blkio: Fix blkio crash during rq stat update
[safe/jmp/linux-2.6] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include "blk-cgroup.h"
18
19 /*
20  * tunables
21  */
22 /* max queue in one round of service */
23 static const int cfq_quantum = 8;
24 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
25 /* maximum backwards seek, in KiB */
26 static const int cfq_back_max = 16 * 1024;
27 /* penalty of a backwards seek */
28 static const int cfq_back_penalty = 2;
29 static const int cfq_slice_sync = HZ / 10;
30 static int cfq_slice_async = HZ / 25;
31 static const int cfq_slice_async_rq = 2;
32 static int cfq_slice_idle = HZ / 125;
33 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
34 static const int cfq_hist_divisor = 4;
35
36 /*
37  * offset from end of service tree
38  */
39 #define CFQ_IDLE_DELAY          (HZ / 5)
40
41 /*
42  * below this threshold, we consider thinktime immediate
43  */
44 #define CFQ_MIN_TT              (2)
45
46 #define CFQ_SLICE_SCALE         (5)
47 #define CFQ_HW_QUEUE_MIN        (5)
48 #define CFQ_SERVICE_SHIFT       12
49
50 #define CFQQ_SEEK_THR           (sector_t)(8 * 100)
51 #define CFQQ_CLOSE_THR          (sector_t)(8 * 1024)
52 #define CFQQ_SECT_THR_NONROT    (sector_t)(2 * 32)
53 #define CFQQ_SEEKY(cfqq)        (hweight32(cfqq->seek_history) > 32/8)
54
55 #define RQ_CIC(rq)              \
56         ((struct cfq_io_context *) (rq)->elevator_private)
57 #define RQ_CFQQ(rq)             (struct cfq_queue *) ((rq)->elevator_private2)
58 #define RQ_CFQG(rq)             (struct cfq_group *) ((rq)->elevator_private3)
59
60 static struct kmem_cache *cfq_pool;
61 static struct kmem_cache *cfq_ioc_pool;
62
63 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
64 static struct completion *ioc_gone;
65 static DEFINE_SPINLOCK(ioc_gone_lock);
66
67 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
68 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
69 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
70
71 #define sample_valid(samples)   ((samples) > 80)
72 #define rb_entry_cfqg(node)     rb_entry((node), struct cfq_group, rb_node)
73
74 /*
75  * Most of our rbtree usage is for sorting with min extraction, so
76  * if we cache the leftmost node we don't have to walk down the tree
77  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
78  * move this into the elevator for the rq sorting as well.
79  */
80 struct cfq_rb_root {
81         struct rb_root rb;
82         struct rb_node *left;
83         unsigned count;
84         unsigned total_weight;
85         u64 min_vdisktime;
86         struct rb_node *active;
87 };
88 #define CFQ_RB_ROOT     (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
89                         .count = 0, .min_vdisktime = 0, }
90
91 /*
92  * Per process-grouping structure
93  */
94 struct cfq_queue {
95         /* reference count */
96         atomic_t ref;
97         /* various state flags, see below */
98         unsigned int flags;
99         /* parent cfq_data */
100         struct cfq_data *cfqd;
101         /* service_tree member */
102         struct rb_node rb_node;
103         /* service_tree key */
104         unsigned long rb_key;
105         /* prio tree member */
106         struct rb_node p_node;
107         /* prio tree root we belong to, if any */
108         struct rb_root *p_root;
109         /* sorted list of pending requests */
110         struct rb_root sort_list;
111         /* if fifo isn't expired, next request to serve */
112         struct request *next_rq;
113         /* requests queued in sort_list */
114         int queued[2];
115         /* currently allocated requests */
116         int allocated[2];
117         /* fifo list of requests in sort_list */
118         struct list_head fifo;
119
120         /* time when queue got scheduled in to dispatch first request. */
121         unsigned long dispatch_start;
122         unsigned int allocated_slice;
123         unsigned int slice_dispatch;
124         /* time when first request from queue completed and slice started. */
125         unsigned long slice_start;
126         unsigned long slice_end;
127         long slice_resid;
128
129         /* pending metadata requests */
130         int meta_pending;
131         /* number of requests that are on the dispatch list or inside driver */
132         int dispatched;
133
134         /* io prio of this group */
135         unsigned short ioprio, org_ioprio;
136         unsigned short ioprio_class, org_ioprio_class;
137
138         pid_t pid;
139
140         u32 seek_history;
141         sector_t last_request_pos;
142
143         struct cfq_rb_root *service_tree;
144         struct cfq_queue *new_cfqq;
145         struct cfq_group *cfqg;
146         struct cfq_group *orig_cfqg;
147 };
148
149 /*
150  * First index in the service_trees.
151  * IDLE is handled separately, so it has negative index
152  */
153 enum wl_prio_t {
154         BE_WORKLOAD = 0,
155         RT_WORKLOAD = 1,
156         IDLE_WORKLOAD = 2,
157 };
158
159 /*
160  * Second index in the service_trees.
161  */
162 enum wl_type_t {
163         ASYNC_WORKLOAD = 0,
164         SYNC_NOIDLE_WORKLOAD = 1,
165         SYNC_WORKLOAD = 2
166 };
167
168 /* This is per cgroup per device grouping structure */
169 struct cfq_group {
170         /* group service_tree member */
171         struct rb_node rb_node;
172
173         /* group service_tree key */
174         u64 vdisktime;
175         unsigned int weight;
176         bool on_st;
177
178         /* number of cfqq currently on this group */
179         int nr_cfqq;
180
181         /* Per group busy queus average. Useful for workload slice calc. */
182         unsigned int busy_queues_avg[2];
183         /*
184          * rr lists of queues with requests, onle rr for each priority class.
185          * Counts are embedded in the cfq_rb_root
186          */
187         struct cfq_rb_root service_trees[2][3];
188         struct cfq_rb_root service_tree_idle;
189
190         unsigned long saved_workload_slice;
191         enum wl_type_t saved_workload;
192         enum wl_prio_t saved_serving_prio;
193         struct blkio_group blkg;
194 #ifdef CONFIG_CFQ_GROUP_IOSCHED
195         struct hlist_node cfqd_node;
196         atomic_t ref;
197 #endif
198 };
199
200 /*
201  * Per block device queue structure
202  */
203 struct cfq_data {
204         struct request_queue *queue;
205         /* Root service tree for cfq_groups */
206         struct cfq_rb_root grp_service_tree;
207         struct cfq_group root_group;
208
209         /*
210          * The priority currently being served
211          */
212         enum wl_prio_t serving_prio;
213         enum wl_type_t serving_type;
214         unsigned long workload_expires;
215         struct cfq_group *serving_group;
216         bool noidle_tree_requires_idle;
217
218         /*
219          * Each priority tree is sorted by next_request position.  These
220          * trees are used when determining if two or more queues are
221          * interleaving requests (see cfq_close_cooperator).
222          */
223         struct rb_root prio_trees[CFQ_PRIO_LISTS];
224
225         unsigned int busy_queues;
226
227         int rq_in_driver;
228         int rq_in_flight[2];
229
230         /*
231          * queue-depth detection
232          */
233         int rq_queued;
234         int hw_tag;
235         /*
236          * hw_tag can be
237          * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
238          *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
239          *  0 => no NCQ
240          */
241         int hw_tag_est_depth;
242         unsigned int hw_tag_samples;
243
244         /*
245          * idle window management
246          */
247         struct timer_list idle_slice_timer;
248         struct work_struct unplug_work;
249
250         struct cfq_queue *active_queue;
251         struct cfq_io_context *active_cic;
252
253         /*
254          * async queue for each priority case
255          */
256         struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
257         struct cfq_queue *async_idle_cfqq;
258
259         sector_t last_position;
260
261         /*
262          * tunables, see top of file
263          */
264         unsigned int cfq_quantum;
265         unsigned int cfq_fifo_expire[2];
266         unsigned int cfq_back_penalty;
267         unsigned int cfq_back_max;
268         unsigned int cfq_slice[2];
269         unsigned int cfq_slice_async_rq;
270         unsigned int cfq_slice_idle;
271         unsigned int cfq_latency;
272         unsigned int cfq_group_isolation;
273
274         struct list_head cic_list;
275
276         /*
277          * Fallback dummy cfqq for extreme OOM conditions
278          */
279         struct cfq_queue oom_cfqq;
280
281         unsigned long last_delayed_sync;
282
283         /* List of cfq groups being managed on this device*/
284         struct hlist_head cfqg_list;
285         struct rcu_head rcu;
286 };
287
288 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
289
290 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
291                                             enum wl_prio_t prio,
292                                             enum wl_type_t type)
293 {
294         if (!cfqg)
295                 return NULL;
296
297         if (prio == IDLE_WORKLOAD)
298                 return &cfqg->service_tree_idle;
299
300         return &cfqg->service_trees[prio][type];
301 }
302
303 enum cfqq_state_flags {
304         CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
305         CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
306         CFQ_CFQQ_FLAG_must_dispatch,    /* must be allowed a dispatch */
307         CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
308         CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
309         CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
310         CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
311         CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
312         CFQ_CFQQ_FLAG_sync,             /* synchronous queue */
313         CFQ_CFQQ_FLAG_coop,             /* cfqq is shared */
314         CFQ_CFQQ_FLAG_split_coop,       /* shared cfqq will be splitted */
315         CFQ_CFQQ_FLAG_deep,             /* sync cfqq experienced large depth */
316         CFQ_CFQQ_FLAG_wait_busy,        /* Waiting for next request */
317 };
318
319 #define CFQ_CFQQ_FNS(name)                                              \
320 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
321 {                                                                       \
322         (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);                   \
323 }                                                                       \
324 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
325 {                                                                       \
326         (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                  \
327 }                                                                       \
328 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
329 {                                                                       \
330         return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;      \
331 }
332
333 CFQ_CFQQ_FNS(on_rr);
334 CFQ_CFQQ_FNS(wait_request);
335 CFQ_CFQQ_FNS(must_dispatch);
336 CFQ_CFQQ_FNS(must_alloc_slice);
337 CFQ_CFQQ_FNS(fifo_expire);
338 CFQ_CFQQ_FNS(idle_window);
339 CFQ_CFQQ_FNS(prio_changed);
340 CFQ_CFQQ_FNS(slice_new);
341 CFQ_CFQQ_FNS(sync);
342 CFQ_CFQQ_FNS(coop);
343 CFQ_CFQQ_FNS(split_coop);
344 CFQ_CFQQ_FNS(deep);
345 CFQ_CFQQ_FNS(wait_busy);
346 #undef CFQ_CFQQ_FNS
347
348 #ifdef CONFIG_DEBUG_CFQ_IOSCHED
349 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
350         blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
351                         cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
352                         blkg_path(&(cfqq)->cfqg->blkg), ##args);
353
354 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)                          \
355         blk_add_trace_msg((cfqd)->queue, "%s " fmt,                     \
356                                 blkg_path(&(cfqg)->blkg), ##args);      \
357
358 #else
359 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
360         blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
361 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)          do {} while (0);
362 #endif
363 #define cfq_log(cfqd, fmt, args...)     \
364         blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
365
366 /* Traverses through cfq group service trees */
367 #define for_each_cfqg_st(cfqg, i, j, st) \
368         for (i = 0; i <= IDLE_WORKLOAD; i++) \
369                 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
370                         : &cfqg->service_tree_idle; \
371                         (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
372                         (i == IDLE_WORKLOAD && j == 0); \
373                         j++, st = i < IDLE_WORKLOAD ? \
374                         &cfqg->service_trees[i][j]: NULL) \
375
376
377 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
378 {
379         if (cfq_class_idle(cfqq))
380                 return IDLE_WORKLOAD;
381         if (cfq_class_rt(cfqq))
382                 return RT_WORKLOAD;
383         return BE_WORKLOAD;
384 }
385
386
387 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
388 {
389         if (!cfq_cfqq_sync(cfqq))
390                 return ASYNC_WORKLOAD;
391         if (!cfq_cfqq_idle_window(cfqq))
392                 return SYNC_NOIDLE_WORKLOAD;
393         return SYNC_WORKLOAD;
394 }
395
396 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
397                                         struct cfq_data *cfqd,
398                                         struct cfq_group *cfqg)
399 {
400         if (wl == IDLE_WORKLOAD)
401                 return cfqg->service_tree_idle.count;
402
403         return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
404                 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
405                 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
406 }
407
408 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
409                                         struct cfq_group *cfqg)
410 {
411         return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
412                 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
413 }
414
415 static void cfq_dispatch_insert(struct request_queue *, struct request *);
416 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
417                                        struct io_context *, gfp_t);
418 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
419                                                 struct io_context *);
420
421 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
422                                             bool is_sync)
423 {
424         return cic->cfqq[is_sync];
425 }
426
427 static inline void cic_set_cfqq(struct cfq_io_context *cic,
428                                 struct cfq_queue *cfqq, bool is_sync)
429 {
430         cic->cfqq[is_sync] = cfqq;
431 }
432
433 /*
434  * We regard a request as SYNC, if it's either a read or has the SYNC bit
435  * set (in which case it could also be direct WRITE).
436  */
437 static inline bool cfq_bio_sync(struct bio *bio)
438 {
439         return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
440 }
441
442 /*
443  * scheduler run of queue, if there are requests pending and no one in the
444  * driver that will restart queueing
445  */
446 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
447 {
448         if (cfqd->busy_queues) {
449                 cfq_log(cfqd, "schedule dispatch");
450                 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
451         }
452 }
453
454 static int cfq_queue_empty(struct request_queue *q)
455 {
456         struct cfq_data *cfqd = q->elevator->elevator_data;
457
458         return !cfqd->rq_queued;
459 }
460
461 /*
462  * Scale schedule slice based on io priority. Use the sync time slice only
463  * if a queue is marked sync and has sync io queued. A sync queue with async
464  * io only, should not get full sync slice length.
465  */
466 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
467                                  unsigned short prio)
468 {
469         const int base_slice = cfqd->cfq_slice[sync];
470
471         WARN_ON(prio >= IOPRIO_BE_NR);
472
473         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
474 }
475
476 static inline int
477 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
478 {
479         return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
480 }
481
482 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
483 {
484         u64 d = delta << CFQ_SERVICE_SHIFT;
485
486         d = d * BLKIO_WEIGHT_DEFAULT;
487         do_div(d, cfqg->weight);
488         return d;
489 }
490
491 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
492 {
493         s64 delta = (s64)(vdisktime - min_vdisktime);
494         if (delta > 0)
495                 min_vdisktime = vdisktime;
496
497         return min_vdisktime;
498 }
499
500 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
501 {
502         s64 delta = (s64)(vdisktime - min_vdisktime);
503         if (delta < 0)
504                 min_vdisktime = vdisktime;
505
506         return min_vdisktime;
507 }
508
509 static void update_min_vdisktime(struct cfq_rb_root *st)
510 {
511         u64 vdisktime = st->min_vdisktime;
512         struct cfq_group *cfqg;
513
514         if (st->active) {
515                 cfqg = rb_entry_cfqg(st->active);
516                 vdisktime = cfqg->vdisktime;
517         }
518
519         if (st->left) {
520                 cfqg = rb_entry_cfqg(st->left);
521                 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
522         }
523
524         st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
525 }
526
527 /*
528  * get averaged number of queues of RT/BE priority.
