cfq-iosched: get rid of ->dispatch_slice
[safe/jmp/linux-2.6] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/hash.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15
16 /*
17  * tunables
18  */
19 static const int cfq_quantum = 4;               /* max queue in one round of service */
20 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
21 static const int cfq_back_max = 16 * 1024;      /* maximum backwards seek, in KiB */
22 static const int cfq_back_penalty = 2;          /* penalty of a backwards seek */
23
24 static const int cfq_slice_sync = HZ / 10;
25 static int cfq_slice_async = HZ / 25;
26 static const int cfq_slice_async_rq = 2;
27 static int cfq_slice_idle = HZ / 125;
28
29 /*
30  * grace period before allowing idle class to get disk access
31  */
32 #define CFQ_IDLE_GRACE          (HZ / 10)
33
34 /*
35  * below this threshold, we consider thinktime immediate
36  */
37 #define CFQ_MIN_TT              (2)
38
39 #define CFQ_SLICE_SCALE         (5)
40
41 #define CFQ_KEY_ASYNC           (0)
42
43 /*
44  * for the hash of cfqq inside the cfqd
45  */
46 #define CFQ_QHASH_SHIFT         6
47 #define CFQ_QHASH_ENTRIES       (1 << CFQ_QHASH_SHIFT)
48
49 #define RQ_CIC(rq)              ((struct cfq_io_context*)(rq)->elevator_private)
50 #define RQ_CFQQ(rq)             ((rq)->elevator_private2)
51
52 static struct kmem_cache *cfq_pool;
53 static struct kmem_cache *cfq_ioc_pool;
54
55 static DEFINE_PER_CPU(unsigned long, ioc_count);
56 static struct completion *ioc_gone;
57
58 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
59 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
60 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
61
62 #define ASYNC                   (0)
63 #define SYNC                    (1)
64
65 #define cfq_cfqq_sync(cfqq)     ((cfqq)->key != CFQ_KEY_ASYNC)
66
67 #define sample_valid(samples)   ((samples) > 80)
68
69 /*
70  * Most of our rbtree usage is for sorting with min extraction, so
71  * if we cache the leftmost node we don't have to walk down the tree
72  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
73  * move this into the elevator for the rq sorting as well.
74  */
75 struct cfq_rb_root {
76         struct rb_root rb;
77         struct rb_node *left;
78 };
79 #define CFQ_RB_ROOT     (struct cfq_rb_root) { RB_ROOT, NULL, }
80
81 /*
82  * Per block device queue structure
83  */
84 struct cfq_data {
85         request_queue_t *queue;
86
87         /*
88          * rr list of queues with requests and the count of them
89          */
90         struct cfq_rb_root service_tree;
91         unsigned int busy_queues;
92
93         /*
94          * cfqq lookup hash
95          */
96         struct hlist_head *cfq_hash;
97
98         int rq_in_driver;
99         int hw_tag;
100
101         /*
102          * idle window management
103          */
104         struct timer_list idle_slice_timer;
105         struct work_struct unplug_work;
106
107         struct cfq_queue *active_queue;
108         struct cfq_io_context *active_cic;
109
110         struct timer_list idle_class_timer;
111
112         sector_t last_position;
113         unsigned long last_end_request;
114
115         /*
116          * tunables, see top of file
117          */
118         unsigned int cfq_quantum;
119         unsigned int cfq_fifo_expire[2];
120         unsigned int cfq_back_penalty;
121         unsigned int cfq_back_max;
122         unsigned int cfq_slice[2];
123         unsigned int cfq_slice_async_rq;
124         unsigned int cfq_slice_idle;
125
126         struct list_head cic_list;
127
128         sector_t new_seek_mean;
129         u64 new_seek_total;
130 };
131
132 /*
133  * Per process-grouping structure
134  */
135 struct cfq_queue {
136         /* reference count */
137         atomic_t ref;
138         /* parent cfq_data */
139         struct cfq_data *cfqd;
140         /* cfqq lookup hash */
141         struct hlist_node cfq_hash;
142         /* hash key */
143         unsigned int key;
144         /* service_tree member */
145         struct rb_node rb_node;
146         /* service_tree key */
147         unsigned long rb_key;
148         /* sorted list of pending requests */
149         struct rb_root sort_list;
150         /* if fifo isn't expired, next request to serve */
151         struct request *next_rq;
152         /* requests queued in sort_list */
153         int queued[2];
154         /* currently allocated requests */
155         int allocated[2];
156         /* pending metadata requests */
157         int meta_pending;
158         /* fifo list of requests in sort_list */
159         struct list_head fifo;
160
161         unsigned long slice_end;
162         long slice_resid;
163
164         /* number of requests that are on the dispatch list or inside driver */
165         int dispatched;
166
167         /* io prio of this group */
168         unsigned short ioprio, org_ioprio;
169         unsigned short ioprio_class, org_ioprio_class;
170
171         /* various state flags, see below */
172         unsigned int flags;
173
174         sector_t last_request_pos;
175 };
176
177 enum cfqq_state_flags {
178         CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
179         CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
180         CFQ_CFQQ_FLAG_must_alloc,       /* must be allowed rq alloc */
181         CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
182         CFQ_CFQQ_FLAG_must_dispatch,    /* must dispatch, even if expired */
183         CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
184         CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
185         CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
186         CFQ_CFQQ_FLAG_queue_new,        /* queue never been serviced */
187         CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
188 };
189
190 #define CFQ_CFQQ_FNS(name)                                              \
191 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
192 {                                                                       \
193         cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name);                     \
194 }                                                                       \
195 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
196 {                                                                       \
197         cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                    \
198 }                                                                       \
199 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
200 {                                                                       \
201         return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;        \
202 }
203
204 CFQ_CFQQ_FNS(on_rr);
205 CFQ_CFQQ_FNS(wait_request);
206 CFQ_CFQQ_FNS(must_alloc);
207 CFQ_CFQQ_FNS(must_alloc_slice);
208 CFQ_CFQQ_FNS(must_dispatch);
209 CFQ_CFQQ_FNS(fifo_expire);
210 CFQ_CFQQ_FNS(idle_window);
211 CFQ_CFQQ_FNS(prio_changed);
212 CFQ_CFQQ_FNS(queue_new);
213 CFQ_CFQQ_FNS(slice_new);
214 #undef CFQ_CFQQ_FNS
215
216 static struct cfq_queue *cfq_find_cfq_hash(struct cfq_data *, unsigned int, unsigned short);
217 static void cfq_dispatch_insert(request_queue_t *, struct request *);
218 static struct cfq_queue *cfq_get_queue(struct cfq_data *, unsigned int, struct task_struct *, gfp_t);
219
220 /*
221  * scheduler run of queue, if there are requests pending and no one in the
222  * driver that will restart queueing
223  */
224 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
225 {
226         if (cfqd->busy_queues)
227                 kblockd_schedule_work(&cfqd->unplug_work);
228 }
229
230 static int cfq_queue_empty(request_queue_t *q)
231 {
232         struct cfq_data *cfqd = q->elevator->elevator_data;
233
234         return !cfqd->busy_queues;
235 }
236
237 static inline pid_t cfq_queue_pid(struct task_struct *task, int rw, int is_sync)
238 {
239         /*
240          * Use the per-process queue, for read requests and syncronous writes
241          */
242         if (!(rw & REQ_RW) || is_sync)
243                 return task->pid;
244
245         return CFQ_KEY_ASYNC;
246 }
247
248 /*
249  * Scale schedule slice based on io priority. Use the sync time slice only
250  * if a queue is marked sync and has sync io queued. A sync queue with async
251  * io only, should not get full sync slice length.
252  */
253 static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
254                                  unsigned short prio)
255 {
256         const int base_slice = cfqd->cfq_slice[sync];
257
258         WARN_ON(prio >= IOPRIO_BE_NR);
259
260         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
261 }
262
263 static inline int
264 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
265 {
266         return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
267 }
268
269 static inline void
270 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
271 {
272         cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
273 }
274
275 /*
276  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
277  * isn't valid until the first request from the dispatch is activated
278  * and the slice time set.
279  */
280 static inline int cfq_slice_used(struct cfq_queue *cfqq)
281 {
282         if (cfq_cfqq_slice_new(cfqq))
283                 return 0;
284         if (time_before(jiffies, cfqq->slice_end))
285                 return 0;
286
287         return 1;
288 }
289
290 /*
291  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
292  * We choose the request that is closest to the head right now. Distance
293  * behind the head is penalized and only allowed to a certain extent.
