cfq-iosched: preparation to handle multiple service trees
[safe/jmp/linux-2.6] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/rbtree.h>
13 #include <linux/ioprio.h>
14 #include <linux/blktrace_api.h>
15
16 /*
17  * tunables
18  */
19 /* max queue in one round of service */
20 static const int cfq_quantum = 4;
21 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
22 /* maximum backwards seek, in KiB */
23 static const int cfq_back_max = 16 * 1024;
24 /* penalty of a backwards seek */
25 static const int cfq_back_penalty = 2;
26 static const int cfq_slice_sync = HZ / 10;
27 static int cfq_slice_async = HZ / 25;
28 static const int cfq_slice_async_rq = 2;
29 static int cfq_slice_idle = HZ / 125;
30 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
31 static const int cfq_hist_divisor = 4;
32
33 /*
34  * offset from end of service tree
35  */
36 #define CFQ_IDLE_DELAY          (HZ / 5)
37
38 /*
39  * below this threshold, we consider thinktime immediate
40  */
41 #define CFQ_MIN_TT              (2)
42
43 /*
44  * Allow merged cfqqs to perform this amount of seeky I/O before
45  * deciding to break the queues up again.
46  */
47 #define CFQQ_COOP_TOUT          (HZ)
48
49 #define CFQ_SLICE_SCALE         (5)
50 #define CFQ_HW_QUEUE_MIN        (5)
51
52 #define RQ_CIC(rq)              \
53         ((struct cfq_io_context *) (rq)->elevator_private)
54 #define RQ_CFQQ(rq)             (struct cfq_queue *) ((rq)->elevator_private2)
55
56 static struct kmem_cache *cfq_pool;
57 static struct kmem_cache *cfq_ioc_pool;
58
59 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
60 static struct completion *ioc_gone;
61 static DEFINE_SPINLOCK(ioc_gone_lock);
62
63 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
64 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
65 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
66
67 #define sample_valid(samples)   ((samples) > 80)
68
69 /*
70  * Most of our rbtree usage is for sorting with min extraction, so
71  * if we cache the leftmost node we don't have to walk down the tree
72  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
73  * move this into the elevator for the rq sorting as well.
74  */
75 struct cfq_rb_root {
76         struct rb_root rb;
77         struct rb_node *left;
78         unsigned count;
79 };
80 #define CFQ_RB_ROOT     (struct cfq_rb_root) { RB_ROOT, NULL, 0, }
81
82 /*
83  * Per process-grouping structure
84  */
85 struct cfq_queue {
86         /* reference count */
87         atomic_t ref;
88         /* various state flags, see below */
89         unsigned int flags;
90         /* parent cfq_data */
91         struct cfq_data *cfqd;
92         /* service_tree member */
93         struct rb_node rb_node;
94         /* service_tree key */
95         unsigned long rb_key;
96         /* prio tree member */
97         struct rb_node p_node;
98         /* prio tree root we belong to, if any */
99         struct rb_root *p_root;
100         /* sorted list of pending requests */
101         struct rb_root sort_list;
102         /* if fifo isn't expired, next request to serve */
103         struct request *next_rq;
104         /* requests queued in sort_list */
105         int queued[2];
106         /* currently allocated requests */
107         int allocated[2];
108         /* fifo list of requests in sort_list */
109         struct list_head fifo;
110
111         unsigned long slice_end;
112         long slice_resid;
113         unsigned int slice_dispatch;
114
115         /* pending metadata requests */
116         int meta_pending;
117         /* number of requests that are on the dispatch list or inside driver */
118         int dispatched;
119
120         /* io prio of this group */
121         unsigned short ioprio, org_ioprio;
122         unsigned short ioprio_class, org_ioprio_class;
123
124         unsigned int seek_samples;
125         u64 seek_total;
126         sector_t seek_mean;
127         sector_t last_request_pos;
128         unsigned long seeky_start;
129
130         pid_t pid;
131
132         struct cfq_rb_root *service_tree;
133         struct cfq_queue *new_cfqq;
134 };
135
136 /*
137  * Per block device queue structure
138  */
139 struct cfq_data {
140         struct request_queue *queue;
141
142         /*
143          * rr list of queues with requests and the count of them
144          */
145         struct cfq_rb_root service_tree;
146
147         /*
148          * Each priority tree is sorted by next_request position.  These
149          * trees are used when determining if two or more queues are
150          * interleaving requests (see cfq_close_cooperator).