529  * average is updated, with a formula that gives more weight to higher numbers,
530  * to quickly follows sudden increases and decrease slowly
531  */
532
533 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
534                                         struct cfq_group *cfqg, bool rt)
535 {
536         unsigned min_q, max_q;
537         unsigned mult  = cfq_hist_divisor - 1;
538         unsigned round = cfq_hist_divisor / 2;
539         unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
540
541         min_q = min(cfqg->busy_queues_avg[rt], busy);
542         max_q = max(cfqg->busy_queues_avg[rt], busy);
543         cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
544                 cfq_hist_divisor;
545         return cfqg->busy_queues_avg[rt];
546 }
547
548 static inline unsigned
549 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
550 {
551         struct cfq_rb_root *st = &cfqd->grp_service_tree;
552
553         return cfq_target_latency * cfqg->weight / st->total_weight;
554 }
555
556 static inline void
557 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
558 {
559         unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
560         if (cfqd->cfq_latency) {
561                 /*
562                  * interested queues (we consider only the ones with the same
563                  * priority class in the cfq group)
564                  */
565                 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
566                                                 cfq_class_rt(cfqq));
567                 unsigned sync_slice = cfqd->cfq_slice[1];
568                 unsigned expect_latency = sync_slice * iq;
569                 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
570
571                 if (expect_latency > group_slice) {
572                         unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
573                         /* scale low_slice according to IO priority
574                          * and sync vs async */
575                         unsigned low_slice =
576                                 min(slice, base_low_slice * slice / sync_slice);
577                         /* the adapted slice value is scaled to fit all iqs
578                          * into the target latency */
579                         slice = max(slice * group_slice / expect_latency,
580                                     low_slice);
581                 }
582         }
583         cfqq->slice_start = jiffies;
584         cfqq->slice_end = jiffies + slice;
585         cfqq->allocated_slice = slice;
586         cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
587 }
588
589 /*
590  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
591  * isn't valid until the first request from the dispatch is activated
592  * and the slice time set.
593  */
594 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
595 {
596         if (cfq_cfqq_slice_new(cfqq))
597                 return 0;
598         if (time_before(jiffies, cfqq->slice_end))
599                 return 0;
600
601         return 1;
602 }
603
604 /*
605  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
606  * We choose the request that is closest to the head right now. Distance
607  * behind the head is penalized and only allowed to a certain extent.
608  */
609 static struct request *
610 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
611 {
612         sector_t s1, s2, d1 = 0, d2 = 0;
613         unsigned long back_max;
614 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
615 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
616         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
617
618         if (rq1 == NULL || rq1 == rq2)
619                 return rq2;
620         if (rq2 == NULL)
621                 return rq1;
622
623         if (rq_is_sync(rq1) && !rq_is_sync(rq2))
624                 return rq1;
625         else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
626                 return rq2;
627         if (rq_is_meta(rq1) && !rq_is_meta(rq2))
628                 return rq1;
629         else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
630                 return rq2;
631
632         s1 = blk_rq_pos(rq1);
633         s2 = blk_rq_pos(rq2);
634
635         /*
636          * by definition, 1KiB is 2 sectors
637          */
638         back_max = cfqd->cfq_back_max * 2;
639
640         /*
641          * Strict one way elevator _except_ in the case where we allow
642          * short backward seeks which are biased as twice the cost of a
643          * similar forward seek.
644          */
645         if (s1 >= last)
646                 d1 = s1 - last;
647         else if (s1 + back_max >= last)
648                 d1 = (last - s1) * cfqd->cfq_back_penalty;
649         else
650                 wrap |= CFQ_RQ1_WRAP;
651
652         if (s2 >= last)
653                 d2 = s2 - last;
654         else if (s2 + back_max >= last)
655                 d2 = (last - s2) * cfqd->cfq_back_penalty;
656         else
657                 wrap |= CFQ_RQ2_WRAP;
658
659         /* Found required data */
660
661         /*
662          * By doing switch() on the bit mask "wrap" we avoid having to
663          * check two variables for all permutations: --> faster!
664          */
665         switch (wrap) {
666         case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
667                 if (d1 < d2)
668                         return rq1;
669                 else if (d2 < d1)
670                         return rq2;
671                 else {
672                         if (s1 >= s2)
673                                 return rq1;
674                         else
675                                 return rq2;
676                 }
677
678         case CFQ_RQ2_WRAP:
679                 return rq1;
680         case CFQ_RQ1_WRAP:
681                 return rq2;
682         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
683         default:
684                 /*
685                  * Since both rqs are wrapped,
686                  * start with the one that's further behind head
687                  * (--> only *one* back seek required),
688                  * since back seek takes more time than forward.
689                  */
690                 if (s1 <= s2)
691                         return rq1;
692                 else
693                         return rq2;
694         }
695 }
696
697 /*
698  * The below is leftmost cache rbtree addon
699  */
700 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
701 {
702         /* Service tree is empty */
703         if (!root->count)
704                 return NULL;
705
706         if (!root->left)
707                 root->left = rb_first(&root->rb);
708
709         if (root->left)
710                 return rb_entry(root->left, struct cfq_queue, rb_node);
711
712         return NULL;
713 }
714
715 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
716 {
717         if (!root->left)
718                 root->left = rb_first(&root->rb);
719
720         if (root->left)
721                 return rb_entry_cfqg(root->left);
722
723         return NULL;
724 }
725
726 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
727 {
728         rb_erase(n, root);
729         RB_CLEAR_NODE(n);
730 }
731
732 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
733 {
734         if (root->left == n)
735                 root->left = NULL;
736         rb_erase_init(n, &root->rb);
737         --root->count;
738 }
739
740 /*
741  * would be nice to take fifo expire time into account as well
742  */
743 static struct request *
744 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
745                   struct request *last)
746 {
747         struct rb_node *rbnext = rb_next(&last->rb_node);
748         struct rb_node *rbprev = rb_prev(&last->rb_node);
749         struct request *next = NULL, *prev = NULL;
750
751         BUG_ON(RB_EMPTY_NODE(&last->rb_node));
752
753         if (rbprev)
754                 prev = rb_entry_rq(rbprev);
755
756         if (rbnext)
757                 next = rb_entry_rq(rbnext);
758         else {
759                 rbnext = rb_first(&cfqq->sort_list);
760                 if (rbnext && rbnext != &last->rb_node)
761                         next = rb_entry_rq(rbnext);
762         }
763
764         return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
765 }
766
767 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
768                                       struct cfq_queue *cfqq)
769 {
770         /*
771          * just an approximation, should be ok.
772          */
773         return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
774                        cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
775 }
776
777 static inline s64
778 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
779 {
780         return cfqg->vdisktime - st->min_vdisktime;
781 }
782
783 static void
784 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
785 {
786         struct rb_node **node = &st->rb.rb_node;
787         struct rb_node *parent = NULL;
788         struct cfq_group *__cfqg;
789         s64 key = cfqg_key(st, cfqg);
790         int left = 1;
791
792         while (*node != NULL) {
793                 parent = *node;
794                 __cfqg = rb_entry_cfqg(parent);
795
796                 if (key < cfqg_key(st, __cfqg))
797                         node = &parent->rb_left;
798                 else {
799                         node = &parent->rb_right;
800                         left = 0;
801                 }
802         }
803
804         if (left)
805                 st->left = &cfqg->rb_node;
806
807         rb_link_node(&cfqg->rb_node, parent, node);
808         rb_insert_color(&cfqg->rb_node, &st->rb);
809 }
810
811 static void
812 cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
813 {
814         struct cfq_rb_root *st = &cfqd->grp_service_tree;
815         struct cfq_group *__cfqg;
816         struct rb_node *n;
817
818         cfqg->nr_cfqq++;
819         if (cfqg->on_st)
820                 return;
821
822         /*
823          * Currently put the group at the end. Later implement something
824          * so that groups get lesser vtime based on their weights, so that
825          * if group does not loose all if it was not continously backlogged.
826          */
827         n = rb_last(&st->rb);
828         if (n) {
829                 __cfqg = rb_entry_cfqg(n);
830                 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
831         } else
832                 cfqg->vdisktime = st->min_vdisktime;
833
834         __cfq_group_service_tree_add(st, cfqg);
835         cfqg->on_st = true;
836         st->total_weight += cfqg->weight;
837 }
838
839 static void
840 cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
841 {
842         struct cfq_rb_root *st = &cfqd->grp_service_tree;
843
844         if (st->active == &cfqg->rb_node)
845                 st->active = NULL;
846
847         BUG_ON(cfqg->nr_cfqq < 1);
848         cfqg->nr_cfqq--;
849
850         /* If there are other cfq queues under this group, don't delete it */
851         if (cfqg->nr_cfqq)
852                 return;
853
854         cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
855         cfqg->on_st = false;
856         st->total_weight -= cfqg->weight;
857         if (!RB_EMPTY_NODE(&cfqg->rb_node))
858                 cfq_rb_erase(&cfqg->rb_node, st);
859         cfqg->saved_workload_slice = 0;
860         blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
861 }
862
863 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
864 {
865         unsigned int slice_used;
866
867         /*
868          * Queue got expired before even a single request completed or
869          * got expired immediately after first request completion.
870          */
871         if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
872                 /*
873                  * Also charge the seek time incurred to the group, otherwise
874                  * if there are mutiple queues in the group, each can dispatch
875                  * a single request on seeky media and cause lots of seek time
876                  * and group will never know it.
877                  */
878                 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
879                                         1);
880         } else {
881                 slice_used = jiffies - cfqq->slice_start;
882                 if (slice_used > cfqq->allocated_slice)
883                         slice_used = cfqq->allocated_slice;
884         }
885
886         cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u", slice_used);
887         return slice_used;
888 }
889
890 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
891                                 struct cfq_queue *cfqq, bool forced)
892 {
893         struct cfq_rb_root *st = &cfqd->grp_service_tree;
894         unsigned int used_sl, charge_sl;
895         int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
896                         - cfqg->service_tree_idle.count;
897
898         BUG_ON(nr_sync < 0);
899         used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
900
901         if (!cfq_cfqq_sync(cfqq) && !nr_sync)
902                 charge_sl = cfqq->allocated_slice;
903
904         /* Can't update vdisktime while group is on service tree */
905         cfq_rb_erase(&cfqg->rb_node, st);
906         cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
907         __cfq_group_service_tree_add(st, cfqg);
908
909         /* This group is being expired. Save the context */
910         if (time_after(cfqd->workload_expires, jiffies)) {
911                 cfqg->saved_workload_slice = cfqd->workload_expires
912                                                 - jiffies;
913                 cfqg->saved_workload = cfqd->serving_type;
914                 cfqg->saved_serving_prio = cfqd->serving_prio;
915         } else
916                 cfqg->saved_workload_slice = 0;
917
918         cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
919                                         st->min_vdisktime);
920         blkiocg_update_timeslice_used(&cfqg->blkg, used_sl);
921         blkiocg_set_start_empty_time(&cfqg->blkg, forced);
922 }
923
924 #ifdef CONFIG_CFQ_GROUP_IOSCHED
925 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
926 {
927         if (blkg)
928                 return container_of(blkg, struct cfq_group, blkg);
929         return NULL;
930 }
931
932 void
933 cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
934 {
935         cfqg_of_blkg(blkg)->weight = weight;
936 }
937
938 static struct cfq_group *
939 cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
940 {
941         struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
942         struct cfq_group *cfqg = NULL;
943         void *key = cfqd;
944         int i, j;
945         struct cfq_rb_root *st;
946         struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
947         unsigned int major, minor;
948
949         cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
950         if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
951                 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
952                 cfqg->blkg.dev = MKDEV(major, minor);
953                 goto done;
954         }
955         if (cfqg || !create)
956                 goto done;
957
958         cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
959         if (!cfqg)
960                 goto done;
961
962         for_each_cfqg_st(cfqg, i, j, st)
963                 *st = CFQ_RB_ROOT;
964         RB_CLEAR_NODE(&cfqg->rb_node);
965
966         /*
967          * Take the initial reference that will be released on destroy
968          * This can be thought of a joint reference by cgroup and
969          * elevator which will be dropped by either elevator exit
970          * or cgroup deletion path depending on who is exiting first.
971          */
972         atomic_set(&cfqg->ref, 1);
973
974         /* Add group onto cgroup list */
975         sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
976         blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
977                                         MKDEV(major, minor));
978         cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
979
980         /* Add group on cfqd list */
981         hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
982
983 done:
984         return cfqg;
985 }
986
987 /*
988  * Search for the cfq group current task belongs to. If create = 1, then also
989  * create the cfq group if it does not exist. request_queue lock must be held.
990  */
991 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
992 {
993         struct cgroup *cgroup;
994         struct cfq_group *cfqg = NULL;
995
996         rcu_read_lock();
997         cgroup = task_cgroup(current, blkio_subsys_id);
998         cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
999         if (!cfqg && create)
1000                 cfqg = &cfqd->root_group;
1001         rcu_read_unlock();
1002         return cfqg;
1003 }
1004
1005 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1006 {
1007         atomic_inc(&cfqg->ref);
1008         return cfqg;
1009 }
1010
1011 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1012 {
1013         /* Currently, all async queues are mapped to root group */
1014         if (!cfq_cfqq_sync(cfqq))
1015                 cfqg = &cfqq->cfqd->root_group;
1016
1017         cfqq->cfqg = cfqg;
1018         /* cfqq reference on cfqg */
1019         atomic_inc(&cfqq->cfqg->ref);
1020 }
1021
1022 static void cfq_put_cfqg(struct cfq_group *cfqg)
1023 {
1024         struct cfq_rb_root *st;
1025         int i, j;
1026
1027         BUG_ON(atomic_read(&cfqg->ref) <= 0);
1028         if (!atomic_dec_and_test(&cfqg->ref))
1029                 return;
1030         for_each_cfqg_st(cfqg, i, j, st)
1031                 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1032         kfree(cfqg);
1033 }
1034
1035 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1036 {
1037         /* Something wrong if we are trying to remove same group twice */
1038         BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1039
1040         hlist_del_init(&cfqg->cfqd_node);
1041
1042         /*
1043          * Put the reference taken at the time of creation so that when all
1044          * queues are gone, group can be destroyed.
1045          */
1046         cfq_put_cfqg(cfqg);
1047 }
1048
1049 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1050 {
1051         struct hlist_node *pos, *n;
1052         struct cfq_group *cfqg;
1053
1054         hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1055                 /*
1056                  * If cgroup removal path got to blk_group first and removed
1057                  * it from cgroup list, then it will take care of destroying
1058                  * cfqg also.