294  */
295 static struct request *
296 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
297 {
298         sector_t last, s1, s2, d1 = 0, d2 = 0;
299         unsigned long back_max;
300 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
301 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
302         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
303
304         if (rq1 == NULL || rq1 == rq2)
305                 return rq2;
306         if (rq2 == NULL)
307                 return rq1;
308
309         if (rq_is_sync(rq1) && !rq_is_sync(rq2))
310                 return rq1;
311         else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
312                 return rq2;
313         if (rq_is_meta(rq1) && !rq_is_meta(rq2))
314                 return rq1;
315         else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
316                 return rq2;
317
318         s1 = rq1->sector;
319         s2 = rq2->sector;
320
321         last = cfqd->last_position;
322
323         /*
324          * by definition, 1KiB is 2 sectors
325          */
326         back_max = cfqd->cfq_back_max * 2;
327
328         /*
329          * Strict one way elevator _except_ in the case where we allow
330          * short backward seeks which are biased as twice the cost of a
331          * similar forward seek.
332          */
333         if (s1 >= last)
334                 d1 = s1 - last;
335         else if (s1 + back_max >= last)
336                 d1 = (last - s1) * cfqd->cfq_back_penalty;
337         else
338                 wrap |= CFQ_RQ1_WRAP;
339
340         if (s2 >= last)
341                 d2 = s2 - last;
342         else if (s2 + back_max >= last)
343                 d2 = (last - s2) * cfqd->cfq_back_penalty;
344         else
345                 wrap |= CFQ_RQ2_WRAP;
346
347         /* Found required data */
348
349         /*
350          * By doing switch() on the bit mask "wrap" we avoid having to
351          * check two variables for all permutations: --> faster!
352          */
353         switch (wrap) {
354         case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
355                 if (d1 < d2)
356                         return rq1;
357                 else if (d2 < d1)
358                         return rq2;
359                 else {
360                         if (s1 >= s2)
361                                 return rq1;
362                         else
363                                 return rq2;
364                 }
365
366         case CFQ_RQ2_WRAP:
367                 return rq1;
368         case CFQ_RQ1_WRAP:
369                 return rq2;
370         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
371         default:
372                 /*
373                  * Since both rqs are wrapped,
374                  * start with the one that's further behind head
375                  * (--> only *one* back seek required),
376                  * since back seek takes more time than forward.
377                  */
378                 if (s1 <= s2)
379                         return rq1;
380                 else
381                         return rq2;
382         }
383 }
384
385 /*
386  * The below is leftmost cache rbtree addon
387  */
388 static struct rb_node *cfq_rb_first(struct cfq_rb_root *root)
389 {
390         if (!root->left)
391                 root->left = rb_first(&root->rb);
392
393         return root->left;
394 }
395
396 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
397 {
398         if (root->left == n)
399                 root->left = NULL;
400
401         rb_erase(n, &root->rb);
402         RB_CLEAR_NODE(n);
403 }
404
405 /*
406  * would be nice to take fifo expire time into account as well
407  */
408 static struct request *
409 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
410                   struct request *last)
411 {
412         struct rb_node *rbnext = rb_next(&last->rb_node);
413         struct rb_node *rbprev = rb_prev(&last->rb_node);
414         struct request *next = NULL, *prev = NULL;
415
416         BUG_ON(RB_EMPTY_NODE(&last->rb_node));
417
418         if (rbprev)
419                 prev = rb_entry_rq(rbprev);
420
421         if (rbnext)
422                 next = rb_entry_rq(rbnext);
423         else {
424                 rbnext = rb_first(&cfqq->sort_list);
425                 if (rbnext && rbnext != &last->rb_node)
426                         next = rb_entry_rq(rbnext);
427         }
428
429         return cfq_choose_req(cfqd, next, prev);
430 }
431
432 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
433                                       struct cfq_queue *cfqq)
434 {
435         /*
436          * just an approximation, should be ok.
437          */
438         return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
439                        cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
440 }
441
442 /*
443  * The cfqd->service_tree holds all pending cfq_queue's that have
444  * requests waiting to be processed. It is sorted in the order that
445  * we will service the queues.
446  */
447 static void cfq_service_tree_add(struct cfq_data *cfqd,
448                                     struct cfq_queue *cfqq, int add_front)
449 {
450         struct rb_node **p = &cfqd->service_tree.rb.rb_node;
451         struct rb_node *parent = NULL;
452         unsigned long rb_key;
453         int left;
454
455         if (!add_front) {
456                 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
457                 rb_key += cfqq->slice_resid;
458                 cfqq->slice_resid = 0;
459         } else
460                 rb_key = 0;
461
462         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
463                 /*
464                  * same position, nothing more to do
465                  */
466                 if (rb_key == cfqq->rb_key)
467                         return;
468
469                 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
470         }
471
472         left = 1;
473         while (*p) {
474                 struct cfq_queue *__cfqq;
475                 struct rb_node **n;
476
477                 parent = *p;
478                 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
479
480                 /*
481                  * sort RT queues first, we always want to give
482                  * preference to them. IDLE queues goes to the back.
483                  * after that, sort on the next service time.
484                  */
485                 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
486                         n = &(*p)->rb_left;
487                 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
488                         n = &(*p)->rb_right;
489                 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
490                         n = &(*p)->rb_left;
491                 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
492                         n = &(*p)->rb_right;
493                 else if (rb_key < __cfqq->rb_key)
494                         n = &(*p)->rb_left;
495                 else
496                         n = &(*p)->rb_right;
497
498                 if (n == &(*p)->rb_right)
499                         left = 0;
500
501                 p = n;
502         }
503
504         if (left)
505                 cfqd->service_tree.left = &cfqq->rb_node;
506
507         cfqq->rb_key = rb_key;
508         rb_link_node(&cfqq->rb_node, parent, p);
509         rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
510 }
511
512 /*
513  * Update cfqq's position in the service tree.
514  */
515 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
516 {
517         /*
518          * Resorting requires the cfqq to be on the RR list already.
519          */
520         if (cfq_cfqq_on_rr(cfqq))
521                 cfq_service_tree_add(cfqd, cfqq, 0);
522 }
523
524 /*
525  * add to busy list of queues for service, trying to be fair in ordering
526  * the pending list according to last request service
527  */
528 static inline void
529 cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
530 {
531         BUG_ON(cfq_cfqq_on_rr(cfqq));
532         cfq_mark_cfqq_on_rr(cfqq);
533         cfqd->busy_queues++;
534
535         cfq_resort_rr_list(cfqd, cfqq);
536 }
537
538 /*
539  * Called when the cfqq no longer has requests pending, remove it from
540  * the service tree.
541  */
542 static inline void
543 cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
544 {
545         BUG_ON(!cfq_cfqq_on_rr(cfqq));
546         cfq_clear_cfqq_on_rr(cfqq);
547
548         if (!RB_EMPTY_NODE(&cfqq->rb_node))
549                 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
550
551         BUG_ON(!cfqd->busy_queues);
552         cfqd->busy_queues--;
553 }
554
555 /*
556  * rb tree support functions
557  */
558 static inline void cfq_del_rq_rb(struct request *rq)
559 {
560         struct cfq_queue *cfqq = RQ_CFQQ(rq);
561         struct cfq_data *cfqd = cfqq->cfqd;
562         const int sync = rq_is_sync(rq);
563
564         BUG_ON(!cfqq->queued[sync]);
565         cfqq->queued[sync]--;
566
567         elv_rb_del(&cfqq->sort_list, rq);
568
569         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
570                 cfq_del_cfqq_rr(cfqd, cfqq);
571 }
572
573 static void cfq_add_rq_rb(struct request *rq)
574 {
575         struct cfq_queue *cfqq = RQ_CFQQ(rq);
576         struct cfq_data *cfqd = cfqq->cfqd;
577         struct request *__alias;
578
579         cfqq->queued[rq_is_sync(rq)]++;
580
581         /*
582          * looks a little odd, but the first insert might return an alias.
583          * if that happens, put the alias on the dispatch list
584          */
585         while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
586                 cfq_dispatch_insert(cfqd->queue, __alias);
587
588         if (!cfq_cfqq_on_rr(cfqq))
589                 cfq_add_cfqq_rr(cfqd, cfqq);
590
591         /*
592          * check if this request is a better next-serve candidate
593          */
594         cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
595         BUG_ON(!cfqq->next_rq);
596 }
597
598 static inline void
599 cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
600 {
601         elv_rb_del(&cfqq->sort_list, rq);
602         cfqq->queued[rq_is_sync(rq)]--;
603         cfq_add_rq_rb(rq);
604 }
605
606 static struct request *
607 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
608 {
609         struct task_struct *tsk = current;
610         pid_t key = cfq_queue_pid(tsk, bio_data_dir(bio), bio_sync(bio));
611         struct cfq_queue *cfqq;
612
613         cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
614         if (cfqq) {
615                 sector_t sector = bio->bi_sector + bio_sectors(bio);
616
617                 return elv_rb_find(&cfqq->sort_list, sector);
618         }
619
620         return NULL;
621 }
622
623 static void cfq_activate_request(request_queue_t *q, struct request *rq)
624 {
625         struct cfq_data *cfqd = q->elevator->elevator_data;
626
627         cfqd->rq_in_driver++;
628
629         /*
630          * If the depth is larger 1, it really could be queueing. But lets
631          * make the mark a little higher - idling could still be good for
632          * low queueing, and a low queueing number could also just indicate
633          * a SCSI mid layer like behaviour where limit+1 is often seen.