151          */
152         struct rb_root prio_trees[CFQ_PRIO_LISTS];
153
154         unsigned int busy_queues;
155         unsigned int busy_rt_queues;
156         unsigned int busy_queues_avg[2];
157
158         int rq_in_driver[2];
159         int sync_flight;
160
161         /*
162          * queue-depth detection
163          */
164         int rq_queued;
165         int hw_tag;
166         int hw_tag_samples;
167         int rq_in_driver_peak;
168
169         /*
170          * idle window management
171          */
172         struct timer_list idle_slice_timer;
173         struct work_struct unplug_work;
174
175         struct cfq_queue *active_queue;
176         struct cfq_io_context *active_cic;
177
178         /*
179          * async queue for each priority case
180          */
181         struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
182         struct cfq_queue *async_idle_cfqq;
183
184         sector_t last_position;
185
186         /*
187          * tunables, see top of file
188          */
189         unsigned int cfq_quantum;
190         unsigned int cfq_fifo_expire[2];
191         unsigned int cfq_back_penalty;
192         unsigned int cfq_back_max;
193         unsigned int cfq_slice[2];
194         unsigned int cfq_slice_async_rq;
195         unsigned int cfq_slice_idle;
196         unsigned int cfq_latency;
197
198         struct list_head cic_list;
199
200         /*
201          * Fallback dummy cfqq for extreme OOM conditions
202          */
203         struct cfq_queue oom_cfqq;
204
205         unsigned long last_end_sync_rq;
206 };
207
208 enum cfqq_state_flags {
209         CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
210         CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
211         CFQ_CFQQ_FLAG_must_dispatch,    /* must be allowed a dispatch */
212         CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
213         CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
214         CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
215         CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
216         CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
217         CFQ_CFQQ_FLAG_sync,             /* synchronous queue */
218         CFQ_CFQQ_FLAG_coop,             /* cfqq is shared */
219 };
220
221 #define CFQ_CFQQ_FNS(name)                                              \
222 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
223 {                                                                       \
224         (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);                   \
225 }                                                                       \
226 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
227 {                                                                       \
228         (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                  \
229 }                                                                       \
230 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
231 {                                                                       \
232         return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;      \
233 }
234
235 CFQ_CFQQ_FNS(on_rr);
236 CFQ_CFQQ_FNS(wait_request);
237 CFQ_CFQQ_FNS(must_dispatch);
238 CFQ_CFQQ_FNS(must_alloc_slice);
239 CFQ_CFQQ_FNS(fifo_expire);
240 CFQ_CFQQ_FNS(idle_window);
241 CFQ_CFQQ_FNS(prio_changed);
242 CFQ_CFQQ_FNS(slice_new);
243 CFQ_CFQQ_FNS(sync);
244 CFQ_CFQQ_FNS(coop);
245 #undef CFQ_CFQQ_FNS
246
247 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
248         blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
249 #define cfq_log(cfqd, fmt, args...)     \
250         blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
251
252 static void cfq_dispatch_insert(struct request_queue *, struct request *);
253 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
254                                        struct io_context *, gfp_t);
255 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
256                                                 struct io_context *);
257
258 static inline int rq_in_driver(struct cfq_data *cfqd)
259 {
260         return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
261 }
262
263 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
264                                             bool is_sync)
265 {
266         return cic->cfqq[is_sync];
267 }
268
269 static inline void cic_set_cfqq(struct cfq_io_context *cic,
270                                 struct cfq_queue *cfqq, bool is_sync)
271 {
272         cic->cfqq[is_sync] = cfqq;
273 }
274
275 /*
276  * We regard a request as SYNC, if it's either a read or has the SYNC bit
277  * set (in which case it could also be direct WRITE).
278  */
279 static inline bool cfq_bio_sync(struct bio *bio)
280 {
281         return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
282 }
283
284 /*
285  * scheduler run of queue, if there are requests pending and no one in the
286  * driver that will restart queueing
287  */
288 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
289 {
290         if (cfqd->busy_queues) {
291                 cfq_log(cfqd, "schedule dispatch");
292                 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
293         }
294 }
295
296 static int cfq_queue_empty(struct request_queue *q)
297 {
298         struct cfq_data *cfqd = q->elevator->elevator_data;
299
300         return !cfqd->busy_queues;
301 }
302
303 /*
304  * Scale schedule slice based on io priority. Use the sync time slice only
305  * if a queue is marked sync and has sync io queued. A sync queue with async
306  * io only, should not get full sync slice length.
307  */
308 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
309                                  unsigned short prio)
310 {
311         const int base_slice = cfqd->cfq_slice[sync];
312
313         WARN_ON(prio >= IOPRIO_BE_NR);
314
315         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
316 }
317
318 static inline int
319 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
320 {
321         return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
322 }
323
324 /*
325  * get averaged number of queues of RT/BE priority.
326  * average is updated, with a formula that gives more weight to higher numbers,
327  * to quickly follows sudden increases and decrease slowly
328  */
329
330 static inline unsigned
331 cfq_get_avg_queues(struct cfq_data *cfqd, bool rt) {
332         unsigned min_q, max_q;
333         unsigned mult  = cfq_hist_divisor - 1;
334         unsigned round = cfq_hist_divisor / 2;
335         unsigned busy = cfqd->busy_rt_queues;
336
337         if (!rt)
338                 busy = cfqd->busy_queues - cfqd->busy_rt_queues;
339
340         min_q = min(cfqd->busy_queues_avg[rt], busy);
341         max_q = max(cfqd->busy_queues_avg[rt], busy);
342         cfqd->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
343                 cfq_hist_divisor;
344         return cfqd->busy_queues_avg[rt];
345 }
346
347 static inline void
348 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
349 {
350         unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
351         if (cfqd->cfq_latency) {
352                 /* interested queues (we consider only the ones with the same
353                  * priority class) */
354                 unsigned iq = cfq_get_avg_queues(cfqd, cfq_class_rt(cfqq));
355                 unsigned sync_slice = cfqd->cfq_slice[1];
356                 unsigned expect_latency = sync_slice * iq;
357                 if (expect_latency > cfq_target_latency) {
358                         unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
359                         /* scale low_slice according to IO priority
360                          * and sync vs async */
361                         unsigned low_slice =
362                                 min(slice, base_low_slice * slice / sync_slice);
363                         /* the adapted slice value is scaled to fit all iqs
364                          * into the target latency */
365                         slice = max(slice * cfq_target_latency / expect_latency,
366                                     low_slice);
367                 }
368         }
369         cfqq->slice_end = jiffies + slice;
370         cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
371 }
372
373 /*
374  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
375  * isn't valid until the first request from the dispatch is activated
376  * and the slice time set.
377  */
378 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
379 {
380         if (cfq_cfqq_slice_new(cfqq))
381                 return 0;
382         if (time_before(jiffies, cfqq->slice_end))
383                 return 0;
384
385         return 1;
386 }
387
388 /*
389  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
390  * We choose the request that is closest to the head right now. Distance
391  * behind the head is penalized and only allowed to a certain extent.