1059                  */
1060                 if (!blkiocg_del_blkio_group(&cfqg->blkg))
1061                         cfq_destroy_cfqg(cfqd, cfqg);
1062         }
1063 }
1064
1065 /*
1066  * Blk cgroup controller notification saying that blkio_group object is being
1067  * delinked as associated cgroup object is going away. That also means that
1068  * no new IO will come in this group. So get rid of this group as soon as
1069  * any pending IO in the group is finished.
1070  *
1071  * This function is called under rcu_read_lock(). key is the rcu protected
1072  * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1073  * read lock.
1074  *
1075  * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1076  * it should not be NULL as even if elevator was exiting, cgroup deltion
1077  * path got to it first.
1078  */
1079 void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1080 {
1081         unsigned long  flags;
1082         struct cfq_data *cfqd = key;
1083
1084         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1085         cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1086         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1087 }
1088
1089 #else /* GROUP_IOSCHED */
1090 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1091 {
1092         return &cfqd->root_group;
1093 }
1094
1095 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1096 {
1097         return NULL;
1098 }
1099
1100 static inline void
1101 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1102         cfqq->cfqg = cfqg;
1103 }
1104
1105 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1106 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1107
1108 #endif /* GROUP_IOSCHED */
1109
1110 /*
1111  * The cfqd->service_trees holds all pending cfq_queue's that have
1112  * requests waiting to be processed. It is sorted in the order that
1113  * we will service the queues.
1114  */
1115 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1116                                  bool add_front)
1117 {
1118         struct rb_node **p, *parent;
1119         struct cfq_queue *__cfqq;
1120         unsigned long rb_key;
1121         struct cfq_rb_root *service_tree;
1122         int left;
1123         int new_cfqq = 1;
1124         int group_changed = 0;
1125
1126 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1127         if (!cfqd->cfq_group_isolation
1128             && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1129             && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1130                 /* Move this cfq to root group */
1131                 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1132                 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1133                         cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1134                 cfqq->orig_cfqg = cfqq->cfqg;
1135                 cfqq->cfqg = &cfqd->root_group;
1136                 atomic_inc(&cfqd->root_group.ref);
1137                 group_changed = 1;
1138         } else if (!cfqd->cfq_group_isolation
1139                    && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1140                 /* cfqq is sequential now needs to go to its original group */
1141                 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1142                 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1143                         cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1144                 cfq_put_cfqg(cfqq->cfqg);
1145                 cfqq->cfqg = cfqq->orig_cfqg;
1146                 cfqq->orig_cfqg = NULL;
1147                 group_changed = 1;
1148                 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1149         }
1150 #endif
1151
1152         service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1153                                                 cfqq_type(cfqq));
1154         if (cfq_class_idle(cfqq)) {
1155                 rb_key = CFQ_IDLE_DELAY;
1156                 parent = rb_last(&service_tree->rb);
1157                 if (parent && parent != &cfqq->rb_node) {
1158                         __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1159                         rb_key += __cfqq->rb_key;
1160                 } else
1161                         rb_key += jiffies;
1162         } else if (!add_front) {
1163                 /*
1164                  * Get our rb key offset. Subtract any residual slice
1165                  * value carried from last service. A negative resid
1166                  * count indicates slice overrun, and this should position
1167                  * the next service time further away in the tree.
1168                  */
1169                 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1170                 rb_key -= cfqq->slice_resid;
1171                 cfqq->slice_resid = 0;
1172         } else {
1173                 rb_key = -HZ;
1174                 __cfqq = cfq_rb_first(service_tree);
1175                 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1176         }
1177
1178         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1179                 new_cfqq = 0;
1180                 /*
1181                  * same position, nothing more to do
1182                  */
1183                 if (rb_key == cfqq->rb_key &&
1184                     cfqq->service_tree == service_tree)
1185                         return;
1186
1187                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1188                 cfqq->service_tree = NULL;
1189         }
1190
1191         left = 1;
1192         parent = NULL;
1193         cfqq->service_tree = service_tree;
1194         p = &service_tree->rb.rb_node;
1195         while (*p) {
1196                 struct rb_node **n;
1197
1198                 parent = *p;
1199                 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1200
1201                 /*
1202                  * sort by key, that represents service time.
1203                  */
1204                 if (time_before(rb_key, __cfqq->rb_key))
1205                         n = &(*p)->rb_left;
1206                 else {
1207                         n = &(*p)->rb_right;
1208                         left = 0;
1209                 }
1210
1211                 p = n;
1212         }
1213
1214         if (left)
1215                 service_tree->left = &cfqq->rb_node;
1216
1217         cfqq->rb_key = rb_key;
1218         rb_link_node(&cfqq->rb_node, parent, p);
1219         rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1220         service_tree->count++;
1221         if ((add_front || !new_cfqq) && !group_changed)
1222                 return;
1223         cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1224 }
1225
1226 static struct cfq_queue *
1227 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1228                      sector_t sector, struct rb_node **ret_parent,
1229                      struct rb_node ***rb_link)
1230 {
1231         struct rb_node **p, *parent;
1232         struct cfq_queue *cfqq = NULL;
1233
1234         parent = NULL;
1235         p = &root->rb_node;
1236         while (*p) {
1237                 struct rb_node **n;
1238
1239                 parent = *p;
1240                 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1241
1242                 /*
1243                  * Sort strictly based on sector.  Smallest to the left,
1244                  * largest to the right.
1245                  */
1246                 if (sector > blk_rq_pos(cfqq->next_rq))
1247                         n = &(*p)->rb_right;
1248                 else if (sector < blk_rq_pos(cfqq->next_rq))
1249                         n = &(*p)->rb_left;
1250                 else
1251                         break;
1252                 p = n;
1253                 cfqq = NULL;
1254         }
1255
1256         *ret_parent = parent;
1257         if (rb_link)
1258                 *rb_link = p;
1259         return cfqq;
1260 }
1261
1262 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1263 {
1264         struct rb_node **p, *parent;
1265         struct cfq_queue *__cfqq;
1266
1267         if (cfqq->p_root) {
1268                 rb_erase(&cfqq->p_node, cfqq->p_root);
1269                 cfqq->p_root = NULL;
1270         }
1271
1272         if (cfq_class_idle(cfqq))
1273                 return;
1274         if (!cfqq->next_rq)
1275                 return;
1276
1277         cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1278         __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1279                                       blk_rq_pos(cfqq->next_rq), &parent, &p);
1280         if (!__cfqq) {
1281                 rb_link_node(&cfqq->p_node, parent, p);
1282                 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1283         } else
1284                 cfqq->p_root = NULL;
1285 }
1286
1287 /*
1288  * Update cfqq's position in the service tree.
1289  */
1290 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1291 {
1292         /*
1293          * Resorting requires the cfqq to be on the RR list already.
1294          */
1295         if (cfq_cfqq_on_rr(cfqq)) {
1296                 cfq_service_tree_add(cfqd, cfqq, 0);
1297                 cfq_prio_tree_add(cfqd, cfqq);
1298         }
1299 }
1300
1301 /*
1302  * add to busy list of queues for service, trying to be fair in ordering
1303  * the pending list according to last request service
1304  */
1305 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1306 {
1307         cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1308         BUG_ON(cfq_cfqq_on_rr(cfqq));
1309         cfq_mark_cfqq_on_rr(cfqq);
1310         cfqd->busy_queues++;
1311
1312         cfq_resort_rr_list(cfqd, cfqq);
1313 }
1314
1315 /*
1316  * Called when the cfqq no longer has requests pending, remove it from
1317  * the service tree.
1318  */
1319 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1320 {
1321         cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1322         BUG_ON(!cfq_cfqq_on_rr(cfqq));
1323         cfq_clear_cfqq_on_rr(cfqq);
1324
1325         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1326                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1327                 cfqq->service_tree = NULL;
1328         }
1329         if (cfqq->p_root) {
1330                 rb_erase(&cfqq->p_node, cfqq->p_root);
1331                 cfqq->p_root = NULL;
1332         }
1333
1334         cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1335         BUG_ON(!cfqd->busy_queues);
1336         cfqd->busy_queues--;
1337 }
1338
1339 /*
1340  * rb tree support functions
1341  */
1342 static void cfq_del_rq_rb(struct request *rq)
1343 {
1344         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1345         const int sync = rq_is_sync(rq);
1346
1347         BUG_ON(!cfqq->queued[sync]);
1348         cfqq->queued[sync]--;
1349
1350         elv_rb_del(&cfqq->sort_list, rq);
1351
1352         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1353                 /*
1354                  * Queue will be deleted from service tree when we actually
1355                  * expire it later. Right now just remove it from prio tree
1356                  * as it is empty.
1357                  */
1358                 if (cfqq->p_root) {
1359                         rb_erase(&cfqq->p_node, cfqq->p_root);
1360                         cfqq->p_root = NULL;
1361                 }
1362         }
1363 }
1364
1365 static void cfq_add_rq_rb(struct request *rq)
1366 {
1367         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1368         struct cfq_data *cfqd = cfqq->cfqd;
1369         struct request *__alias, *prev;
1370
1371         cfqq->queued[rq_is_sync(rq)]++;
1372
1373         /*
1374          * looks a little odd, but the first insert might return an alias.
1375          * if that happens, put the alias on the dispatch list
1376          */
1377         while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1378                 cfq_dispatch_insert(cfqd->queue, __alias);
1379
1380         if (!cfq_cfqq_on_rr(cfqq))
1381                 cfq_add_cfqq_rr(cfqd, cfqq);
1382
1383         /*
1384          * check if this request is a better next-serve candidate
1385          */
1386         prev = cfqq->next_rq;
1387         cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1388
1389         /*
1390          * adjust priority tree position, if ->next_rq changes
1391          */
1392         if (prev != cfqq->next_rq)
1393                 cfq_prio_tree_add(cfqd, cfqq);
1394
1395         BUG_ON(!cfqq->next_rq);
1396 }
1397
1398 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1399 {
1400         elv_rb_del(&cfqq->sort_list, rq);
1401         cfqq->queued[rq_is_sync(rq)]--;
1402         blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg, rq_data_dir(rq),
1403                                                 rq_is_sync(rq));
1404         cfq_add_rq_rb(rq);
1405         blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
1406                         &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1407                         rq_is_sync(rq));
1408 }
1409
1410 static struct request *
1411 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1412 {
1413         struct task_struct *tsk = current;
1414         struct cfq_io_context *cic;
1415         struct cfq_queue *cfqq;
1416
1417         cic = cfq_cic_lookup(cfqd, tsk->io_context);
1418         if (!cic)
1419                 return NULL;
1420
1421         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1422         if (cfqq) {
1423                 sector_t sector = bio->bi_sector + bio_sectors(bio);
1424
1425                 return elv_rb_find(&cfqq->sort_list, sector);
1426         }
1427
1428         return NULL;
1429 }
1430
1431 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1432 {
1433         struct cfq_data *cfqd = q->elevator->elevator_data;
1434
1435         cfqd->rq_in_driver++;
1436         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1437                                                 cfqd->rq_in_driver);
1438
1439         cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1440 }
1441
1442 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1443 {
1444         struct cfq_data *cfqd = q->elevator->elevator_data;
1445
1446         WARN_ON(!cfqd->rq_in_driver);
1447         cfqd->rq_in_driver--;
1448         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1449                                                 cfqd->rq_in_driver);
1450 }
1451
1452 static void cfq_remove_request(struct request *rq)
1453 {
1454         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1455
1456         if (cfqq->next_rq == rq)
1457                 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1458
1459         list_del_init(&rq->queuelist);
1460         cfq_del_rq_rb(rq);
1461
1462         cfqq->cfqd->rq_queued--;
1463         blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg, rq_data_dir(rq),
1464                                                 rq_is_sync(rq));
1465         if (rq_is_meta(rq)) {
1466                 WARN_ON(!cfqq->meta_pending);
1467                 cfqq->meta_pending--;
1468         }
1469 }
1470
1471 static int cfq_merge(struct request_queue *q, struct request **req,
1472                      struct bio *bio)
1473 {
1474         struct cfq_data *cfqd = q->elevator->elevator_data;
1475         struct request *__rq;
1476
1477         __rq = cfq_find_rq_fmerge(cfqd, bio);
1478         if (__rq && elv_rq_merge_ok(__rq, bio)) {
1479                 *req = __rq;
1480                 return ELEVATOR_FRONT_MERGE;
1481         }
1482
1483         return ELEVATOR_NO_MERGE;
1484 }
1485
1486 static void cfq_merged_request(struct request_queue *q, struct request *req,
1487                                int type)
1488 {
1489         if (type == ELEVATOR_FRONT_MERGE) {
1490                 struct cfq_queue *cfqq = RQ_CFQQ(req);
1491
1492                 cfq_reposition_rq_rb(cfqq, req);
1493         }
1494 }
1495
1496 static void cfq_bio_merged(struct request_queue *q, struct request *req,
1497                                 struct bio *bio)
1498 {
1499         blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg, bio_data_dir(bio),
1500                                         cfq_bio_sync(bio));
1501 }
1502
1503 static void
1504 cfq_merged_requests(struct request_queue *q, struct request *rq,
1505                     struct request *next)
1506 {
1507         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1508         /*
1509          * reposition in fifo if next is older than rq
1510          */
1511         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1512             time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1513                 list_move(&rq->queuelist, &next->queuelist);
1514                 rq_set_fifo_time(rq, rq_fifo_time(next));
1515         }
1516
1517         if (cfqq->next_rq == next)
1518                 cfqq->next_rq = rq;
1519         cfq_remove_request(next);
1520         blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg, rq_data_dir(next),
1521                                         rq_is_sync(next));
1522 }
1523
1524 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1525                            struct bio *bio)
1526 {
1527         struct cfq_data *cfqd = q->elevator->elevator_data;
1528         struct cfq_io_context *cic;
1529         struct cfq_queue *cfqq;
1530
1531         /*
1532          * Disallow merge of a sync bio into an async request.
1533          */
1534         if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1535                 return false;
1536
1537         /*
1538          * Lookup the cfqq that this bio will be queued with. Allow
1539          * merge only if rq is queued there.