634          */
635         if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
636                 cfqd->hw_tag = 1;
637
638         cfqd->last_position = rq->hard_sector + rq->hard_nr_sectors;
639 }
640
641 static void cfq_deactivate_request(request_queue_t *q, struct request *rq)
642 {
643         struct cfq_data *cfqd = q->elevator->elevator_data;
644
645         WARN_ON(!cfqd->rq_in_driver);
646         cfqd->rq_in_driver--;
647 }
648
649 static void cfq_remove_request(struct request *rq)
650 {
651         struct cfq_queue *cfqq = RQ_CFQQ(rq);
652
653         if (cfqq->next_rq == rq)
654                 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
655
656         list_del_init(&rq->queuelist);
657         cfq_del_rq_rb(rq);
658
659         if (rq_is_meta(rq)) {
660                 WARN_ON(!cfqq->meta_pending);
661                 cfqq->meta_pending--;
662         }
663 }
664
665 static int cfq_merge(request_queue_t *q, struct request **req, struct bio *bio)
666 {
667         struct cfq_data *cfqd = q->elevator->elevator_data;
668         struct request *__rq;
669
670         __rq = cfq_find_rq_fmerge(cfqd, bio);
671         if (__rq && elv_rq_merge_ok(__rq, bio)) {
672                 *req = __rq;
673                 return ELEVATOR_FRONT_MERGE;
674         }
675
676         return ELEVATOR_NO_MERGE;
677 }
678
679 static void cfq_merged_request(request_queue_t *q, struct request *req,
680                                int type)
681 {
682         if (type == ELEVATOR_FRONT_MERGE) {
683                 struct cfq_queue *cfqq = RQ_CFQQ(req);
684
685                 cfq_reposition_rq_rb(cfqq, req);
686         }
687 }
688
689 static void
690 cfq_merged_requests(request_queue_t *q, struct request *rq,
691                     struct request *next)
692 {
693         /*
694          * reposition in fifo if next is older than rq
695          */
696         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
697             time_before(next->start_time, rq->start_time))
698                 list_move(&rq->queuelist, &next->queuelist);
699
700         cfq_remove_request(next);
701 }
702
703 static int cfq_allow_merge(request_queue_t *q, struct request *rq,
704                            struct bio *bio)
705 {
706         struct cfq_data *cfqd = q->elevator->elevator_data;
707         const int rw = bio_data_dir(bio);
708         struct cfq_queue *cfqq;
709         pid_t key;
710
711         /*
712          * Disallow merge of a sync bio into an async request.
713          */
714         if ((bio_data_dir(bio) == READ || bio_sync(bio)) && !rq_is_sync(rq))
715                 return 0;
716
717         /*
718          * Lookup the cfqq that this bio will be queued with. Allow
719          * merge only if rq is queued there.
720          */
721         key = cfq_queue_pid(current, rw, bio_sync(bio));
722         cfqq = cfq_find_cfq_hash(cfqd, key, current->ioprio);
723
724         if (cfqq == RQ_CFQQ(rq))
725                 return 1;
726
727         return 0;
728 }
729
730 static inline void
731 __cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
732 {
733         if (cfqq) {
734                 /*
735                  * stop potential idle class queues waiting service
736                  */
737                 del_timer(&cfqd->idle_class_timer);
738
739                 cfqq->slice_end = 0;
740                 cfq_clear_cfqq_must_alloc_slice(cfqq);
741                 cfq_clear_cfqq_fifo_expire(cfqq);
742                 cfq_mark_cfqq_slice_new(cfqq);
743                 cfq_clear_cfqq_queue_new(cfqq);
744         }
745
746         cfqd->active_queue = cfqq;
747 }
748
749 /*
750  * current cfqq expired its slice (or was too idle), select new one
751  */
752 static void
753 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
754                     int timed_out)
755 {
756         if (cfq_cfqq_wait_request(cfqq))
757                 del_timer(&cfqd->idle_slice_timer);
758
759         cfq_clear_cfqq_must_dispatch(cfqq);
760         cfq_clear_cfqq_wait_request(cfqq);
761
762         /*
763          * store what was left of this slice, if the queue idled/timed out
764          */
765         if (timed_out && !cfq_cfqq_slice_new(cfqq))
766                 cfqq->slice_resid = cfqq->slice_end - jiffies;
767
768         cfq_resort_rr_list(cfqd, cfqq);
769
770         if (cfqq == cfqd->active_queue)
771                 cfqd->active_queue = NULL;
772
773         if (cfqd->active_cic) {
774                 put_io_context(cfqd->active_cic->ioc);
775                 cfqd->active_cic = NULL;
776         }
777 }
778
779 static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
780 {
781         struct cfq_queue *cfqq = cfqd->active_queue;
782
783         if (cfqq)
784                 __cfq_slice_expired(cfqd, cfqq, timed_out);
785 }
786
787 /*
788  * Get next queue for service. Unless we have a queue preemption,
789  * we'll simply select the first cfqq in the service tree.
790  */
791 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
792 {
793         struct cfq_queue *cfqq;
794         struct rb_node *n;
795
796         if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
797                 return NULL;
798
799         n = cfq_rb_first(&cfqd->service_tree);
800         cfqq = rb_entry(n, struct cfq_queue, rb_node);
801
802         if (cfq_class_idle(cfqq)) {
803                 unsigned long end;
804
805                 /*
806                  * if we have idle queues and no rt or be queues had
807                  * pending requests, either allow immediate service if
808                  * the grace period has passed or arm the idle grace
809                  * timer
810                  */
811                 end = cfqd->last_end_request + CFQ_IDLE_GRACE;
812                 if (time_before(jiffies, end)) {
813                         mod_timer(&cfqd->idle_class_timer, end);
814                         cfqq = NULL;
815                 }
816         }
817
818         return cfqq;
819 }
820
821 /*
822  * Get and set a new active queue for service.
823  */
824 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
825 {
826         struct cfq_queue *cfqq;
827
828         cfqq = cfq_get_next_queue(cfqd);
829         __cfq_set_active_queue(cfqd, cfqq);
830         return cfqq;
831 }
832
833 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
834                                           struct request *rq)
835 {
836         if (rq->sector >= cfqd->last_position)
837                 return rq->sector - cfqd->last_position;
838         else
839                 return cfqd->last_position - rq->sector;
840 }
841
842 static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
843 {
844         struct cfq_io_context *cic = cfqd->active_cic;
845
846         if (!sample_valid(cic->seek_samples))
847                 return 0;
848
849         return cfq_dist_from_last(cfqd, rq) <= cic->seek_mean;
850 }
851
852 static int cfq_close_cooperator(struct cfq_data *cfq_data,
853                                 struct cfq_queue *cfqq)
854 {
855         /*
856          * We should notice if some of the queues are cooperating, eg
857          * working closely on the same area of the disk. In that case,
858          * we can group them together and don't waste time idling.
859          */
860         return 0;
861 }
862
863 #define CIC_SEEKY(cic) ((cic)->seek_mean > (8 * 1024))
864
865 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
866 {
867         struct cfq_queue *cfqq = cfqd->active_queue;
868         struct cfq_io_context *cic;
869         unsigned long sl;
870
871         WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
872         WARN_ON(cfq_cfqq_slice_new(cfqq));
873
874         /*
875          * idle is disabled, either manually or by past process history
876          */
877         if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
878                 return;
879
880         /*
881          * task has exited, don't wait
882          */
883         cic = cfqd->active_cic;
884         if (!cic || !cic->ioc->task)
885                 return;
886
887         /*
888          * See if this prio level has a good candidate
889          */
890         if (cfq_close_cooperator(cfqd, cfqq) &&
891             (sample_valid(cic->ttime_samples) && cic->ttime_mean > 2))
892                 return;
893
894         cfq_mark_cfqq_must_dispatch(cfqq);
895         cfq_mark_cfqq_wait_request(cfqq);
896
897         /*
898          * we don't want to idle for seeks, but we do want to allow
899          * fair distribution of slice time for a process doing back-to-back
900          * seeks. so allow a little bit of time for him to submit a new rq
901          */
902         sl = cfqd->cfq_slice_idle;
903         if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
904                 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
905
906         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
907 }
908
909 /*
910  * Move request from internal lists to the request queue dispatch list.
