->count == 1;
1443 }
1444
1445 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1446 {
1447         struct cfq_queue *cfqq = cfqd->active_queue;
1448         struct cfq_io_context *cic;
1449         unsigned long sl;
1450
1451         /*
1452          * SSD device without seek penalty, disable idling. But only do so
1453          * for devices that support queuing, otherwise we still have a problem
1454          * with sync vs async workloads.
1455          */
1456         if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1457                 return;
1458
1459         WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1460         WARN_ON(cfq_cfqq_slice_new(cfqq));
1461
1462         /*
1463          * idle is disabled, either manually or by past process history
1464          */
1465         if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
1466                 return;
1467
1468         /*
1469          * still active requests from this queue, don't idle
1470          */
1471         if (cfqq->dispatched)
1472                 return;
1473
1474         /*
1475          * task has exited, don't wait
1476          */
1477         cic = cfqd->active_cic;
1478         if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1479                 return;
1480
1481         /*
1482          * If our average think time is larger than the remaining time
1483          * slice, then don't idle. This avoids overrunning the allotted
1484          * time slice.
1485          */
1486         if (sample_valid(cic->ttime_samples) &&
1487             (cfqq->slice_end - jiffies < cic->ttime_mean))
1488                 return;
1489
1490         cfq_mark_cfqq_wait_request(cfqq);
1491
1492         sl = cfqd->cfq_slice_idle;
1493
1494         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1495         cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1496 }
1497
1498 /*
1499  * Move request from internal lists to the request queue dispatch list.
1500  */
1501 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1502 {
1503         struct cfq_data *cfqd = q->elevator->elevator_data;
1504         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1505
1506         cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1507
1508         cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1509         cfq_remove_request(rq);
1510         cfqq->dispatched++;
1511         elv_dispatch_sort(q, rq);
1512
1513         if (cfq_cfqq_sync(cfqq))
1514                 cfqd->sync_flight++;
1515 }
1516
1517 /*
1518  * return expired entry, or NULL to just start from scratch in rbtree
1519  */
1520 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1521 {
1522         struct request *rq = NULL;
1523
1524         if (cfq_cfqq_fifo_expire(cfqq))
1525                 return NULL;
1526
1527         cfq_mark_cfqq_fifo_expire(cfqq);
1528
1529         if (list_empty(&cfqq->fifo))
1530                 return NULL;
1531
1532         rq = rq_entry_fifo(cfqq->fifo.next);
1533         if (time_before(jiffies, rq_fifo_time(rq)))
1534                 rq = NULL;
1535
1536         cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1537         return rq;
1538 }
1539
1540 static inline int
1541 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1542 {
1543         const int base_rq = cfqd->cfq_slice_async_rq;
1544
1545         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1546
1547         return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1548 }
1549
1550 /*
1551  * Must be called with the queue_lock held.
1552  */
1553 static int cfqq_process_refs(struct cfq_queue *cfqq)
1554 {
1555         int process_refs, io_refs;
1556
1557         io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1558         process_refs = atomic_read(&cfqq->ref) - io_refs;
1559         BUG_ON(process_refs < 0);
1560         return process_refs;
1561 }
1562
1563 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1564 {
1565         int process_refs, new_process_refs;
1566         struct cfq_queue *__cfqq;
1567
1568         /* Avoid a circular list and skip interim queue merges */
1569         while ((__cfqq = new_cfqq->new_cfqq)) {
1570                 if (__cfqq == cfqq)
1571                         return;
1572                 new_cfqq = __cfqq;
1573         }
1574
1575         process_refs = cfqq_process_refs(cfqq);
1576         /*
1577          * If the process for the cfqq has gone away, there is no
1578          * sense in merging the queues.
1579          */
1580         if (process_refs == 0)
1581                 return;
1582
1583         /*
1584          * Merge in the direction of the lesser amount of work.
1585          */
1586         new_process_refs = cfqq_process_refs(new_cfqq);
1587         if (new_process_refs >= process_refs) {
1588                 cfqq->new_cfqq = new_cfqq;
1589                 atomic_add(process_refs, &new_cfqq->ref);
1590         } else {
1591                 new_cfqq->new_cfqq = cfqq;
1592                 atomic_add(new_process_refs, &cfqq->ref);
1593         }
1594 }
1595
1596 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1597                                 struct cfq_group *cfqg, enum wl_prio_t prio,
1598                                 bool prio_changed)
1599 {
1600         struct cfq_queue *queue;
1601         int i;
1602         bool key_valid = false;
1603         unsigned long lowest_key = 0;
1604         enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1605
1606         if (prio_changed) {
1607                 /*
1608                  * When priorities switched, we prefer starting
1609                  * from SYNC_NOIDLE (first choice), or just SYNC
1610                  * over ASYNC
1611                  */
1612                 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1613                         return cur_best;
1614                 cur_best = SYNC_WORKLOAD;
1615                 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1616                         return cur_best;
1617
1618                 return ASYNC_WORKLOAD;
1619         }
1620
1621         for (i = 0; i < 3; ++i) {
1622                 /* otherwise, select the one with lowest rb_key */
1623                 queue = cfq_rb_first(service_tree_for(cfqg, prio, i, cfqd));
1624                 if (queue &&
1625                     (!key_valid || time_before(queue->rb_key, lowest_key))) {
1626                         lowest_key = queue->rb_key;
1627                         cur_best = i;
1628                         key_valid = true;
1629                 }
1630         }
1631
1632         return cur_best;
1633 }
1634
1635 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
1636 {
1637         enum wl_prio_t previous_prio = cfqd->serving_prio;
1638         bool prio_changed;
1639         unsigned slice;
1640         unsigned count;
1641         struct cfq_rb_root *st;
1642
1643         if (!cfqg) {
1644                 cfqd->serving_prio = IDLE_WORKLOAD;
1645                 cfqd->workload_expires = jiffies + 1;
1646                 return;
1647         }
1648
1649         /* Choose next priority. RT > BE > IDLE */
1650         if (cfq_busy_queues_wl(RT_WORKLOAD, cfqd))
1651                 cfqd->serving_prio = RT_WORKLOAD;
1652         else if (cfq_busy_queues_wl(BE_WORKLOAD, cfqd))
1653                 cfqd->serving_prio = BE_WORKLOAD;
1654         else {
1655                 cfqd->serving_prio = IDLE_WORKLOAD;
1656                 cfqd->workload_expires = jiffies + 1;
1657                 return;
1658         }
1659
1660         /*
1661          * For RT and BE, we have to choose also the type
1662          * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
1663          * expiration time
1664          */
1665         prio_changed = (cfqd->serving_prio != previous_prio);
1666         st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
1667                                 cfqd);
1668         count = st->count;
1669
1670         /*
1671          * If priority didn't change, check workload expiration,
1672          * and that we still have other queues ready
1673          */
1674         if (!prio_changed && count &&
1675             !time_after(jiffies, cfqd->workload_expires))
1676                 return;
1677
1678         /* otherwise select new workload type */
1679         cfqd->serving_type =
1680                 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio, prio_changed);
1681         st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
1682                                 cfqd);
1683         count = st->count;
1684
1685         /*
1686          * the workload slice is computed as a fraction of target latency
1687          * proportional to the number of queues in that workload, over
1688          * all the queues in the same priority class
1689          */
1690         slice = cfq_target_latency * count /
1691                 max_t(unsigned, cfqd->busy_queues_avg[cfqd->serving_prio],
1692                       cfq_busy_queues_wl(cfqd->serving_prio, cfqd));
1693
1694         if (cfqd->serving_type == ASYNC_WORKLOAD)
1695                 /* async workload slice is scaled down according to
1696                  * the sync/async slice ratio. */
1697                 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
1698         else
1699                 /* sync workload slice is at least 2 * cfq_slice_idle */
1700                 slice = max(slice, 2 * cfqd->cfq_slice_idle);
1701
1702         slice = max_t(unsigned, slice, CFQ_MIN_TT);
1703         cfqd->workload_expires = jiffies + slice;
1704         cfqd->noidle_tree_requires_idle = false;
1705 }
1706
1707 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
1708 {
1709         struct cfq_rb_root *st = &cfqd->grp_service_tree;
1710         struct cfq_group *cfqg;
1711
1712         if (RB_EMPTY_ROOT(&st->rb))
1713                 return NULL;
1714         cfqg = cfq_rb_first_group(st);
1715         st->active = &cfqg->rb_node;
1716         update_min_vdisktime(st);
1717         return cfqg;
1718 }
1719
1720 static void cfq_choose_cfqg(struct cfq_data *cfqd)
1721 {
1722         struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
1723
1724         cfqd->serving_group = cfqg;
1725         choose_service_tree(cfqd, cfqg);
1726 }
1727
1728 /*
1729  * Select a queue for service. If we have a current active queue,
1730  * check whether to continue servicing it, or retrieve and set a new one.
