cfq-iosched: sort RT queues into the rbtree
[safe/jmp/linux-2.6] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/hash.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15
16 /*
17  * tunables
18  */
19 static const int cfq_quantum = 4;               /* max queue in one round of service */
20 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
21 static const int cfq_back_max = 16 * 1024;      /* maximum backwards seek, in KiB */
22 static const int cfq_back_penalty = 2;          /* penalty of a backwards seek */
23
24 static const int cfq_slice_sync = HZ / 10;
25 static int cfq_slice_async = HZ / 25;
26 static const int cfq_slice_async_rq = 2;
27 static int cfq_slice_idle = HZ / 125;
28
29 /*
30  * grace period before allowing idle class to get disk access
31  */
32 #define CFQ_IDLE_GRACE          (HZ / 10)
33
34 /*
35  * below this threshold, we consider thinktime immediate
36  */
37 #define CFQ_MIN_TT              (2)
38
39 #define CFQ_SLICE_SCALE         (5)
40
41 #define CFQ_KEY_ASYNC           (0)
42
43 /*
44  * for the hash of cfqq inside the cfqd
45  */
46 #define CFQ_QHASH_SHIFT         6
47 #define CFQ_QHASH_ENTRIES       (1 << CFQ_QHASH_SHIFT)
48 #define list_entry_qhash(entry) hlist_entry((entry), struct cfq_queue, cfq_hash)
49
50 #define list_entry_cfqq(ptr)    list_entry((ptr), struct cfq_queue, cfq_list)
51
52 #define RQ_CIC(rq)              ((struct cfq_io_context*)(rq)->elevator_private)
53 #define RQ_CFQQ(rq)             ((rq)->elevator_private2)
54
55 static struct kmem_cache *cfq_pool;
56 static struct kmem_cache *cfq_ioc_pool;
57
58 static DEFINE_PER_CPU(unsigned long, ioc_count);
59 static struct completion *ioc_gone;
60
61 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
62 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
63 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
64
65 #define ASYNC                   (0)
66 #define SYNC                    (1)
67
68 #define cfq_cfqq_sync(cfqq)     ((cfqq)->key != CFQ_KEY_ASYNC)
69
70 #define sample_valid(samples)   ((samples) > 80)
71
72 /*
73  * Most of our rbtree usage is for sorting with min extraction, so
74  * if we cache the leftmost node we don't have to walk down the tree
75  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
76  * move this into the elevator for the rq sorting as well.
77  */
78 struct cfq_rb_root {
79         struct rb_root rb;
80         struct rb_node *left;
81 };
82 #define CFQ_RB_ROOT     (struct cfq_rb_root) { RB_ROOT, NULL, }
83
84 /*
85  * Per block device queue structure
86  */
87 struct cfq_data {
88         request_queue_t *queue;
89
90         /*
91          * rr list of queues with requests and the count of them
92          */
93         struct cfq_rb_root service_tree;
94         struct list_head cur_rr;
95         struct list_head idle_rr;
96         unsigned int busy_queues;
97
98         /*
99          * cfqq lookup hash
100          */
101         struct hlist_head *cfq_hash;
102
103         int rq_in_driver;
104         int hw_tag;
105
106         /*
107          * idle window management
108          */
109         struct timer_list idle_slice_timer;
110         struct work_struct unplug_work;
111
112         struct cfq_queue *active_queue;
113         struct cfq_io_context *active_cic;
114         unsigned int dispatch_slice;
115
116         struct timer_list idle_class_timer;
117
118         sector_t last_position;
119         unsigned long last_end_request;
120
121         /*
122          * tunables, see top of file
123          */
124         unsigned int cfq_quantum;
125         unsigned int cfq_fifo_expire[2];
126         unsigned int cfq_back_penalty;
127         unsigned int cfq_back_max;
128         unsigned int cfq_slice[2];
129         unsigned int cfq_slice_async_rq;
130         unsigned int cfq_slice_idle;
131
132         struct list_head cic_list;
133
134         sector_t new_seek_mean;
135         u64 new_seek_total;
136 };
137
138 /*
139  * Per process-grouping structure
140  */
141 struct cfq_queue {
142         /* reference count */
143         atomic_t ref;
144         /* parent cfq_data */
145         struct cfq_data *cfqd;
146         /* cfqq lookup hash */
147         struct hlist_node cfq_hash;
148         /* hash key */
149         unsigned int key;
150         /* member of the rr/busy/cur/idle cfqd list */
151         struct list_head cfq_list;
152         /* service_tree member */
153         struct rb_node rb_node;
154         /* service_tree key */
155         unsigned long rb_key;
156         /* sorted list of pending requests */
157         struct rb_root sort_list;
158         /* if fifo isn't expired, next request to serve */
159         struct request *next_rq;
160         /* requests queued in sort_list */
161         int queued[2];
162         /* currently allocated requests */
163         int allocated[2];
164         /* pending metadata requests */
165         int meta_pending;
166         /* fifo list of requests in sort_list */
167         struct list_head fifo;
168
169         unsigned long slice_end;
170         long slice_resid;
171
172         /* number of requests that are on the dispatch list or inside driver */
173         int dispatched;
174
175         /* io prio of this group */
176         unsigned short ioprio, org_ioprio;
177         unsigned short ioprio_class, org_ioprio_class;
178
179         /* various state flags, see below */
180         unsigned int flags;
181
182         sector_t last_request_pos;
183 };
184
185 enum cfqq_state_flags {
186         CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
187         CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
188         CFQ_CFQQ_FLAG_must_alloc,       /* must be allowed rq alloc */
189         CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
190         CFQ_CFQQ_FLAG_must_dispatch,    /* must dispatch, even if expired */
191         CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
192         CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
193         CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
194         CFQ_CFQQ_FLAG_queue_new,        /* queue never been serviced */
195         CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
196 };
197
198 #define CFQ_CFQQ_FNS(name)                                              \
199 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
200 {                                                                       \
201         cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name);                     \
202 }                                                                       \
203 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
204 {                                                                       \
205         cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                    \
206 }                                                                       \
207 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
208 {                                                                       \
209         return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;        \
210 }
211
212 CFQ_CFQQ_FNS(on_rr);
213 CFQ_CFQQ_FNS(wait_request);
214 CFQ_CFQQ_FNS(must_alloc);
215 CFQ_CFQQ_FNS(must_alloc_slice);
216 CFQ_CFQQ_FNS(must_dispatch);
217 CFQ_CFQQ_FNS(fifo_expire);
218 CFQ_CFQQ_FNS(idle_window);
219 CFQ_CFQQ_FNS(prio_changed);
220 CFQ_CFQQ_FNS(queue_new);
221 CFQ_CFQQ_FNS(slice_new);
222 #undef CFQ_CFQQ_FNS
223
224 static struct cfq_queue *cfq_find_cfq_hash(struct cfq_data *, unsigned int, unsigned short);
225 static void cfq_dispatch_insert(request_queue_t *, struct request *);
226 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk, gfp_t gfp_mask);
227
228 /*
229  * scheduler run of queue, if there are requests pending and no one in the
230  * driver that will restart queueing
231  */
232 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
233 {
234         if (cfqd->busy_queues)
235                 kblockd_schedule_work(&cfqd->unplug_work);
236 }
237
238 static int cfq_queue_empty(request_queue_t *q)
239 {
240         struct cfq_data *cfqd = q->elevator->elevator_data;
241
242         return !cfqd->busy_queues;
243 }
244
245 static inline pid_t cfq_queue_pid(struct task_struct *task, int rw, int is_sync)
246 {
247         /*
248          * Use the per-process queue, for read requests and syncronous writes
249          */
250         if (!(rw & REQ_RW) || is_sync)
251                 return task->pid;
252
253         return CFQ_KEY_ASYNC;
254 }
255
256 /*
257  * Scale schedule slice based on io priority. Use the sync time slice only
258  * if a queue is marked sync and has sync io queued. A sync queue with async
259  * io only, should not get full sync slice length.
260  */
261 static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
262                                  unsigned short prio)
263 {
264         const int base_slice = cfqd->cfq_slice[sync];
265
266         WARN_ON(prio >= IOPRIO_BE_NR);
267
268         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
269 }
270
271 static inline int
272 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
273 {
274         return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
275 }
276
277 static inline void
278 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
279 {
280         cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
281 }
282
283 /*
284  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
285  * isn't valid until the first request from the dispatch is activated
286  * and the slice time set.
287  */
288 static inline int cfq_slice_used(struct cfq_queue *cfqq)
289 {
290         if (cfq_cfqq_slice_new(cfqq))
291                 return 0;
292         if (time_before(jiffies, cfqq->slice_end))
293                 return 0;
294
295         return 1;
296 }
297
298 /*
299  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
300  * We choose the request that is closest to the head right now. Distance
301  * behind the head is penalized and only allowed to a certain extent.