911  */
912 static void cfq_dispatch_insert(request_queue_t *q, struct request *rq)
913 {
914         struct cfq_queue *cfqq = RQ_CFQQ(rq);
915
916         cfq_remove_request(rq);
917         cfqq->dispatched++;
918         elv_dispatch_sort(q, rq);
919 }
920
921 /*
922  * return expired entry, or NULL to just start from scratch in rbtree
923  */
924 static inline struct request *cfq_check_fifo(struct cfq_queue *cfqq)
925 {
926         struct cfq_data *cfqd = cfqq->cfqd;
927         struct request *rq;
928         int fifo;
929
930         if (cfq_cfqq_fifo_expire(cfqq))
931                 return NULL;
932
933         cfq_mark_cfqq_fifo_expire(cfqq);
934
935         if (list_empty(&cfqq->fifo))
936                 return NULL;
937
938         fifo = cfq_cfqq_sync(cfqq);
939         rq = rq_entry_fifo(cfqq->fifo.next);
940
941         if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
942                 return NULL;
943
944         return rq;
945 }
946
947 static inline int
948 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
949 {
950         const int base_rq = cfqd->cfq_slice_async_rq;
951
952         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
953
954         return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
955 }
956
957 /*
958  * Select a queue for service. If we have a current active queue,
959  * check whether to continue servicing it, or retrieve and set a new one.
960  */
961 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
962 {
963         struct cfq_queue *cfqq;
964
965         cfqq = cfqd->active_queue;
966         if (!cfqq)
967                 goto new_queue;
968
969         /*
970          * The active queue has run out of time, expire it and select new.
971          */
972         if (cfq_slice_used(cfqq))
973                 goto expire;
974
975         /*
976          * The active queue has requests and isn't expired, allow it to
977          * dispatch.
978          */
979         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
980                 goto keep_queue;
981
982         /*
983          * No requests pending. If the active queue still has requests in
984          * flight or is idling for a new request, allow either of these
985          * conditions to happen (or time out) before selecting a new queue.
986          */
987         if (cfqq->dispatched || timer_pending(&cfqd->idle_slice_timer)) {
988                 cfqq = NULL;
989                 goto keep_queue;
990         }
991
992 expire:
993         cfq_slice_expired(cfqd, 0);
994 new_queue:
995         cfqq = cfq_set_active_queue(cfqd);
996 keep_queue:
997         return cfqq;
998 }
999
1000 /*
1001  * Dispatch some requests from cfqq, moving them to the request queue
1002  * dispatch list.
1003  */
1004 static int
1005 __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1006                         int max_dispatch)
1007 {
1008         int dispatched = 0;
1009
1010         BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1011
1012         do {
1013                 struct request *rq;
1014
1015                 /*
1016                  * follow expired path, else get first next available
1017                  */
1018                 if ((rq = cfq_check_fifo(cfqq)) == NULL)
1019                         rq = cfqq->next_rq;
1020
1021                 /*
1022                  * finally, insert request into driver dispatch list
1023                  */
1024                 cfq_dispatch_insert(cfqd->queue, rq);
1025
1026                 dispatched++;
1027
1028                 if (!cfqd->active_cic) {
1029                         atomic_inc(&RQ_CIC(rq)->ioc->refcount);
1030                         cfqd->active_cic = RQ_CIC(rq);
1031                 }
1032
1033                 if (RB_EMPTY_ROOT(&cfqq->sort_list))
1034                         break;
1035
1036         } while (dispatched < max_dispatch);
1037
1038         /*
1039          * expire an async queue immediately if it has used up its slice. idle
1040          * queue always expire after 1 dispatch round.
1041          */
1042         if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1043             dispatched >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1044             cfq_class_idle(cfqq))) {
1045                 cfqq->slice_end = jiffies + 1;
1046                 cfq_slice_expired(cfqd, 0);
1047         }
1048
1049         return dispatched;
1050 }
1051
1052 static inline int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1053 {
1054         int dispatched = 0;
1055
1056         while (cfqq->next_rq) {
1057                 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1058                 dispatched++;
1059         }
1060
1061         BUG_ON(!list_empty(&cfqq->fifo));
1062         return dispatched;
1063 }
1064
1065 /*
1066  * Drain our current requests. Used for barriers and when switching
1067  * io schedulers on-the-fly.
1068  */
1069 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1070 {
1071         int dispatched = 0;
1072         struct rb_node *n;
1073
1074         while ((n = cfq_rb_first(&cfqd->service_tree)) != NULL) {
1075                 struct cfq_queue *cfqq = rb_entry(n, struct cfq_queue, rb_node);
1076
1077                 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1078         }
1079
1080         cfq_slice_expired(cfqd, 0);
1081
1082         BUG_ON(cfqd->busy_queues);
1083
1084         return dispatched;
1085 }
1086
1087 static int cfq_dispatch_requests(request_queue_t *q, int force)
1088 {
1089         struct cfq_data *cfqd = q->elevator->elevator_data;
1090         struct cfq_queue *cfqq;
1091         int dispatched;
1092
1093         if (!cfqd->busy_queues)
1094                 return 0;
1095
1096         if (unlikely(force))
1097                 return cfq_forced_dispatch(cfqd);
1098
1099         dispatched = 0;
1100         while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
1101                 int max_dispatch;
1102
1103                 if (cfqd->busy_queues > 1) {
1104                         /*
1105                          * So we have dispatched before in this round, if the
1106                          * next queue has idling enabled (must be sync), don't
1107                          * allow it service until the previous have completed.
1108                          */
1109                         if (cfqd->rq_in_driver && cfq_cfqq_idle_window(cfqq) &&
1110                             dispatched)
1111                                 break;
1112                         if (cfqq->dispatched >= cfqd->cfq_quantum)
1113                                 break;
1114                 }
1115
1116                 cfq_clear_cfqq_must_dispatch(cfqq);
1117                 cfq_clear_cfqq_wait_request(cfqq);
1118                 del_timer(&cfqd->idle_slice_timer);
1119
1120                 max_dispatch = cfqd->cfq_quantum;
1121                 if (cfq_class_idle(cfqq))
1122                         max_dispatch = 1;
1123
1124                 dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1125         }
1126
1127         return dispatched;
1128 }
1129
1130 /*
1131  * task holds one reference to the queue, dropped when task exits. each rq
1132  * in-flight on this queue also holds a reference, dropped when rq is freed.
1133  *
1134  * queue lock must be held here.
1135  */
1136 static void cfq_put_queue(struct cfq_queue *cfqq)
1137 {
1138         struct cfq_data *cfqd = cfqq->cfqd;
1139
1140         BUG_ON(atomic_read(&cfqq->ref) <= 0);
1141
1142         if (!atomic_dec_and_test(&cfqq->ref))
1143                 return;
1144
1145         BUG_ON(rb_first(&cfqq->sort_list));
1146         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1147         BUG_ON(cfq_cfqq_on_rr(cfqq));
1148
1149         if (unlikely(cfqd->active_queue == cfqq)) {
1150                 __cfq_slice_expired(cfqd, cfqq, 0);
1151                 cfq_schedule_dispatch(cfqd);
1152         }
1153
1154         /*
1155          * it's on the empty list and still hashed
1156          */
1157         hlist_del(&cfqq->cfq_hash);
1158         kmem_cache_free(cfq_pool, cfqq);
1159 }
1160
1161 static struct cfq_queue *
1162 __cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned int prio,
1163                     const int hashval)
1164 {
1165         struct hlist_head *hash_list = &cfqd->cfq_hash[hashval];
1166         struct hlist_node *entry;
1167         struct cfq_queue *__cfqq;
1168
1169         hlist_for_each_entry(__cfqq, entry, hash_list, cfq_hash) {
1170                 const unsigned short __p = IOPRIO_PRIO_VALUE(__cfqq->org_ioprio_class, __cfqq->org_ioprio);
1171
1172                 if (__cfqq->key == key && (__p == prio || !prio))
1173                         return __cfqq;
1174         }
1175
1176         return NULL;
1177 }
1178
1179 static struct cfq_queue *
1180 cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned short prio)
1181 {
1182         return __cfq_find_cfq_hash(cfqd, key, prio, hash_long(key, CFQ_QHASH_SHIFT));
1183 }
1184
1185 static void cfq_free_io_context(struct io_context *ioc)
1186 {
1187         struct cfq_io_context *__cic;
1188         struct rb_node *n;
1189         int freed = 0;
1190
1191         while ((n = rb_first(&ioc->cic_root)) != NULL) {
1192                 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1193                 rb_erase(&__cic->rb_node, &ioc->cic_root);
1194                 kmem_cache_free(cfq_ioc_pool, __cic);
1195                 freed++;
1196         }
1197
1198         elv_ioc_count_mod(ioc_count, -freed);
1199
1200         if (ioc_gone && !elv_ioc_count_read(ioc_count))
1201                 complete(ioc_gone);
1202 }
1203
1204 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1205 {
1206         if (unlikely(cfqq == cfqd->active_queue)) {
1207                 __cfq_slice_expired(cfqd, cfqq, 0);
1208                 cfq_schedule_dispatch(cfqd);
1209         }
1210
1211         cfq_put_queue(cfqq);
1212 }
1213
1214 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1215                                          struct cfq_io_context *cic)
1216 {
1217         list_del_init(&cic->queue_list);
1218         smp_wmb();
1219         cic->key = NULL;
1220
1221         if (cic->cfqq[ASYNC]) {
1222                 cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
1223                 cic->cfqq[ASYNC] = NULL;
1224         }
1225
1226         if (cic->cfqq[SYNC]) {
1227                 cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
1228                 cic->cfqq[SYNC] = NULL;
1229         }
1230 }
1231
1232 static void cfq_exit_single_io_context(struct cfq_io_context *cic)
1233 {
1234         struct cfq_data *cfqd = cic->key;
1235
1236         if (cfqd) {
1237                 request_queue_t *q = cfqd->queue;
1238
1239                 spin_lock_irq(q->queue_lock);
1240                 __cfq_exit_single_io_context(cfqd, cic);
1241                 spin_unlock_irq(q->queue_lock);
1242         }
1243 }
1244
1245 /*
1246  * The process that ioc belongs to has exited, we need to clean up
1247  * and put the internal structures we have that belongs to that process.