1731  */
1732 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1733 {
1734         struct cfq_queue *cfqq, *new_cfqq = NULL;
1735
1736         cfqq = cfqd->active_queue;
1737         if (!cfqq)
1738                 goto new_queue;
1739
1740         if (!cfqd->rq_queued)
1741                 return NULL;
1742         /*
1743          * The active queue has run out of time, expire it and select new.
1744          */
1745         if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
1746                 goto expire;
1747
1748         /*
1749          * The active queue has requests and isn't expired, allow it to
1750          * dispatch.
1751          */
1752         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1753                 goto keep_queue;
1754
1755         /*
1756          * If another queue has a request waiting within our mean seek
1757          * distance, let it run.  The expire code will check for close
1758          * cooperators and put the close queue at the front of the service
1759          * tree.  If possible, merge the expiring queue with the new cfqq.
1760          */
1761         new_cfqq = cfq_close_cooperator(cfqd, cfqq);
1762         if (new_cfqq) {
1763                 if (!cfqq->new_cfqq)
1764                         cfq_setup_merge(cfqq, new_cfqq);
1765                 goto expire;
1766         }
1767
1768         /*
1769          * No requests pending. If the active queue still has requests in
1770          * flight or is idling for a new request, allow either of these
1771          * conditions to happen (or time out) before selecting a new queue.
1772          */
1773         if (timer_pending(&cfqd->idle_slice_timer) ||
1774             (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
1775                 cfqq = NULL;
1776                 goto keep_queue;
1777         }
1778
1779 expire:
1780         cfq_slice_expired(cfqd, 0);
1781 new_queue:
1782         /*
1783          * Current queue expired. Check if we have to switch to a new
1784          * service tree
1785          */
1786         if (!new_cfqq)
1787                 cfq_choose_cfqg(cfqd);
1788
1789         cfqq = cfq_set_active_queue(cfqd, new_cfqq);
1790 keep_queue:
1791         return cfqq;
1792 }
1793
1794 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1795 {
1796         int dispatched = 0;
1797
1798         while (cfqq->next_rq) {
1799                 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1800                 dispatched++;
1801         }
1802
1803         BUG_ON(!list_empty(&cfqq->fifo));
1804
1805         /* By default cfqq is not expired if it is empty. Do it explicitly */
1806         __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
1807         return dispatched;
1808 }
1809
1810 /*
1811  * Drain our current requests. Used for barriers and when switching
1812  * io schedulers on-the-fly.
1813  */
1814 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1815 {
1816         struct cfq_queue *cfqq;
1817         int dispatched = 0;
1818
1819         while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
1820                 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1821
1822         cfq_slice_expired(cfqd, 0);
1823         BUG_ON(cfqd->busy_queues);
1824
1825         cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1826         return dispatched;
1827 }
1828
1829 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1830 {
1831         unsigned int max_dispatch;
1832
1833         /*
1834          * Drain async requests before we start sync IO
1835          */
1836         if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
1837                 return false;
1838
1839         /*
1840          * If this is an async queue and we have sync IO in flight, let it wait
1841          */
1842         if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1843                 return false;
1844
1845         max_dispatch = cfqd->cfq_quantum;
1846         if (cfq_class_idle(cfqq))
1847                 max_dispatch = 1;
1848
1849         /*
1850          * Does this cfqq already have too much IO in flight?
1851          */
1852         if (cfqq->dispatched >= max_dispatch) {
1853                 /*
1854                  * idle queue must always only have a single IO in flight
1855                  */
1856                 if (cfq_class_idle(cfqq))
1857                         return false;
1858
1859                 /*
1860                  * We have other queues, don't allow more IO from this one
1861                  */
1862                 if (cfqd->busy_queues > 1)
1863                         return false;
1864
1865                 /*
1866                  * Sole queue user, no limit
1867                  */
1868                 max_dispatch = -1;
1869         }
1870
1871         /*
1872          * Async queues must wait a bit before being allowed dispatch.
1873          * We also ramp up the dispatch depth gradually for async IO,
1874          * based on the last sync IO we serviced
1875          */
1876         if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
1877                 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
1878                 unsigned int depth;
1879
1880                 depth = last_sync / cfqd->cfq_slice[1];
1881                 if (!depth && !cfqq->dispatched)
1882                         depth = 1;
1883                 if (depth < max_dispatch)
1884                         max_dispatch = depth;
1885         }
1886
1887         /*
1888          * If we're below the current max, allow a dispatch
1889          */
1890         return cfqq->dispatched < max_dispatch;
1891 }
1892
1893 /*
1894  * Dispatch a request from cfqq, moving them to the request queue
1895  * dispatch list.
1896  */
1897 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1898 {
1899         struct request *rq;
1900
1901         BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1902
1903         if (!cfq_may_dispatch(cfqd, cfqq))
1904                 return false;
1905
1906         /*
1907          * follow expired path, else get first next available
1908          */
1909         rq = cfq_check_fifo(cfqq);
1910         if (!rq)
1911                 rq = cfqq->next_rq;
1912
1913         /*
1914          * insert request into driver dispatch list
1915          */
1916         cfq_dispatch_insert(cfqd->queue, rq);
1917
1918         if (!cfqd->active_cic) {
1919                 struct cfq_io_context *cic = RQ_CIC(rq);
1920
1921                 atomic_long_inc(&cic->ioc->refcount);
1922                 cfqd->active_cic = cic;
1923         }
1924
1925         return true;
1926 }
1927
1928 /*
1929  * Find the cfqq that we need to service and move a request from that to the
1930  * dispatch list
1931  */
1932 static int cfq_dispatch_requests(struct request_queue *q, int force)
1933 {
1934         struct cfq_data *cfqd = q->elevator->elevator_data;
1935         struct cfq_queue *cfqq;
1936
1937         if (!cfqd->busy_queues)
1938                 return 0;
1939
1940         if (unlikely(force))
1941                 return cfq_forced_dispatch(cfqd);
1942
1943         cfqq = cfq_select_queue(cfqd);
1944         if (!cfqq)
1945                 return 0;
1946
1947         /*
1948          * Dispatch a request from this cfqq, if it is allowed
1949          */
1950         if (!cfq_dispatch_request(cfqd, cfqq))
1951                 return 0;
1952
1953         cfqq->slice_dispatch++;
1954         cfq_clear_cfqq_must_dispatch(cfqq);
1955
1956         /*
1957          * expire an async queue immediately if it has used up its slice. idle
1958          * queue always expire after 1 dispatch round.
1959          */
1960         if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1961             cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1962             cfq_class_idle(cfqq))) {
1963                 cfqq->slice_end = jiffies + 1;
1964                 cfq_slice_expired(cfqd, 0);
1965         }
1966
1967         cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
1968         return 1;
1969 }
1970
1971 /*
1972  * task holds one reference to the queue, dropped when task exits. each rq
1973  * in-flight on this queue also holds a reference, dropped when rq is freed.