392  */
393 static struct request *
394 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
395 {
396         sector_t last, s1, s2, d1 = 0, d2 = 0;
397         unsigned long back_max;
398 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
399 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
400         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
401
402         if (rq1 == NULL || rq1 == rq2)
403                 return rq2;
404         if (rq2 == NULL)
405                 return rq1;
406
407         if (rq_is_sync(rq1) && !rq_is_sync(rq2))
408                 return rq1;
409         else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
410                 return rq2;
411         if (rq_is_meta(rq1) && !rq_is_meta(rq2))
412                 return rq1;
413         else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
414                 return rq2;
415
416         s1 = blk_rq_pos(rq1);
417         s2 = blk_rq_pos(rq2);
418
419         last = cfqd->last_position;
420
421         /*
422          * by definition, 1KiB is 2 sectors
423          */
424         back_max = cfqd->cfq_back_max * 2;
425
426         /*
427          * Strict one way elevator _except_ in the case where we allow
428          * short backward seeks which are biased as twice the cost of a
429          * similar forward seek.
430          */
431         if (s1 >= last)
432                 d1 = s1 - last;
433         else if (s1 + back_max >= last)
434                 d1 = (last - s1) * cfqd->cfq_back_penalty;
435         else
436                 wrap |= CFQ_RQ1_WRAP;
437
438         if (s2 >= last)
439                 d2 = s2 - last;
440         else if (s2 + back_max >= last)
441                 d2 = (last - s2) * cfqd->cfq_back_penalty;
442         else
443                 wrap |= CFQ_RQ2_WRAP;
444
445         /* Found required data */
446
447         /*
448          * By doing switch() on the bit mask "wrap" we avoid having to
449          * check two variables for all permutations: --> faster!
450          */
451         switch (wrap) {
452         case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
453                 if (d1 < d2)
454                         return rq1;
455                 else if (d2 < d1)
456                         return rq2;
457                 else {
458                         if (s1 >= s2)
459                                 return rq1;
460                         else
461                                 return rq2;
462                 }
463
464         case CFQ_RQ2_WRAP:
465                 return rq1;
466         case CFQ_RQ1_WRAP:
467                 return rq2;
468         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
469         default:
470                 /*
471                  * Since both rqs are wrapped,
472                  * start with the one that's further behind head
473                  * (--> only *one* back seek required),
474                  * since back seek takes more time than forward.
475                  */
476                 if (s1 <= s2)
477                         return rq1;
478                 else
479                         return rq2;
480         }
481 }
482
483 /*
484  * The below is leftmost cache rbtree addon
485  */
486 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
487 {
488         if (!root->left)
489                 root->left = rb_first(&root->rb);
490
491         if (root->left)
492                 return rb_entry(root->left, struct cfq_queue, rb_node);
493
494         return NULL;
495 }
496
497 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
498 {
499         rb_erase(n, root);
500         RB_CLEAR_NODE(n);
501 }
502
503 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
504 {
505         if (root->left == n)
506                 root->left = NULL;
507         rb_erase_init(n, &root->rb);
508         --root->count;
509 }
510
511 /*
512  * would be nice to take fifo expire time into account as well
513  */
514 static struct request *
515 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
516                   struct request *last)
517 {
518         struct rb_node *rbnext = rb_next(&last->rb_node);
519         struct rb_node *rbprev = rb_prev(&last->rb_node);
520         struct request *next = NULL, *prev = NULL;
521
522         BUG_ON(RB_EMPTY_NODE(&last->rb_node));
523
524         if (rbprev)
525                 prev = rb_entry_rq(rbprev);
526
527         if (rbnext)
528                 next = rb_entry_rq(rbnext);
529         else {
530                 rbnext = rb_first(&cfqq->sort_list);
531                 if (rbnext && rbnext != &last->rb_node)
532                         next = rb_entry_rq(rbnext);
533         }
534
535         return cfq_choose_req(cfqd, next, prev);
536 }
537
538 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
539                                       struct cfq_queue *cfqq)
540 {
541         /*
542          * just an approximation, should be ok.
543          */
544         return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
545                        cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
546 }
547
548 /*
549  * The cfqd->service_tree holds all pending cfq_queue's that have
550  * requests waiting to be processed. It is sorted in the order that
551  * we will service the queues.
552  */
553 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
554                                  bool add_front)
555 {
556         struct rb_node **p, *parent;
557         struct cfq_queue *__cfqq;
558         unsigned long rb_key;
559         struct cfq_rb_root *service_tree = &cfqd->service_tree;
560         int left;
561
562         if (cfq_class_idle(cfqq)) {
563                 rb_key = CFQ_IDLE_DELAY;
564                 parent = rb_last(&service_tree->rb);
565                 if (parent && parent != &cfqq->rb_node) {
566                         __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
567                         rb_key += __cfqq->rb_key;
568                 } else
569                         rb_key += jiffies;
570         } else if (!add_front) {
571                 /*
572                  * Get our rb key offset. Subtract any residual slice
573                  * value carried from last service. A negative resid
574                  * count indicates slice overrun, and this should position
575                  * the next service time further away in the tree.
576                  */
577                 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
578                 rb_key -= cfqq->slice_resid;
579                 cfqq->slice_resid = 0;
580         } else {
581                 rb_key = -HZ;
582                 __cfqq = cfq_rb_first(service_tree);
583                 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
584         }
585
586         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
587                 /*
588                  * same position, nothing more to do
589                  */
590                 if (rb_key == cfqq->rb_key)
591                         return;
592
593                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
594                 cfqq->service_tree = NULL;
595         }
596
597         left = 1;
598         parent = NULL;
599         cfqq->service_tree = service_tree;
600         p = &service_tree->rb.rb_node;
601         while (*p) {
602                 struct rb_node **n;
603
604                 parent = *p;
605                 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
606
607                 /*
608                  * sort RT queues first, we always want to give
609                  * preference to them. IDLE queues goes to the back.