1540          */
1541         cic = cfq_cic_lookup(cfqd, current->io_context);
1542         if (!cic)
1543                 return false;
1544
1545         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1546         return cfqq == RQ_CFQQ(rq);
1547 }
1548
1549 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1550 {
1551         del_timer(&cfqd->idle_slice_timer);
1552         blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
1553 }
1554
1555 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1556                                    struct cfq_queue *cfqq)
1557 {
1558         if (cfqq) {
1559                 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1560                                 cfqd->serving_prio, cfqd->serving_type);
1561                 blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
1562                 cfqq->slice_start = 0;
1563                 cfqq->dispatch_start = jiffies;
1564                 cfqq->allocated_slice = 0;
1565                 cfqq->slice_end = 0;
1566                 cfqq->slice_dispatch = 0;
1567
1568                 cfq_clear_cfqq_wait_request(cfqq);
1569                 cfq_clear_cfqq_must_dispatch(cfqq);
1570                 cfq_clear_cfqq_must_alloc_slice(cfqq);
1571                 cfq_clear_cfqq_fifo_expire(cfqq);
1572                 cfq_mark_cfqq_slice_new(cfqq);
1573
1574                 cfq_del_timer(cfqd, cfqq);
1575         }
1576
1577         cfqd->active_queue = cfqq;
1578 }
1579
1580 /*
1581  * current cfqq expired its slice (or was too idle), select new one
1582  */
1583 static void
1584 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1585                     bool timed_out, bool forced)
1586 {
1587         cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1588
1589         if (cfq_cfqq_wait_request(cfqq))
1590                 cfq_del_timer(cfqd, cfqq);
1591
1592         cfq_clear_cfqq_wait_request(cfqq);
1593         cfq_clear_cfqq_wait_busy(cfqq);
1594
1595         /*
1596          * If this cfqq is shared between multiple processes, check to
1597          * make sure that those processes are still issuing I/Os within
1598          * the mean seek distance.  If not, it may be time to break the
1599          * queues apart again.
1600          */
1601         if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1602                 cfq_mark_cfqq_split_coop(cfqq);
1603
1604         /*
1605          * store what was left of this slice, if the queue idled/timed out
1606          */
1607         if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1608                 cfqq->slice_resid = cfqq->slice_end - jiffies;
1609                 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1610         }
1611
1612         cfq_group_served(cfqd, cfqq->cfqg, cfqq, forced);
1613
1614         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1615                 cfq_del_cfqq_rr(cfqd, cfqq);
1616
1617         cfq_resort_rr_list(cfqd, cfqq);
1618
1619         if (cfqq == cfqd->active_queue)
1620                 cfqd->active_queue = NULL;
1621
1622         if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1623                 cfqd->grp_service_tree.active = NULL;
1624
1625         if (cfqd->active_cic) {
1626                 put_io_context(cfqd->active_cic->ioc);
1627                 cfqd->active_cic = NULL;
1628         }
1629 }
1630
1631 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out,
1632                                         bool forced)
1633 {
1634         struct cfq_queue *cfqq = cfqd->active_queue;
1635
1636         if (cfqq)
1637                 __cfq_slice_expired(cfqd, cfqq, timed_out, forced);
1638 }
1639
1640 /*
1641  * Get next queue for service. Unless we have a queue preemption,
1642  * we'll simply select the first cfqq in the service tree.
1643  */
1644 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1645 {
1646         struct cfq_rb_root *service_tree =
1647                 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1648                                         cfqd->serving_type);
1649
1650         if (!cfqd->rq_queued)
1651                 return NULL;
1652
1653         /* There is nothing to dispatch */
1654         if (!service_tree)
1655                 return NULL;
1656         if (RB_EMPTY_ROOT(&service_tree->rb))
1657                 return NULL;
1658         return cfq_rb_first(service_tree);
1659 }
1660
1661 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1662 {
1663         struct cfq_group *cfqg;
1664         struct cfq_queue *cfqq;
1665         int i, j;
1666         struct cfq_rb_root *st;
1667
1668         if (!cfqd->rq_queued)
1669                 return NULL;
1670
1671         cfqg = cfq_get_next_cfqg(cfqd);
1672         if (!cfqg)
1673                 return NULL;
1674
1675         for_each_cfqg_st(cfqg, i, j, st)
1676                 if ((cfqq = cfq_rb_first(st)) != NULL)
1677                         return cfqq;
1678         return NULL;
1679 }
1680
1681 /*
1682  * Get and set a new active queue for service.
1683  */
1684 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1685                                               struct cfq_queue *cfqq)
1686 {
1687         if (!cfqq)
1688                 cfqq = cfq_get_next_queue(cfqd);
1689
1690         __cfq_set_active_queue(cfqd, cfqq);
1691         return cfqq;
1692 }
1693
1694 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1695                                           struct request *rq)
1696 {
1697         if (blk_rq_pos(rq) >= cfqd->last_position)
1698                 return blk_rq_pos(rq) - cfqd->last_position;
1699         else
1700                 return cfqd->last_position - blk_rq_pos(rq);
1701 }
1702
1703 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1704                                struct request *rq)
1705 {
1706         return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1707 }
1708
1709 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1710                                     struct cfq_queue *cur_cfqq)
1711 {
1712         struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1713         struct rb_node *parent, *node;
1714         struct cfq_queue *__cfqq;
1715         sector_t sector = cfqd->last_position;
1716
1717         if (RB_EMPTY_ROOT(root))
1718                 return NULL;
1719
1720         /*
1721          * First, if we find a request starting at the end of the last
1722          * request, choose it.
1723          */
1724         __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1725         if (__cfqq)
1726                 return __cfqq;
1727
1728         /*
1729          * If the exact sector wasn't found, the parent of the NULL leaf
1730          * will contain the closest sector.
1731          */
1732         __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1733         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1734                 return __cfqq;
1735
1736         if (blk_rq_pos(__cfqq->next_rq) < sector)
1737                 node = rb_next(&__cfqq->p_node);
1738         else
1739                 node = rb_prev(&__cfqq->p_node);
1740         if (!node)
1741                 return NULL;
1742
1743         __cfqq = rb_entry(node, struct cfq_queue, p_node);
1744         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1745                 return __cfqq;
1746
1747         return NULL;
1748 }
1749
1750 /*
1751  * cfqd - obvious
1752  * cur_cfqq - passed in so that we don't decide that the current queue is
1753  *            closely cooperating with itself.
1754  *
1755  * So, basically we're assuming that that cur_cfqq has dispatched at least
1756  * one request, and that cfqd->last_position reflects a position on the disk
1757  * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1758  * assumption.
1759  */
1760 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1761                                               struct cfq_queue *cur_cfqq)
1762 {
1763         struct cfq_queue *cfqq;
1764
1765         if (cfq_class_idle(cur_cfqq))
1766                 return NULL;
1767         if (!cfq_cfqq_sync(cur_cfqq))
1768                 return NULL;
1769         if (CFQQ_SEEKY(cur_cfqq))
1770                 return NULL;
1771
1772         /*
1773          * Don't search priority tree if it's the only queue in the group.
1774          */
1775         if (cur_cfqq->cfqg->nr_cfqq == 1)
1776                 return NULL;
1777
1778         /*
1779          * We should notice if some of the queues are cooperating, eg
1780          * working closely on the same area of the disk. In that case,
1781          * we can group them together and don't waste time idling.
1782          */
1783         cfqq = cfqq_close(cfqd, cur_cfqq);
1784         if (!cfqq)
1785                 return NULL;
1786
1787         /* If new queue belongs to different cfq_group, don't choose it */
1788         if (cur_cfqq->cfqg != cfqq->cfqg)
1789                 return NULL;
1790
1791         /*
1792          * It only makes sense to merge sync queues.
1793          */
1794         if (!cfq_cfqq_sync(cfqq))
1795                 return NULL;
1796         if (CFQQ_SEEKY(cfqq))
1797                 return NULL;
1798
1799         /*
1800          * Do not merge queues of different priority classes
1801          */
1802         if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1803                 return NULL;
1804
1805         return cfqq;
1806 }
1807
1808 /*
1809  * Determine whether we should enforce idle window for this queue.
1810  */
1811
1812 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1813 {
1814         enum wl_prio_t prio = cfqq_prio(cfqq);
1815         struct cfq_rb_root *service_tree = cfqq->service_tree;
1816
1817         BUG_ON(!service_tree);
1818         BUG_ON(!service_tree->count);
1819
1820         /* We never do for idle class queues. */
1821         if (prio == IDLE_WORKLOAD)
1822                 return false;
1823
1824         /* We do for queues that were marked with idle window flag. */
1825         if (cfq_cfqq_idle_window(cfqq) &&
1826            !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1827                 return true;
1828
1829         /*
1830          * Otherwise, we do only if they are the last ones
1831          * in their service tree.
1832          */
1833         if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
1834                 return 1;
1835         cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1836                         service_tree->count);
1837         return 0;
1838 }
1839
1840 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1841 {
1842         struct cfq_queue *cfqq = cfqd->active_queue;
1843         struct cfq_io_context *cic;
1844         unsigned long sl;
1845
1846         /*
1847          * SSD device without seek penalty, disable idling. But only do so
1848          * for devices that support queuing, otherwise we still have a problem
1849          * with sync vs async workloads.
1850          */
1851         if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1852                 return;
1853
1854         WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1855         WARN_ON(cfq_cfqq_slice_new(cfqq));
1856
1857         /*
1858          * idle is disabled, either manually or by past process history
1859          */
1860         if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
1861                 return;
1862
1863         /*
1864          * still active requests from this queue, don't idle
1865          */
1866         if (cfqq->dispatched)
1867                 return;
1868
1869         /*
1870          * task has exited, don't wait
1871          */
1872         cic = cfqd->active_cic;
1873         if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1874                 return;
1875
1876         /*
1877          * If our average think time is larger than the remaining time
1878          * slice, then don't idle. This avoids overrunning the allotted
1879          * time slice.
1880          */
1881         if (sample_valid(cic->ttime_samples) &&
1882             (cfqq->slice_end - jiffies < cic->ttime_mean)) {
1883                 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
1884                                 cic->ttime_mean);
1885                 return;
1886         }
1887
1888         cfq_mark_cfqq_wait_request(cfqq);
1889
1890         sl = cfqd->cfq_slice_idle;
1891
1892         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1893         blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
1894         cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1895 }
1896
1897 /*
1898  * Move request from internal lists to the request queue dispatch list.
1899  */
1900 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1901 {
1902         struct cfq_data *cfqd = q->elevator->elevator_data;
1903         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1904
1905         cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1906
1907         cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1908         cfq_remove_request(rq);
1909         cfqq->dispatched++;
1910         elv_dispatch_sort(q, rq);
1911
1912         cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
1913         blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
1914                                         rq_data_dir(rq), rq_is_sync(rq));
1915 }
1916
1917 /*
1918  * return expired entry, or NULL to just start from scratch in rbtree
1919  */
1920 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1921 {
1922         struct request *rq = NULL;
1923
1924         if (cfq_cfqq_fifo_expire(cfqq))
1925                 return NULL;
1926
1927         cfq_mark_cfqq_fifo_expire(cfqq);
1928
1929         if (list_empty(&cfqq->fifo))
1930                 return NULL;
1931
1932         rq = rq_entry_fifo(cfqq->fifo.next);
1933         if (time_before(jiffies, rq_fifo_time(rq)))
1934                 rq = NULL;
1935
1936         cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1937         return rq;
1938 }
1939
1940 static inline int
1941 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1942 {
1943         const int base_rq = cfqd->cfq_slice_async_rq;
1944
1945         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1946
1947         return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1948 }
1949
1950 /*
1951  * Must be called with the queue_lock held.
1952  */
1953 static int cfqq_process_refs(struct cfq_queue *cfqq)
1954 {
1955         int process_refs, io_refs;
1956
1957         io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1958         process_refs = atomic_read(&cfqq->ref) - io_refs;
1959         BUG_ON(process_refs < 0);
1960         return process_refs;
1961 }
1962
1963 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1964 {
1965         int process_refs, new_process_refs;
1966         struct cfq_queue *__cfqq;
1967
1968         /* Avoid a circular list and skip interim queue merges */
1969         while ((__cfqq = new_cfqq->new_cfqq)) {
1970                 if (__cfqq == cfqq)
1971                         return;
1972                 new_cfqq = __cfqq;
1973         }
1974
1975         process_refs = cfqq_process_refs(cfqq);
1976         /*
1977          * If the process for the cfqq has gone away, there is no
1978          * sense in merging the queues.
1979          */
1980         if (process_refs == 0)
1981                 return;
1982
1983         /*
1984          * Merge in the direction of the lesser amount of work.
1985          */
1986         new_process_refs = cfqq_process_refs(new_cfqq);
1987         if (new_process_refs >= process_refs) {
1988                 cfqq->new_cfqq = new_cfqq;
1989                 atomic_add(process_refs, &new_cfqq->ref);
1990         } else {
1991                 new_cfqq->new_cfqq = cfqq;
1992                 atomic_add(new_process_refs, &cfqq->ref);
1993         }
1994 }
1995
1996 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1997                                 struct cfq_group *cfqg, enum wl_prio_t prio)
1998 {
1999         struct cfq_queue *queue;
2000         int i;
2001         bool key_valid = false;
2002         unsigned long lowest_key = 0;
2003         enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2004
2005         for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2006                 /* select the one with lowest rb_key */
2007                 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
2008                 if (queue &&
2009                     (!key_valid || time_before(queue->rb_key, lowest_key))) {
2010                         lowest_key = queue->rb_key;
2011                         cur_best = i;
2012                         key_valid = true;
2013                 }
2014         }
2015
2016         return cur_best;
2017 }
2018
2019 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2020 {
2021         unsigned slice;
2022         unsigned count;
2023         struct cfq_rb_root *st;
2024         unsigned group_slice;
2025
2026         if (!cfqg) {
2027                 cfqd->serving_prio = IDLE_WORKLOAD;
2028                 cfqd->workload_expires = jiffies + 1;
2029                 return;
2030         }
2031
2032         /* Choose next priority. RT > BE > IDLE */
2033         if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2034                 cfqd->serving_prio = RT_WORKLOAD;
2035         else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2036                 cfqd->serving_prio = BE_WORKLOAD;
2037         else {
2038                 cfqd->serving_prio = IDLE_WORKLOAD;
2039                 cfqd->workload_expires = jiffies + 1;
2040                 return;
2041         }
2042
2043         /*
2044          * For RT and BE, we have to choose also the type
2045          * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2046          * expiration time
2047          */
2048         st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2049         count = st->count;
2050
2051         /*
2052          * check workload expiration, and that we still have other queues ready
2053          */
2054         if (count && !time_after(jiffies, cfqd->workload_expires))
2055                 return;
2056
2057         /* otherwise select new workload type */
2058         cfqd->serving_type =
2059                 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2060         st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2061         count = st->count;
2062
2063         /*
2064          * the workload slice is computed as a fraction of target latency
2065          * proportional to the number of queues in that workload, over
2066          * all the queues in the same priority class
2067          */
2068         group_slice = cfq_group_slice(cfqd, cfqg);
2069
2070         slice = group_slice * count /
2071                 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2072                       cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2073
2074         if (cfqd->serving_type == ASYNC_WORKLOAD) {
2075                 unsigned int tmp;
2076
2077                 /*
2078                  * Async queues are currently system wide. Just taking
2079                  * proportion of queues with-in same group will lead to higher
2080                  * async ratio system wide as generally root group is going
2081                  * to have higher weight. A more accurate thing would be to
2082                  * calculate system wide asnc/sync ratio.