1248  */
1249 static void cfq_exit_io_context(struct io_context *ioc)
1250 {
1251         struct cfq_io_context *__cic;
1252         struct rb_node *n;
1253
1254         /*
1255          * put the reference this task is holding to the various queues
1256          */
1257
1258         n = rb_first(&ioc->cic_root);
1259         while (n != NULL) {
1260                 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1261
1262                 cfq_exit_single_io_context(__cic);
1263                 n = rb_next(n);
1264         }
1265 }
1266
1267 static struct cfq_io_context *
1268 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1269 {
1270         struct cfq_io_context *cic;
1271
1272         cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask, cfqd->queue->node);
1273         if (cic) {
1274                 memset(cic, 0, sizeof(*cic));
1275                 cic->last_end_request = jiffies;
1276                 INIT_LIST_HEAD(&cic->queue_list);
1277                 cic->dtor = cfq_free_io_context;
1278                 cic->exit = cfq_exit_io_context;
1279                 elv_ioc_count_inc(ioc_count);
1280         }
1281
1282         return cic;
1283 }
1284
1285 static void cfq_init_prio_data(struct cfq_queue *cfqq)
1286 {
1287         struct task_struct *tsk = current;
1288         int ioprio_class;
1289
1290         if (!cfq_cfqq_prio_changed(cfqq))
1291                 return;
1292
1293         ioprio_class = IOPRIO_PRIO_CLASS(tsk->ioprio);
1294         switch (ioprio_class) {
1295                 default:
1296                         printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1297                 case IOPRIO_CLASS_NONE:
1298                         /*
1299                          * no prio set, place us in the middle of the BE classes
1300                          */
1301                         cfqq->ioprio = task_nice_ioprio(tsk);
1302                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
1303                         break;
1304                 case IOPRIO_CLASS_RT:
1305                         cfqq->ioprio = task_ioprio(tsk);
1306                         cfqq->ioprio_class = IOPRIO_CLASS_RT;
1307                         break;
1308                 case IOPRIO_CLASS_BE:
1309                         cfqq->ioprio = task_ioprio(tsk);
1310                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
1311                         break;
1312                 case IOPRIO_CLASS_IDLE:
1313                         cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1314                         cfqq->ioprio = 7;
1315                         cfq_clear_cfqq_idle_window(cfqq);
1316                         break;
1317         }
1318
1319         /*
1320          * keep track of original prio settings in case we have to temporarily
1321          * elevate the priority of this queue
1322          */
1323         cfqq->org_ioprio = cfqq->ioprio;
1324         cfqq->org_ioprio_class = cfqq->ioprio_class;
1325         cfq_clear_cfqq_prio_changed(cfqq);
1326 }
1327
1328 static inline void changed_ioprio(struct cfq_io_context *cic)
1329 {
1330         struct cfq_data *cfqd = cic->key;
1331         struct cfq_queue *cfqq;
1332         unsigned long flags;
1333
1334         if (unlikely(!cfqd))
1335                 return;
1336
1337         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1338
1339         cfqq = cic->cfqq[ASYNC];
1340         if (cfqq) {
1341                 struct cfq_queue *new_cfqq;
1342                 new_cfqq = cfq_get_queue(cfqd, CFQ_KEY_ASYNC, cic->ioc->task,
1343                                          GFP_ATOMIC);
1344                 if (new_cfqq) {
1345                         cic->cfqq[ASYNC] = new_cfqq;
1346                         cfq_put_queue(cfqq);
1347                 }
1348         }
1349
1350         cfqq = cic->cfqq[SYNC];
1351         if (cfqq)
1352                 cfq_mark_cfqq_prio_changed(cfqq);
1353
1354         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1355 }
1356
1357 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1358 {
1359         struct cfq_io_context *cic;
1360         struct rb_node *n;
1361
1362         ioc->ioprio_changed = 0;
1363
1364         n = rb_first(&ioc->cic_root);
1365         while (n != NULL) {
1366                 cic = rb_entry(n, struct cfq_io_context, rb_node);
1367
1368                 changed_ioprio(cic);
1369                 n = rb_next(n);
1370         }
1371 }
1372
1373 static struct cfq_queue *
1374 cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk,
1375               gfp_t gfp_mask)
1376 {
1377         const int hashval = hash_long(key, CFQ_QHASH_SHIFT);
1378         struct cfq_queue *cfqq, *new_cfqq = NULL;
1379         unsigned short ioprio;
1380
1381 retry:
1382         ioprio = tsk->ioprio;
1383         cfqq = __cfq_find_cfq_hash(cfqd, key, ioprio, hashval);
1384
1385         if (!cfqq) {
1386                 if (new_cfqq) {
1387                         cfqq = new_cfqq;
1388                         new_cfqq = NULL;
1389                 } else if (gfp_mask & __GFP_WAIT) {
1390                         /*
1391                          * Inform the allocator of the fact that we will
1392                          * just repeat this allocation if it fails, to allow
1393                          * the allocator to do whatever it needs to attempt to
1394                          * free memory.
1395                          */
1396                         spin_unlock_irq(cfqd->queue->queue_lock);
1397                         new_cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask|__GFP_NOFAIL, cfqd->queue->node);
1398                         spin_lock_irq(cfqd->queue->queue_lock);
1399                         goto retry;
1400                 } else {
1401                         cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask, cfqd->queue->node);
1402                         if (!cfqq)
1403                                 goto out;
1404                 }
1405
1406                 memset(cfqq, 0, sizeof(*cfqq));
1407
1408                 INIT_HLIST_NODE(&cfqq->cfq_hash);
1409                 RB_CLEAR_NODE(&cfqq->rb_node);
1410                 INIT_LIST_HEAD(&cfqq->fifo);
1411
1412                 cfqq->key = key;
1413                 hlist_add_head(&cfqq->cfq_hash, &cfqd->cfq_hash[hashval]);
1414                 atomic_set(&cfqq->ref, 0);
1415                 cfqq->cfqd = cfqd;
1416
1417                 if (key != CFQ_KEY_ASYNC)
1418                         cfq_mark_cfqq_idle_window(cfqq);
1419
1420                 cfq_mark_cfqq_prio_changed(cfqq);
1421                 cfq_mark_cfqq_queue_new(cfqq);
1422                 cfq_init_prio_data(cfqq);
1423         }
1424
1425         if (new_cfqq)
1426                 kmem_cache_free(cfq_pool, new_cfqq);
1427
1428         atomic_inc(&cfqq->ref);
1429 out:
1430         WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1431         return cfqq;
1432 }
1433
1434 /*
1435  * We drop cfq io contexts lazily, so we may find a dead one.