1974  *
1975  * queue lock must be held here.
1976  */
1977 static void cfq_put_queue(struct cfq_queue *cfqq)
1978 {
1979         struct cfq_data *cfqd = cfqq->cfqd;
1980
1981         BUG_ON(atomic_read(&cfqq->ref) <= 0);
1982
1983         if (!atomic_dec_and_test(&cfqq->ref))
1984                 return;
1985
1986         cfq_log_cfqq(cfqd, cfqq, "put_queue");
1987         BUG_ON(rb_first(&cfqq->sort_list));
1988         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1989
1990         if (unlikely(cfqd->active_queue == cfqq)) {
1991                 __cfq_slice_expired(cfqd, cfqq, 0);
1992                 cfq_schedule_dispatch(cfqd);
1993         }
1994
1995         BUG_ON(cfq_cfqq_on_rr(cfqq));
1996         kmem_cache_free(cfq_pool, cfqq);
1997 }
1998
1999 /*
2000  * Must always be called with the rcu_read_lock() held
2001  */
2002 static void
2003 __call_for_each_cic(struct io_context *ioc,
2004                     void (*func)(struct io_context *, struct cfq_io_context *))
2005 {
2006         struct cfq_io_context *cic;
2007         struct hlist_node *n;
2008
2009         hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2010                 func(ioc, cic);
2011 }
2012
2013 /*
2014  * Call func for each cic attached to this ioc.
2015  */
2016 static void
2017 call_for_each_cic(struct io_context *ioc,
2018                   void (*func)(struct io_context *, struct cfq_io_context *))
2019 {
2020         rcu_read_lock();
2021         __call_for_each_cic(ioc, func);
2022         rcu_read_unlock();
2023 }
2024
2025 static void cfq_cic_free_rcu(struct rcu_head *head)
2026 {
2027         struct cfq_io_context *cic;
2028
2029         cic = container_of(head, struct cfq_io_context, rcu_head);
2030
2031         kmem_cache_free(cfq_ioc_pool, cic);
2032         elv_ioc_count_dec(cfq_ioc_count);
2033
2034         if (ioc_gone) {
2035                 /*
2036                  * CFQ scheduler is exiting, grab exit lock and check
2037                  * the pending io context count. If it hits zero,
2038                  * complete ioc_gone and set it back to NULL
2039                  */
2040                 spin_lock(&ioc_gone_lock);
2041                 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2042                         complete(ioc_gone);
2043                         ioc_gone = NULL;
2044                 }
2045                 spin_unlock(&ioc_gone_lock);
2046         }
2047 }
2048
2049 static void cfq_cic_free(struct cfq_io_context *cic)
2050 {
2051         call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2052 }
2053
2054 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2055 {
2056         unsigned long flags;
2057
2058         BUG_ON(!cic->dead_key);
2059
2060         spin_lock_irqsave(&ioc->lock, flags);
2061         radix_tree_delete(&ioc->radix_root, cic->dead_key);
2062         hlist_del_rcu(&cic->cic_list);
2063         spin_unlock_irqrestore(&ioc->lock, flags);
2064
2065         cfq_cic_free(cic);
2066 }
2067
2068 /*
2069  * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2070  * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2071  * and ->trim() which is called with the task lock held
2072  */
2073 static void cfq_free_io_context(struct io_context *ioc)
2074 {
2075         /*
2076          * ioc->refcount is zero here, or we are called from elv_unregister(),
2077          * so no more cic's are allowed to be linked into this ioc.  So it
2078          * should be ok to iterate over the known list, we will see all cic's
2079          * since no new ones are added.
2080          */
2081         __call_for_each_cic(ioc, cic_free_func);
2082 }
2083
2084 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2085 {
2086         struct cfq_queue *__cfqq, *next;
2087
2088         if (unlikely(cfqq == cfqd->active_queue)) {
2089                 __cfq_slice_expired(cfqd, cfqq, 0);
2090                 cfq_schedule_dispatch(cfqd);
2091         }
2092
2093         /*
2094          * If this queue was scheduled to merge with another queue, be
2095          * sure to drop the reference taken on that queue (and others in
2096          * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
2097          */
2098         __cfqq = cfqq->new_cfqq;
2099         while (__cfqq) {
2100                 if (__cfqq == cfqq) {
2101                         WARN(1, "cfqq->new_cfqq loop detected\n");
2102                         break;
2103                 }
2104                 next = __cfqq->new_cfqq;
2105                 cfq_put_queue(__cfqq);
2106                 __cfqq = next;
2107         }
2108
2109         cfq_put_queue(cfqq);
2110 }
2111
2112 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2113                                          struct cfq_io_context *cic)
2114 {
2115         struct io_context *ioc = cic->ioc;
2116
2117         list_del_init(&cic->queue_list);
2118
2119         /*
2120          * Make sure key == NULL is seen for dead queues
2121          */
2122         smp_wmb();
2123         cic->dead_key = (unsigned long) cic->key;
2124         cic->key = NULL;
2125
2126         if (ioc->ioc_data == cic)
2127                 rcu_assign_pointer(ioc->ioc_data, NULL);
2128
2129         if (cic->cfqq[BLK_RW_ASYNC]) {
2130                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2131                 cic->cfqq[BLK_RW_ASYNC] = NULL;
2132         }
2133
2134         if (cic->cfqq[BLK_RW_SYNC]) {
2135                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2136                 cic->cfqq[BLK_RW_SYNC] = NULL;
2137         }
2138 }
2139
2140 static void cfq_exit_single_io_context(struct io_context *ioc,
2141                                        struct cfq_io_context *cic)
2142 {
2143         struct cfq_data *cfqd = cic->key;
2144
2145         if (cfqd) {
2146                 struct request_queue *q = cfqd->queue;
2147                 unsigned long flags;
2148
2149                 spin_lock_irqsave(q->queue_lock, flags);
2150
2151                 /*
2152                  * Ensure we get a fresh copy of the ->key to prevent
2153                  * race between exiting task and queue
2154                  */
2155                 smp_read_barrier_depends();
2156                 if (cic->key)
2157                         __cfq_exit_single_io_context(cfqd, cic);
2158
2159                 spin_unlock_irqrestore(q->queue_lock, flags);
2160         }
2161 }
2162
2163 /*
2164  * The process that ioc belongs to has exited, we need to clean up
2165  * and put the internal structures we have that belongs to that process.