610                  * after that, sort on the next service time.
611                  */
612                 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
613                         n = &(*p)->rb_left;
614                 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
615                         n = &(*p)->rb_right;
616                 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
617                         n = &(*p)->rb_left;
618                 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
619                         n = &(*p)->rb_right;
620                 else if (time_before(rb_key, __cfqq->rb_key))
621                         n = &(*p)->rb_left;
622                 else
623                         n = &(*p)->rb_right;
624
625                 if (n == &(*p)->rb_right)
626                         left = 0;
627
628                 p = n;
629         }
630
631         if (left)
632                 service_tree->left = &cfqq->rb_node;
633
634         cfqq->rb_key = rb_key;
635         rb_link_node(&cfqq->rb_node, parent, p);
636         rb_insert_color(&cfqq->rb_node, &service_tree->rb);
637         service_tree->count++;
638 }
639
640 static struct cfq_queue *
641 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
642                      sector_t sector, struct rb_node **ret_parent,
643                      struct rb_node ***rb_link)
644 {
645         struct rb_node **p, *parent;
646         struct cfq_queue *cfqq = NULL;
647
648         parent = NULL;
649         p = &root->rb_node;
650         while (*p) {
651                 struct rb_node **n;
652
653                 parent = *p;
654                 cfqq = rb_entry(parent, struct cfq_queue, p_node);
655
656                 /*
657                  * Sort strictly based on sector.  Smallest to the left,
658                  * largest to the right.
659                  */
660                 if (sector > blk_rq_pos(cfqq->next_rq))
661                         n = &(*p)->rb_right;
662                 else if (sector < blk_rq_pos(cfqq->next_rq))
663                         n = &(*p)->rb_left;
664                 else
665                         break;
666                 p = n;
667                 cfqq = NULL;
668         }
669
670         *ret_parent = parent;
671         if (rb_link)
672                 *rb_link = p;
673         return cfqq;
674 }
675
676 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
677 {
678         struct rb_node **p, *parent;
679         struct cfq_queue *__cfqq;
680
681         if (cfqq->p_root) {
682                 rb_erase(&cfqq->p_node, cfqq->p_root);
683                 cfqq->p_root = NULL;
684         }
685
686         if (cfq_class_idle(cfqq))
687                 return;
688         if (!cfqq->next_rq)
689                 return;
690
691         cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
692         __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
693                                       blk_rq_pos(cfqq->next_rq), &parent, &p);
694         if (!__cfqq) {
695                 rb_link_node(&cfqq->p_node, parent, p);
696                 rb_insert_color(&cfqq->p_node, cfqq->p_root);
697         } else
698                 cfqq->p_root = NULL;
699 }
700
701 /*
702  * Update cfqq's position in the service tree.
703  */
704 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
705 {
706         /*
707          * Resorting requires the cfqq to be on the RR list already.
708          */
709         if (cfq_cfqq_on_rr(cfqq)) {
710                 cfq_service_tree_add(cfqd, cfqq, 0);
711                 cfq_prio_tree_add(cfqd, cfqq);
712         }
713 }
714
715 /*
716  * add to busy list of queues for service, trying to be fair in ordering
717  * the pending list according to last request service
718  */
719 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
720 {
721         cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
722         BUG_ON(cfq_cfqq_on_rr(cfqq));
723         cfq_mark_cfqq_on_rr(cfqq);
724         cfqd->busy_queues++;
725         if (cfq_class_rt(cfqq))
726                 cfqd->busy_rt_queues++;
727         cfq_resort_rr_list(cfqd, cfqq);
728 }
729
730 /*
731  * Called when the cfqq no longer has requests pending, remove it from
732  * the service tree.
733  */
734 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
735 {
736         cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
737         BUG_ON(!cfq_cfqq_on_rr(cfqq));
738         cfq_clear_cfqq_on_rr(cfqq);
739
740         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
741                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
742                 cfqq->service_tree = NULL;
743         }
744         if (cfqq->p_root) {
745                 rb_erase(&cfqq->p_node, cfqq->p_root);
746                 cfqq->p_root = NULL;
747         }
748
749         BUG_ON(!cfqd->busy_queues);
750         cfqd->busy_queues--;
751         if (cfq_class_rt(cfqq))
752                 cfqd->busy_rt_queues--;
753 }
754
755 /*
756  * rb tree support functions
757  */
758 static void cfq_del_rq_rb(struct request *rq)
759 {
760         struct cfq_queue *cfqq = RQ_CFQQ(rq);
761         struct cfq_data *cfqd = cfqq->cfqd;
762         const int sync = rq_is_sync(rq);
763
764         BUG_ON(!cfqq->queued[sync]);
765         cfqq->queued[sync]--;
766
767         elv_rb_del(&cfqq->sort_list, rq);
768
769         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
770                 cfq_del_cfqq_rr(cfqd, cfqq);
771 }
772
773 static void cfq_add_rq_rb(struct request *rq)
774 {
775         struct cfq_queue *cfqq = RQ_CFQQ(rq);
776         struct cfq_data *cfqd = cfqq->cfqd;
777         struct request *__alias, *prev;
778
779         cfqq->queued[rq_is_sync(rq)]++;
780
781         /*
782          * looks a little odd, but the first insert might return an alias.