302  */
303 static struct request *
304 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
305 {
306         sector_t last, s1, s2, d1 = 0, d2 = 0;
307         unsigned long back_max;
308 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
309 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
310         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
311
312         if (rq1 == NULL || rq1 == rq2)
313                 return rq2;
314         if (rq2 == NULL)
315                 return rq1;
316
317         if (rq_is_sync(rq1) && !rq_is_sync(rq2))
318                 return rq1;
319         else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
320                 return rq2;
321         if (rq_is_meta(rq1) && !rq_is_meta(rq2))
322                 return rq1;
323         else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
324                 return rq2;
325
326         s1 = rq1->sector;
327         s2 = rq2->sector;
328
329         last = cfqd->last_position;
330
331         /*
332          * by definition, 1KiB is 2 sectors
333          */
334         back_max = cfqd->cfq_back_max * 2;
335
336         /*
337          * Strict one way elevator _except_ in the case where we allow
338          * short backward seeks which are biased as twice the cost of a
339          * similar forward seek.
340          */
341         if (s1 >= last)
342                 d1 = s1 - last;
343         else if (s1 + back_max >= last)
344                 d1 = (last - s1) * cfqd->cfq_back_penalty;
345         else
346                 wrap |= CFQ_RQ1_WRAP;
347
348         if (s2 >= last)
349                 d2 = s2 - last;
350         else if (s2 + back_max >= last)
351                 d2 = (last - s2) * cfqd->cfq_back_penalty;
352         else
353                 wrap |= CFQ_RQ2_WRAP;
354
355         /* Found required data */
356
357         /*
358          * By doing switch() on the bit mask "wrap" we avoid having to
359          * check two variables for all permutations: --> faster!
360          */
361         switch (wrap) {
362         case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
363                 if (d1 < d2)
364                         return rq1;
365                 else if (d2 < d1)
366                         return rq2;
367                 else {
368                         if (s1 >= s2)
369                                 return rq1;
370                         else
371                                 return rq2;
372                 }
373
374         case CFQ_RQ2_WRAP:
375                 return rq1;
376         case CFQ_RQ1_WRAP:
377                 return rq2;
378         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
379         default:
380                 /*
381                  * Since both rqs are wrapped,
382                  * start with the one that's further behind head
383                  * (--> only *one* back seek required),
384                  * since back seek takes more time than forward.
385                  */
386                 if (s1 <= s2)
387                         return rq1;
388                 else
389                         return rq2;
390         }
391 }
392
393 static struct rb_node *cfq_rb_first(struct cfq_rb_root *root)
394 {
395         if (!root->left)
396                 root->left = rb_first(&root->rb);
397
398         return root->left;
399 }
400
401 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
402 {
403         if (root->left == n)
404                 root->left = NULL;
405
406         rb_erase(n, &root->rb);
407         RB_CLEAR_NODE(n);
408 }
409
410 /*
411  * would be nice to take fifo expire time into account as well
412  */
413 static struct request *
414 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
415                   struct request *last)
416 {
417         struct rb_node *rbnext = rb_next(&last->rb_node);
418         struct rb_node *rbprev = rb_prev(&last->rb_node);
419         struct request *next = NULL, *prev = NULL;
420
421         BUG_ON(RB_EMPTY_NODE(&last->rb_node));
422
423         if (rbprev)
424                 prev = rb_entry_rq(rbprev);
425
426         if (rbnext)
427                 next = rb_entry_rq(rbnext);
428         else {
429                 rbnext = rb_first(&cfqq->sort_list);
430                 if (rbnext && rbnext != &last->rb_node)
431                         next = rb_entry_rq(rbnext);
432         }
433
434         return cfq_choose_req(cfqd, next, prev);
435 }
436
437 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
438                                       struct cfq_queue *cfqq)
439 {
440         /*
441          * just an approximation, should be ok.
442          */
443         return ((cfqd->busy_queues - 1) * cfq_prio_slice(cfqd, 1, 0));
444 }
445
446 static void cfq_service_tree_add(struct cfq_data *cfqd,
447                                     struct cfq_queue *cfqq)
448 {
449         struct rb_node **p = &cfqd->service_tree.rb.rb_node;
450         struct rb_node *parent = NULL;
451         unsigned long rb_key;
452         int left = 1;
453
454         rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
455         rb_key += cfqq->slice_resid;
456         cfqq->slice_resid = 0;
457
458         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
459                 /*
460                  * same position, nothing more to do
461                  */
462                 if (rb_key == cfqq->rb_key)
463                         return;
464
465                 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
466         }
467
468         while (*p) {
469                 struct cfq_queue *__cfqq;
470
471                 parent = *p;
472                 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
473
474                 /*
475                  * sort RT queues first, we always want to give
476                  * preference to them. after that, sort on the next
477                  * service time.
478                  */
479                 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
480                         p = &(*p)->rb_left;
481                 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
482                         p = &(*p)->rb_right;
483                 else if (rb_key < __cfqq->rb_key)
484                         p = &(*p)->rb_left;
485                 else {
486                         p = &(*p)->rb_right;
487                         left = 0;
488                 }
489         }
490
491         if (left)
492                 cfqd->service_tree.left = &cfqq->rb_node;
493
494         cfqq->rb_key = rb_key;
495         rb_link_node(&cfqq->rb_node, parent, p);
496         rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
497 }
498
499 static void cfq_resort_rr_list(struct cfq_queue *cfqq, int preempted)
500 {
501         struct cfq_data *cfqd = cfqq->cfqd;
502
503         /*
504          * Resorting requires the cfqq to be on the RR list already.
505          */
506         if (!cfq_cfqq_on_rr(cfqq))
507                 return;
508
509         list_del_init(&cfqq->cfq_list);
510
511         if (cfq_class_idle(cfqq)) {
512                 /*
513                  * IDLE goes to the tail of the idle list
514                  */
515                 list_add_tail(&cfqq->cfq_list, &cfqd->idle_rr);
516         } else {
517                 /*
518                  * RT and BE queues, sort into the rbtree
519                  */
520                 cfq_service_tree_add(cfqd, cfqq);
521         }
522 }
523
524 /*
525  * add to busy list of queues for service, trying to be fair in ordering
526  * the pending list according to last request service
527  */
528 static inline void
529 cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
530 {
531         BUG_ON(cfq_cfqq_on_rr(cfqq));
532         cfq_mark_cfqq_on_rr(cfqq);
533         cfqd->busy_queues++;
534
535         cfq_resort_rr_list(cfqq, 0);
536 }
537
538 static inline void
539 cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
540 {
541         BUG_ON(!cfq_cfqq_on_rr(cfqq));
542         cfq_clear_cfqq_on_rr(cfqq);
543         list_del_init(&cfqq->cfq_list);
544
545         if (!RB_EMPTY_NODE(&cfqq->rb_node))
546                 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
547
548         BUG_ON(!cfqd->busy_queues);
549         cfqd->busy_queues--;
550 }
551
552 /*
553  * rb tree support functions
554  */
555 static inline void cfq_del_rq_rb(struct request *rq)
556 {
557         struct cfq_queue *cfqq = RQ_CFQQ(rq);
558         struct cfq_data *cfqd = cfqq->cfqd;
559         const int sync = rq_is_sync(rq);
560
561         BUG_ON(!cfqq->queued[sync]);
562         cfqq->queued[sync]--;
563
564         elv_rb_del(&cfqq->sort_list, rq);
565
566         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
567                 cfq_del_cfqq_rr(cfqd, cfqq);
568 }
569
570 static void cfq_add_rq_rb(struct request *rq)
571 {
572         struct cfq_queue *cfqq = RQ_CFQQ(rq);
573         struct cfq_data *cfqd = cfqq->cfqd;
574         struct request *__alias;
575
576         cfqq->queued[rq_is_sync(rq)]++;
577
578         /*
579          * looks a little odd, but the first insert might return an alias.
580          * if that happens, put the alias on the dispatch list
581          */
582         while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
583                 cfq_dispatch_insert(cfqd->queue, __alias);
584
585         if (!cfq_cfqq_on_rr(cfqq))
586                 cfq_add_cfqq_rr(cfqd, cfqq);
587
588         /*
589          * check if this request is a better next-serve candidate
590          */
591         cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
592         BUG_ON(!cfqq->next_rq);
593 }
594
595 static inline void
596 cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
597 {
598         elv_rb_del(&cfqq->sort_list, rq);
599         cfqq->queued[rq_is_sync(rq)]--;
600         cfq_add_rq_rb(rq);
601 }
602
603 static struct request *
604 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
605 {
606         struct task_struct *tsk = current;
607         pid_t key = cfq_queue_pid(tsk, bio_data_dir(bio), bio_sync(bio));
608         struct cfq_queue *cfqq;
609
610         cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
611         if (cfqq) {
612                 sector_t sector = bio->bi_sector + bio_sectors(bio);
613
614                 return elv_rb_find(&cfqq->sort_list, sector);
615         }
616
617         return NULL;
618 }
619
620 static void cfq_activate_request(request_queue_t *q, struct request *rq)
621 {
622         struct cfq_data *cfqd = q->elevator->elevator_data;
623
624         cfqd->rq_in_driver++;
625
626         /*
627          * If the depth is larger 1, it really could be queueing. But lets
628          * make the mark a little higher - idling could still be good for
629          * low queueing, and a low queueing number could also just indicate
630          * a SCSI mid layer like behaviour where limit+1 is often seen.