2166  */
2167 static void cfq_exit_io_context(struct io_context *ioc)
2168 {
2169         call_for_each_cic(ioc, cfq_exit_single_io_context);
2170 }
2171
2172 static struct cfq_io_context *
2173 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2174 {
2175         struct cfq_io_context *cic;
2176
2177         cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2178                                                         cfqd->queue->node);
2179         if (cic) {
2180                 cic->last_end_request = jiffies;
2181                 INIT_LIST_HEAD(&cic->queue_list);
2182                 INIT_HLIST_NODE(&cic->cic_list);
2183                 cic->dtor = cfq_free_io_context;
2184                 cic->exit = cfq_exit_io_context;
2185                 elv_ioc_count_inc(cfq_ioc_count);
2186         }
2187
2188         return cic;
2189 }
2190
2191 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2192 {
2193         struct task_struct *tsk = current;
2194         int ioprio_class;
2195
2196         if (!cfq_cfqq_prio_changed(cfqq))
2197                 return;
2198
2199         ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2200         switch (ioprio_class) {
2201         default:
2202                 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2203         case IOPRIO_CLASS_NONE:
2204                 /*
2205                  * no prio set, inherit CPU scheduling settings
2206                  */
2207                 cfqq->ioprio = task_nice_ioprio(tsk);
2208                 cfqq->ioprio_class = task_nice_ioclass(tsk);
2209                 break;
2210         case IOPRIO_CLASS_RT:
2211                 cfqq->ioprio = task_ioprio(ioc);
2212                 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2213                 break;
2214         case IOPRIO_CLASS_BE:
2215                 cfqq->ioprio = task_ioprio(ioc);
2216                 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2217                 break;
2218         case IOPRIO_CLASS_IDLE:
2219                 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2220                 cfqq->ioprio = 7;
2221                 cfq_clear_cfqq_idle_window(cfqq);
2222                 break;
2223         }
2224
2225         /*
2226          * keep track of original prio settings in case we have to temporarily
2227          * elevate the priority of this queue
2228          */
2229         cfqq->org_ioprio = cfqq->ioprio;
2230         cfqq->org_ioprio_class = cfqq->ioprio_class;
2231         cfq_clear_cfqq_prio_changed(cfqq);
2232 }
2233
2234 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2235 {
2236         struct cfq_data *cfqd = cic->key;
2237         struct cfq_queue *cfqq;
2238         unsigned long flags;
2239
2240         if (unlikely(!cfqd))
2241                 return;
2242
2243         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2244
2245         cfqq = cic->cfqq[BLK_RW_ASYNC];
2246         if (cfqq) {
2247                 struct cfq_queue *new_cfqq;
2248                 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2249                                                 GFP_ATOMIC);
2250                 if (new_cfqq) {
2251                         cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2252                         cfq_put_queue(cfqq);
2253                 }
2254         }
2255
2256         cfqq = cic->cfqq[BLK_RW_SYNC];
2257         if (cfqq)
2258                 cfq_mark_cfqq_prio_changed(cfqq);
2259
2260         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2261 }
2262
2263 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2264 {
2265         call_for_each_cic(ioc, changed_ioprio);
2266         ioc->ioprio_changed = 0;
2267 }
2268
2269 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2270                           pid_t pid, bool is_sync)
2271 {
2272         RB_CLEAR_NODE(&cfqq->rb_node);
2273         RB_CLEAR_NODE(&cfqq->p_node);
2274         INIT_LIST_HEAD(&cfqq->fifo);
2275
2276         atomic_set(&cfqq->ref, 0);
2277         cfqq->cfqd = cfqd;
2278
2279         cfq_mark_cfqq_prio_changed(cfqq);
2280
2281         if (is_sync) {
2282                 if (!cfq_class_idle(cfqq))
2283                         cfq_mark_cfqq_idle_window(cfqq);
2284                 cfq_mark_cfqq_sync(cfqq);
2285         }
2286         cfqq->pid = pid;
2287 }
2288
2289 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
2290 {
2291         cfqq->cfqg = cfqg;
2292 }
2293
2294 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
2295 {
2296         return &cfqd->root_group;
2297 }
2298
2299 static struct cfq_queue *
2300 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2301                      struct io_context *ioc, gfp_t gfp_mask)
2302 {
2303         struct cfq_queue *cfqq, *new_cfqq = NULL;
2304         struct cfq_io_context *cic;
2305         struct cfq_group *cfqg;
2306
2307 retry:
2308         cfqg = cfq_get_cfqg(cfqd, 1);
2309         cic = cfq_cic_lookup(cfqd, ioc);
2310         /* cic always exists here */
2311         cfqq = cic_to_cfqq(cic, is_sync);
2312
2313         /*
2314          * Always try a new alloc if we fell back to the OOM cfqq
2315          * originally, since it should just be a temporary situation.
2316          */
2317         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2318                 cfqq = NULL;
2319                 if (new_cfqq) {
2320                         cfqq = new_cfqq;
2321                         new_cfqq = NULL;
2322                 } else if (gfp_mask & __GFP_WAIT) {
2323                         spin_unlock_irq(cfqd->queue->queue_lock);
2324                         new_cfqq = kmem_cache_alloc_node(cfq_pool,
2325                                         gfp_mask | __GFP_ZERO,
2326                                         cfqd->queue->node);
2327                         spin_lock_irq(cfqd->queue->queue_lock);
2328                         if (new_cfqq)
2329                                 goto retry;
2330                 } else {
2331                         cfqq = kmem_cache_alloc_node(cfq_pool,
2332                                         gfp_mask | __GFP_ZERO,
2333                                         cfqd->queue->node);
2334                 }
2335
2336                 if (cfqq) {
2337                         cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2338                         cfq_init_prio_data(cfqq, ioc);
2339                         cfq_link_cfqq_cfqg(cfqq, cfqg);
2340                         cfq_log_cfqq(cfqd, cfqq, "alloced");
2341                 } else
2342                         cfqq = &cfqd->oom_cfqq;
2343         }
2344
2345         if (new_cfqq)
2346                 kmem_cache_free(cfq_pool, new_cfqq);
2347
2348         return cfqq;
2349 }
2350
2351 static struct cfq_queue **
2352 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2353 {
2354         switch (ioprio_class) {
2355         case IOPRIO_CLASS_RT:
2356                 return &cfqd->async_cfqq[0][ioprio];
2357         case IOPRIO_CLASS_BE:
2358                 return &cfqd->async_cfqq[1][ioprio];
2359         case IOPRIO_CLASS_IDLE:
2360                 return &cfqd->async_idle_cfqq;
2361         default:
2362                 BUG();
2363         }
2364 }
2365
2366 static struct cfq_queue *
2367 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2368               gfp_t gfp_mask)
2369 {
2370         const int ioprio = task_ioprio(ioc);
2371         const int ioprio_class = task_ioprio_class(ioc);
2372         struct cfq_queue **async_cfqq = NULL;
2373         struct cfq_queue *cfqq = NULL;
2374
2375         if (!is_sync) {
2376                 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2377                 cfqq = *async_cfqq;
2378         }
2379
2380         if (!cfqq)
2381                 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2382
2383         /*
2384          * pin the queue now that it's allocated, scheduler exit will prune it
2385          */
2386         if (!is_sync && !(*async_cfqq)) {
2387                 atomic_inc(&cfqq->ref);
2388                 *async_cfqq = cfqq;
2389         }
2390
2391         atomic_inc(&cfqq->ref);
2392         return cfqq;
2393 }
2394
2395 /*
2396  * We drop cfq io contexts lazily, so we may find a dead one.
2397  */
2398 static void
2399 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2400                   struct cfq_io_context *cic)
2401 {
2402         unsigned long flags;
2403
2404         WARN_ON(!list_empty(&cic->queue_list));
2405
2406         spin_lock_irqsave(&ioc->lock, flags);
2407
2408         BUG_ON(ioc->ioc_data == cic);
2409
2410         radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2411         hlist_del_rcu(&cic->cic_list);
2412         spin_unlock_irqrestore(&ioc->lock, flags);
2413
2414         cfq_cic_free(cic);
2415 }
2416
2417 static struct cfq_io_context *
2418 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2419 {
2420         struct cfq_io_context *cic;
2421         unsigned long flags;
2422         void *k;
2423
2424         if (unlikely(!ioc))
2425                 return NULL;
2426
2427         rcu_read_lock();
2428
2429         /*
2430          * we maintain a last-hit cache, to avoid browsing over the tree
2431          */
2432         cic = rcu_dereference(ioc->ioc_data);
2433         if (cic && cic->key == cfqd) {
2434                 rcu_read_unlock();
2435                 return cic;
2436         }
2437
2438         do {
2439                 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2440                 rcu_read_unlock();
2441                 if (!cic)
2442                         break;
2443                 /* ->key must be copied to avoid race with cfq_exit_queue() */
2444                 k = cic->key;
2445                 if (unlikely(!k)) {
2446                         cfq_drop_dead_cic(cfqd, ioc, cic);
2447                         rcu_read_lock();
2448                         continue;
2449                 }
2450
2451                 spin_lock_irqsave(&ioc->lock, flags);
2452                 rcu_assign_pointer(ioc->ioc_data, cic);
2453                 spin_unlock_irqrestore(&ioc->lock, flags);
2454                 break;
2455         } while (1);
2456
2457         return cic;
2458 }
2459
2460 /*
2461  * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2462  * the process specific cfq io context when entered from the block layer.