783          * if that happens, put the alias on the dispatch list
784          */
785         while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
786                 cfq_dispatch_insert(cfqd->queue, __alias);
787
788         if (!cfq_cfqq_on_rr(cfqq))
789                 cfq_add_cfqq_rr(cfqd, cfqq);
790
791         /*
792          * check if this request is a better next-serve candidate
793          */
794         prev = cfqq->next_rq;
795         cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
796
797         /*
798          * adjust priority tree position, if ->next_rq changes
799          */
800         if (prev != cfqq->next_rq)
801                 cfq_prio_tree_add(cfqd, cfqq);
802
803         BUG_ON(!cfqq->next_rq);
804 }
805
806 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
807 {
808         elv_rb_del(&cfqq->sort_list, rq);
809         cfqq->queued[rq_is_sync(rq)]--;
810         cfq_add_rq_rb(rq);
811 }
812
813 static struct request *
814 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
815 {
816         struct task_struct *tsk = current;
817         struct cfq_io_context *cic;
818         struct cfq_queue *cfqq;
819
820         cic = cfq_cic_lookup(cfqd, tsk->io_context);
821         if (!cic)
822                 return NULL;
823
824         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
825         if (cfqq) {
826                 sector_t sector = bio->bi_sector + bio_sectors(bio);
827
828                 return elv_rb_find(&cfqq->sort_list, sector);
829         }
830
831         return NULL;
832 }
833
834 static void cfq_activate_request(struct request_queue *q, struct request *rq)
835 {
836         struct cfq_data *cfqd = q->elevator->elevator_data;
837
838         cfqd->rq_in_driver[rq_is_sync(rq)]++;
839         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
840                                                 rq_in_driver(cfqd));
841
842         cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
843 }
844
845 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
846 {
847         struct cfq_data *cfqd = q->elevator->elevator_data;
848         const int sync = rq_is_sync(rq);
849
850         WARN_ON(!cfqd->rq_in_driver[sync]);
851         cfqd->rq_in_driver[sync]--;
852         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
853                                                 rq_in_driver(cfqd));
854 }
855
856 static void cfq_remove_request(struct request *rq)
857 {
858         struct cfq_queue *cfqq = RQ_CFQQ(rq);
859
860         if (cfqq->next_rq == rq)
861                 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
862
863         list_del_init(&rq->queuelist);
864         cfq_del_rq_rb(rq);
865
866         cfqq->cfqd->rq_queued--;
867         if (rq_is_meta(rq)) {
868                 WARN_ON(!cfqq->meta_pending);
869                 cfqq->meta_pending--;
870         }
871 }
872
873 static int cfq_merge(struct request_queue *q, struct request **req,
874                      struct bio *bio)
875 {
876         struct cfq_data *cfqd = q->elevator->elevator_data;
877         struct request *__rq;
878
879         __rq = cfq_find_rq_fmerge(cfqd, bio);
880         if (__rq && elv_rq_merge_ok(__rq, bio)) {
881                 *req = __rq;
882                 return ELEVATOR_FRONT_MERGE;
883         }
884
885         return ELEVATOR_NO_MERGE;
886 }
887
888 static void cfq_merged_request(struct request_queue *q, struct request *req,
889                                int type)
890 {
891         if (type == ELEVATOR_FRONT_MERGE) {
892                 struct cfq_queue *cfqq = RQ_CFQQ(req);
893
894                 cfq_reposition_rq_rb(cfqq, req);
895         }
896 }
897
898 static void
899 cfq_merged_requests(struct request_queue *q, struct request *rq,
900                     struct request *next)
901 {
902         /*
903          * reposition in fifo if next is older than rq
904          */
905         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
906             time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
907                 list_move(&rq->queuelist, &next->queuelist);
908                 rq_set_fifo_time(rq, rq_fifo_time(next));
909         }
910
911         cfq_remove_request(next);
912 }
913
914 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
915                            struct bio *bio)
916 {
917         struct cfq_data *cfqd = q->elevator->elevator_data;
918         struct cfq_io_context *cic;
919         struct cfq_queue *cfqq;
920
921         /*
922          * Disallow merge of a sync bio into an async request.
923          */
924         if (cfq_bio_sync(bio) && !rq_is_sync(rq))
925                 return false;
926
927         /*
928          * Lookup the cfqq that this bio will be queued with. Allow
929          * merge only if rq is queued there.
930          */
931         cic = cfq_cic_lookup(cfqd, current->io_context);
932         if (!cic)
933                 return false;
934
935         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
936         return cfqq == RQ_CFQQ(rq);
937 }
938
939 static void __cfq_set_active_queue(struct cfq_data *cfqd,
940                                    struct cfq_queue *cfqq)
941 {
942         if (cfqq) {
943                 cfq_log_cfqq(cfqd, cfqq, "set_active");
944                 cfqq->slice_end = 0;
945                 cfqq->slice_dispatch = 0;
946
947                 cfq_clear_cfqq_wait_request(cfqq);
948                 cfq_clear_cfqq_must_dispatch(cfqq);
949                 cfq_clear_cfqq_must_alloc_slice(cfqq);
950                 cfq_clear_cfqq_fifo_expire(cfqq);
951                 cfq_mark_cfqq_slice_new(cfqq);
952
953                 del_timer(&cfqd->idle_slice_timer);
954         }
955
956         cfqd->active_queue = cfqq;
957 }
958
959 /*
960  * current cfqq expired its slice (or was too idle), select new one
961  */
962 static void
963 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
964                     bool timed_out)
965 {
966         cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
967
968         if (cfq_cfqq_wait_request(cfqq))
969                 del_timer(&cfqd->idle_slice_timer);
970
971         cfq_clear_cfqq_wait_request(cfqq);
972
973         /*
974          * store what was left of this slice, if the queue idled/timed out
975          */
976         if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
977                 cfqq->slice_resid = cfqq->slice_end - jiffies;
978                 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
979         }
980
981         cfq_resort_rr_list(cfqd, cfqq);
982
983         if (cfqq == cfqd->active_queue)
984                 cfqd->active_queue = NULL;
985
986         if (cfqd->active_cic) {
987                 put_io_context(cfqd->active_cic->ioc);
988                 cfqd->active_cic = NULL;
989         }
990 }
991
992 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
993 {
994         struct cfq_queue *cfqq = cfqd->active_queue;
995
996         if (cfqq)
997                 __cfq_slice_expired(cfqd, cfqq, timed_out);
998 }
999
1000 /*
1001  * Get next queue for service. Unless we have a queue preemption,
1002  * we'll simply select the first cfqq in the service tree.