631          */
632         if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
633                 cfqd->hw_tag = 1;
634
635         cfqd->last_position = rq->hard_sector + rq->hard_nr_sectors;
636 }
637
638 static void cfq_deactivate_request(request_queue_t *q, struct request *rq)
639 {
640         struct cfq_data *cfqd = q->elevator->elevator_data;
641
642         WARN_ON(!cfqd->rq_in_driver);
643         cfqd->rq_in_driver--;
644 }
645
646 static void cfq_remove_request(struct request *rq)
647 {
648         struct cfq_queue *cfqq = RQ_CFQQ(rq);
649
650         if (cfqq->next_rq == rq)
651                 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
652
653         list_del_init(&rq->queuelist);
654         cfq_del_rq_rb(rq);
655
656         if (rq_is_meta(rq)) {
657                 WARN_ON(!cfqq->meta_pending);
658                 cfqq->meta_pending--;
659         }
660 }
661
662 static int
663 cfq_merge(request_queue_t *q, struct request **req, struct bio *bio)
664 {
665         struct cfq_data *cfqd = q->elevator->elevator_data;
666         struct request *__rq;
667
668         __rq = cfq_find_rq_fmerge(cfqd, bio);
669         if (__rq && elv_rq_merge_ok(__rq, bio)) {
670                 *req = __rq;
671                 return ELEVATOR_FRONT_MERGE;
672         }
673
674         return ELEVATOR_NO_MERGE;
675 }
676
677 static void cfq_merged_request(request_queue_t *q, struct request *req,
678                                int type)
679 {
680         if (type == ELEVATOR_FRONT_MERGE) {
681                 struct cfq_queue *cfqq = RQ_CFQQ(req);
682
683                 cfq_reposition_rq_rb(cfqq, req);
684         }
685 }
686
687 static void
688 cfq_merged_requests(request_queue_t *q, struct request *rq,
689                     struct request *next)
690 {
691         /*
692          * reposition in fifo if next is older than rq
693          */
694         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
695             time_before(next->start_time, rq->start_time))
696                 list_move(&rq->queuelist, &next->queuelist);
697
698         cfq_remove_request(next);
699 }
700
701 static int cfq_allow_merge(request_queue_t *q, struct request *rq,
702                            struct bio *bio)
703 {
704         struct cfq_data *cfqd = q->elevator->elevator_data;
705         const int rw = bio_data_dir(bio);
706         struct cfq_queue *cfqq;
707         pid_t key;
708
709         /*
710          * Disallow merge of a sync bio into an async request.
711          */
712         if ((bio_data_dir(bio) == READ || bio_sync(bio)) && !rq_is_sync(rq))
713                 return 0;
714
715         /*
716          * Lookup the cfqq that this bio will be queued with. Allow
717          * merge only if rq is queued there.
718          */
719         key = cfq_queue_pid(current, rw, bio_sync(bio));
720         cfqq = cfq_find_cfq_hash(cfqd, key, current->ioprio);
721
722         if (cfqq == RQ_CFQQ(rq))
723                 return 1;
724
725         return 0;
726 }
727
728 static inline void
729 __cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
730 {
731         if (cfqq) {
732                 /*
733                  * stop potential idle class queues waiting service
734                  */
735                 del_timer(&cfqd->idle_class_timer);
736
737                 cfqq->slice_end = 0;
738                 cfq_clear_cfqq_must_alloc_slice(cfqq);
739                 cfq_clear_cfqq_fifo_expire(cfqq);
740                 cfq_mark_cfqq_slice_new(cfqq);
741                 cfq_clear_cfqq_queue_new(cfqq);
742         }
743
744         cfqd->active_queue = cfqq;
745 }
746
747 /*
748  * current cfqq expired its slice (or was too idle), select new one
749  */
750 static void
751 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
752                     int preempted, int timed_out)
753 {
754         if (cfq_cfqq_wait_request(cfqq))
755                 del_timer(&cfqd->idle_slice_timer);
756
757         cfq_clear_cfqq_must_dispatch(cfqq);
758         cfq_clear_cfqq_wait_request(cfqq);
759
760         /*
761          * store what was left of this slice, if the queue idled out
762          * or was preempted
763          */
764         if (timed_out && !cfq_cfqq_slice_new(cfqq))
765                 cfqq->slice_resid = cfqq->slice_end - jiffies;
766
767         cfq_resort_rr_list(cfqq, preempted);
768
769         if (cfqq == cfqd->active_queue)
770                 cfqd->active_queue = NULL;
771
772         if (cfqd->active_cic) {
773                 put_io_context(cfqd->active_cic->ioc);
774                 cfqd->active_cic = NULL;
775         }
776
777         cfqd->dispatch_slice = 0;
778 }
779
780 static inline void cfq_slice_expired(struct cfq_data *cfqd, int preempted,
781                                      int timed_out)
782 {
783         struct cfq_queue *cfqq = cfqd->active_queue;
784
785         if (cfqq)
786                 __cfq_slice_expired(cfqd, cfqq, preempted, timed_out);
787 }
788
789 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
790 {
791         struct cfq_queue *cfqq = NULL;
792
793         if (!list_empty(&cfqd->cur_rr)) {
794                 /*
795                  * if current list is non-empty, grab first entry.
796                  */
797                 cfqq = list_entry_cfqq(cfqd->cur_rr.next);
798         } else if (!RB_EMPTY_ROOT(&cfqd->service_tree.rb)) {
799                 struct rb_node *n = cfq_rb_first(&cfqd->service_tree);
800
801                 cfqq = rb_entry(n, struct cfq_queue, rb_node);
802         } else if (!list_empty(&cfqd->idle_rr)) {
803                 /*
804                  * if we have idle queues and no rt or be queues had pending
805                  * requests, either allow immediate service if the grace period
806                  * has passed or arm the idle grace timer
807                  */
808                 unsigned long end = cfqd->last_end_request + CFQ_IDLE_GRACE;
809
810                 if (time_after_eq(jiffies, end))
811                         cfqq = list_entry_cfqq(cfqd->idle_rr.next);
812                 else
813                         mod_timer(&cfqd->idle_class_timer, end);
814         }
815
816         return cfqq;
817 }
818
819 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
820 {
821         struct cfq_queue *cfqq;
822
823         cfqq = cfq_get_next_queue(cfqd);
824         __cfq_set_active_queue(cfqd, cfqq);
825         return cfqq;
826 }
827
828 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
829                                           struct request *rq)
830 {
831         if (rq->sector >= cfqd->last_position)
832                 return rq->sector - cfqd->last_position;
833         else
834                 return cfqd->last_position - rq->sector;
835 }
836
837 static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
838 {
839         struct cfq_io_context *cic = cfqd->active_cic;
840
841         if (!sample_valid(cic->seek_samples))
842                 return 0;
843
844         return cfq_dist_from_last(cfqd, rq) <= cic->seek_mean;
845 }
846
847 static int cfq_close_cooperator(struct cfq_data *cfq_data,
848                                 struct cfq_queue *cfqq)
849 {
850         /*
851          * We should notice if some of the queues are cooperating, eg
852          * working closely on the same area of the disk. In that case,
853          * we can group them together and don't waste time idling.