2083                  */
2084                 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2085                 tmp = tmp/cfqd->busy_queues;
2086                 slice = min_t(unsigned, slice, tmp);
2087
2088                 /* async workload slice is scaled down according to
2089                  * the sync/async slice ratio. */
2090                 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2091         } else
2092                 /* sync workload slice is at least 2 * cfq_slice_idle */
2093                 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2094
2095         slice = max_t(unsigned, slice, CFQ_MIN_TT);
2096         cfq_log(cfqd, "workload slice:%d", slice);
2097         cfqd->workload_expires = jiffies + slice;
2098         cfqd->noidle_tree_requires_idle = false;
2099 }
2100
2101 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2102 {
2103         struct cfq_rb_root *st = &cfqd->grp_service_tree;
2104         struct cfq_group *cfqg;
2105
2106         if (RB_EMPTY_ROOT(&st->rb))
2107                 return NULL;
2108         cfqg = cfq_rb_first_group(st);
2109         st->active = &cfqg->rb_node;
2110         update_min_vdisktime(st);
2111         return cfqg;
2112 }
2113
2114 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2115 {
2116         struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2117
2118         cfqd->serving_group = cfqg;
2119
2120         /* Restore the workload type data */
2121         if (cfqg->saved_workload_slice) {
2122                 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2123                 cfqd->serving_type = cfqg->saved_workload;
2124                 cfqd->serving_prio = cfqg->saved_serving_prio;
2125         } else
2126                 cfqd->workload_expires = jiffies - 1;
2127
2128         choose_service_tree(cfqd, cfqg);
2129 }
2130
2131 /*
2132  * Select a queue for service. If we have a current active queue,
2133  * check whether to continue servicing it, or retrieve and set a new one.
2134  */
2135 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2136 {
2137         struct cfq_queue *cfqq, *new_cfqq = NULL;
2138
2139         cfqq = cfqd->active_queue;
2140         if (!cfqq)
2141                 goto new_queue;
2142
2143         if (!cfqd->rq_queued)
2144                 return NULL;
2145
2146         /*
2147          * We were waiting for group to get backlogged. Expire the queue
2148          */
2149         if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2150                 goto expire;
2151
2152         /*
2153          * The active queue has run out of time, expire it and select new.
2154          */
2155         if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2156                 /*
2157                  * If slice had not expired at the completion of last request
2158                  * we might not have turned on wait_busy flag. Don't expire
2159                  * the queue yet. Allow the group to get backlogged.
2160                  *
2161                  * The very fact that we have used the slice, that means we
2162                  * have been idling all along on this queue and it should be
2163                  * ok to wait for this request to complete.
2164                  */
2165                 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2166                     && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2167                         cfqq = NULL;
2168                         goto keep_queue;
2169                 } else
2170                         goto expire;
2171         }
2172
2173         /*
2174          * The active queue has requests and isn't expired, allow it to
2175          * dispatch.
2176          */
2177         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2178                 goto keep_queue;
2179
2180         /*
2181          * If another queue has a request waiting within our mean seek
2182          * distance, let it run.  The expire code will check for close
2183          * cooperators and put the close queue at the front of the service
2184          * tree.  If possible, merge the expiring queue with the new cfqq.
2185          */
2186         new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2187         if (new_cfqq) {
2188                 if (!cfqq->new_cfqq)
2189                         cfq_setup_merge(cfqq, new_cfqq);
2190                 goto expire;
2191         }
2192
2193         /*
2194          * No requests pending. If the active queue still has requests in
2195          * flight or is idling for a new request, allow either of these
2196          * conditions to happen (or time out) before selecting a new queue.
2197          */
2198         if (timer_pending(&cfqd->idle_slice_timer) ||
2199             (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
2200                 cfqq = NULL;
2201                 goto keep_queue;
2202         }
2203
2204 expire:
2205         cfq_slice_expired(cfqd, 0, false);
2206 new_queue:
2207         /*
2208          * Current queue expired. Check if we have to switch to a new
2209          * service tree
2210          */
2211         if (!new_cfqq)
2212                 cfq_choose_cfqg(cfqd);
2213
2214         cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2215 keep_queue:
2216         return cfqq;
2217 }
2218
2219 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2220 {
2221         int dispatched = 0;
2222
2223         while (cfqq->next_rq) {
2224                 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2225                 dispatched++;
2226         }
2227
2228         BUG_ON(!list_empty(&cfqq->fifo));
2229
2230         /* By default cfqq is not expired if it is empty. Do it explicitly */
2231         __cfq_slice_expired(cfqq->cfqd, cfqq, 0, true);
2232         return dispatched;
2233 }
2234
2235 /*
2236  * Drain our current requests. Used for barriers and when switching
2237  * io schedulers on-the-fly.
2238  */
2239 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2240 {
2241         struct cfq_queue *cfqq;
2242         int dispatched = 0;
2243
2244         /* Expire the timeslice of the current active queue first */
2245         cfq_slice_expired(cfqd, 0, true);
2246         while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2247                 __cfq_set_active_queue(cfqd, cfqq);
2248                 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2249         }
2250
2251         BUG_ON(cfqd->busy_queues);
2252
2253         cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2254         return dispatched;
2255 }
2256
2257 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2258         struct cfq_queue *cfqq)
2259 {
2260         /* the queue hasn't finished any request, can't estimate */
2261         if (cfq_cfqq_slice_new(cfqq))
2262                 return 1;
2263         if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2264                 cfqq->slice_end))
2265                 return 1;
2266
2267         return 0;
2268 }
2269
2270 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2271 {
2272         unsigned int max_dispatch;
2273
2274         /*
2275          * Drain async requests before we start sync IO
2276          */
2277         if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2278                 return false;
2279
2280         /*
2281          * If this is an async queue and we have sync IO in flight, let it wait
2282          */
2283         if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2284                 return false;
2285
2286         max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2287         if (cfq_class_idle(cfqq))
2288                 max_dispatch = 1;
2289
2290         /*
2291          * Does this cfqq already have too much IO in flight?
2292          */
2293         if (cfqq->dispatched >= max_dispatch) {
2294                 /*
2295                  * idle queue must always only have a single IO in flight
2296                  */
2297                 if (cfq_class_idle(cfqq))
2298                         return false;
2299
2300                 /*
2301                  * We have other queues, don't allow more IO from this one
2302                  */
2303                 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
2304                         return false;
2305
2306                 /*
2307                  * Sole queue user, no limit
2308                  */
2309                 if (cfqd->busy_queues == 1)
2310                         max_dispatch = -1;
2311                 else
2312                         /*
2313                          * Normally we start throttling cfqq when cfq_quantum/2
2314                          * requests have been dispatched. But we can drive
2315                          * deeper queue depths at the beginning of slice
2316                          * subjected to upper limit of cfq_quantum.
2317                          * */
2318                         max_dispatch = cfqd->cfq_quantum;
2319         }
2320
2321         /*
2322          * Async queues must wait a bit before being allowed dispatch.
2323          * We also ramp up the dispatch depth gradually for async IO,
2324          * based on the last sync IO we serviced
2325          */
2326         if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2327                 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2328                 unsigned int depth;
2329
2330                 depth = last_sync / cfqd->cfq_slice[1];
2331                 if (!depth && !cfqq->dispatched)
2332                         depth = 1;
2333                 if (depth < max_dispatch)
2334                         max_dispatch = depth;
2335         }
2336
2337         /*
2338          * If we're below the current max, allow a dispatch
2339          */
2340         return cfqq->dispatched < max_dispatch;
2341 }
2342
2343 /*
2344  * Dispatch a request from cfqq, moving them to the request queue
2345  * dispatch list.
2346  */
2347 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2348 {
2349         struct request *rq;
2350
2351         BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2352
2353         if (!cfq_may_dispatch(cfqd, cfqq))
2354                 return false;
2355
2356         /*
2357          * follow expired path, else get first next available
2358          */
2359         rq = cfq_check_fifo(cfqq);
2360         if (!rq)
2361                 rq = cfqq->next_rq;
2362
2363         /*
2364          * insert request into driver dispatch list
2365          */
2366         cfq_dispatch_insert(cfqd->queue, rq);
2367
2368         if (!cfqd->active_cic) {
2369                 struct cfq_io_context *cic = RQ_CIC(rq);
2370
2371                 atomic_long_inc(&cic->ioc->refcount);
2372                 cfqd->active_cic = cic;
2373         }
2374
2375         return true;
2376 }
2377
2378 /*
2379  * Find the cfqq that we need to service and move a request from that to the
2380  * dispatch list
2381  */
2382 static int cfq_dispatch_requests(struct request_queue *q, int force)
2383 {
2384         struct cfq_data *cfqd = q->elevator->elevator_data;
2385         struct cfq_queue *cfqq;
2386
2387         if (!cfqd->busy_queues)
2388                 return 0;
2389
2390         if (unlikely(force))
2391                 return cfq_forced_dispatch(cfqd);
2392
2393         cfqq = cfq_select_queue(cfqd);
2394         if (!cfqq)
2395                 return 0;
2396
2397         /*
2398          * Dispatch a request from this cfqq, if it is allowed
2399          */
2400         if (!cfq_dispatch_request(cfqd, cfqq))
2401                 return 0;
2402
2403         cfqq->slice_dispatch++;
2404         cfq_clear_cfqq_must_dispatch(cfqq);
2405
2406         /*
2407          * expire an async queue immediately if it has used up its slice. idle
2408          * queue always expire after 1 dispatch round.
2409          */
2410         if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2411             cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2412             cfq_class_idle(cfqq))) {
2413                 cfqq->slice_end = jiffies + 1;
2414                 cfq_slice_expired(cfqd, 0, false);
2415         }
2416
2417         cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2418         return 1;
2419 }
2420
2421 /*
2422  * task holds one reference to the queue, dropped when task exits. each rq
2423  * in-flight on this queue also holds a reference, dropped when rq is freed.
2424  *
2425  * Each cfq queue took a reference on the parent group. Drop it now.
2426  * queue lock must be held here.
2427  */
2428 static void cfq_put_queue(struct cfq_queue *cfqq)
2429 {
2430         struct cfq_data *cfqd = cfqq->cfqd;
2431         struct cfq_group *cfqg, *orig_cfqg;
2432
2433         BUG_ON(atomic_read(&cfqq->ref) <= 0);
2434
2435         if (!atomic_dec_and_test(&cfqq->ref))
2436                 return;
2437
2438         cfq_log_cfqq(cfqd, cfqq, "put_queue");
2439         BUG_ON(rb_first(&cfqq->sort_list));
2440         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2441         cfqg = cfqq->cfqg;
2442         orig_cfqg = cfqq->orig_cfqg;
2443
2444         if (unlikely(cfqd->active_queue == cfqq)) {
2445                 __cfq_slice_expired(cfqd, cfqq, 0, false);
2446                 cfq_schedule_dispatch(cfqd);
2447         }
2448
2449         BUG_ON(cfq_cfqq_on_rr(cfqq));
2450         kmem_cache_free(cfq_pool, cfqq);
2451         cfq_put_cfqg(cfqg);
2452         if (orig_cfqg)
2453                 cfq_put_cfqg(orig_cfqg);
2454 }
2455
2456 /*
2457  * Must always be called with the rcu_read_lock() held
2458  */
2459 static void
2460 __call_for_each_cic(struct io_context *ioc,
2461                     void (*func)(struct io_context *, struct cfq_io_context *))
2462 {
2463         struct cfq_io_context *cic;
2464         struct hlist_node *n;
2465
2466         hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2467                 func(ioc, cic);
2468 }
2469
2470 /*
2471  * Call func for each cic attached to this ioc.
2472  */
2473 static void
2474 call_for_each_cic(struct io_context *ioc,
2475                   void (*func)(struct io_context *, struct cfq_io_context *))
2476 {
2477         rcu_read_lock();
2478         __call_for_each_cic(ioc, func);
2479         rcu_read_unlock();
2480 }
2481
2482 static void cfq_cic_free_rcu(struct rcu_head *head)
2483 {
2484         struct cfq_io_context *cic;
2485
2486         cic = container_of(head, struct cfq_io_context, rcu_head);
2487
2488         kmem_cache_free(cfq_ioc_pool, cic);
2489         elv_ioc_count_dec(cfq_ioc_count);
2490
2491         if (ioc_gone) {
2492                 /*
2493                  * CFQ scheduler is exiting, grab exit lock and check
2494                  * the pending io context count. If it hits zero,
2495                  * complete ioc_gone and set it back to NULL
2496                  */
2497                 spin_lock(&ioc_gone_lock);
2498                 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2499                         complete(ioc_gone);
2500                         ioc_gone = NULL;
2501                 }
2502                 spin_unlock(&ioc_gone_lock);
2503         }
2504 }
2505
2506 static void cfq_cic_free(struct cfq_io_context *cic)
2507 {
2508         call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2509 }
2510
2511 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2512 {
2513         unsigned long flags;
2514
2515         BUG_ON(!cic->dead_key);
2516
2517         spin_lock_irqsave(&ioc->lock, flags);
2518         radix_tree_delete(&ioc->radix_root, cic->dead_key);
2519         hlist_del_rcu(&cic->cic_list);
2520         spin_unlock_irqrestore(&ioc->lock, flags);
2521
2522         cfq_cic_free(cic);
2523 }
2524
2525 /*
2526  * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2527  * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2528  * and ->trim() which is called with the task lock held
2529  */
2530 static void cfq_free_io_context(struct io_context *ioc)
2531 {
2532         /*
2533          * ioc->refcount is zero here, or we are called from elv_unregister(),
2534          * so no more cic's are allowed to be linked into this ioc.  So it
2535          * should be ok to iterate over the known list, we will see all cic's
2536          * since no new ones are added.