2463  * Also adds the cic to a per-cfqd list, used when this queue is removed.
2464  */
2465 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2466                         struct cfq_io_context *cic, gfp_t gfp_mask)
2467 {
2468         unsigned long flags;
2469         int ret;
2470
2471         ret = radix_tree_preload(gfp_mask);
2472         if (!ret) {
2473                 cic->ioc = ioc;
2474                 cic->key = cfqd;
2475
2476                 spin_lock_irqsave(&ioc->lock, flags);
2477                 ret = radix_tree_insert(&ioc->radix_root,
2478                                                 (unsigned long) cfqd, cic);
2479                 if (!ret)
2480                         hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2481                 spin_unlock_irqrestore(&ioc->lock, flags);
2482
2483                 radix_tree_preload_end();
2484
2485                 if (!ret) {
2486                         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2487                         list_add(&cic->queue_list, &cfqd->cic_list);
2488                         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2489                 }
2490         }
2491
2492         if (ret)
2493                 printk(KERN_ERR "cfq: cic link failed!\n");
2494
2495         return ret;
2496 }
2497
2498 /*
2499  * Setup general io context and cfq io context. There can be several cfq
2500  * io contexts per general io context, if this process is doing io to more
2501  * than one device managed by cfq.
2502  */
2503 static struct cfq_io_context *
2504 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2505 {
2506         struct io_context *ioc = NULL;
2507         struct cfq_io_context *cic;
2508
2509         might_sleep_if(gfp_mask & __GFP_WAIT);
2510
2511         ioc = get_io_context(gfp_mask, cfqd->queue->node);
2512         if (!ioc)
2513                 return NULL;
2514
2515         cic = cfq_cic_lookup(cfqd, ioc);
2516         if (cic)
2517                 goto out;
2518
2519         cic = cfq_alloc_io_context(cfqd, gfp_mask);
2520         if (cic == NULL)
2521                 goto err;
2522
2523         if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2524                 goto err_free;
2525
2526 out:
2527         smp_read_barrier_depends();
2528         if (unlikely(ioc->ioprio_changed))
2529                 cfq_ioc_set_ioprio(ioc);
2530
2531         return cic;
2532 err_free:
2533         cfq_cic_free(cic);
2534 err:
2535         put_io_context(ioc);
2536         return NULL;
2537 }
2538
2539 static void
2540 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
2541 {
2542         unsigned long elapsed = jiffies - cic->last_end_request;
2543         unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2544
2545         cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2546         cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2547         cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2548 }
2549
2550 static void
2551 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2552                        struct request *rq)
2553 {
2554         sector_t sdist;
2555         u64 total;
2556
2557         if (!cfqq->last_request_pos)
2558                 sdist = 0;
2559         else if (cfqq->last_request_pos < blk_rq_pos(rq))
2560                 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2561         else
2562                 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2563
2564         /*
2565          * Don't allow the seek distance to get too large from the
2566          * odd fragment, pagein, etc
2567          */
2568         if (cfqq->seek_samples <= 60) /* second&third seek */
2569                 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
2570         else
2571                 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
2572
2573         cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
2574         cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
2575         total = cfqq->seek_total + (cfqq->seek_samples/2);
2576         do_div(total, cfqq->seek_samples);
2577         cfqq->seek_mean = (sector_t)total;
2578
2579         /*
2580          * If this cfqq is shared between multiple processes, check to
2581          * make sure that those processes are still issuing I/Os within
2582          * the mean seek distance.  If not, it may be time to break the
2583          * queues apart again.
2584          */
2585         if (cfq_cfqq_coop(cfqq)) {
2586                 if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
2587                         cfqq->seeky_start = jiffies;
2588                 else if (!CFQQ_SEEKY(cfqq))
2589                         cfqq->seeky_start = 0;
2590         }
2591 }
2592
2593 /*
2594  * Disable idle window if the process thinks too long or seeks so much that
2595  * it doesn't matter
2596  */
2597 static void
2598 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2599                        struct cfq_io_context *cic)
2600 {
2601         int old_idle, enable_idle;
2602
2603         /*
2604          * Don't idle for async or idle io prio class
2605          */
2606         if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
2607                 return;
2608
2609         enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
2610
2611         if (cfqq->queued[0] + cfqq->queued[1] >= 4)
2612                 cfq_mark_cfqq_deep(cfqq);
2613
2614         if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
2615             (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
2616              && CFQQ_SEEKY(cfqq)))
2617                 enable_idle = 0;
2618         else if (sample_valid(cic->ttime_samples)) {
2619                 if (cic->ttime_mean > cfqd->cfq_slice_idle)
2620                         enable_idle = 0;
2621                 else
2622                         enable_idle = 1;
2623         }
2624
2625         if (old_idle != enable_idle) {
2626                 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
2627                 if (enable_idle)
2628                         cfq_mark_cfqq_idle_window(cfqq);
2629                 else
2630                         cfq_clear_cfqq_idle_window(cfqq);
2631         }
2632 }
2633
2634 /*
2635  * Check if new_cfqq should preempt the currently active queue. Return 0 for
2636  * no or if we aren't sure, a 1 will cause a preempt.
2637  */
2638 static bool
2639 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
2640                    struct request *rq)
2641 {
2642         struct cfq_queue *cfqq;
2643
2644         cfqq = cfqd->active_queue;
2645         if (!cfqq)
2646                 return false;
2647
2648         if (cfq_slice_used(cfqq))
2649                 return true;
2650
2651         if (cfq_class_idle(new_cfqq))
2652                 return false;
2653
2654         if (cfq_class_idle(cfqq))
2655                 return true;
2656
2657         /* Allow preemption only if we are idling on sync-noidle tree */
2658         if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
2659             cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
2660             new_cfqq->service_tree->count == 2 &&
2661             RB_EMPTY_ROOT(&cfqq->sort_list))
2662                 return true;
2663
2664         /*
2665          * if the new request is sync, but the currently running queue is
2666          * not, let the sync request have priority.
2667          */
2668         if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
2669                 return true;
2670
2671         /*
2672          * So both queues are sync. Let the new request get disk time if
2673          * it's a metadata request and the current queue is doing regular IO.
2674          */
2675         if (rq_is_meta(rq) && !cfqq->meta_pending)
2676                 return true;
2677
2678         /*
2679          * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2680          */
2681         if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2682                 return true;
2683
2684         if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2685                 return false;
2686
2687         /*
2688          * if this request is as-good as one we would expect from the
2689          * current cfqq, let it preempt
2690          */
2691         if (cfq_rq_close(cfqd, cfqq, rq))
2692                 return true;
2693
2694         return false;
2695 }
2696
2697 /*
2698  * cfqq preempts the active queue. if we allowed preempt with no slice left,
2699  * let it have half of its nominal slice.
2700  */
2701 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2702 {
2703         cfq_log_cfqq(cfqd, cfqq, "preempt");
2704         cfq_slice_expired(cfqd, 1);
2705
2706         /*
2707          * Put the new queue at the front of the of the current list,
2708          * so we know that it will be selected next.