1003  */
1004 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1005 {
1006         if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
1007                 return NULL;
1008
1009         return cfq_rb_first(&cfqd->service_tree);
1010 }
1011
1012 /*
1013  * Get and set a new active queue for service.
1014  */
1015 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1016                                               struct cfq_queue *cfqq)
1017 {
1018         if (!cfqq)
1019                 cfqq = cfq_get_next_queue(cfqd);
1020
1021         __cfq_set_active_queue(cfqd, cfqq);
1022         return cfqq;
1023 }
1024
1025 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1026                                           struct request *rq)
1027 {
1028         if (blk_rq_pos(rq) >= cfqd->last_position)
1029                 return blk_rq_pos(rq) - cfqd->last_position;
1030         else
1031                 return cfqd->last_position - blk_rq_pos(rq);
1032 }
1033
1034 #define CFQQ_SEEK_THR           8 * 1024
1035 #define CFQQ_SEEKY(cfqq)        ((cfqq)->seek_mean > CFQQ_SEEK_THR)
1036
1037 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1038                                struct request *rq)
1039 {
1040         sector_t sdist = cfqq->seek_mean;
1041
1042         if (!sample_valid(cfqq->seek_samples))
1043                 sdist = CFQQ_SEEK_THR;
1044
1045         return cfq_dist_from_last(cfqd, rq) <= sdist;
1046 }
1047
1048 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1049                                     struct cfq_queue *cur_cfqq)
1050 {
1051         struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1052         struct rb_node *parent, *node;
1053         struct cfq_queue *__cfqq;
1054         sector_t sector = cfqd->last_position;
1055
1056         if (RB_EMPTY_ROOT(root))
1057                 return NULL;
1058
1059         /*
1060          * First, if we find a request starting at the end of the last
1061          * request, choose it.
1062          */
1063         __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1064         if (__cfqq)
1065                 return __cfqq;
1066
1067         /*
1068          * If the exact sector wasn't found, the parent of the NULL leaf
1069          * will contain the closest sector.
1070          */
1071         __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1072         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1073                 return __cfqq;
1074
1075         if (blk_rq_pos(__cfqq->next_rq) < sector)
1076                 node = rb_next(&__cfqq->p_node);
1077         else
1078                 node = rb_prev(&__cfqq->p_node);
1079         if (!node)
1080                 return NULL;
1081
1082         __cfqq = rb_entry(node, struct cfq_queue, p_node);
1083         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1084                 return __cfqq;
1085
1086         return NULL;
1087 }
1088
1089 /*
1090  * cfqd - obvious
1091  * cur_cfqq - passed in so that we don't decide that the current queue is
1092  *            closely cooperating with itself.
1093  *
1094  * So, basically we're assuming that that cur_cfqq has dispatched at least
1095  * one request, and that cfqd->last_position reflects a position on the disk
1096  * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1097  * assumption.
1098  */
1099 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1100                                               struct cfq_queue *cur_cfqq)
1101 {
1102         struct cfq_queue *cfqq;
1103
1104         if (!cfq_cfqq_sync(cur_cfqq))
1105                 return NULL;
1106         if (CFQQ_SEEKY(cur_cfqq))
1107                 return NULL;
1108
1109         /*
1110          * We should notice if some of the queues are cooperating, eg
1111          * working closely on the same area of the disk. In that case,
1112          * we can group them together and don't waste time idling.
1113          */
1114         cfqq = cfqq_close(cfqd, cur_cfqq);
1115         if (!cfqq)
1116                 return NULL;
1117
1118         /*
1119          * It only makes sense to merge sync queues.
1120          */
1121         if (!cfq_cfqq_sync(cfqq))
1122                 return NULL;
1123         if (CFQQ_SEEKY(cfqq))
1124                 return NULL;
1125
1126         return cfqq;
1127 }
1128
1129 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1130 {
1131         struct cfq_queue *cfqq = cfqd->active_queue;
1132         struct cfq_io_context *cic;
1133         unsigned long sl;
1134
1135         /*
1136          * SSD device without seek penalty, disable idling. But only do so
1137          * for devices that support queuing, otherwise we still have a problem
1138          * with sync vs async workloads.
1139          */
1140         if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1141                 return;
1142
1143         WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1144         WARN_ON(cfq_cfqq_slice_new(cfqq));
1145
1146         /*
1147          * idle is disabled, either manually or by past process history
1148          */
1149         if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
1150                 return;
1151
1152         /*
1153          * still requests with the driver, don't idle
1154          */
1155         if (rq_in_driver(cfqd))
1156                 return;
1157
1158         /*
1159          * task has exited, don't wait
1160          */
1161         cic = cfqd->active_cic;
1162         if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1163                 return;
1164
1165         /*
1166          * If our average think time is larger than the remaining time
1167          * slice, then don't idle. This avoids overrunning the allotted
1168          * time slice.