2537          */
2538         __call_for_each_cic(ioc, cic_free_func);
2539 }
2540
2541 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2542 {
2543         struct cfq_queue *__cfqq, *next;
2544
2545         if (unlikely(cfqq == cfqd->active_queue)) {
2546                 __cfq_slice_expired(cfqd, cfqq, 0, false);
2547                 cfq_schedule_dispatch(cfqd);
2548         }
2549
2550         /*
2551          * If this queue was scheduled to merge with another queue, be
2552          * sure to drop the reference taken on that queue (and others in
2553          * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
2554          */
2555         __cfqq = cfqq->new_cfqq;
2556         while (__cfqq) {
2557                 if (__cfqq == cfqq) {
2558                         WARN(1, "cfqq->new_cfqq loop detected\n");
2559                         break;
2560                 }
2561                 next = __cfqq->new_cfqq;
2562                 cfq_put_queue(__cfqq);
2563                 __cfqq = next;
2564         }
2565
2566         cfq_put_queue(cfqq);
2567 }
2568
2569 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2570                                          struct cfq_io_context *cic)
2571 {
2572         struct io_context *ioc = cic->ioc;
2573
2574         list_del_init(&cic->queue_list);
2575
2576         /*
2577          * Make sure key == NULL is seen for dead queues
2578          */
2579         smp_wmb();
2580         cic->dead_key = (unsigned long) cic->key;
2581         cic->key = NULL;
2582
2583         if (ioc->ioc_data == cic)
2584                 rcu_assign_pointer(ioc->ioc_data, NULL);
2585
2586         if (cic->cfqq[BLK_RW_ASYNC]) {
2587                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2588                 cic->cfqq[BLK_RW_ASYNC] = NULL;
2589         }
2590
2591         if (cic->cfqq[BLK_RW_SYNC]) {
2592                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2593                 cic->cfqq[BLK_RW_SYNC] = NULL;
2594         }
2595 }
2596
2597 static void cfq_exit_single_io_context(struct io_context *ioc,
2598                                        struct cfq_io_context *cic)
2599 {
2600         struct cfq_data *cfqd = cic->key;
2601
2602         if (cfqd) {
2603                 struct request_queue *q = cfqd->queue;
2604                 unsigned long flags;
2605
2606                 spin_lock_irqsave(q->queue_lock, flags);
2607
2608                 /*
2609                  * Ensure we get a fresh copy of the ->key to prevent
2610                  * race between exiting task and queue
2611                  */
2612                 smp_read_barrier_depends();
2613                 if (cic->key)
2614                         __cfq_exit_single_io_context(cfqd, cic);
2615
2616                 spin_unlock_irqrestore(q->queue_lock, flags);
2617         }
2618 }
2619
2620 /*
2621  * The process that ioc belongs to has exited, we need to clean up
2622  * and put the internal structures we have that belongs to that process.
2623  */
2624 static void cfq_exit_io_context(struct io_context *ioc)
2625 {
2626         call_for_each_cic(ioc, cfq_exit_single_io_context);
2627 }
2628
2629 static struct cfq_io_context *
2630 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2631 {
2632         struct cfq_io_context *cic;
2633
2634         cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2635                                                         cfqd->queue->node);
2636         if (cic) {
2637                 cic->last_end_request = jiffies;
2638                 INIT_LIST_HEAD(&cic->queue_list);
2639                 INIT_HLIST_NODE(&cic->cic_list);
2640                 cic->dtor = cfq_free_io_context;
2641                 cic->exit = cfq_exit_io_context;
2642                 elv_ioc_count_inc(cfq_ioc_count);
2643         }
2644
2645         return cic;
2646 }
2647
2648 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2649 {
2650         struct task_struct *tsk = current;
2651         int ioprio_class;
2652
2653         if (!cfq_cfqq_prio_changed(cfqq))
2654                 return;
2655
2656         ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2657         switch (ioprio_class) {
2658         default:
2659                 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2660         case IOPRIO_CLASS_NONE:
2661                 /*
2662                  * no prio set, inherit CPU scheduling settings
2663                  */
2664                 cfqq->ioprio = task_nice_ioprio(tsk);
2665                 cfqq->ioprio_class = task_nice_ioclass(tsk);
2666                 break;
2667         case IOPRIO_CLASS_RT:
2668                 cfqq->ioprio = task_ioprio(ioc);
2669                 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2670                 break;
2671         case IOPRIO_CLASS_BE:
2672                 cfqq->ioprio = task_ioprio(ioc);
2673                 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2674                 break;
2675         case IOPRIO_CLASS_IDLE:
2676                 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2677                 cfqq->ioprio = 7;
2678                 cfq_clear_cfqq_idle_window(cfqq);
2679                 break;
2680         }
2681
2682         /*
2683          * keep track of original prio settings in case we have to temporarily
2684          * elevate the priority of this queue
2685          */
2686         cfqq->org_ioprio = cfqq->ioprio;
2687         cfqq->org_ioprio_class = cfqq->ioprio_class;
2688         cfq_clear_cfqq_prio_changed(cfqq);
2689 }
2690
2691 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2692 {
2693         struct cfq_data *cfqd = cic->key;
2694         struct cfq_queue *cfqq;
2695         unsigned long flags;
2696
2697         if (unlikely(!cfqd))
2698                 return;
2699
2700         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2701
2702         cfqq = cic->cfqq[BLK_RW_ASYNC];
2703         if (cfqq) {
2704                 struct cfq_queue *new_cfqq;
2705                 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2706                                                 GFP_ATOMIC);
2707                 if (new_cfqq) {
2708                         cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2709                         cfq_put_queue(cfqq);
2710                 }
2711         }
2712
2713         cfqq = cic->cfqq[BLK_RW_SYNC];
2714         if (cfqq)
2715                 cfq_mark_cfqq_prio_changed(cfqq);
2716
2717         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2718 }
2719
2720 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2721 {
2722         call_for_each_cic(ioc, changed_ioprio);
2723         ioc->ioprio_changed = 0;
2724 }
2725
2726 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2727                           pid_t pid, bool is_sync)
2728 {
2729         RB_CLEAR_NODE(&cfqq->rb_node);
2730         RB_CLEAR_NODE(&cfqq->p_node);
2731         INIT_LIST_HEAD(&cfqq->fifo);
2732
2733         atomic_set(&cfqq->ref, 0);
2734         cfqq->cfqd = cfqd;
2735
2736         cfq_mark_cfqq_prio_changed(cfqq);
2737
2738         if (is_sync) {
2739                 if (!cfq_class_idle(cfqq))
2740                         cfq_mark_cfqq_idle_window(cfqq);
2741                 cfq_mark_cfqq_sync(cfqq);
2742         }
2743         cfqq->pid = pid;
2744 }
2745
2746 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2747 static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2748 {
2749         struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2750         struct cfq_data *cfqd = cic->key;
2751         unsigned long flags;
2752         struct request_queue *q;
2753
2754         if (unlikely(!cfqd))
2755                 return;
2756
2757         q = cfqd->queue;
2758
2759         spin_lock_irqsave(q->queue_lock, flags);
2760
2761         if (sync_cfqq) {
2762                 /*
2763                  * Drop reference to sync queue. A new sync queue will be
2764                  * assigned in new group upon arrival of a fresh request.
2765                  */
2766                 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2767                 cic_set_cfqq(cic, NULL, 1);
2768                 cfq_put_queue(sync_cfqq);
2769         }
2770
2771         spin_unlock_irqrestore(q->queue_lock, flags);
2772 }
2773
2774 static void cfq_ioc_set_cgroup(struct io_context *ioc)
2775 {
2776         call_for_each_cic(ioc, changed_cgroup);
2777         ioc->cgroup_changed = 0;
2778 }
2779 #endif  /* CONFIG_CFQ_GROUP_IOSCHED */
2780
2781 static struct cfq_queue *
2782 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2783                      struct io_context *ioc, gfp_t gfp_mask)
2784 {
2785         struct cfq_queue *cfqq, *new_cfqq = NULL;
2786         struct cfq_io_context *cic;
2787         struct cfq_group *cfqg;
2788
2789 retry:
2790         cfqg = cfq_get_cfqg(cfqd, 1);
2791         cic = cfq_cic_lookup(cfqd, ioc);
2792         /* cic always exists here */
2793         cfqq = cic_to_cfqq(cic, is_sync);
2794
2795         /*
2796          * Always try a new alloc if we fell back to the OOM cfqq
2797          * originally, since it should just be a temporary situation.
2798          */
2799         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2800                 cfqq = NULL;
2801                 if (new_cfqq) {
2802                         cfqq = new_cfqq;
2803                         new_cfqq = NULL;
2804                 } else if (gfp_mask & __GFP_WAIT) {
2805                         spin_unlock_irq(cfqd->queue->queue_lock);
2806                         new_cfqq = kmem_cache_alloc_node(cfq_pool,
2807                                         gfp_mask | __GFP_ZERO,
2808                                         cfqd->queue->node);
2809                         spin_lock_irq(cfqd->queue->queue_lock);
2810                         if (new_cfqq)
2811                                 goto retry;
2812                 } else {
2813                         cfqq = kmem_cache_alloc_node(cfq_pool,
2814                                         gfp_mask | __GFP_ZERO,
2815                                         cfqd->queue->node);
2816                 }
2817
2818                 if (cfqq) {
2819                         cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2820                         cfq_init_prio_data(cfqq, ioc);
2821                         cfq_link_cfqq_cfqg(cfqq, cfqg);
2822                         cfq_log_cfqq(cfqd, cfqq, "alloced");
2823                 } else
2824                         cfqq = &cfqd->oom_cfqq;
2825         }
2826
2827         if (new_cfqq)
2828                 kmem_cache_free(cfq_pool, new_cfqq);
2829
2830         return cfqq;
2831 }
2832
2833 static struct cfq_queue **
2834 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2835 {
2836         switch (ioprio_class) {
2837         case IOPRIO_CLASS_RT:
2838                 return &cfqd->async_cfqq[0][ioprio];
2839         case IOPRIO_CLASS_BE:
2840                 return &cfqd->async_cfqq[1][ioprio];
2841         case IOPRIO_CLASS_IDLE:
2842                 return &cfqd->async_idle_cfqq;
2843         default:
2844                 BUG();
2845         }
2846 }
2847
2848 static struct cfq_queue *
2849 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2850               gfp_t gfp_mask)
2851 {
2852         const int ioprio = task_ioprio(ioc);
2853         const int ioprio_class = task_ioprio_class(ioc);
2854         struct cfq_queue **async_cfqq = NULL;
2855         struct cfq_queue *cfqq = NULL;
2856
2857         if (!is_sync) {
2858                 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2859                 cfqq = *async_cfqq;
2860         }
2861
2862         if (!cfqq)
2863                 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2864
2865         /*
2866          * pin the queue now that it's allocated, scheduler exit will prune it
2867          */
2868         if (!is_sync && !(*async_cfqq)) {
2869                 atomic_inc(&cfqq->ref);
2870                 *async_cfqq = cfqq;
2871         }
2872
2873         atomic_inc(&cfqq->ref);
2874         return cfqq;
2875 }
2876
2877 /*
2878  * We drop cfq io contexts lazily, so we may find a dead one.
2879  */
2880 static void
2881 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2882                   struct cfq_io_context *cic)
2883 {
2884         unsigned long flags;
2885
2886         WARN_ON(!list_empty(&cic->queue_list));
2887
2888         spin_lock_irqsave(&ioc->lock, flags);
2889
2890         BUG_ON(ioc->ioc_data == cic);
2891
2892         radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2893         hlist_del_rcu(&cic->cic_list);
2894         spin_unlock_irqrestore(&ioc->lock, flags);
2895
2896         cfq_cic_free(cic);
2897 }
2898
2899 static struct cfq_io_context *
2900 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2901 {
2902         struct cfq_io_context *cic;
2903         unsigned long flags;
2904         void *k;
2905
2906         if (unlikely(!ioc))
2907                 return NULL;
2908
2909         rcu_read_lock();
2910
2911         /*
2912          * we maintain a last-hit cache, to avoid browsing over the tree
2913          */
2914         cic = rcu_dereference(ioc->ioc_data);
2915         if (cic && cic->key == cfqd) {
2916                 rcu_read_unlock();
2917                 return cic;
2918         }
2919
2920         do {
2921                 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2922                 rcu_read_unlock();
2923                 if (!cic)
2924                         break;
2925                 /* ->key must be copied to avoid race with cfq_exit_queue() */
2926                 k = cic->key;
2927                 if (unlikely(!k)) {
2928                         cfq_drop_dead_cic(cfqd, ioc, cic);
2929                         rcu_read_lock();
2930                         continue;
2931                 }
2932
2933                 spin_lock_irqsave(&ioc->lock, flags);
2934                 rcu_assign_pointer(ioc->ioc_data, cic);
2935                 spin_unlock_irqrestore(&ioc->lock, flags);
2936                 break;
2937         } while (1);
2938
2939         return cic;
2940 }
2941
2942 /*
2943  * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2944  * the process specific cfq io context when entered from the block layer.
2945  * Also adds the cic to a per-cfqd list, used when this queue is removed.
2946  */
2947 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2948                         struct cfq_io_context *cic, gfp_t gfp_mask)
2949 {
2950         unsigned long flags;
2951         int ret;
2952
2953         ret = radix_tree_preload(gfp_mask);
2954         if (!ret) {
2955                 cic->ioc = ioc;
2956                 cic->key = cfqd;
2957
2958                 spin_lock_irqsave(&ioc->lock, flags);
2959                 ret = radix_tree_insert(&ioc->radix_root,
2960                                                 (unsigned long) cfqd, cic);
2961                 if (!ret)
2962                         hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2963                 spin_unlock_irqrestore(&ioc->lock, flags);
2964
2965                 radix_tree_preload_end();
2966
2967                 if (!ret) {
2968                         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2969                         list_add(&cic->queue_list, &cfqd->cic_list);
2970                         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2971                 }
2972         }
2973
2974         if (ret)
2975                 printk(KERN_ERR "cfq: cic link failed!\n");
2976
2977         return ret;
2978 }
2979
2980 /*
2981  * Setup general io context and cfq io context. There can be several cfq
2982  * io contexts per general io context, if this process is doing io to more
2983  * than one device managed by cfq.
2984  */
2985 static struct cfq_io_context *
2986 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2987 {
2988         struct io_context *ioc = NULL;
2989         struct cfq_io_context *cic;
2990
2991         might_sleep_if(gfp_mask & __GFP_WAIT);
2992
2993         ioc = get_io_context(gfp_mask, cfqd->queue->node);
2994         if (!ioc)
2995                 return NULL;
2996
2997         cic = cfq_cic_lookup(cfqd, ioc);
2998         if (cic)
2999                 goto out;
3000
3001         cic = cfq_alloc_io_context(cfqd, gfp_mask);
3002         if (cic == NULL)
3003                 goto err;
3004
3005         if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
3006                 goto err_free;
3007
3008 out:
3009         smp_read_barrier_depends();
3010         if (unlikely(ioc->ioprio_changed))
3011                 cfq_ioc_set_ioprio(ioc);
3012
3013 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3014         if (unlikely(ioc->cgroup_changed))
3015                 cfq_ioc_set_cgroup(ioc);
3016 #endif
3017         return cic;
3018 err_free:
3019         cfq_cic_free(cic);
3020 err:
3021         put_io_context(ioc);
3022         return NULL;
3023 }
3024
3025 static void
3026 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
3027 {
3028         unsigned long elapsed = jiffies - cic->last_end_request;
3029         unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
3030
3031         cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
3032         cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
3033         cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
3034 }
3035
3036 static void
3037 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3038                        struct request *rq)
3039 {
3040         sector_t sdist = 0;
3041         sector_t n_sec = blk_rq_sectors(rq);
3042         if (cfqq->last_request_pos) {
3043                 if (cfqq->last_request_pos < blk_rq_pos(rq))
3044                         sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3045                 else
3046                         sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3047         }
3048
3049         cfqq->seek_history <<= 1;
3050         if (blk_queue_nonrot(cfqd->queue))
3051                 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3052         else
3053                 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3054 }
3055
3056 /*
3057  * Disable idle window if the process thinks too long or seeks so much that
3058  * it doesn't matter
3059  */
3060 static void
3061 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3062                        struct cfq_io_context *cic)
3063 {
3064         int old_idle, enable_idle;
3065
3066         /*
3067          * Don't idle for async or idle io prio class
3068          */
3069         if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3070                 return;
3071
3072         enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3073
3074         if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3075                 cfq_mark_cfqq_deep(cfqq);
3076
3077         if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3078             (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3079                 enable_idle = 0;
3080         else if (sample_valid(cic->ttime_samples)) {
3081                 if (cic->ttime_mean > cfqd->cfq_slice_idle)
3082                         enable_idle = 0;
3083                 else
3084                         enable_idle = 1;
3085         }
3086
3087         if (old_idle != enable_idle) {
3088                 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3089                 if (enable_idle)
3090                         cfq_mark_cfqq_idle_window(cfqq);
3091                 else
3092                         cfq_clear_cfqq_idle_window(cfqq);
3093         }
3094 }
3095
3096 /*
3097  * Check if new_cfqq should preempt the currently active queue. Return 0 for
3098  * no or if we aren't sure, a 1 will cause a preempt.