854          */
855         return 0;
856 }
857
858 #define CIC_SEEKY(cic) ((cic)->seek_mean > (8 * 1024))
859
860 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
861 {
862         struct cfq_queue *cfqq = cfqd->active_queue;
863         struct cfq_io_context *cic;
864         unsigned long sl;
865
866         WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
867         WARN_ON(cfq_cfqq_slice_new(cfqq));
868
869         /*
870          * idle is disabled, either manually or by past process history
871          */
872         if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
873                 return;
874
875         /*
876          * task has exited, don't wait
877          */
878         cic = cfqd->active_cic;
879         if (!cic || !cic->ioc->task)
880                 return;
881
882         /*
883          * See if this prio level has a good candidate
884          */
885         if (cfq_close_cooperator(cfqd, cfqq) &&
886             (sample_valid(cic->ttime_samples) && cic->ttime_mean > 2))
887                 return;
888
889         cfq_mark_cfqq_must_dispatch(cfqq);
890         cfq_mark_cfqq_wait_request(cfqq);
891
892         /*
893          * we don't want to idle for seeks, but we do want to allow
894          * fair distribution of slice time for a process doing back-to-back
895          * seeks. so allow a little bit of time for him to submit a new rq
896          */
897         sl = cfqd->cfq_slice_idle;
898         if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
899                 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
900
901         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
902 }
903
904 static void cfq_dispatch_insert(request_queue_t *q, struct request *rq)
905 {
906         struct cfq_queue *cfqq = RQ_CFQQ(rq);
907
908         cfq_remove_request(rq);
909         cfqq->dispatched++;
910         elv_dispatch_sort(q, rq);
911 }
912
913 /*
914  * return expired entry, or NULL to just start from scratch in rbtree
915  */
916 static inline struct request *cfq_check_fifo(struct cfq_queue *cfqq)
917 {
918         struct cfq_data *cfqd = cfqq->cfqd;
919         struct request *rq;
920         int fifo;
921
922         if (cfq_cfqq_fifo_expire(cfqq))
923                 return NULL;
924
925         cfq_mark_cfqq_fifo_expire(cfqq);
926
927         if (list_empty(&cfqq->fifo))
928                 return NULL;
929
930         fifo = cfq_cfqq_sync(cfqq);
931         rq = rq_entry_fifo(cfqq->fifo.next);
932
933         if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
934                 return NULL;
935
936         return rq;
937 }
938
939 static inline int
940 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
941 {
942         const int base_rq = cfqd->cfq_slice_async_rq;
943
944         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
945
946         return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
947 }
948
949 /*
950  * get next queue for service
951  */
952 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
953 {
954         struct cfq_queue *cfqq;
955
956         cfqq = cfqd->active_queue;
957         if (!cfqq)
958                 goto new_queue;
959
960         /*
961          * The active queue has run out of time, expire it and select new.
962          */
963         if (cfq_slice_used(cfqq))
964                 goto expire;
965
966         /*
967          * The active queue has requests and isn't expired, allow it to
968          * dispatch.
969          */
970         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
971                 goto keep_queue;
972
973         /*
974          * No requests pending. If the active queue still has requests in
975          * flight or is idling for a new request, allow either of these
976          * conditions to happen (or time out) before selecting a new queue.
977          */
978         if (cfqq->dispatched || timer_pending(&cfqd->idle_slice_timer)) {
979                 cfqq = NULL;
980                 goto keep_queue;
981         }
982
983 expire:
984         cfq_slice_expired(cfqd, 0, 0);
985 new_queue:
986         cfqq = cfq_set_active_queue(cfqd);
987 keep_queue:
988         return cfqq;
989 }
990
991 static int
992 __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
993                         int max_dispatch)
994 {
995         int dispatched = 0;
996
997         BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
998
999         do {
1000                 struct request *rq;
1001
1002                 /*
1003                  * follow expired path, else get first next available
1004                  */
1005                 if ((rq = cfq_check_fifo(cfqq)) == NULL)
1006                         rq = cfqq->next_rq;
1007
1008                 /*
1009                  * finally, insert request into driver dispatch list
1010                  */
1011                 cfq_dispatch_insert(cfqd->queue, rq);
1012
1013                 cfqd->dispatch_slice++;
1014                 dispatched++;
1015
1016                 if (!cfqd->active_cic) {
1017                         atomic_inc(&RQ_CIC(rq)->ioc->refcount);
1018                         cfqd->active_cic = RQ_CIC(rq);
1019                 }
1020
1021                 if (RB_EMPTY_ROOT(&cfqq->sort_list))
1022                         break;
1023
1024         } while (dispatched < max_dispatch);
1025
1026         /*
1027          * expire an async queue immediately if it has used up its slice. idle
1028          * queue always expire after 1 dispatch round.
1029          */
1030         if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1031             cfqd->dispatch_slice >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1032             cfq_class_idle(cfqq))) {
1033                 cfqq->slice_end = jiffies + 1;
1034                 cfq_slice_expired(cfqd, 0, 0);
1035         }
1036
1037         return dispatched;
1038 }
1039
1040 static inline int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1041 {
1042         int dispatched = 0;
1043
1044         while (cfqq->next_rq) {
1045                 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1046                 dispatched++;
1047         }
1048
1049         BUG_ON(!list_empty(&cfqq->fifo));
1050         return dispatched;
1051 }
1052
1053 static int cfq_forced_dispatch_cfqqs(struct list_head *list)
1054 {
1055         struct cfq_queue *cfqq, *next;
1056         int dispatched;
1057
1058         dispatched = 0;
1059         list_for_each_entry_safe(cfqq, next, list, cfq_list)
1060                 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1061
1062         return dispatched;
1063 }
1064
1065 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1066 {
1067         int dispatched = 0;
1068         struct rb_node *n;
1069
1070         while ((n = cfq_rb_first(&cfqd->service_tree)) != NULL) {
1071                 struct cfq_queue *cfqq = rb_entry(n, struct cfq_queue, rb_node);
1072
1073                 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1074         }
1075
1076         dispatched += cfq_forced_dispatch_cfqqs(&cfqd->cur_rr);
1077         dispatched += cfq_forced_dispatch_cfqqs(&cfqd->idle_rr);
1078
1079         cfq_slice_expired(cfqd, 0, 0);
1080
1081         BUG_ON(cfqd->busy_queues);
1082
1083         return dispatched;
1084 }
1085
1086 static int cfq_dispatch_requests(request_queue_t *q, int force)
1087 {
1088         struct cfq_data *cfqd = q->elevator->elevator_data;
1089         struct cfq_queue *cfqq;
1090         int dispatched;
1091
1092         if (!cfqd->busy_queues)
1093                 return 0;
1094
1095         if (unlikely(force))
1096                 return cfq_forced_dispatch(cfqd);
1097
1098         dispatched = 0;
1099         while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
1100                 int max_dispatch;
1101
1102                 if (cfqd->busy_queues > 1) {
1103                         /*
1104                          * So we have dispatched before in this round, if the
1105                          * next queue has idling enabled (must be sync), don't
1106                          * allow it service until the previous have completed.
1107                          */
1108                         if (cfqd->rq_in_driver && cfq_cfqq_idle_window(cfqq) &&
1109                             dispatched)
1110                                 break;
1111                         if (cfqq->dispatched >= cfqd->cfq_quantum)
1112                                 break;
1113                 }
1114
1115                 cfq_clear_cfqq_must_dispatch(cfqq);
1116                 cfq_clear_cfqq_wait_request(cfqq);
1117                 del_timer(&cfqd->idle_slice_timer);
1118
1119                 max_dispatch = cfqd->cfq_quantum;
1120                 if (cfq_class_idle(cfqq))
1121                         max_dispatch = 1;
1122
1123                 dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1124         }
1125
1126         return dispatched;
1127 }
1128
1129 /*
1130  * task holds one reference to the queue, dropped when task exits. each rq
1131  * in-flight on this queue also holds a reference, dropped when rq is freed.
1132  *
1133  * queue lock must be held here.