1169          */
1170         if (sample_valid(cic->ttime_samples) &&
1171             (cfqq->slice_end - jiffies < cic->ttime_mean))
1172                 return;
1173
1174         cfq_mark_cfqq_wait_request(cfqq);
1175
1176         /*
1177          * we don't want to idle for seeks, but we do want to allow
1178          * fair distribution of slice time for a process doing back-to-back
1179          * seeks. so allow a little bit of time for him to submit a new rq
1180          */
1181         sl = cfqd->cfq_slice_idle;
1182         if (sample_valid(cfqq->seek_samples) && CFQQ_SEEKY(cfqq))
1183                 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
1184
1185         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1186         cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1187 }
1188
1189 /*
1190  * Move request from internal lists to the request queue dispatch list.
1191  */
1192 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1193 {
1194         struct cfq_data *cfqd = q->elevator->elevator_data;
1195         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1196
1197         cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1198
1199         cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1200         cfq_remove_request(rq);
1201         cfqq->dispatched++;
1202         elv_dispatch_sort(q, rq);
1203
1204         if (cfq_cfqq_sync(cfqq))
1205                 cfqd->sync_flight++;
1206 }
1207
1208 /*
1209  * return expired entry, or NULL to just start from scratch in rbtree
1210  */
1211 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1212 {
1213         struct request *rq = NULL;
1214
1215         if (cfq_cfqq_fifo_expire(cfqq))
1216                 return NULL;
1217
1218         cfq_mark_cfqq_fifo_expire(cfqq);
1219
1220         if (list_empty(&cfqq->fifo))
1221                 return NULL;
1222
1223         rq = rq_entry_fifo(cfqq->fifo.next);
1224         if (time_before(jiffies, rq_fifo_time(rq)))
1225                 rq = NULL;
1226
1227         cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1228         return rq;
1229 }
1230
1231 static inline int
1232 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1233 {
1234         const int base_rq = cfqd->cfq_slice_async_rq;
1235
1236         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1237
1238         return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1239 }
1240
1241 /*
1242  * Must be called with the queue_lock held.
1243  */
1244 static int cfqq_process_refs(struct cfq_queue *cfqq)
1245 {
1246         int process_refs, io_refs;
1247
1248         io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1249         process_refs = atomic_read(&cfqq->ref) - io_refs;
1250         BUG_ON(process_refs < 0);
1251         return process_refs;
1252 }
1253
1254 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1255 {
1256         int process_refs, new_process_refs;
1257         struct cfq_queue *__cfqq;
1258
1259         /* Avoid a circular list and skip interim queue merges */
1260         while ((__cfqq = new_cfqq->new_cfqq)) {
1261                 if (__cfqq == cfqq)
1262                         return;
1263                 new_cfqq = __cfqq;
1264         }
1265
1266         process_refs = cfqq_process_refs(cfqq);
1267         /*
1268          * If the process for the cfqq has gone away, there is no
1269          * sense in merging the queues.
1270          */
1271         if (process_refs == 0)
1272                 return;
1273
1274         /*
1275          * Merge in the direction of the lesser amount of work.
1276          */
1277         new_process_refs = cfqq_process_refs(new_cfqq);
1278         if (new_process_refs >= process_refs) {
1279                 cfqq->new_cfqq = new_cfqq;
1280                 atomic_add(process_refs, &new_cfqq->ref);
1281         } else {
1282                 new_cfqq->new_cfqq = cfqq;
1283                 atomic_add(new_process_refs, &cfqq->ref);
1284         }
1285 }
1286
1287 /*
1288  * Select a queue for service. If we have a current active queue,
1289  * check whether to continue servicing it, or retrieve and set a new one.
1290  */
1291 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1292 {
1293         struct cfq_queue *cfqq, *new_cfqq = NULL;
1294
1295         cfqq = cfqd->active_queue;
1296         if (!cfqq)
1297                 goto new_queue;
1298
1299         /*
1300          * The active queue has run out of time, expire it and select new.
1301          */
1302         if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
1303                 goto expire;
1304
1305         /*
1306          * The active queue has requests and isn't expired, allow it to
1307          * dispatch.
1308          */
1309         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1310                 goto keep_queue;
1311
1312         /*
1313          * If another queue has a request waiting within our mean seek
1314          * distance, let it run.  The expire code will check for close
1315          * cooperators and put the close queue at the front of the service
1316          * tree.  If possible, merge the expiring queue with the new cfqq.
1317          */
1318         new_cfqq = cfq_close_cooperator(cfqd, cfqq);
1319         if (new_cfqq) {
1320                 if (!cfqq->new_cfqq)
1321                         cfq_setup_merge(cfqq, new_cfqq);
1322                 goto expire;
1323         }
1324
1325         /*
1326          * No requests pending. If the active queue still has requests in
1327          * flight or is idling for a new request, allow either of these
1328          * conditions to happen (or time out) before selecting a new queue.
1329          */
1330         if (timer_pending(&cfqd->idle_slice_timer) ||
1331             (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
1332                 cfqq = NULL;
1333                 goto keep_queue;
1334         }
1335
1336 expire:
1337         cfq_slice_expired(cfqd, 0);
1338 new_queue:
1339         cfqq = cfq_set_active_queue(cfqd, new_cfqq);
1340 keep_queue:
1341         return cfqq;
1342 }
1343
1344 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1345 {
1346         int dispatched = 0;
1347
1348         while (cfqq->next_rq) {
1349                 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1350                 dispatched++;
1351         }
1352
1353         BUG_ON(!list_empty(&cfqq->fifo));
1354         return dispatched;
1355 }
1356
1357 /*
1358  * Drain our current requests. Used for barriers and when switching
1359  * io schedulers on-the-fly.