2709          */
2710         BUG_ON(!cfq_cfqq_on_rr(cfqq));
2711
2712         cfq_service_tree_add(cfqd, cfqq, 1);
2713
2714         cfqq->slice_end = 0;
2715         cfq_mark_cfqq_slice_new(cfqq);
2716 }
2717
2718 /*
2719  * Called when a new fs request (rq) is added (to cfqq). Check if there's
2720  * something we should do about it
2721  */
2722 static void
2723 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2724                 struct request *rq)
2725 {
2726         struct cfq_io_context *cic = RQ_CIC(rq);
2727
2728         cfqd->rq_queued++;
2729         if (rq_is_meta(rq))
2730                 cfqq->meta_pending++;
2731
2732         cfq_update_io_thinktime(cfqd, cic);
2733         cfq_update_io_seektime(cfqd, cfqq, rq);
2734         cfq_update_idle_window(cfqd, cfqq, cic);
2735
2736         cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
2737
2738         if (cfqq == cfqd->active_queue) {
2739                 /*
2740                  * Remember that we saw a request from this process, but
2741                  * don't start queuing just yet. Otherwise we risk seeing lots
2742                  * of tiny requests, because we disrupt the normal plugging
2743                  * and merging. If the request is already larger than a single
2744                  * page, let it rip immediately. For that case we assume that
2745                  * merging is already done. Ditto for a busy system that
2746                  * has other work pending, don't risk delaying until the
2747                  * idle timer unplug to continue working.
2748                  */
2749                 if (cfq_cfqq_wait_request(cfqq)) {
2750                         if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2751                             cfqd->busy_queues > 1) {
2752                                 del_timer(&cfqd->idle_slice_timer);
2753                                 __blk_run_queue(cfqd->queue);
2754                         } else
2755                                 cfq_mark_cfqq_must_dispatch(cfqq);
2756                 }
2757         } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
2758                 /*
2759                  * not the active queue - expire current slice if it is
2760                  * idle and has expired it's mean thinktime or this new queue
2761                  * has some old slice time left and is of higher priority or
2762                  * this new queue is RT and the current one is BE
2763                  */
2764                 cfq_preempt_queue(cfqd, cfqq);
2765                 __blk_run_queue(cfqd->queue);
2766         }
2767 }
2768
2769 static void cfq_insert_request(struct request_queue *q, struct request *rq)
2770 {
2771         struct cfq_data *cfqd = q->elevator->elevator_data;
2772         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2773
2774         cfq_log_cfqq(cfqd, cfqq, "insert_request");
2775         cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
2776
2777         rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
2778         list_add_tail(&rq->queuelist, &cfqq->fifo);
2779         cfq_add_rq_rb(rq);
2780
2781         cfq_rq_enqueued(cfqd, cfqq, rq);
2782 }
2783
2784 /*
2785  * Update hw_tag based on peak queue depth over 50 samples under
2786  * sufficient load.
2787  */
2788 static void cfq_update_hw_tag(struct cfq_data *cfqd)
2789 {
2790         struct cfq_queue *cfqq = cfqd->active_queue;
2791
2792         if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
2793                 cfqd->hw_tag_est_depth = rq_in_driver(cfqd);
2794
2795         if (cfqd->hw_tag == 1)
2796                 return;
2797
2798         if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
2799             rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
2800                 return;
2801
2802         /*
2803          * If active queue hasn't enough requests and can idle, cfq might not
2804          * dispatch sufficient requests to hardware. Don't zero hw_tag in this
2805          * case
2806          */
2807         if (cfqq && cfq_cfqq_idle_window(cfqq) &&
2808             cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
2809             CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
2810                 return;
2811
2812         if (cfqd->hw_tag_samples++ < 50)
2813                 return;
2814
2815         if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
2816                 cfqd->hw_tag = 1;
2817         else
2818                 cfqd->hw_tag = 0;
2819 }
2820
2821 static void cfq_completed_request(struct request_queue *q, struct request *rq)
2822 {
2823         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2824         struct cfq_data *cfqd = cfqq->cfqd;
2825         const int sync = rq_is_sync(rq);
2826         unsigned long now;
2827
2828         now = jiffies;
2829         cfq_log_cfqq(cfqd, cfqq, "complete");
2830
2831         cfq_update_hw_tag(cfqd);
2832
2833         WARN_ON(!cfqd->rq_in_driver[sync]);
2834         WARN_ON(!cfqq->dispatched);
2835         cfqd->rq_in_driver[sync]--;
2836         cfqq->dispatched--;
2837
2838         if (cfq_cfqq_sync(cfqq))
2839                 cfqd->sync_flight--;
2840
2841         if (sync) {
2842                 RQ_CIC(rq)->last_end_request = now;
2843                 cfqd->last_end_sync_rq = now;
2844         }
2845
2846         /*
2847          * If this is the active queue, check if it needs to be expired,
2848          * or if we want to idle in case it has no pending requests.
2849          */
2850         if (cfqd->active_queue == cfqq) {
2851                 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2852
2853                 if (cfq_cfqq_slice_new(cfqq)) {
2854                         cfq_set_prio_slice(cfqd, cfqq);
2855                         cfq_clear_cfqq_slice_new(cfqq);
2856                 }
2857                 /*
2858                  * Idling is not enabled on:
2859                  * - expired queues
2860                  * - idle-priority queues
2861                  * - async queues
2862                  * - queues with still some requests queued
2863                  * - when there is a close cooperator
2864                  */
2865                 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
2866                         cfq_slice_expired(cfqd, 1);
2867                 else if (sync && cfqq_empty &&
2868                          !cfq_close_cooperator(cfqd, cfqq)) {
2869                         cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
2870                         /*
2871                          * Idling is enabled for SYNC_WORKLOAD.
2872                          * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
2873                          * only if we processed at least one !rq_noidle request
2874                          */
2875                         if (cfqd->serving_type == SYNC_WORKLOAD
2876                             || cfqd->noidle_tree_requires_idle)
2877                                 cfq_arm_slice_timer(cfqd);
2878                 }
2879         }
2880
2881         if (!rq_in_driver(cfqd))
2882                 cfq_schedule_dispatch(cfqd);
2883 }
2884
2885 /*
2886  * we temporarily boost lower priority queues if they are holding fs exclusive
2887  * resources. they are boosted to normal prio (CLASS_BE/4)
2888  */
2889 static void cfq_prio_boost(struct cfq_queue *cfqq)
2890 {
2891         if (has_fs_excl()) {
2892                 /*
2893                  * boost idle prio on transactions that would lock out other
2894                  * users of the filesystem
2895                  */
2896                 if (cfq_class_idle(cfqq))
2897                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
2898                 if (cfqq->ioprio > IOPRIO_NORM)
2899                         cfqq->ioprio = IOPRIO_NORM;
2900         } else {
2901                 /*
2902                  * unboost the queue (if needed)
2903                  */
2904                 cfqq->ioprio_class = cfqq->org_ioprio_class;
2905                 cfqq->ioprio = cfqq->org_ioprio;
2906         }
2907 }
2908
2909 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
2910 {
2911         if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
2912                 cfq_mark_cfqq_must_alloc_slice(cfqq);
2913                 return ELV_MQUEUE_MUST;
2914         }
2915
2916         return ELV_MQUEUE_MAY;
2917 }
2918
2919 static int cfq_may_queue(struct request_queue *q, int rw)
2920 {
2921         struct cfq_data *cfqd = q->elevator->elevator_data;
2922         struct task_struct *tsk = current;
2923         struct cfq_io_context *cic;
2924         struct cfq_queue *cfqq;
2925
2926         /*
2927          * don't force setup of a queue from here, as a call to may_queue
2928          * does not necessarily imply that a request actually will be queued.