1436  */
1437 static void
1438 cfq_drop_dead_cic(struct io_context *ioc, struct cfq_io_context *cic)
1439 {
1440         WARN_ON(!list_empty(&cic->queue_list));
1441         rb_erase(&cic->rb_node, &ioc->cic_root);
1442         kmem_cache_free(cfq_ioc_pool, cic);
1443         elv_ioc_count_dec(ioc_count);
1444 }
1445
1446 static struct cfq_io_context *
1447 cfq_cic_rb_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1448 {
1449         struct rb_node *n;
1450         struct cfq_io_context *cic;
1451         void *k, *key = cfqd;
1452
1453 restart:
1454         n = ioc->cic_root.rb_node;
1455         while (n) {
1456                 cic = rb_entry(n, struct cfq_io_context, rb_node);
1457                 /* ->key must be copied to avoid race with cfq_exit_queue() */
1458                 k = cic->key;
1459                 if (unlikely(!k)) {
1460                         cfq_drop_dead_cic(ioc, cic);
1461                         goto restart;
1462                 }
1463
1464                 if (key < k)
1465                         n = n->rb_left;
1466                 else if (key > k)
1467                         n = n->rb_right;
1468                 else
1469                         return cic;
1470         }
1471
1472         return NULL;
1473 }
1474
1475 static inline void
1476 cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1477              struct cfq_io_context *cic)
1478 {
1479         struct rb_node **p;
1480         struct rb_node *parent;
1481         struct cfq_io_context *__cic;
1482         unsigned long flags;
1483         void *k;
1484
1485         cic->ioc = ioc;
1486         cic->key = cfqd;
1487
1488 restart:
1489         parent = NULL;
1490         p = &ioc->cic_root.rb_node;
1491         while (*p) {
1492                 parent = *p;
1493                 __cic = rb_entry(parent, struct cfq_io_context, rb_node);
1494                 /* ->key must be copied to avoid race with cfq_exit_queue() */
1495                 k = __cic->key;
1496                 if (unlikely(!k)) {
1497                         cfq_drop_dead_cic(ioc, __cic);
1498                         goto restart;
1499                 }
1500
1501                 if (cic->key < k)
1502                         p = &(*p)->rb_left;
1503                 else if (cic->key > k)
1504                         p = &(*p)->rb_right;
1505                 else
1506                         BUG();
1507         }
1508
1509         rb_link_node(&cic->rb_node, parent, p);
1510         rb_insert_color(&cic->rb_node, &ioc->cic_root);
1511
1512         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1513         list_add(&cic->queue_list, &cfqd->cic_list);
1514         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1515 }
1516
1517 /*
1518  * Setup general io context and cfq io context. There can be several cfq
1519  * io contexts per general io context, if this process is doing io to more
1520  * than one device managed by cfq.
1521  */
1522 static struct cfq_io_context *
1523 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1524 {
1525         struct io_context *ioc = NULL;
1526         struct cfq_io_context *cic;
1527
1528         might_sleep_if(gfp_mask & __GFP_WAIT);
1529
1530         ioc = get_io_context(gfp_mask, cfqd->queue->node);
1531         if (!ioc)
1532                 return NULL;
1533
1534         cic = cfq_cic_rb_lookup(cfqd, ioc);
1535         if (cic)
1536                 goto out;
1537
1538         cic = cfq_alloc_io_context(cfqd, gfp_mask);
1539         if (cic == NULL)
1540                 goto err;
1541
1542         cfq_cic_link(cfqd, ioc, cic);
1543 out:
1544         smp_read_barrier_depends();
1545         if (unlikely(ioc->ioprio_changed))
1546                 cfq_ioc_set_ioprio(ioc);
1547
1548         return cic;
1549 err:
1550         put_io_context(ioc);
1551         return NULL;
1552 }
1553
1554 static void
1555 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1556 {
1557         unsigned long elapsed = jiffies - cic->last_end_request;
1558         unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1559
1560         cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1561         cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1562         cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1563 }
1564
1565 static void
1566 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1567                        struct request *rq)
1568 {
1569         sector_t sdist;
1570         u64 total;
1571
1572         if (cic->last_request_pos < rq->sector)
1573                 sdist = rq->sector - cic->last_request_pos;
1574         else
1575                 sdist = cic->last_request_pos - rq->sector;
1576
1577         if (!cic->seek_samples) {
1578                 cfqd->new_seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1579                 cfqd->new_seek_mean = cfqd->new_seek_total / 256;
1580         }
1581
1582         /*
1583          * Don't allow the seek distance to get too large from the
1584          * odd fragment, pagein, etc
1585          */
1586         if (cic->seek_samples <= 60) /* second&third seek */
1587                 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1588         else
1589                 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1590
1591         cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1592         cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1593         total = cic->seek_total + (cic->seek_samples/2);
1594         do_div(total, cic->seek_samples);
1595         cic->seek_mean = (sector_t)total;
1596 }
1597
1598 /*
1599  * Disable idle window if the process thinks too long or seeks so much that
1600  * it doesn't matter
1601  */
1602 static void
1603 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1604                        struct cfq_io_context *cic)
1605 {
1606         int enable_idle = cfq_cfqq_idle_window(cfqq);
1607
1608         if (!cic->ioc->task || !cfqd->cfq_slice_idle ||
1609             (cfqd->hw_tag && CIC_SEEKY(cic)))
1610                 enable_idle = 0;
1611         else if (sample_valid(cic->ttime_samples)) {
1612                 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1613                         enable_idle = 0;
1614                 else
1615                         enable_idle = 1;
1616         }
1617
1618         if (enable_idle)
1619                 cfq_mark_cfqq_idle_window(cfqq);
1620         else
1621                 cfq_clear_cfqq_idle_window(cfqq);
1622 }
1623
1624 /*
1625  * Check if new_cfqq should preempt the currently active queue. Return 0 for
1626  * no or if we aren't sure, a 1 will cause a preempt.
1627  */
1628 static int
1629 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1630                    struct request *rq)
1631 {
1632         struct cfq_queue *cfqq;
1633
1634         cfqq = cfqd->active_queue;
1635         if (!cfqq)
1636                 return 0;
1637
1638         if (cfq_slice_used(cfqq))
1639                 return 1;
1640
1641         if (cfq_class_idle(new_cfqq))
1642                 return 0;
1643
1644         if (cfq_class_idle(cfqq))
1645                 return 1;
1646
1647         /*
1648          * if the new request is sync, but the currently running queue is
1649          * not, let the sync request have priority.
1650          */
1651         if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
1652                 return 1;
1653
1654         /*
1655          * So both queues are sync. Let the new request get disk time if
1656          * it's a metadata request and the current queue is doing regular IO.
1657          */
1658         if (rq_is_meta(rq) && !cfqq->meta_pending)
1659                 return 1;
1660
1661         if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
1662                 return 0;
1663
1664         /*
1665          * if this request is as-good as one we would expect from the
1666          * current cfqq, let it preempt
1667          */
1668         if (cfq_rq_close(cfqd, rq))
1669                 return 1;
1670
1671         return 0;
1672 }
1673
1674 /*
1675  * cfqq preempts the active queue. if we allowed preempt with no slice left,
1676  * let it have half of its nominal slice.
1677  */
1678 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1679 {
1680         cfq_slice_expired(cfqd, 1);
1681
1682         /*
1683          * Put the new queue at the front of the of the current list,
1684          * so we know that it will be selected next.
1685          */
1686         BUG_ON(!cfq_cfqq_on_rr(cfqq));
1687
1688         cfq_service_tree_add(cfqd, cfqq, 1);
1689
1690         cfqq->slice_end = 0;
1691         cfq_mark_cfqq_slice_new(cfqq);
1692 }
1693
1694 /*
1695  * Called when a new fs request (rq) is added (to cfqq). Check if there's
1696  * something we should do about it
1697  */
1698 static void
1699 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1700                 struct request *rq)
1701 {
1702         struct cfq_io_context *cic = RQ_CIC(rq);
1703
1704         if (rq_is_meta(rq))
1705                 cfqq->meta_pending++;
1706
1707         cfq_update_io_thinktime(cfqd, cic);
1708         cfq_update_io_seektime(cfqd, cic, rq);
1709         cfq_update_idle_window(cfqd, cfqq, cic);
1710
1711         cic->last_request_pos = rq->sector + rq->nr_sectors;
1712         cfqq->last_request_pos = cic->last_request_pos;
1713
1714         if (cfqq == cfqd->active_queue) {
1715                 /*
1716                  * if we are waiting for a request for this queue, let it rip
1717                  * immediately and flag that we must not expire this queue
1718                  * just now
1719                  */
1720                 if (cfq_cfqq_wait_request(cfqq)) {
1721                         cfq_mark_cfqq_must_dispatch(cfqq);
1722                         del_timer(&cfqd->idle_slice_timer);
1723                         blk_start_queueing(cfqd->queue);
1724                 }
1725         } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
1726                 /*
1727                  * not the active queue - expire current slice if it is
1728                  * idle and has expired it's mean thinktime or this new queue
1729                  * has some old slice time left and is of higher priority
1730                  */
1731                 cfq_preempt_queue(cfqd, cfqq);
1732                 cfq_mark_cfqq_must_dispatch(cfqq);
1733                 blk_start_queueing(cfqd->queue);
1734         }
1735 }
1736
1737 static void cfq_insert_request(request_queue_t *q, struct request *rq)
1738 {
1739         struct cfq_data *cfqd = q->elevator->elevator_data;
1740         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1741
1742         cfq_init_prio_data(cfqq);
1743
1744         cfq_add_rq_rb(rq);
1745
1746         list_add_tail(&rq->queuelist, &cfqq->fifo);
1747
1748         cfq_rq_enqueued(cfqd, cfqq, rq);
1749 }
1750
1751 static void cfq_completed_request(request_queue_t *q, struct request *rq)
1752 {
1753         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1754         struct cfq_data *cfqd = cfqq->cfqd;
1755         const int sync = rq_is_sync(rq);
1756         unsigned long now;
1757
1758         now = jiffies;
1759
1760         WARN_ON(!cfqd->rq_in_driver);
1761         WARN_ON(!cfqq->dispatched);
1762         cfqd->rq_in_driver--;
1763         cfqq->dispatched--;
1764
1765         if (!cfq_class_idle(cfqq))
1766                 cfqd->last_end_request = now;
1767
1768         if (sync)
1769                 RQ_CIC(rq)->last_end_request = now;
1770
1771         /*
1772          * If this is the active queue, check if it needs to be expired,
1773          * or if we want to idle in case it has no pending requests.