1134  */
1135 static void cfq_put_queue(struct cfq_queue *cfqq)
1136 {
1137         struct cfq_data *cfqd = cfqq->cfqd;
1138
1139         BUG_ON(atomic_read(&cfqq->ref) <= 0);
1140
1141         if (!atomic_dec_and_test(&cfqq->ref))
1142                 return;
1143
1144         BUG_ON(rb_first(&cfqq->sort_list));
1145         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1146         BUG_ON(cfq_cfqq_on_rr(cfqq));
1147
1148         if (unlikely(cfqd->active_queue == cfqq)) {
1149                 __cfq_slice_expired(cfqd, cfqq, 0, 0);
1150                 cfq_schedule_dispatch(cfqd);
1151         }
1152
1153         /*
1154          * it's on the empty list and still hashed
1155          */
1156         hlist_del(&cfqq->cfq_hash);
1157         kmem_cache_free(cfq_pool, cfqq);
1158 }
1159
1160 static struct cfq_queue *
1161 __cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned int prio,
1162                     const int hashval)
1163 {
1164         struct hlist_head *hash_list = &cfqd->cfq_hash[hashval];
1165         struct hlist_node *entry;
1166         struct cfq_queue *__cfqq;
1167
1168         hlist_for_each_entry(__cfqq, entry, hash_list, cfq_hash) {
1169                 const unsigned short __p = IOPRIO_PRIO_VALUE(__cfqq->org_ioprio_class, __cfqq->org_ioprio);
1170
1171                 if (__cfqq->key == key && (__p == prio || !prio))
1172                         return __cfqq;
1173         }
1174
1175         return NULL;
1176 }
1177
1178 static struct cfq_queue *
1179 cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned short prio)
1180 {
1181         return __cfq_find_cfq_hash(cfqd, key, prio, hash_long(key, CFQ_QHASH_SHIFT));
1182 }
1183
1184 static void cfq_free_io_context(struct io_context *ioc)
1185 {
1186         struct cfq_io_context *__cic;
1187         struct rb_node *n;
1188         int freed = 0;
1189
1190         while ((n = rb_first(&ioc->cic_root)) != NULL) {
1191                 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1192                 rb_erase(&__cic->rb_node, &ioc->cic_root);
1193                 kmem_cache_free(cfq_ioc_pool, __cic);
1194                 freed++;
1195         }
1196
1197         elv_ioc_count_mod(ioc_count, -freed);
1198
1199         if (ioc_gone && !elv_ioc_count_read(ioc_count))
1200                 complete(ioc_gone);
1201 }
1202
1203 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1204 {
1205         if (unlikely(cfqq == cfqd->active_queue)) {
1206                 __cfq_slice_expired(cfqd, cfqq, 0, 0);
1207                 cfq_schedule_dispatch(cfqd);
1208         }
1209
1210         cfq_put_queue(cfqq);
1211 }
1212
1213 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1214                                          struct cfq_io_context *cic)
1215 {
1216         list_del_init(&cic->queue_list);
1217         smp_wmb();
1218         cic->key = NULL;
1219
1220         if (cic->cfqq[ASYNC]) {
1221                 cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
1222                 cic->cfqq[ASYNC] = NULL;
1223         }
1224
1225         if (cic->cfqq[SYNC]) {
1226                 cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
1227                 cic->cfqq[SYNC] = NULL;
1228         }
1229 }
1230
1231
1232 /*
1233  * Called with interrupts disabled
1234  */
1235 static void cfq_exit_single_io_context(struct cfq_io_context *cic)
1236 {
1237         struct cfq_data *cfqd = cic->key;
1238
1239         if (cfqd) {
1240                 request_queue_t *q = cfqd->queue;
1241
1242                 spin_lock_irq(q->queue_lock);
1243                 __cfq_exit_single_io_context(cfqd, cic);
1244                 spin_unlock_irq(q->queue_lock);
1245         }
1246 }
1247
1248 static void cfq_exit_io_context(struct io_context *ioc)
1249 {
1250         struct cfq_io_context *__cic;
1251         struct rb_node *n;
1252
1253         /*
1254          * put the reference this task is holding to the various queues
1255          */
1256
1257         n = rb_first(&ioc->cic_root);
1258         while (n != NULL) {
1259                 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1260
1261                 cfq_exit_single_io_context(__cic);
1262                 n = rb_next(n);
1263         }
1264 }
1265
1266 static struct cfq_io_context *
1267 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1268 {
1269         struct cfq_io_context *cic;
1270
1271         cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask, cfqd->queue->node);
1272         if (cic) {
1273                 memset(cic, 0, sizeof(*cic));
1274                 cic->last_end_request = jiffies;
1275                 INIT_LIST_HEAD(&cic->queue_list);
1276                 cic->dtor = cfq_free_io_context;
1277                 cic->exit = cfq_exit_io_context;
1278                 elv_ioc_count_inc(ioc_count);
1279         }
1280
1281         return cic;
1282 }
1283
1284 static void cfq_init_prio_data(struct cfq_queue *cfqq)
1285 {
1286         struct task_struct *tsk = current;
1287         int ioprio_class;
1288
1289         if (!cfq_cfqq_prio_changed(cfqq))
1290                 return;
1291
1292         ioprio_class = IOPRIO_PRIO_CLASS(tsk->ioprio);
1293         switch (ioprio_class) {
1294                 default:
1295                         printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1296                 case IOPRIO_CLASS_NONE:
1297                         /*
1298                          * no prio set, place us in the middle of the BE classes
1299                          */
1300                         cfqq->ioprio = task_nice_ioprio(tsk);
1301                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
1302                         break;
1303                 case IOPRIO_CLASS_RT:
1304                         cfqq->ioprio = task_ioprio(tsk);
1305                         cfqq->ioprio_class = IOPRIO_CLASS_RT;
1306                         break;
1307                 case IOPRIO_CLASS_BE:
1308                         cfqq->ioprio = task_ioprio(tsk);
1309                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
1310                         break;
1311                 case IOPRIO_CLASS_IDLE:
1312                         cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1313                         cfqq->ioprio = 7;
1314                         cfq_clear_cfqq_idle_window(cfqq);
1315                         break;
1316         }
1317
1318         /*
1319          * keep track of original prio settings in case we have to temporarily
1320          * elevate the priority of this queue
1321          */
1322         cfqq->org_ioprio = cfqq->ioprio;
1323         cfqq->org_ioprio_class = cfqq->ioprio_class;
1324         cfq_clear_cfqq_prio_changed(cfqq);
1325 }
1326
1327 static inline void changed_ioprio(struct cfq_io_context *cic)
1328 {
1329         struct cfq_data *cfqd = cic->key;
1330         struct cfq_queue *cfqq;
1331         unsigned long flags;
1332
1333         if (unlikely(!cfqd))
1334                 return;
1335
1336         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1337
1338         cfqq = cic->cfqq[ASYNC];
1339         if (cfqq) {
1340                 struct cfq_queue *new_cfqq;
1341                 new_cfqq = cfq_get_queue(cfqd, CFQ_KEY_ASYNC, cic->ioc->task,
1342                                          GFP_ATOMIC);
1343                 if (new_cfqq) {
1344                         cic->cfqq[ASYNC] = new_cfqq;
1345                         cfq_put_queue(cfqq);
1346                 }
1347         }
1348
1349         cfqq = cic->cfqq[SYNC];
1350         if (cfqq)
1351                 cfq_mark_cfqq_prio_changed(cfqq);
1352
1353         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1354 }
1355
1356 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1357 {
1358         struct cfq_io_context *cic;
1359         struct rb_node *n;
1360
1361         ioc->ioprio_changed = 0;
1362
1363         n = rb_first(&ioc->cic_root);
1364         while (n != NULL) {
1365                 cic = rb_entry(n, struct cfq_io_context, rb_node);
1366
1367                 changed_ioprio(cic);
1368                 n = rb_next(n);
1369         }
1370 }
1371
1372 static struct cfq_queue *
1373 cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk,
1374               gfp_t gfp_mask)
1375 {
1376         const int hashval = hash_long(key, CFQ_QHASH_SHIFT);
1377         struct cfq_queue *cfqq, *new_cfqq = NULL;
1378         unsigned short ioprio;
1379
1380 retry:
1381         ioprio = tsk->ioprio;
1382         cfqq = __cfq_find_cfq_hash(cfqd, key, ioprio, hashval);
1383
1384         if (!cfqq) {
1385                 if (new_cfqq) {
1386                         cfqq = new_cfqq;
1387                         new_cfqq = NULL;
1388                 } else if (gfp_mask & __GFP_WAIT) {
1389                         /*
1390                          * Inform the allocator of the fact that we will
1391                          * just repeat this allocation if it fails, to allow
1392                          * the allocator to do whatever it needs to attempt to
1393                          * free memory.
1394                          */
1395                         spin_unlock_irq(cfqd->queue->queue_lock);
1396                         new_cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask|__GFP_NOFAIL, cfqd->queue->node);
1397                         spin_lock_irq(cfqd->queue->queue_lock);
1398                         goto retry;
1399                 } else {
1400                         cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask, cfqd->queue->node);
1401                         if (!cfqq)
1402                                 goto out;
1403                 }
1404
1405                 memset(cfqq, 0, sizeof(*cfqq));
1406
1407                 INIT_HLIST_NODE(&cfqq->cfq_hash);
1408                 INIT_LIST_HEAD(&cfqq->cfq_list);
1409                 RB_CLEAR_NODE(&cfqq->rb_node);
1410                 INIT_LIST_HEAD(&cfqq->fifo);
1411
1412                 cfqq->key = key;
1413                 hlist_add_head(&cfqq->cfq_hash, &cfqd->cfq_hash[hashval]);
1414                 atomic_set(&cfqq->ref, 0);
1415                 cfqq->cfqd = cfqd;
1416
1417                 if (key != CFQ_KEY_ASYNC)
1418                         cfq_mark_cfqq_idle_window(cfqq);
1419
1420                 cfq_mark_cfqq_prio_changed(cfqq);
1421                 cfq_mark_cfqq_queue_new(cfqq);
1422                 cfq_init_prio_data(cfqq);
1423         }
1424
1425         if (new_cfqq)
1426                 kmem_cache_free(cfq_pool, new_cfqq);
1427
1428         atomic_inc(&cfqq->ref);
1429 out:
1430         WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1431         return cfqq;
1432 }
1433
1434 static void
1435 cfq_drop_dead_cic(struct io_context *ioc, struct cfq_io_context *cic)
1436 {
1437         WARN_ON(!list_empty(&cic->queue_list));
1438         rb_erase(&cic->rb_node, &ioc->cic_root);
1439         kmem_cache_free(cfq_ioc_pool, cic);
1440         elv_ioc_count_dec(ioc_count);
1441 }
1442
1443 static struct cfq_io_context *
1444 cfq_cic_rb_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1445 {
1446         struct rb_node *n;
1447         struct cfq_io_context *cic;
1448         void *k, *key = cfqd;
1449
1450 restart:
1451         n = ioc->cic_root.rb_node;
1452         while (n) {
1453                 cic = rb_entry(n, struct cfq_io_context, rb_node);
1454                 /* ->key must be copied to avoid race with cfq_exit_queue() */
1455                 k = cic->key;
1456                 if (unlikely(!k)) {
1457                         cfq_drop_dead_cic(ioc, cic);
1458                         goto restart;
1459                 }
1460
1461                 if (key < k)
1462                         n = n->rb_left;
1463                 else if (key > k)
1464                         n = n->rb_right;
1465                 else
1466                         return cic;
1467         }
1468
1469         return NULL;
1470 }
1471
1472 static inline void
1473 cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1474              struct cfq_io_context *cic)
1475 {
1476         struct rb_node **p;
1477         struct rb_node *parent;
1478         struct cfq_io_context *__cic;
1479         unsigned long flags;
1480         void *k;
1481
1482         cic->ioc = ioc;
1483         cic->key = cfqd;
1484
1485 restart:
1486         parent = NULL;
1487         p = &ioc->cic_root.rb_node;
1488         while (*p) {
1489                 parent = *p;
1490                 __cic = rb_entry(parent, struct cfq_io_context, rb_node);
1491                 /* ->key must be copied to avoid race with cfq_exit_queue() */
1492                 k = __cic->key;
1493                 if (unlikely(!k)) {
1494                         cfq_drop_dead_cic(ioc, __cic);
1495                         goto restart;
1496                 }
1497
1498                 if (cic->key < k)
1499                         p = &(*p)->rb_left;
1500                 else if (cic->key > k)
1501                         p = &(*p)->rb_right;
1502                 else
1503                         BUG();
1504         }
1505
1506         rb_link_node(&cic->rb_node, parent, p);
1507         rb_insert_color(&cic->rb_node, &ioc->cic_root);
1508
1509         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1510         list_add(&cic->queue_list, &cfqd->cic_list);
1511         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1512 }
1513
1514 /*
1515  * Setup general io context and cfq io context. There can be several cfq
1516  * io contexts per general io context, if this process is doing io to more
1517  * than one device managed by cfq.