2929          * so just lookup a possibly existing queue, or return 'may queue'
2930          * if that fails
2931          */
2932         cic = cfq_cic_lookup(cfqd, tsk->io_context);
2933         if (!cic)
2934                 return ELV_MQUEUE_MAY;
2935
2936         cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
2937         if (cfqq) {
2938                 cfq_init_prio_data(cfqq, cic->ioc);
2939                 cfq_prio_boost(cfqq);
2940
2941                 return __cfq_may_queue(cfqq);
2942         }
2943
2944         return ELV_MQUEUE_MAY;
2945 }
2946
2947 /*
2948  * queue lock held here
2949  */
2950 static void cfq_put_request(struct request *rq)
2951 {
2952         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2953
2954         if (cfqq) {
2955                 const int rw = rq_data_dir(rq);
2956
2957                 BUG_ON(!cfqq->allocated[rw]);
2958                 cfqq->allocated[rw]--;
2959
2960                 put_io_context(RQ_CIC(rq)->ioc);
2961
2962                 rq->elevator_private = NULL;
2963                 rq->elevator_private2 = NULL;
2964
2965                 cfq_put_queue(cfqq);
2966         }
2967 }
2968
2969 static struct cfq_queue *
2970 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
2971                 struct cfq_queue *cfqq)
2972 {
2973         cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
2974         cic_set_cfqq(cic, cfqq->new_cfqq, 1);
2975         cfq_mark_cfqq_coop(cfqq->new_cfqq);
2976         cfq_put_queue(cfqq);
2977         return cic_to_cfqq(cic, 1);
2978 }
2979
2980 static int should_split_cfqq(struct cfq_queue *cfqq)
2981 {
2982         if (cfqq->seeky_start &&
2983             time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
2984                 return 1;
2985         return 0;
2986 }
2987
2988 /*
2989  * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
2990  * was the last process referring to said cfqq.
2991  */
2992 static struct cfq_queue *
2993 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
2994 {
2995         if (cfqq_process_refs(cfqq) == 1) {
2996                 cfqq->seeky_start = 0;
2997                 cfqq->pid = current->pid;
2998                 cfq_clear_cfqq_coop(cfqq);
2999                 return cfqq;
3000         }
3001
3002         cic_set_cfqq(cic, NULL, 1);
3003         cfq_put_queue(cfqq);
3004         return NULL;
3005 }
3006 /*
3007  * Allocate cfq data structures associated with this request.
3008  */
3009 static int
3010 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3011 {
3012         struct cfq_data *cfqd = q->elevator->elevator_data;
3013         struct cfq_io_context *cic;
3014         const int rw = rq_data_dir(rq);
3015         const bool is_sync = rq_is_sync(rq);
3016         struct cfq_queue *cfqq;
3017         unsigned long flags;
3018
3019         might_sleep_if(gfp_mask & __GFP_WAIT);
3020
3021         cic = cfq_get_io_context(cfqd, gfp_mask);
3022
3023         spin_lock_irqsave(q->queue_lock, flags);
3024
3025         if (!cic)
3026                 goto queue_fail;
3027
3028 new_queue:
3029         cfqq = cic_to_cfqq(cic, is_sync);
3030         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3031                 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3032                 cic_set_cfqq(cic, cfqq, is_sync);
3033         } else {
3034                 /*
3035                  * If the queue was seeky for too long, break it apart.
3036                  */
3037                 if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
3038                         cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3039                         cfqq = split_cfqq(cic, cfqq);
3040                         if (!cfqq)
3041                                 goto new_queue;
3042                 }
3043
3044                 /*
3045                  * Check to see if this queue is scheduled to merge with
3046                  * another, closely cooperating queue.  The merging of
3047                  * queues happens here as it must be done in process context.
3048                  * The reference on new_cfqq was taken in merge_cfqqs.
3049                  */
3050                 if (cfqq->new_cfqq)
3051                         cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3052         }
3053
3054         cfqq->allocated[rw]++;
3055         atomic_inc(&cfqq->ref);
3056
3057         spin_unlock_irqrestore(q->queue_lock, flags);
3058
3059         rq->elevator_private = cic;
3060         rq->elevator_private2 = cfqq;
3061         return 0;
3062
3063 queue_fail:
3064         if (cic)
3065                 put_io_context(cic->ioc);
3066
3067         cfq_schedule_dispatch(cfqd);
3068         spin_unlock_irqrestore(q->queue_lock, flags);
3069         cfq_log(cfqd, "set_request fail");
3070         return 1;
3071 }
3072
3073 static void cfq_kick_queue(struct work_struct *work)
3074 {
3075         struct cfq_data *cfqd =
3076                 container_of(work, struct cfq_data, unplug_work);
3077         struct request_queue *q = cfqd->queue;
3078
3079         spin_lock_irq(q->queue_lock);
3080         __blk_run_queue(cfqd->queue);
3081         spin_unlock_irq(q->queue_lock);
3082 }
3083
3084 /*
3085  * Timer running if the active_queue is currently idling inside its time slice
3086  */
3087 static void cfq_idle_slice_timer(unsigned long data)
3088 {
3089         struct cfq_data *cfqd = (struct cfq_data *) data;
3090         struct cfq_queue *cfqq;
3091         unsigned long flags;
3092         int timed_out = 1;
3093
3094         cfq_log(cfqd, "idle timer fired");
3095
3096         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3097
3098         cfqq = cfqd->active_queue;
3099         if (cfqq) {
3100                 timed_out = 0;
3101
3102                 /*
3103                  * We saw a request before the queue expired, let it through
3104                  */
3105                 if (cfq_cfqq_must_dispatch(cfqq))
3106                         goto out_kick;
3107
3108                 /*
3109                  * expired
3110                  */
3111                 if (cfq_slice_used(cfqq))
3112                         goto expire;
3113
3114                 /*
3115                  * only expire and reinvoke request handler, if there are
3116                  * other queues with pending requests
3117                  */
3118                 if (!cfqd->busy_queues)
3119                         goto out_cont;
3120
3121                 /*
3122                  * not expired and it has a request pending, let it dispatch
3123                  */
3124                 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3125                         goto out_kick;
3126
3127                 /*
3128                  * Queue depth flag is reset only when the idle didn't succeed
3129                  */
3130                 cfq_clear_cfqq_deep(cfqq);
3131         }
3132 expire:
3133         cfq_slice_expired(cfqd, timed_out);
3134 out_kick:
3135         cfq_schedule_dispatch(cfqd);
3136 out_cont:
3137         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3138 }
3139
3140 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3141 {
3142         del_timer_sync(&cfqd->idle_slice_timer);
3143         cancel_work_sync(&cfqd->unplug_work);
3144 }
3145
3146 static void cfq_put_async_queues(struct cfq_data *cfqd)
3147 {
3148         int i;
3149
3150         for (i = 0; i < IOPRIO_BE_NR; i++) {
3151                 if (cfqd->async_cfqq[0][i])
3152                         cfq_put_queue(cfqd->async_cfqq[0][i]);
3153                 if (cfqd->async_cfqq[1][i])
3154                         cfq_put_queue(cfqd->async_cfqq[1][i]);
3155         }
3156
3157         if (cfqd->async_idle_cfqq)
3158                 cfq_put_queue(cfqd->async_idle_cfqq);
3159 }
3160
3161 static void cfq_exit_queue(struct elevator_queue *e)
3162 {
3163         struct cfq_data *cfqd = e->elevator_data;
3164         struct request_queue *q = cfqd->queue;
3165
3166         cfq_shutdown_timer_wq(cfqd);
3167
3168         spin_lock_irq(q->queue_lock);
3169
3170         if (cfqd->active_queue)
3171                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3172
3173         while (!list_empty(&cfqd->cic_list)) {
3174                 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3175                                                         struct cfq_io_context,
3176                                                         queue_list);
3177
3178                 __cfq_exit_single_io_context(cfqd, cic);
3179         }
3180
3181         cfq_put_async_queues(cfqd);
3182
3183         spin_unlock_irq(q->queue_lock);
3184
3185         cfq_shutdown_timer_wq(cfqd);
3186
3187         kfree(cfqd);
3188 }
3189
3190 static void *cfq_init_queue(struct request_queue *q)
3191 {
3192         struct cfq_data *cfqd;
3193         int i, j;
3194         struct cfq_group *cfqg;
3195         struct cfq_rb_root *st;
3196
3197         cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3198         if (!cfqd)
3199                 return NULL;
3200
3201         /* Init root service tree */
3202         cfqd->grp_service_tree = CFQ_RB_ROOT;
3203
3204         /* Init root group */
3205         cfqg = &cfqd->root_group;
3206         for_each_cfqg_st(cfqg, i, j, st)
3207                 *st = CFQ_RB_ROOT;
3208         RB_CLEAR_NODE(&cfqg->rb_node);
3209
3210         /* Give preference to root group over other groups */
3211         cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3212
3213         /*
3214          * Not strictly needed (since RB_ROOT just clears the node and we
3215          * zeroed cfqd on alloc), but better be safe in case someone decides
3216          * to add magic to the rb code
3217          */
3218         for (i = 0; i < CFQ_PRIO_LISTS; i++)
3219                 cfqd->prio_trees[i] = RB_ROOT;
3220
3221         /*
3222          * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3223          * Grab a permanent reference to it, so that the normal code flow
3224          * will not attempt to free it.