1774          */
1775         if (cfqd->active_queue == cfqq) {
1776                 if (cfq_cfqq_slice_new(cfqq)) {
1777                         cfq_set_prio_slice(cfqd, cfqq);
1778                         cfq_clear_cfqq_slice_new(cfqq);
1779                 }
1780                 if (cfq_slice_used(cfqq))
1781                         cfq_slice_expired(cfqd, 1);
1782                 else if (sync && RB_EMPTY_ROOT(&cfqq->sort_list))
1783                         cfq_arm_slice_timer(cfqd);
1784         }
1785
1786         if (!cfqd->rq_in_driver)
1787                 cfq_schedule_dispatch(cfqd);
1788 }
1789
1790 /*
1791  * we temporarily boost lower priority queues if they are holding fs exclusive
1792  * resources. they are boosted to normal prio (CLASS_BE/4)
1793  */
1794 static void cfq_prio_boost(struct cfq_queue *cfqq)
1795 {
1796         if (has_fs_excl()) {
1797                 /*
1798                  * boost idle prio on transactions that would lock out other
1799                  * users of the filesystem
1800                  */
1801                 if (cfq_class_idle(cfqq))
1802                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
1803                 if (cfqq->ioprio > IOPRIO_NORM)
1804                         cfqq->ioprio = IOPRIO_NORM;
1805         } else {
1806                 /*
1807                  * check if we need to unboost the queue
1808                  */
1809                 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1810                         cfqq->ioprio_class = cfqq->org_ioprio_class;
1811                 if (cfqq->ioprio != cfqq->org_ioprio)
1812                         cfqq->ioprio = cfqq->org_ioprio;
1813         }
1814 }
1815
1816 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
1817 {
1818         if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1819             !cfq_cfqq_must_alloc_slice(cfqq)) {
1820                 cfq_mark_cfqq_must_alloc_slice(cfqq);
1821                 return ELV_MQUEUE_MUST;
1822         }
1823
1824         return ELV_MQUEUE_MAY;
1825 }
1826
1827 static int cfq_may_queue(request_queue_t *q, int rw)
1828 {
1829         struct cfq_data *cfqd = q->elevator->elevator_data;
1830         struct task_struct *tsk = current;
1831         struct cfq_queue *cfqq;
1832         unsigned int key;
1833
1834         key = cfq_queue_pid(tsk, rw, rw & REQ_RW_SYNC);
1835
1836         /*
1837          * don't force setup of a queue from here, as a call to may_queue
1838          * does not necessarily imply that a request actually will be queued.
1839          * so just lookup a possibly existing queue, or return 'may queue'
1840          * if that fails
1841          */
1842         cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
1843         if (cfqq) {
1844                 cfq_init_prio_data(cfqq);
1845                 cfq_prio_boost(cfqq);
1846
1847                 return __cfq_may_queue(cfqq);
1848         }
1849
1850         return ELV_MQUEUE_MAY;
1851 }
1852
1853 /*
1854  * queue lock held here
1855  */
1856 static void cfq_put_request(struct request *rq)
1857 {
1858         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1859
1860         if (cfqq) {
1861                 const int rw = rq_data_dir(rq);
1862
1863                 BUG_ON(!cfqq->allocated[rw]);
1864                 cfqq->allocated[rw]--;
1865
1866                 put_io_context(RQ_CIC(rq)->ioc);
1867
1868                 rq->elevator_private = NULL;
1869                 rq->elevator_private2 = NULL;
1870
1871                 cfq_put_queue(cfqq);
1872         }
1873 }
1874
1875 /*
1876  * Allocate cfq data structures associated with this request.
1877  */
1878 static int
1879 cfq_set_request(request_queue_t *q, struct request *rq, gfp_t gfp_mask)
1880 {
1881         struct cfq_data *cfqd = q->elevator->elevator_data;
1882         struct task_struct *tsk = current;
1883         struct cfq_io_context *cic;
1884         const int rw = rq_data_dir(rq);
1885         const int is_sync = rq_is_sync(rq);
1886         pid_t key = cfq_queue_pid(tsk, rw, is_sync);
1887         struct cfq_queue *cfqq;
1888         unsigned long flags;
1889
1890         might_sleep_if(gfp_mask & __GFP_WAIT);
1891
1892         cic = cfq_get_io_context(cfqd, gfp_mask);
1893
1894         spin_lock_irqsave(q->queue_lock, flags);
1895
1896         if (!cic)
1897                 goto queue_fail;
1898
1899         if (!cic->cfqq[is_sync]) {
1900                 cfqq = cfq_get_queue(cfqd, key, tsk, gfp_mask);
1901                 if (!cfqq)
1902                         goto queue_fail;
1903
1904                 cic->cfqq[is_sync] = cfqq;
1905         } else
1906                 cfqq = cic->cfqq[is_sync];
1907
1908         cfqq->allocated[rw]++;
1909         cfq_clear_cfqq_must_alloc(cfqq);
1910         atomic_inc(&cfqq->ref);
1911
1912         spin_unlock_irqrestore(q->queue_lock, flags);
1913
1914         rq->elevator_private = cic;
1915         rq->elevator_private2 = cfqq;
1916         return 0;
1917
1918 queue_fail:
1919         if (cic)
1920                 put_io_context(cic->ioc);
1921
1922         cfq_schedule_dispatch(cfqd);
1923         spin_unlock_irqrestore(q->queue_lock, flags);
1924         return 1;
1925 }
1926
1927 static void cfq_kick_queue(struct work_struct *work)
1928 {
1929         struct cfq_data *cfqd =
1930                 container_of(work, struct cfq_data, unplug_work);
1931         request_queue_t *q = cfqd->queue;
1932         unsigned long flags;
1933
1934         spin_lock_irqsave(q->queue_lock, flags);
1935         blk_start_queueing(q);
1936         spin_unlock_irqrestore(q->queue_lock, flags);
1937 }
1938
1939 /*
1940  * Timer running if the active_queue is currently idling inside its time slice
1941  */
1942 static void cfq_idle_slice_timer(unsigned long data)
1943 {
1944         struct cfq_data *cfqd = (struct cfq_data *) data;
1945         struct cfq_queue *cfqq;
1946         unsigned long flags;
1947         int timed_out = 1;
1948
1949         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1950
1951         if ((cfqq = cfqd->active_queue) != NULL) {
1952                 timed_out = 0;
1953
1954                 /*
1955                  * expired
1956                  */
1957                 if (cfq_slice_used(cfqq))
1958                         goto expire;
1959
1960                 /*
1961                  * only expire and reinvoke request handler, if there are
1962                  * other queues with pending requests
1963                  */
1964                 if (!cfqd->busy_queues)
1965                         goto out_cont;
1966
1967                 /*
1968                  * not expired and it has a request pending, let it dispatch
1969                  */
1970                 if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
1971                         cfq_mark_cfqq_must_dispatch(cfqq);
1972                         goto out_kick;
1973                 }
1974         }
1975 expire:
1976         cfq_slice_expired(cfqd, timed_out);
1977 out_kick:
1978         cfq_schedule_dispatch(cfqd);
1979 out_cont:
1980         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1981 }
1982
1983 /*
1984  * Timer running if an idle class queue is waiting for service
1985  */
1986 static void cfq_idle_class_timer(unsigned long data)
1987 {
1988         struct cfq_data *cfqd = (struct cfq_data *) data;
1989         unsigned long flags, end;
1990
1991         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1992
1993         /*
1994          * race with a non-idle queue, reset timer
1995          */
1996         end = cfqd->last_end_request + CFQ_IDLE_GRACE;
1997         if (!time_after_eq(jiffies, end))
1998                 mod_timer(&cfqd->idle_class_timer, end);
1999         else
2000                 cfq_schedule_dispatch(cfqd);
2001
2002         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2003 }
2004
2005 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2006 {
2007         del_timer_sync(&cfqd->idle_slice_timer);
2008         del_timer_sync(&cfqd->idle_class_timer);
2009         blk_sync_queue(cfqd->queue);
2010 }
2011
2012 static void cfq_exit_queue(elevator_t *e)
2013 {
2014         struct cfq_data *cfqd = e->elevator_data;
2015         request_queue_t *q = cfqd->queue;
2016
2017         cfq_shutdown_timer_wq(cfqd);
2018
2019         spin_lock_irq(q->queue_lock);
2020
2021         if (cfqd->active_queue)
2022                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2023
2024         while (!list_empty(&cfqd->cic_list)) {
2025                 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2026                                                         struct cfq_io_context,
2027                                                         queue_list);
2028
2029                 __cfq_exit_single_io_context(cfqd, cic);
2030         }
2031
2032         spin_unlock_irq(q->queue_lock);
2033
2034         cfq_shutdown_timer_wq(cfqd);
2035
2036         kfree(cfqd->cfq_hash);
2037         kfree(cfqd);
2038 }
2039
2040 static void *cfq_init_queue(request_queue_t *q)