1518  */
1519 static struct cfq_io_context *
1520 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1521 {
1522         struct io_context *ioc = NULL;
1523         struct cfq_io_context *cic;
1524
1525         might_sleep_if(gfp_mask & __GFP_WAIT);
1526
1527         ioc = get_io_context(gfp_mask, cfqd->queue->node);
1528         if (!ioc)
1529                 return NULL;
1530
1531         cic = cfq_cic_rb_lookup(cfqd, ioc);
1532         if (cic)
1533                 goto out;
1534
1535         cic = cfq_alloc_io_context(cfqd, gfp_mask);
1536         if (cic == NULL)
1537                 goto err;
1538
1539         cfq_cic_link(cfqd, ioc, cic);
1540 out:
1541         smp_read_barrier_depends();
1542         if (unlikely(ioc->ioprio_changed))
1543                 cfq_ioc_set_ioprio(ioc);
1544
1545         return cic;
1546 err:
1547         put_io_context(ioc);
1548         return NULL;
1549 }
1550
1551 static void
1552 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1553 {
1554         unsigned long elapsed = jiffies - cic->last_end_request;
1555         unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1556
1557         cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1558         cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1559         cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1560 }
1561
1562 static void
1563 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1564                        struct request *rq)
1565 {
1566         sector_t sdist;
1567         u64 total;
1568
1569         if (cic->last_request_pos < rq->sector)
1570                 sdist = rq->sector - cic->last_request_pos;
1571         else
1572                 sdist = cic->last_request_pos - rq->sector;
1573
1574         if (!cic->seek_samples) {
1575                 cfqd->new_seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1576                 cfqd->new_seek_mean = cfqd->new_seek_total / 256;
1577         }
1578
1579         /*
1580          * Don't allow the seek distance to get too large from the
1581          * odd fragment, pagein, etc
1582          */
1583         if (cic->seek_samples <= 60) /* second&third seek */
1584                 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1585         else
1586                 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1587
1588         cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1589         cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1590         total = cic->seek_total + (cic->seek_samples/2);
1591         do_div(total, cic->seek_samples);
1592         cic->seek_mean = (sector_t)total;
1593 }
1594
1595 /*
1596  * Disable idle window if the process thinks too long or seeks so much that
1597  * it doesn't matter
1598  */
1599 static void
1600 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1601                        struct cfq_io_context *cic)
1602 {
1603         int enable_idle = cfq_cfqq_idle_window(cfqq);
1604
1605         if (!cic->ioc->task || !cfqd->cfq_slice_idle ||
1606             (cfqd->hw_tag && CIC_SEEKY(cic)))
1607                 enable_idle = 0;
1608         else if (sample_valid(cic->ttime_samples)) {
1609                 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1610                         enable_idle = 0;
1611                 else
1612                         enable_idle = 1;
1613         }
1614
1615         if (enable_idle)
1616                 cfq_mark_cfqq_idle_window(cfqq);
1617         else
1618                 cfq_clear_cfqq_idle_window(cfqq);
1619 }
1620
1621 /*
1622  * Check if new_cfqq should preempt the currently active queue. Return 0 for
1623  * no or if we aren't sure, a 1 will cause a preempt.
1624  */
1625 static int
1626 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1627                    struct request *rq)
1628 {
1629         struct cfq_queue *cfqq;
1630
1631         cfqq = cfqd->active_queue;
1632         if (!cfqq)
1633                 return 0;
1634
1635         if (cfq_slice_used(cfqq))
1636                 return 1;
1637
1638         if (cfq_class_idle(new_cfqq))
1639                 return 0;
1640
1641         if (cfq_class_idle(cfqq))
1642                 return 1;
1643
1644         /*
1645          * if the new request is sync, but the currently running queue is
1646          * not, let the sync request have priority.
1647          */
1648         if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
1649                 return 1;
1650
1651         /*
1652          * So both queues are sync. Let the new request get disk time if
1653          * it's a metadata request and the current queue is doing regular IO.
1654          */
1655         if (rq_is_meta(rq) && !cfqq->meta_pending)
1656                 return 1;
1657
1658         if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
1659                 return 0;
1660
1661         /*
1662          * if this request is as-good as one we would expect from the
1663          * current cfqq, let it preempt
1664          */
1665         if (cfq_rq_close(cfqd, rq))
1666                 return 1;
1667
1668         return 0;
1669 }
1670
1671 /*
1672  * cfqq preempts the active queue. if we allowed preempt with no slice left,
1673  * let it have half of its nominal slice.
1674  */
1675 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1676 {
1677         cfq_slice_expired(cfqd, 1, 1);
1678
1679         /*
1680          * Put the new queue at the front of the of the current list,
1681          * so we know that it will be selected next.
1682          */
1683         BUG_ON(!cfq_cfqq_on_rr(cfqq));
1684         list_del_init(&cfqq->cfq_list);
1685         list_add(&cfqq->cfq_list, &cfqd->cur_rr);
1686
1687         cfqq->slice_end = 0;
1688         cfq_mark_cfqq_slice_new(cfqq);
1689 }
1690
1691 /*
1692  * Called when a new fs request (rq) is added (to cfqq). Check if there's
1693  * something we should do about it
1694  */
1695 static void
1696 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1697                 struct request *rq)
1698 {
1699         struct cfq_io_context *cic = RQ_CIC(rq);
1700
1701         if (rq_is_meta(rq))
1702                 cfqq->meta_pending++;
1703
1704         cfq_update_io_thinktime(cfqd, cic);
1705         cfq_update_io_seektime(cfqd, cic, rq);
1706         cfq_update_idle_window(cfqd, cfqq, cic);
1707
1708         cic->last_request_pos = rq->sector + rq->nr_sectors;
1709         cfqq->last_request_pos = cic->last_request_pos;
1710
1711         if (cfqq == cfqd->active_queue) {
1712                 /*
1713                  * if we are waiting for a request for this queue, let it rip
1714                  * immediately and flag that we must not expire this queue
1715                  * just now
1716                  */
1717                 if (cfq_cfqq_wait_request(cfqq)) {
1718                         cfq_mark_cfqq_must_dispatch(cfqq);
1719                         del_timer(&cfqd->idle_slice_timer);
1720                         blk_start_queueing(cfqd->queue);
1721                 }
1722         } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
1723                 /*
1724                  * not the active queue - expire current slice if it is
1725                  * idle and has expired it's mean thinktime or this new queue
1726                  * has some old slice time left and is of higher priority
1727                  */
1728                 cfq_preempt_queue(cfqd, cfqq);
1729                 cfq_mark_cfqq_must_dispatch(cfqq);
1730                 blk_start_queueing(cfqd->queue);
1731         }
1732 }
1733
1734 static void cfq_insert_request(request_queue_t *q, struct request *rq)
1735 {
1736         struct cfq_data *cfqd = q->elevator->elevator_data;
1737         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1738
1739         cfq_init_prio_data(cfqq);
1740
1741         cfq_add_rq_rb(rq);
1742
1743         list_add_tail(&rq->queuelist, &cfqq->fifo);
1744
1745         cfq_rq_enqueued(cfqd, cfqq, rq);
1746 }
1747
1748 static void cfq_completed_request(request_queue_t *q, struct request *rq)
1749 {
1750         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1751         struct cfq_data *cfqd = cfqq->cfqd;
1752         const int sync = rq_is_sync(rq);
1753         unsigned long now;
1754
1755         now = jiffies;
1756
1757         WARN_ON(!cfqd->rq_in_driver);
1758         WARN_ON(!cfqq->dispatched);
1759         cfqd->rq_in_driver--;
1760         cfqq->dispatched--;
1761
1762         if (!cfq_class_idle(cfqq))
1763                 cfqd->last_end_request = now;
1764
1765         if (sync)
1766                 RQ_CIC(rq)->last_end_request = now;
1767
1768         /*
1769          * If this is the active queue, check if it needs to be expired,
1770          * or if we want to idle in case it has no pending requests.