3225          */
3226         cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3227         atomic_inc(&cfqd->oom_cfqq.ref);
3228         cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3229
3230         INIT_LIST_HEAD(&cfqd->cic_list);
3231
3232         cfqd->queue = q;
3233
3234         init_timer(&cfqd->idle_slice_timer);
3235         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3236         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3237
3238         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3239
3240         cfqd->cfq_quantum = cfq_quantum;
3241         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3242         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3243         cfqd->cfq_back_max = cfq_back_max;
3244         cfqd->cfq_back_penalty = cfq_back_penalty;
3245         cfqd->cfq_slice[0] = cfq_slice_async;
3246         cfqd->cfq_slice[1] = cfq_slice_sync;
3247         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3248         cfqd->cfq_slice_idle = cfq_slice_idle;
3249         cfqd->cfq_latency = 1;
3250         cfqd->hw_tag = -1;
3251         cfqd->last_end_sync_rq = jiffies;
3252         return cfqd;
3253 }
3254
3255 static void cfq_slab_kill(void)
3256 {
3257         /*
3258          * Caller already ensured that pending RCU callbacks are completed,
3259          * so we should have no busy allocations at this point.
3260          */
3261         if (cfq_pool)
3262                 kmem_cache_destroy(cfq_pool);
3263         if (cfq_ioc_pool)
3264                 kmem_cache_destroy(cfq_ioc_pool);
3265 }
3266
3267 static int __init cfq_slab_setup(void)
3268 {
3269         cfq_pool = KMEM_CACHE(cfq_queue, 0);
3270         if (!cfq_pool)
3271                 goto fail;
3272
3273         cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3274         if (!cfq_ioc_pool)
3275                 goto fail;
3276
3277         return 0;
3278 fail:
3279         cfq_slab_kill();
3280         return -ENOMEM;
3281 }
3282
3283 /*
3284  * sysfs parts below -->
3285  */
3286 static ssize_t
3287 cfq_var_show(unsigned int var, char *page)
3288 {
3289         return sprintf(page, "%d\n", var);
3290 }
3291
3292 static ssize_t
3293 cfq_var_store(unsigned int *var, const char *page, size_t count)
3294 {
3295         char *p = (char *) page;
3296
3297         *var = simple_strtoul(p, &p, 10);
3298         return count;
3299 }
3300
3301 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
3302 static ssize_t __FUNC(struct elevator_queue *e, char *page)             \
3303 {                                                                       \
3304         struct cfq_data *cfqd = e->elevator_data;                       \
3305         unsigned int __data = __VAR;                                    \
3306         if (__CONV)                                                     \
3307                 __data = jiffies_to_msecs(__data);                      \
3308         return cfq_var_show(__data, (page));                            \
3309 }
3310 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3311 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3312 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3313 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3314 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3315 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3316 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3317 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3318 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3319 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3320 #undef SHOW_FUNCTION
3321
3322 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
3323 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3324 {                                                                       \
3325         struct cfq_data *cfqd = e->elevator_data;                       \
3326         unsigned int __data;                                            \
3327         int ret = cfq_var_store(&__data, (page), count);                \
3328         if (__data < (MIN))                                             \
3329                 __data = (MIN);                                         \
3330         else if (__data > (MAX))                                        \
3331                 __data = (MAX);                                         \
3332         if (__CONV)                                                     \
3333                 *(__PTR) = msecs_to_jiffies(__data);                    \
3334         else                                                            \
3335                 *(__PTR) = __data;                                      \
3336         return ret;                                                     \
3337 }
3338 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3339 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3340                 UINT_MAX, 1);
3341 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3342                 UINT_MAX, 1);
3343 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3344 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3345                 UINT_MAX, 0);
3346 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3347 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3348 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3349 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3350                 UINT_MAX, 0);
3351 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3352 #undef STORE_FUNCTION
3353
3354 #define CFQ_ATTR(name) \
3355         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3356
3357 static struct elv_fs_entry cfq_attrs[] = {
3358         CFQ_ATTR(quantum),
3359         CFQ_ATTR(fifo_expire_sync),
3360         CFQ_ATTR(fifo_expire_async),
3361         CFQ_ATTR(back_seek_max),
3362         CFQ_ATTR(back_seek_penalty),
3363         CFQ_ATTR(slice_sync),
3364         CFQ_ATTR(slice_async),
3365         CFQ_ATTR(slice_async_rq),
3366         CFQ_ATTR(slice_idle),
3367         CFQ_ATTR(low_latency),
3368         __ATTR_NULL
3369 };
3370
3371 static struct elevator_type iosched_cfq = {
3372         .ops = {
3373                 .elevator_merge_fn =            cfq_merge,
3374                 .elevator_merged_fn =           cfq_merged_request,
3375                 .elevator_merge_req_fn =        cfq_merged_requests,
3376                 .elevator_allow_merge_fn =      cfq_allow_merge,
3377                 .elevator_dispatch_fn =         cfq_dispatch_requests,
3378                 .elevator_add_req_fn =          cfq_insert_request,
3379                 .elevator_activate_req_fn =     cfq_activate_request,
3380                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
3381                 .elevator_queue_empty_fn =      cfq_queue_empty,
3382                 .elevator_completed_req_fn =    cfq_completed_request,
3383                 .elevator_former_req_fn =       elv_rb_former_request,
3384                 .elevator_latter_req_fn =       elv_rb_latter_request,
3385                 .elevator_set_req_fn =          cfq_set_request,
3386                 .elevator_put_req_fn =          cfq_put_request,
3387                 .elevator_may_queue_fn =        cfq_may_queue,
3388                 .elevator_init_fn =             cfq_init_queue,
3389                 .elevator_exit_fn =             cfq_exit_queue,
3390                 .trim =                         cfq_free_io_context,
3391         },
3392         .elevator_attrs =       cfq_attrs,
3393         .elevator_name =        "cfq",
3394         .elevator_owner =       THIS_MODULE,
3395 };
3396
3397 static int __init cfq_init(void)
3398 {
3399         /*
3400          * could be 0 on HZ < 1000 setups
3401          */
3402         if (!cfq_slice_async)
3403                 cfq_slice_async = 1;
3404         if (!cfq_slice_idle)
3405                 cfq_slice_idle = 1;
3406
3407         if (cfq_slab_setup())
3408                 return -ENOMEM;
3409
3410         elv_register(&iosched_cfq);
3411
3412         return 0;
3413 }
3414
3415 static void __exit cfq_exit(void)
3416 {
3417         DECLARE_COMPLETION_ONSTACK(all_gone);
3418         elv_unregister(&iosched_cfq);
3419         ioc_gone = &all_gone;
3420         /* ioc_gone's update must be visible before reading ioc_count */
3421         smp_wmb();
3422
3423         /*
3424          * this also protects us from entering cfq_slab_kill() with
3425          * pending RCU callbacks
3426          */
3427         if (elv_ioc_count_read(cfq_ioc_count))
3428                 wait_for_completion(&all_gone);
3429         cfq_slab_kill();
3430 }
3431
3432 module_init(cfq_init);
3433 module_exit(cfq_exit);
3434
3435 MODULE_AUTHOR("Jens Axboe");
3436 MODULE_LICENSE("GPL");
3437 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");