3099  */
3100 static bool
3101 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3102                    struct request *rq)
3103 {
3104         struct cfq_queue *cfqq;
3105
3106         cfqq = cfqd->active_queue;
3107         if (!cfqq)
3108                 return false;
3109
3110         if (cfq_class_idle(new_cfqq))
3111                 return false;
3112
3113         if (cfq_class_idle(cfqq))
3114                 return true;
3115
3116         /*
3117          * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3118          */
3119         if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3120                 return false;
3121
3122         /*
3123          * if the new request is sync, but the currently running queue is
3124          * not, let the sync request have priority.
3125          */
3126         if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3127                 return true;
3128
3129         if (new_cfqq->cfqg != cfqq->cfqg)
3130                 return false;
3131
3132         if (cfq_slice_used(cfqq))
3133                 return true;
3134
3135         /* Allow preemption only if we are idling on sync-noidle tree */
3136         if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3137             cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3138             new_cfqq->service_tree->count == 2 &&
3139             RB_EMPTY_ROOT(&cfqq->sort_list))
3140                 return true;
3141
3142         /*
3143          * So both queues are sync. Let the new request get disk time if
3144          * it's a metadata request and the current queue is doing regular IO.
3145          */
3146         if (rq_is_meta(rq) && !cfqq->meta_pending)
3147                 return true;
3148
3149         /*
3150          * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3151          */
3152         if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3153                 return true;
3154
3155         if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3156                 return false;
3157
3158         /*
3159          * if this request is as-good as one we would expect from the
3160          * current cfqq, let it preempt
3161          */
3162         if (cfq_rq_close(cfqd, cfqq, rq))
3163                 return true;
3164
3165         return false;
3166 }
3167
3168 /*
3169  * cfqq preempts the active queue. if we allowed preempt with no slice left,
3170  * let it have half of its nominal slice.
3171  */
3172 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3173 {
3174         cfq_log_cfqq(cfqd, cfqq, "preempt");
3175         cfq_slice_expired(cfqd, 1, false);
3176
3177         /*
3178          * Put the new queue at the front of the of the current list,
3179          * so we know that it will be selected next.
3180          */
3181         BUG_ON(!cfq_cfqq_on_rr(cfqq));
3182
3183         cfq_service_tree_add(cfqd, cfqq, 1);
3184
3185         cfqq->slice_end = 0;
3186         cfq_mark_cfqq_slice_new(cfqq);
3187 }
3188
3189 /*
3190  * Called when a new fs request (rq) is added (to cfqq). Check if there's
3191  * something we should do about it
3192  */
3193 static void
3194 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3195                 struct request *rq)
3196 {
3197         struct cfq_io_context *cic = RQ_CIC(rq);
3198
3199         cfqd->rq_queued++;
3200         if (rq_is_meta(rq))
3201                 cfqq->meta_pending++;
3202
3203         cfq_update_io_thinktime(cfqd, cic);
3204         cfq_update_io_seektime(cfqd, cfqq, rq);
3205         cfq_update_idle_window(cfqd, cfqq, cic);
3206
3207         cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3208
3209         if (cfqq == cfqd->active_queue) {
3210                 /*
3211                  * Remember that we saw a request from this process, but
3212                  * don't start queuing just yet. Otherwise we risk seeing lots
3213                  * of tiny requests, because we disrupt the normal plugging
3214                  * and merging. If the request is already larger than a single
3215                  * page, let it rip immediately. For that case we assume that
3216                  * merging is already done. Ditto for a busy system that
3217                  * has other work pending, don't risk delaying until the
3218                  * idle timer unplug to continue working.
3219                  */
3220                 if (cfq_cfqq_wait_request(cfqq)) {
3221                         if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3222                             cfqd->busy_queues > 1) {
3223                                 cfq_del_timer(cfqd, cfqq);
3224                                 cfq_clear_cfqq_wait_request(cfqq);
3225                                 __blk_run_queue(cfqd->queue);
3226                         } else {
3227                                 blkiocg_update_idle_time_stats(
3228                                                 &cfqq->cfqg->blkg);
3229                                 cfq_mark_cfqq_must_dispatch(cfqq);
3230                         }
3231                 }
3232         } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3233                 /*
3234                  * not the active queue - expire current slice if it is
3235                  * idle and has expired it's mean thinktime or this new queue
3236                  * has some old slice time left and is of higher priority or
3237                  * this new queue is RT and the current one is BE
3238                  */
3239                 cfq_preempt_queue(cfqd, cfqq);
3240                 __blk_run_queue(cfqd->queue);
3241         }
3242 }
3243
3244 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3245 {
3246         struct cfq_data *cfqd = q->elevator->elevator_data;
3247         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3248
3249         cfq_log_cfqq(cfqd, cfqq, "insert_request");
3250         cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3251
3252         rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3253         list_add_tail(&rq->queuelist, &cfqq->fifo);
3254         cfq_add_rq_rb(rq);
3255         blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
3256                         &cfqd->serving_group->blkg, rq_data_dir(rq),
3257                         rq_is_sync(rq));
3258         cfq_rq_enqueued(cfqd, cfqq, rq);
3259 }
3260
3261 /*
3262  * Update hw_tag based on peak queue depth over 50 samples under
3263  * sufficient load.
3264  */
3265 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3266 {
3267         struct cfq_queue *cfqq = cfqd->active_queue;
3268
3269         if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3270                 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3271
3272         if (cfqd->hw_tag == 1)
3273                 return;
3274
3275         if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3276             cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3277                 return;
3278
3279         /*
3280          * If active queue hasn't enough requests and can idle, cfq might not
3281          * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3282          * case
3283          */
3284         if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3285             cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3286             CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3287                 return;
3288
3289         if (cfqd->hw_tag_samples++ < 50)
3290                 return;
3291
3292         if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3293                 cfqd->hw_tag = 1;
3294         else
3295                 cfqd->hw_tag = 0;
3296 }
3297
3298 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3299 {
3300         struct cfq_io_context *cic = cfqd->active_cic;
3301
3302         /* If there are other queues in the group, don't wait */
3303         if (cfqq->cfqg->nr_cfqq > 1)
3304                 return false;
3305
3306         if (cfq_slice_used(cfqq))
3307                 return true;
3308
3309         /* if slice left is less than think time, wait busy */
3310         if (cic && sample_valid(cic->ttime_samples)
3311             && (cfqq->slice_end - jiffies < cic->ttime_mean))
3312                 return true;
3313
3314         /*
3315          * If think times is less than a jiffy than ttime_mean=0 and above
3316          * will not be true. It might happen that slice has not expired yet
3317          * but will expire soon (4-5 ns) during select_queue(). To cover the
3318          * case where think time is less than a jiffy, mark the queue wait
3319          * busy if only 1 jiffy is left in the slice.
3320          */
3321         if (cfqq->slice_end - jiffies == 1)
3322                 return true;
3323
3324         return false;
3325 }
3326
3327 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3328 {
3329         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3330         struct cfq_data *cfqd = cfqq->cfqd;
3331         const int sync = rq_is_sync(rq);
3332         unsigned long now;
3333
3334         now = jiffies;
3335         cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
3336
3337         cfq_update_hw_tag(cfqd);
3338
3339         WARN_ON(!cfqd->rq_in_driver);
3340         WARN_ON(!cfqq->dispatched);
3341         cfqd->rq_in_driver--;
3342         cfqq->dispatched--;
3343         blkiocg_update_completion_stats(&cfqq->cfqg->blkg, rq_start_time_ns(rq),
3344                         rq_io_start_time_ns(rq), rq_data_dir(rq),
3345                         rq_is_sync(rq));
3346
3347         cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3348
3349         if (sync) {
3350                 RQ_CIC(rq)->last_end_request = now;
3351                 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3352                         cfqd->last_delayed_sync = now;
3353         }
3354
3355         /*
3356          * If this is the active queue, check if it needs to be expired,
3357          * or if we want to idle in case it has no pending requests.
3358          */
3359         if (cfqd->active_queue == cfqq) {
3360                 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3361
3362                 if (cfq_cfqq_slice_new(cfqq)) {
3363                         cfq_set_prio_slice(cfqd, cfqq);
3364                         cfq_clear_cfqq_slice_new(cfqq);
3365                 }
3366
3367                 /*
3368                  * Should we wait for next request to come in before we expire
3369                  * the queue.
3370                  */
3371                 if (cfq_should_wait_busy(cfqd, cfqq)) {
3372                         cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
3373                         cfq_mark_cfqq_wait_busy(cfqq);
3374                         cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3375                 }
3376
3377                 /*
3378                  * Idling is not enabled on:
3379                  * - expired queues
3380                  * - idle-priority queues
3381                  * - async queues
3382                  * - queues with still some requests queued
3383                  * - when there is a close cooperator
3384                  */
3385                 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3386                         cfq_slice_expired(cfqd, 1, false);
3387                 else if (sync && cfqq_empty &&
3388                          !cfq_close_cooperator(cfqd, cfqq)) {
3389                         cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3390                         /*
3391                          * Idling is enabled for SYNC_WORKLOAD.
3392                          * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3393                          * only if we processed at least one !rq_noidle request
3394                          */
3395                         if (cfqd->serving_type == SYNC_WORKLOAD
3396                             || cfqd->noidle_tree_requires_idle
3397                             || cfqq->cfqg->nr_cfqq == 1)
3398                                 cfq_arm_slice_timer(cfqd);
3399                 }
3400         }
3401
3402         if (!cfqd->rq_in_driver)
3403                 cfq_schedule_dispatch(cfqd);
3404 }
3405
3406 /*
3407  * we temporarily boost lower priority queues if they are holding fs exclusive
3408  * resources. they are boosted to normal prio (CLASS_BE/4)
3409  */
3410 static void cfq_prio_boost(struct cfq_queue *cfqq)
3411 {
3412         if (has_fs_excl()) {
3413                 /*
3414                  * boost idle prio on transactions that would lock out other
3415                  * users of the filesystem
3416                  */
3417                 if (cfq_class_idle(cfqq))
3418                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
3419                 if (cfqq->ioprio > IOPRIO_NORM)
3420                         cfqq->ioprio = IOPRIO_NORM;
3421         } else {
3422                 /*
3423                  * unboost the queue (if needed)
3424                  */
3425                 cfqq->ioprio_class = cfqq->org_ioprio_class;
3426                 cfqq->ioprio = cfqq->org_ioprio;
3427         }
3428 }
3429
3430 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3431 {
3432         if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3433                 cfq_mark_cfqq_must_alloc_slice(cfqq);
3434                 return ELV_MQUEUE_MUST;
3435         }
3436
3437         return ELV_MQUEUE_MAY;
3438 }
3439
3440 static int cfq_may_queue(struct request_queue *q, int rw)
3441 {
3442         struct cfq_data *cfqd = q->elevator->elevator_data;
3443         struct task_struct *tsk = current;
3444         struct cfq_io_context *cic;
3445         struct cfq_queue *cfqq;
3446
3447         /*
3448          * don't force setup of a queue from here, as a call to may_queue
3449          * does not necessarily imply that a request actually will be queued.
3450          * so just lookup a possibly existing queue, or return 'may queue'
3451          * if that fails
3452          */
3453         cic = cfq_cic_lookup(cfqd, tsk->io_context);
3454         if (!cic)
3455                 return ELV_MQUEUE_MAY;
3456
3457         cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3458         if (cfqq) {
3459                 cfq_init_prio_data(cfqq, cic->ioc);
3460                 cfq_prio_boost(cfqq);
3461
3462                 return __cfq_may_queue(cfqq);
3463         }
3464
3465         return ELV_MQUEUE_MAY;
3466 }
3467
3468 /*
3469  * queue lock held here
3470  */
3471 static void cfq_put_request(struct request *rq)
3472 {
3473         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3474
3475         if (cfqq) {
3476                 const int rw = rq_data_dir(rq);
3477
3478                 BUG_ON(!cfqq->allocated[rw]);
3479                 cfqq->allocated[rw]--;
3480
3481                 put_io_context(RQ_CIC(rq)->ioc);
3482
3483                 rq->elevator_private = NULL;
3484                 rq->elevator_private2 = NULL;
3485
3486                 /* Put down rq reference on cfqg */
3487                 cfq_put_cfqg(RQ_CFQG(rq));
3488                 rq->elevator_private3 = NULL;
3489
3490                 cfq_put_queue(cfqq);
3491         }
3492 }
3493
3494 static struct cfq_queue *
3495 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3496                 struct cfq_queue *cfqq)
3497 {
3498         cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3499         cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3500         cfq_mark_cfqq_coop(cfqq->new_cfqq);
3501         cfq_put_queue(cfqq);
3502         return cic_to_cfqq(cic, 1);
3503 }
3504
3505 /*
3506  * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3507  * was the last process referring to said cfqq.
3508  */
3509 static struct cfq_queue *
3510 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3511 {
3512         if (cfqq_process_refs(cfqq) == 1) {
3513                 cfqq->pid = current->pid;
3514                 cfq_clear_cfqq_coop(cfqq);
3515                 cfq_clear_cfqq_split_coop(cfqq);
3516                 return cfqq;
3517         }
3518
3519         cic_set_cfqq(cic, NULL, 1);
3520         cfq_put_queue(cfqq);
3521         return NULL;
3522 }
3523 /*
3524  * Allocate cfq data structures associated with this request.
3525  */
3526 static int
3527 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3528 {
3529         struct cfq_data *cfqd = q->elevator->elevator_data;
3530         struct cfq_io_context *cic;
3531         const int rw = rq_data_dir(rq);
3532         const bool is_sync = rq_is_sync(rq);
3533         struct cfq_queue *cfqq;
3534         unsigned long flags;
3535
3536         might_sleep_if(gfp_mask & __GFP_WAIT);
3537
3538         cic = cfq_get_io_context(cfqd, gfp_mask);
3539
3540         spin_lock_irqsave(q->queue_lock, flags);
3541
3542         if (!cic)
3543                 goto queue_fail;
3544
3545 new_queue:
3546         cfqq = cic_to_cfqq(cic, is_sync);
3547         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3548                 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3549                 cic_set_cfqq(cic, cfqq, is_sync);
3550         } else {
3551                 /*
3552                  * If the queue was seeky for too long, break it apart.