1771          */
1772         if (cfqd->active_queue == cfqq) {
1773                 if (cfq_cfqq_slice_new(cfqq)) {
1774                         cfq_set_prio_slice(cfqd, cfqq);
1775                         cfq_clear_cfqq_slice_new(cfqq);
1776                 }
1777                 if (cfq_slice_used(cfqq))
1778                         cfq_slice_expired(cfqd, 0, 1);
1779                 else if (sync && RB_EMPTY_ROOT(&cfqq->sort_list))
1780                         cfq_arm_slice_timer(cfqd);
1781         }
1782
1783         if (!cfqd->rq_in_driver)
1784                 cfq_schedule_dispatch(cfqd);
1785 }
1786
1787 /*
1788  * we temporarily boost lower priority queues if they are holding fs exclusive
1789  * resources. they are boosted to normal prio (CLASS_BE/4)
1790  */
1791 static void cfq_prio_boost(struct cfq_queue *cfqq)
1792 {
1793         if (has_fs_excl()) {
1794                 /*
1795                  * boost idle prio on transactions that would lock out other
1796                  * users of the filesystem
1797                  */
1798                 if (cfq_class_idle(cfqq))
1799                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
1800                 if (cfqq->ioprio > IOPRIO_NORM)
1801                         cfqq->ioprio = IOPRIO_NORM;
1802         } else {
1803                 /*
1804                  * check if we need to unboost the queue
1805                  */
1806                 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1807                         cfqq->ioprio_class = cfqq->org_ioprio_class;
1808                 if (cfqq->ioprio != cfqq->org_ioprio)
1809                         cfqq->ioprio = cfqq->org_ioprio;
1810         }
1811 }
1812
1813 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
1814 {
1815         if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1816             !cfq_cfqq_must_alloc_slice(cfqq)) {
1817                 cfq_mark_cfqq_must_alloc_slice(cfqq);
1818                 return ELV_MQUEUE_MUST;
1819         }
1820
1821         return ELV_MQUEUE_MAY;
1822 }
1823
1824 static int cfq_may_queue(request_queue_t *q, int rw)
1825 {
1826         struct cfq_data *cfqd = q->elevator->elevator_data;
1827         struct task_struct *tsk = current;
1828         struct cfq_queue *cfqq;
1829         unsigned int key;
1830
1831         key = cfq_queue_pid(tsk, rw, rw & REQ_RW_SYNC);
1832
1833         /*
1834          * don't force setup of a queue from here, as a call to may_queue
1835          * does not necessarily imply that a request actually will be queued.
1836          * so just lookup a possibly existing queue, or return 'may queue'
1837          * if that fails
1838          */
1839         cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
1840         if (cfqq) {
1841                 cfq_init_prio_data(cfqq);
1842                 cfq_prio_boost(cfqq);
1843
1844                 return __cfq_may_queue(cfqq);
1845         }
1846
1847         return ELV_MQUEUE_MAY;
1848 }
1849
1850 /*
1851  * queue lock held here
1852  */
1853 static void cfq_put_request(struct request *rq)
1854 {
1855         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1856
1857         if (cfqq) {
1858                 const int rw = rq_data_dir(rq);
1859
1860                 BUG_ON(!cfqq->allocated[rw]);
1861                 cfqq->allocated[rw]--;
1862
1863                 put_io_context(RQ_CIC(rq)->ioc);
1864
1865                 rq->elevator_private = NULL;
1866                 rq->elevator_private2 = NULL;
1867
1868                 cfq_put_queue(cfqq);
1869         }
1870 }
1871
1872 /*
1873  * Allocate cfq data structures associated with this request.
1874  */
1875 static int
1876 cfq_set_request(request_queue_t *q, struct request *rq, gfp_t gfp_mask)
1877 {
1878         struct cfq_data *cfqd = q->elevator->elevator_data;
1879         struct task_struct *tsk = current;
1880         struct cfq_io_context *cic;
1881         const int rw = rq_data_dir(rq);
1882         const int is_sync = rq_is_sync(rq);
1883         pid_t key = cfq_queue_pid(tsk, rw, is_sync);
1884         struct cfq_queue *cfqq;
1885         unsigned long flags;
1886
1887         might_sleep_if(gfp_mask & __GFP_WAIT);
1888
1889         cic = cfq_get_io_context(cfqd, gfp_mask);
1890
1891         spin_lock_irqsave(q->queue_lock, flags);
1892
1893         if (!cic)
1894                 goto queue_fail;
1895
1896         if (!cic->cfqq[is_sync]) {
1897                 cfqq = cfq_get_queue(cfqd, key, tsk, gfp_mask);
1898                 if (!cfqq)
1899                         goto queue_fail;
1900
1901                 cic->cfqq[is_sync] = cfqq;
1902         } else
1903                 cfqq = cic->cfqq[is_sync];
1904
1905         cfqq->allocated[rw]++;
1906         cfq_clear_cfqq_must_alloc(cfqq);
1907         atomic_inc(&cfqq->ref);
1908
1909         spin_unlock_irqrestore(q->queue_lock, flags);
1910
1911         rq->elevator_private = cic;
1912         rq->elevator_private2 = cfqq;
1913         return 0;
1914
1915 queue_fail:
1916         if (cic)
1917                 put_io_context(cic->ioc);
1918
1919         cfq_schedule_dispatch(cfqd);
1920         spin_unlock_irqrestore(q->queue_lock, flags);
1921         return 1;
1922 }
1923
1924 static void cfq_kick_queue(struct work_struct *work)
1925 {
1926         struct cfq_data *cfqd =
1927                 container_of(work, struct cfq_data, unplug_work);
1928         request_queue_t *q = cfqd->queue;
1929         unsigned long flags;
1930
1931         spin_lock_irqsave(q->queue_lock, flags);
1932         blk_start_queueing(q);
1933         spin_unlock_irqrestore(q->queue_lock, flags);
1934 }
1935
1936 /*
1937  * Timer running if the active_queue is currently idling inside its time slice
1938  */
1939 static void cfq_idle_slice_timer(unsigned long data)
1940 {
1941         struct cfq_data *cfqd = (struct cfq_data *) data;
1942         struct cfq_queue *cfqq;
1943         unsigned long flags;
1944         int timed_out = 1;
1945
1946         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1947
1948         if ((cfqq = cfqd->active_queue) != NULL) {
1949                 timed_out = 0;
1950
1951                 /*
1952                  * expired
1953                  */
1954                 if (cfq_slice_used(cfqq))
1955                         goto expire;
1956
1957                 /*
1958                  * only expire and reinvoke request handler, if there are
1959                  * other queues with pending requests
1960                  */
1961                 if (!cfqd->busy_queues)
1962                         goto out_cont;
1963
1964                 /*
1965                  * not expired and it has a request pending, let it dispatch
1966                  */
1967                 if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
1968                         cfq_mark_cfqq_must_dispatch(cfqq);
1969                         goto out_kick;
1970                 }
1971         }
1972 expire:
1973         cfq_slice_expired(cfqd, 0, timed_out);
1974 out_kick:
1975         cfq_schedule_dispatch(cfqd);
1976 out_cont:
1977         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1978 }
1979
1980 /*
1981  * Timer running if an idle class queue is waiting for service
1982  */
1983 static void cfq_idle_class_timer(unsigned long data)
1984 {
1985         struct cfq_data *cfqd = (struct cfq_data *) data;
1986         unsigned long flags, end;
1987
1988         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1989
1990         /*
1991          * race with a non-idle queue, reset timer
1992          */
1993         end = cfqd->last_end_request + CFQ_IDLE_GRACE;
1994         if (!time_after_eq(jiffies, end))
1995                 mod_timer(&cfqd->idle_class_timer, end);
1996         else
1997                 cfq_schedule_dispatch(cfqd);
1998
1999         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2000 }
2001
2002 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2003 {
2004         del_timer_sync(&cfqd->idle_slice_timer);
2005         del_timer_sync(&cfqd->idle_class_timer);
2006         blk_sync_queue(cfqd->queue);
2007 }
2008
2009 static void cfq_exit_queue(elevator_t *e)
2010 {
2011         struct cfq_data *cfqd = e->elevator_data;
2012         request_queue_t *q = cfqd->queue;
2013
2014         cfq_shutdown_timer_wq(cfqd);
2015
2016         spin_lock_irq(q->queue_lock);
2017
2018         if (cfqd->active_queue)
2019                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0, 0);
2020
2021         while (!list_empty(&cfqd->cic_list)) {
2022                 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2023                                                         struct cfq_io_context,
2024                                                         queue_list);
2025
2026                 __cfq_exit_single_io_context(cfqd, cic);
2027         }
2028
2029         spin_unlock_irq(q->queue_lock);
2030
2031         cfq_shutdown_timer_wq(cfqd);
2032
2033         kfree(cfqd->cfq_hash);
2034         kfree(cfqd);
2035 }
2036
2037 static void *cfq_init_queue(request_queue_t *q)
2038 {