2041 {
2042         struct cfq_data *cfqd;
2043         int i;
2044
2045         cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
2046         if (!cfqd)
2047                 return NULL;
2048
2049         memset(cfqd, 0, sizeof(*cfqd));
2050
2051         cfqd->service_tree = CFQ_RB_ROOT;
2052         INIT_LIST_HEAD(&cfqd->cic_list);
2053
2054         cfqd->cfq_hash = kmalloc_node(sizeof(struct hlist_head) * CFQ_QHASH_ENTRIES, GFP_KERNEL, q->node);
2055         if (!cfqd->cfq_hash)
2056                 goto out_free;
2057
2058         for (i = 0; i < CFQ_QHASH_ENTRIES; i++)
2059                 INIT_HLIST_HEAD(&cfqd->cfq_hash[i]);
2060
2061         cfqd->queue = q;
2062
2063         init_timer(&cfqd->idle_slice_timer);
2064         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2065         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2066
2067         init_timer(&cfqd->idle_class_timer);
2068         cfqd->idle_class_timer.function = cfq_idle_class_timer;
2069         cfqd->idle_class_timer.data = (unsigned long) cfqd;
2070
2071         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2072
2073         cfqd->cfq_quantum = cfq_quantum;
2074         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2075         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2076         cfqd->cfq_back_max = cfq_back_max;
2077         cfqd->cfq_back_penalty = cfq_back_penalty;
2078         cfqd->cfq_slice[0] = cfq_slice_async;
2079         cfqd->cfq_slice[1] = cfq_slice_sync;
2080         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2081         cfqd->cfq_slice_idle = cfq_slice_idle;
2082
2083         return cfqd;
2084 out_free:
2085         kfree(cfqd);
2086         return NULL;
2087 }
2088
2089 static void cfq_slab_kill(void)
2090 {
2091         if (cfq_pool)
2092                 kmem_cache_destroy(cfq_pool);
2093         if (cfq_ioc_pool)
2094                 kmem_cache_destroy(cfq_ioc_pool);
2095 }
2096
2097 static int __init cfq_slab_setup(void)
2098 {
2099         cfq_pool = kmem_cache_create("cfq_pool", sizeof(struct cfq_queue), 0, 0,
2100                                         NULL, NULL);
2101         if (!cfq_pool)
2102                 goto fail;
2103
2104         cfq_ioc_pool = kmem_cache_create("cfq_ioc_pool",
2105                         sizeof(struct cfq_io_context), 0, 0, NULL, NULL);
2106         if (!cfq_ioc_pool)
2107                 goto fail;
2108
2109         return 0;
2110 fail:
2111         cfq_slab_kill();
2112         return -ENOMEM;
2113 }
2114
2115 /*
2116  * sysfs parts below -->
2117  */
2118 static ssize_t
2119 cfq_var_show(unsigned int var, char *page)
2120 {
2121         return sprintf(page, "%d\n", var);
2122 }
2123
2124 static ssize_t
2125 cfq_var_store(unsigned int *var, const char *page, size_t count)
2126 {
2127         char *p = (char *) page;
2128
2129         *var = simple_strtoul(p, &p, 10);
2130         return count;
2131 }
2132
2133 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
2134 static ssize_t __FUNC(elevator_t *e, char *page)                        \
2135 {                                                                       \
2136         struct cfq_data *cfqd = e->elevator_data;                       \
2137         unsigned int __data = __VAR;                                    \
2138         if (__CONV)                                                     \
2139                 __data = jiffies_to_msecs(__data);                      \
2140         return cfq_var_show(__data, (page));                            \
2141 }
2142 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2143 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2144 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2145 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2146 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2147 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2148 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2149 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2150 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2151 #undef SHOW_FUNCTION
2152
2153 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
2154 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count)    \
2155 {                                                                       \
2156         struct cfq_data *cfqd = e->elevator_data;                       \
2157         unsigned int __data;                                            \
2158         int ret = cfq_var_store(&__data, (page), count);                \
2159         if (__data < (MIN))                                             \
2160                 __data = (MIN);                                         \
2161         else if (__data > (MAX))                                        \
2162                 __data = (MAX);                                         \
2163         if (__CONV)                                                     \
2164                 *(__PTR) = msecs_to_jiffies(__data);                    \
2165         else                                                            \
2166                 *(__PTR) = __data;                                      \
2167         return ret;                                                     \
2168 }
2169 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2170 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
2171 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
2172 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2173 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
2174 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2175 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2176 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2177 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
2178 #undef STORE_FUNCTION
2179
2180 #define CFQ_ATTR(name) \
2181         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2182
2183 static struct elv_fs_entry cfq_attrs[] = {
2184         CFQ_ATTR(quantum),
2185         CFQ_ATTR(fifo_expire_sync),
2186         CFQ_ATTR(fifo_expire_async),
2187         CFQ_ATTR(back_seek_max),
2188         CFQ_ATTR(back_seek_penalty),
2189         CFQ_ATTR(slice_sync),
2190         CFQ_ATTR(slice_async),
2191         CFQ_ATTR(slice_async_rq),
2192         CFQ_ATTR(slice_idle),
2193         __ATTR_NULL
2194 };
2195
2196 static struct elevator_type iosched_cfq = {
2197         .ops = {
2198                 .elevator_merge_fn =            cfq_merge,
2199                 .elevator_merged_fn =           cfq_merged_request,
2200                 .elevator_merge_req_fn =        cfq_merged_requests,
2201                 .elevator_allow_merge_fn =      cfq_allow_merge,
2202                 .elevator_dispatch_fn =         cfq_dispatch_requests,
2203                 .elevator_add_req_fn =          cfq_insert_request,
2204                 .elevator_activate_req_fn =     cfq_activate_request,
2205                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
2206                 .elevator_queue_empty_fn =      cfq_queue_empty,
2207                 .elevator_completed_req_fn =    cfq_completed_request,
2208                 .elevator_former_req_fn =       elv_rb_former_request,
2209                 .elevator_latter_req_fn =       elv_rb_latter_request,
2210                 .elevator_set_req_fn =          cfq_set_request,
2211                 .elevator_put_req_fn =          cfq_put_request,
2212                 .elevator_may_queue_fn =        cfq_may_queue,
2213                 .elevator_init_fn =             cfq_init_queue,
2214                 .elevator_exit_fn =             cfq_exit_queue,
2215                 .trim =                         cfq_free_io_context,
2216         },
2217         .elevator_attrs =       cfq_attrs,
2218         .elevator_name =        "cfq",
2219         .elevator_owner =       THIS_MODULE,
2220 };
2221
2222 static int __init cfq_init(void)
2223 {
2224         int ret;
2225
2226         /*
2227          * could be 0 on HZ < 1000 setups
2228          */
2229         if (!cfq_slice_async)
2230                 cfq_slice_async = 1;
2231         if (!cfq_slice_idle)
2232                 cfq_slice_idle = 1;
2233
2234         if (cfq_slab_setup())
2235                 return -ENOMEM;
2236
2237         ret = elv_register(&iosched_cfq);
2238         if (ret)
2239                 cfq_slab_kill();
2240
2241         return ret;
2242 }
2243
2244 static void __exit cfq_exit(void)
2245 {
2246         DECLARE_COMPLETION_ONSTACK(all_gone);
2247         elv_unregister(&iosched_cfq);
2248         ioc_gone = &all_gone;
2249         /* ioc_gone's update must be visible before reading ioc_count */
2250         smp_wmb();
2251         if (elv_ioc_count_read(ioc_count))
2252                 wait_for_completion(ioc_gone);
2253         synchronize_rcu();
2254         cfq_slab_kill();
2255 }
2256
2257 module_init(cfq_init);
2258 module_exit(cfq_exit);
2259
2260 MODULE_AUTHOR("Jens Axboe");
2261 MODULE_LICENSE("GPL");
2262 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");