3553                  */
3554                 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3555                         cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3556                         cfqq = split_cfqq(cic, cfqq);
3557                         if (!cfqq)
3558                                 goto new_queue;
3559                 }
3560
3561                 /*
3562                  * Check to see if this queue is scheduled to merge with
3563                  * another, closely cooperating queue.  The merging of
3564                  * queues happens here as it must be done in process context.
3565                  * The reference on new_cfqq was taken in merge_cfqqs.
3566                  */
3567                 if (cfqq->new_cfqq)
3568                         cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3569         }
3570
3571         cfqq->allocated[rw]++;
3572         atomic_inc(&cfqq->ref);
3573
3574         spin_unlock_irqrestore(q->queue_lock, flags);
3575
3576         rq->elevator_private = cic;
3577         rq->elevator_private2 = cfqq;
3578         rq->elevator_private3 = cfq_ref_get_cfqg(cfqq->cfqg);
3579         return 0;
3580
3581 queue_fail:
3582         if (cic)
3583                 put_io_context(cic->ioc);
3584
3585         cfq_schedule_dispatch(cfqd);
3586         spin_unlock_irqrestore(q->queue_lock, flags);
3587         cfq_log(cfqd, "set_request fail");
3588         return 1;
3589 }
3590
3591 static void cfq_kick_queue(struct work_struct *work)
3592 {
3593         struct cfq_data *cfqd =
3594                 container_of(work, struct cfq_data, unplug_work);
3595         struct request_queue *q = cfqd->queue;
3596
3597         spin_lock_irq(q->queue_lock);
3598         __blk_run_queue(cfqd->queue);
3599         spin_unlock_irq(q->queue_lock);
3600 }
3601
3602 /*
3603  * Timer running if the active_queue is currently idling inside its time slice
3604  */
3605 static void cfq_idle_slice_timer(unsigned long data)
3606 {
3607         struct cfq_data *cfqd = (struct cfq_data *) data;
3608         struct cfq_queue *cfqq;
3609         unsigned long flags;
3610         int timed_out = 1;
3611
3612         cfq_log(cfqd, "idle timer fired");
3613
3614         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3615
3616         cfqq = cfqd->active_queue;
3617         if (cfqq) {
3618                 timed_out = 0;
3619
3620                 /*
3621                  * We saw a request before the queue expired, let it through
3622                  */
3623                 if (cfq_cfqq_must_dispatch(cfqq))
3624                         goto out_kick;
3625
3626                 /*
3627                  * expired
3628                  */
3629                 if (cfq_slice_used(cfqq))
3630                         goto expire;
3631
3632                 /*
3633                  * only expire and reinvoke request handler, if there are
3634                  * other queues with pending requests
3635                  */
3636                 if (!cfqd->busy_queues)
3637                         goto out_cont;
3638
3639                 /*
3640                  * not expired and it has a request pending, let it dispatch
3641                  */
3642                 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3643                         goto out_kick;
3644
3645                 /*
3646                  * Queue depth flag is reset only when the idle didn't succeed
3647                  */
3648                 cfq_clear_cfqq_deep(cfqq);
3649         }
3650 expire:
3651         cfq_slice_expired(cfqd, timed_out, false);
3652 out_kick:
3653         cfq_schedule_dispatch(cfqd);
3654 out_cont:
3655         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3656 }
3657
3658 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3659 {
3660         del_timer_sync(&cfqd->idle_slice_timer);
3661         cancel_work_sync(&cfqd->unplug_work);
3662 }
3663
3664 static void cfq_put_async_queues(struct cfq_data *cfqd)
3665 {
3666         int i;
3667
3668         for (i = 0; i < IOPRIO_BE_NR; i++) {
3669                 if (cfqd->async_cfqq[0][i])
3670                         cfq_put_queue(cfqd->async_cfqq[0][i]);
3671                 if (cfqd->async_cfqq[1][i])
3672                         cfq_put_queue(cfqd->async_cfqq[1][i]);
3673         }
3674
3675         if (cfqd->async_idle_cfqq)
3676                 cfq_put_queue(cfqd->async_idle_cfqq);
3677 }
3678
3679 static void cfq_cfqd_free(struct rcu_head *head)
3680 {
3681         kfree(container_of(head, struct cfq_data, rcu));
3682 }
3683
3684 static void cfq_exit_queue(struct elevator_queue *e)
3685 {
3686         struct cfq_data *cfqd = e->elevator_data;
3687         struct request_queue *q = cfqd->queue;
3688
3689         cfq_shutdown_timer_wq(cfqd);
3690
3691         spin_lock_irq(q->queue_lock);
3692
3693         if (cfqd->active_queue)
3694                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0, false);
3695
3696         while (!list_empty(&cfqd->cic_list)) {
3697                 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3698                                                         struct cfq_io_context,
3699                                                         queue_list);
3700
3701                 __cfq_exit_single_io_context(cfqd, cic);
3702         }
3703
3704         cfq_put_async_queues(cfqd);
3705         cfq_release_cfq_groups(cfqd);
3706         blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3707
3708         spin_unlock_irq(q->queue_lock);
3709
3710         cfq_shutdown_timer_wq(cfqd);
3711
3712         /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3713         call_rcu(&cfqd->rcu, cfq_cfqd_free);
3714 }
3715
3716 static void *cfq_init_queue(struct request_queue *q)
3717 {
3718         struct cfq_data *cfqd;
3719         int i, j;
3720         struct cfq_group *cfqg;
3721         struct cfq_rb_root *st;
3722
3723         cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3724         if (!cfqd)
3725                 return NULL;
3726
3727         /* Init root service tree */
3728         cfqd->grp_service_tree = CFQ_RB_ROOT;
3729
3730         /* Init root group */
3731         cfqg = &cfqd->root_group;
3732         for_each_cfqg_st(cfqg, i, j, st)
3733                 *st = CFQ_RB_ROOT;
3734         RB_CLEAR_NODE(&cfqg->rb_node);
3735
3736         /* Give preference to root group over other groups */
3737         cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3738
3739 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3740         /*
3741          * Take a reference to root group which we never drop. This is just
3742          * to make sure that cfq_put_cfqg() does not try to kfree root group
3743          */
3744         atomic_set(&cfqg->ref, 1);
3745         blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
3746                                         0);
3747 #endif
3748         /*
3749          * Not strictly needed (since RB_ROOT just clears the node and we
3750          * zeroed cfqd on alloc), but better be safe in case someone decides
3751          * to add magic to the rb code
3752          */
3753         for (i = 0; i < CFQ_PRIO_LISTS; i++)
3754                 cfqd->prio_trees[i] = RB_ROOT;
3755
3756         /*
3757          * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3758          * Grab a permanent reference to it, so that the normal code flow
3759          * will not attempt to free it.
3760          */
3761         cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3762         atomic_inc(&cfqd->oom_cfqq.ref);
3763         cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3764
3765         INIT_LIST_HEAD(&cfqd->cic_list);
3766
3767         cfqd->queue = q;
3768
3769         init_timer(&cfqd->idle_slice_timer);
3770         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3771         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3772
3773         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3774
3775         cfqd->cfq_quantum = cfq_quantum;
3776         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3777         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3778         cfqd->cfq_back_max = cfq_back_max;
3779         cfqd->cfq_back_penalty = cfq_back_penalty;
3780         cfqd->cfq_slice[0] = cfq_slice_async;
3781         cfqd->cfq_slice[1] = cfq_slice_sync;
3782         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3783         cfqd->cfq_slice_idle = cfq_slice_idle;
3784         cfqd->cfq_latency = 1;
3785         cfqd->cfq_group_isolation = 0;
3786         cfqd->hw_tag = -1;
3787         /*
3788          * we optimistically start assuming sync ops weren't delayed in last
3789          * second, in order to have larger depth for async operations.
3790          */
3791         cfqd->last_delayed_sync = jiffies - HZ;
3792         INIT_RCU_HEAD(&cfqd->rcu);
3793         return cfqd;
3794 }
3795
3796 static void cfq_slab_kill(void)
3797 {
3798         /*
3799          * Caller already ensured that pending RCU callbacks are completed,
3800          * so we should have no busy allocations at this point.
3801          */
3802         if (cfq_pool)
3803                 kmem_cache_destroy(cfq_pool);
3804         if (cfq_ioc_pool)
3805                 kmem_cache_destroy(cfq_ioc_pool);
3806 }
3807
3808 static int __init cfq_slab_setup(void)
3809 {
3810         cfq_pool = KMEM_CACHE(cfq_queue, 0);
3811         if (!cfq_pool)
3812                 goto fail;
3813
3814         cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3815         if (!cfq_ioc_pool)
3816                 goto fail;
3817
3818         return 0;
3819 fail:
3820         cfq_slab_kill();
3821         return -ENOMEM;
3822 }
3823
3824 /*
3825  * sysfs parts below -->
3826  */
3827 static ssize_t
3828 cfq_var_show(unsigned int var, char *page)
3829 {
3830         return sprintf(page, "%d\n", var);
3831 }
3832
3833 static ssize_t
3834 cfq_var_store(unsigned int *var, const char *page, size_t count)
3835 {
3836         char *p = (char *) page;
3837
3838         *var = simple_strtoul(p, &p, 10);
3839         return count;
3840 }
3841
3842 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
3843 static ssize_t __FUNC(struct elevator_queue *e, char *page)             \
3844 {                                                                       \
3845         struct cfq_data *cfqd = e->elevator_data;                       \
3846         unsigned int __data = __VAR;                                    \
3847         if (__CONV)                                                     \
3848                 __data = jiffies_to_msecs(__data);                      \
3849         return cfq_var_show(__data, (page));                            \
3850 }
3851 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3852 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3853 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3854 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3855 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3856 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3857 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3858 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3859 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3860 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3861 SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
3862 #undef SHOW_FUNCTION
3863
3864 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
3865 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3866 {                                                                       \
3867         struct cfq_data *cfqd = e->elevator_data;                       \
3868         unsigned int __data;                                            \
3869         int ret = cfq_var_store(&__data, (page), count);                \
3870         if (__data < (MIN))                                             \
3871                 __data = (MIN);                                         \
3872         else if (__data > (MAX))                                        \
3873                 __data = (MAX);                                         \
3874         if (__CONV)                                                     \
3875                 *(__PTR) = msecs_to_jiffies(__data);                    \
3876         else                                                            \
3877                 *(__PTR) = __data;                                      \
3878         return ret;                                                     \
3879 }
3880 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3881 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3882                 UINT_MAX, 1);
3883 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3884                 UINT_MAX, 1);
3885 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3886 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3887                 UINT_MAX, 0);
3888 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3889 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3890 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3891 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3892                 UINT_MAX, 0);
3893 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3894 STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
3895 #undef STORE_FUNCTION
3896
3897 #define CFQ_ATTR(name) \
3898         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3899
3900 static struct elv_fs_entry cfq_attrs[] = {
3901         CFQ_ATTR(quantum),
3902         CFQ_ATTR(fifo_expire_sync),
3903         CFQ_ATTR(fifo_expire_async),
3904         CFQ_ATTR(back_seek_max),
3905         CFQ_ATTR(back_seek_penalty),
3906         CFQ_ATTR(slice_sync),
3907         CFQ_ATTR(slice_async),
3908         CFQ_ATTR(slice_async_rq),
3909         CFQ_ATTR(slice_idle),
3910         CFQ_ATTR(low_latency),
3911         CFQ_ATTR(group_isolation),
3912         __ATTR_NULL
3913 };
3914
3915 static struct elevator_type iosched_cfq = {
3916         .ops = {
3917                 .elevator_merge_fn =            cfq_merge,
3918                 .elevator_merged_fn =           cfq_merged_request,
3919                 .elevator_merge_req_fn =        cfq_merged_requests,
3920                 .elevator_allow_merge_fn =      cfq_allow_merge,
3921                 .elevator_bio_merged_fn =       cfq_bio_merged,
3922                 .elevator_dispatch_fn =         cfq_dispatch_requests,
3923                 .elevator_add_req_fn =          cfq_insert_request,
3924                 .elevator_activate_req_fn =     cfq_activate_request,
3925                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
3926                 .elevator_queue_empty_fn =      cfq_queue_empty,
3927                 .elevator_completed_req_fn =    cfq_completed_request,
3928                 .elevator_former_req_fn =       elv_rb_former_request,
3929                 .elevator_latter_req_fn =       elv_rb_latter_request,
3930                 .elevator_set_req_fn =          cfq_set_request,
3931                 .elevator_put_req_fn =          cfq_put_request,
3932                 .elevator_may_queue_fn =        cfq_may_queue,
3933                 .elevator_init_fn =             cfq_init_queue,
3934                 .elevator_exit_fn =             cfq_exit_queue,
3935                 .trim =                         cfq_free_io_context,
3936         },
3937         .elevator_attrs =       cfq_attrs,
3938         .elevator_name =        "cfq",
3939         .elevator_owner =       THIS_MODULE,
3940 };
3941
3942 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3943 static struct blkio_policy_type blkio_policy_cfq = {
3944         .ops = {
3945                 .blkio_unlink_group_fn =        cfq_unlink_blkio_group,
3946                 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
3947         },
3948 };
3949 #else
3950 static struct blkio_policy_type blkio_policy_cfq;
3951 #endif
3952
3953 static int __init cfq_init(void)
3954 {
3955         /*
3956          * could be 0 on HZ < 1000 setups
3957          */
3958         if (!cfq_slice_async)
3959                 cfq_slice_async = 1;
3960         if (!cfq_slice_idle)
3961                 cfq_slice_idle = 1;
3962
3963         if (cfq_slab_setup())
3964                 return -ENOMEM;
3965
3966         elv_register(&iosched_cfq);
3967         blkio_policy_register(&blkio_policy_cfq);
3968
3969         return 0;
3970 }
3971
3972 static void __exit cfq_exit(void)
3973 {
3974         DECLARE_COMPLETION_ONSTACK(all_gone);
3975         blkio_policy_unregister(&blkio_policy_cfq);
3976         elv_unregister(&iosched_cfq);
3977         ioc_gone = &all_gone;
3978         /* ioc_gone's update must be visible before reading ioc_count */
3979         smp_wmb();
3980
3981         /*
3982          * this also protects us from entering cfq_slab_kill() with
3983          * pending RCU callbacks
3984          */
3985         if (elv_ioc_count_read(cfq_ioc_count))
3986                 wait_for_completion(&all_gone);
3987         cfq_slab_kill();
3988 }
3989
3990 module_init(cfq_init);
3991 module_exit(cfq_exit);
3992
3993 MODULE_AUTHOR("Jens Axboe");
3994 MODULE_LICENSE("GPL");
3995 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");