2039         struct cfq_data *cfqd;
2040         int i;
2041
2042         cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
2043         if (!cfqd)
2044                 return NULL;
2045
2046         memset(cfqd, 0, sizeof(*cfqd));
2047
2048         cfqd->service_tree = CFQ_RB_ROOT;
2049         INIT_LIST_HEAD(&cfqd->cur_rr);
2050         INIT_LIST_HEAD(&cfqd->idle_rr);
2051         INIT_LIST_HEAD(&cfqd->cic_list);
2052
2053         cfqd->cfq_hash = kmalloc_node(sizeof(struct hlist_head) * CFQ_QHASH_ENTRIES, GFP_KERNEL, q->node);
2054         if (!cfqd->cfq_hash)
2055                 goto out_free;
2056
2057         for (i = 0; i < CFQ_QHASH_ENTRIES; i++)
2058                 INIT_HLIST_HEAD(&cfqd->cfq_hash[i]);
2059
2060         cfqd->queue = q;
2061
2062         init_timer(&cfqd->idle_slice_timer);
2063         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2064         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2065
2066         init_timer(&cfqd->idle_class_timer);
2067         cfqd->idle_class_timer.function = cfq_idle_class_timer;
2068         cfqd->idle_class_timer.data = (unsigned long) cfqd;
2069
2070         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2071
2072         cfqd->cfq_quantum = cfq_quantum;
2073         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2074         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2075         cfqd->cfq_back_max = cfq_back_max;
2076         cfqd->cfq_back_penalty = cfq_back_penalty;
2077         cfqd->cfq_slice[0] = cfq_slice_async;
2078         cfqd->cfq_slice[1] = cfq_slice_sync;
2079         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2080         cfqd->cfq_slice_idle = cfq_slice_idle;
2081
2082         return cfqd;
2083 out_free:
2084         kfree(cfqd);
2085         return NULL;
2086 }
2087
2088 static void cfq_slab_kill(void)
2089 {
2090         if (cfq_pool)
2091                 kmem_cache_destroy(cfq_pool);
2092         if (cfq_ioc_pool)
2093                 kmem_cache_destroy(cfq_ioc_pool);
2094 }
2095
2096 static int __init cfq_slab_setup(void)
2097 {
2098         cfq_pool = kmem_cache_create("cfq_pool", sizeof(struct cfq_queue), 0, 0,
2099                                         NULL, NULL);
2100         if (!cfq_pool)
2101                 goto fail;
2102
2103         cfq_ioc_pool = kmem_cache_create("cfq_ioc_pool",
2104                         sizeof(struct cfq_io_context), 0, 0, NULL, NULL);
2105         if (!cfq_ioc_pool)
2106                 goto fail;
2107
2108         return 0;
2109 fail:
2110         cfq_slab_kill();
2111         return -ENOMEM;
2112 }
2113
2114 /*
2115  * sysfs parts below -->
2116  */
2117 static ssize_t
2118 cfq_var_show(unsigned int var, char *page)
2119 {
2120         return sprintf(page, "%d\n", var);
2121 }
2122
2123 static ssize_t
2124 cfq_var_store(unsigned int *var, const char *page, size_t count)
2125 {
2126         char *p = (char *) page;
2127
2128         *var = simple_strtoul(p, &p, 10);
2129         return count;
2130 }
2131
2132 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
2133 static ssize_t __FUNC(elevator_t *e, char *page)                        \
2134 {                                                                       \
2135         struct cfq_data *cfqd = e->elevator_data;                       \
2136         unsigned int __data = __VAR;                                    \
2137         if (__CONV)                                                     \
2138                 __data = jiffies_to_msecs(__data);                      \
2139         return cfq_var_show(__data, (page));                            \
2140 }
2141 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2142 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2143 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2144 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2145 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2146 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2147 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2148 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2149 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2150 #undef SHOW_FUNCTION
2151
2152 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
2153 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count)    \
2154 {                                                                       \
2155         struct cfq_data *cfqd = e->elevator_data;                       \
2156         unsigned int __data;                                            \
2157         int ret = cfq_var_store(&__data, (page), count);                \
2158         if (__data < (MIN))                                             \
2159                 __data = (MIN);                                         \
2160         else if (__data > (MAX))                                        \
2161                 __data = (MAX);                                         \
2162         if (__CONV)                                                     \
2163                 *(__PTR) = msecs_to_jiffies(__data);                    \
2164         else                                                            \
2165                 *(__PTR) = __data;                                      \
2166         return ret;                                                     \
2167 }
2168 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2169 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
2170 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
2171 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2172 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
2173 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2174 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2175 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2176 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
2177 #undef STORE_FUNCTION
2178
2179 #define CFQ_ATTR(name) \
2180         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2181
2182 static struct elv_fs_entry cfq_attrs[] = {
2183         CFQ_ATTR(quantum),
2184         CFQ_ATTR(fifo_expire_sync),
2185         CFQ_ATTR(fifo_expire_async),
2186         CFQ_ATTR(back_seek_max),
2187         CFQ_ATTR(back_seek_penalty),
2188         CFQ_ATTR(slice_sync),
2189         CFQ_ATTR(slice_async),
2190         CFQ_ATTR(slice_async_rq),
2191         CFQ_ATTR(slice_idle),
2192         __ATTR_NULL
2193 };
2194
2195 static struct elevator_type iosched_cfq = {
2196         .ops = {
2197                 .elevator_merge_fn =            cfq_merge,
2198                 .elevator_merged_fn =           cfq_merged_request,
2199                 .elevator_merge_req_fn =        cfq_merged_requests,
2200                 .elevator_allow_merge_fn =      cfq_allow_merge,
2201                 .elevator_dispatch_fn =         cfq_dispatch_requests,
2202                 .elevator_add_req_fn =          cfq_insert_request,
2203                 .elevator_activate_req_fn =     cfq_activate_request,
2204                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
2205                 .elevator_queue_empty_fn =      cfq_queue_empty,
2206                 .elevator_completed_req_fn =    cfq_completed_request,
2207                 .elevator_former_req_fn =       elv_rb_former_request,
2208                 .elevator_latter_req_fn =       elv_rb_latter_request,
2209                 .elevator_set_req_fn =          cfq_set_request,
2210                 .elevator_put_req_fn =          cfq_put_request,
2211                 .elevator_may_queue_fn =        cfq_may_queue,
2212                 .elevator_init_fn =             cfq_init_queue,
2213                 .elevator_exit_fn =             cfq_exit_queue,
2214                 .trim =                         cfq_free_io_context,
2215         },
2216         .elevator_attrs =       cfq_attrs,
2217         .elevator_name =        "cfq",
2218         .elevator_owner =       THIS_MODULE,
2219 };
2220
2221 static int __init cfq_init(void)
2222 {
2223         int ret;
2224
2225         /*
2226          * could be 0 on HZ < 1000 setups
2227          */
2228         if (!cfq_slice_async)
2229                 cfq_slice_async = 1;
2230         if (!cfq_slice_idle)
2231                 cfq_slice_idle = 1;
2232
2233         if (cfq_slab_setup())
2234                 return -ENOMEM;
2235
2236         ret = elv_register(&iosched_cfq);
2237         if (ret)
2238                 cfq_slab_kill();
2239
2240         return ret;
2241 }
2242
2243 static void __exit cfq_exit(void)
2244 {
2245         DECLARE_COMPLETION_ONSTACK(all_gone);
2246         elv_unregister(&iosched_cfq);
2247         ioc_gone = &all_gone;
2248         /* ioc_gone's update must be visible before reading ioc_count */
2249         smp_wmb();
2250         if (elv_ioc_count_read(ioc_count))
2251                 wait_for_completion(ioc_gone);
2252         synchronize_rcu();
2253         cfq_slab_kill();
2254 }
2255
2256 module_init(cfq_init);
2257 module_exit(cfq_exit);
2258
2259 MODULE_AUTHOR("Jens Axboe");
2260 MODULE_LICENSE("GPL");
2261 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");