1360  */
1361 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1362 {
1363         struct cfq_queue *cfqq;
1364         int dispatched = 0;
1365
1366         while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
1367                 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1368
1369         cfq_slice_expired(cfqd, 0);
1370
1371         BUG_ON(cfqd->busy_queues);
1372
1373         cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1374         return dispatched;
1375 }
1376
1377 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1378 {
1379         unsigned int max_dispatch;
1380
1381         /*
1382          * Drain async requests before we start sync IO
1383          */
1384         if (cfq_cfqq_idle_window(cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
1385                 return false;
1386
1387         /*
1388          * If this is an async queue and we have sync IO in flight, let it wait
1389          */
1390         if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1391                 return false;
1392
1393         max_dispatch = cfqd->cfq_quantum;
1394         if (cfq_class_idle(cfqq))
1395                 max_dispatch = 1;
1396
1397         /*
1398          * Does this cfqq already have too much IO in flight?
1399          */
1400         if (cfqq->dispatched >= max_dispatch) {
1401                 /*
1402                  * idle queue must always only have a single IO in flight
1403                  */
1404                 if (cfq_class_idle(cfqq))
1405                         return false;
1406
1407                 /*
1408                  * We have other queues, don't allow more IO from this one
1409                  */
1410                 if (cfqd->busy_queues > 1)
1411                         return false;
1412
1413                 /*
1414                  * Sole queue user, allow bigger slice
1415                  */
1416                 max_dispatch *= 4;
1417         }
1418
1419         /*
1420          * Async queues must wait a bit before being allowed dispatch.
1421          * We also ramp up the dispatch depth gradually for async IO,
1422          * based on the last sync IO we serviced
1423          */
1424         if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
1425                 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
1426                 unsigned int depth;
1427
1428                 depth = last_sync / cfqd->cfq_slice[1];
1429                 if (!depth && !cfqq->dispatched)
1430                         depth = 1;
1431                 if (depth < max_dispatch)
1432                         max_dispatch = depth;
1433         }
1434
1435         /*
1436          * If we're below the current max, allow a dispatch
1437          */
1438         return cfqq->dispatched < max_dispatch;
1439 }
1440
1441 /*
1442  * Dispatch a request from cfqq, moving them to the request queue
1443  * dispatch list.
1444  */
1445 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1446 {
1447         struct request *rq;
1448
1449         BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1450
1451         if (!cfq_may_dispatch(cfqd, cfqq))
1452                 return false;
1453
1454         /*
1455          * follow expired path, else get first next available
1456          */
1457         rq = cfq_check_fifo(cfqq);
1458         if (!rq)
1459                 rq = cfqq->next_rq;
1460
1461         /*
1462          * insert request into driver dispatch list
1463          */
1464         cfq_dispatch_insert(cfqd->queue, rq);
1465
1466         if (!cfqd->active_cic) {
1467                 struct cfq_io_context *cic = RQ_CIC(rq);
1468
1469                 atomic_long_inc(&cic->ioc->refcount);
1470                 cfqd->active_cic = cic;
1471         }
1472
1473         return true;
1474 }
1475
1476 /*
1477  * Find the cfqq that we need to service and move a request from that to the
1478  * dispatch list
1479  */
1480 static int cfq_dispatch_requests(struct request_queue *q, int force)
1481 {
1482         struct cfq_data *cfqd = q->elevator->elevator_data;
1483         struct cfq_queue *cfqq;
1484
1485         if (!cfqd->busy_queues)
1486                 return 0;
1487
1488         if (unlikely(force))
1489                 return cfq_forced_dispatch(cfqd);
1490
1491         cfqq = cfq_select_queue(cfqd);
1492         if (!cfqq)
1493                 return 0;
1494
1495         /*
1496          * Dispatch a request from this cfqq, if it is allowed
1497          */
1498         if (!cfq_dispatch_request(cfqd, cfqq))
1499                 return 0;
1500
1501         cfqq->slice_dispatch++;
1502         cfq_clear_cfqq_must_dispatch(cfqq);
1503
1504         /*
1505          * expire an async queue immediately if it has used up its slice. idle
1506          * queue always expire after 1 dispatch round.
1507          */
1508         if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1509             cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1510             cfq_class_idle(cfqq))) {
1511                 cfqq->slice_end = jiffies + 1;
1512                 cfq_slice_expired(cfqd, 0);
1513         }
1514
1515         cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
1516         return 1;
1517 }
1518
1519 /*
1520  * task holds one reference to the queue, dropped when task exits. each rq
1521  * in-flight on this queue also holds a reference, dropped when rq is freed.
1522  *
1523  * queue lock must be held here.
1524  */
1525 static void cfq_put_queue(struct cfq_queue *cfqq)
1526 {
1527         struct cfq_data *cfqd = cfqq->cfqd;
1528
1529         BUG_ON(atomic_read(&cfqq->ref) <= 0);
1530
1531         if (!atomic_dec_and_test(&cfqq->ref))
1532                 return;
1533
1534         cfq_log_cfqq(cfqd, cfqq, "put_queue");
1535         BUG_ON(rb_first(&cfqq->sort_list));
1536         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1537         BUG_ON(cfq_cfqq_on_rr(cfqq));
1538
1539         if (unlikely(cfqd->active_queue == cfqq)) {
1540                 __cfq_slice_expired(cfqd, cfqq, 0);
1541                 cfq_schedule_dispatch(cfqd);
1542         }
1543
1544         kmem_cache_free(cfq_pool, cfqq);
1545 }
1546
1547 /*
1548  * Must always be called with the rcu_read_lock() held
1549  */
1550 static void
1551 __call_for_each_cic(struct io_context *ioc,
1552                     void (*func)(struct io_context *, struct cfq_io_context *))
1553 {
1554         struct cfq_io_context *cic;
1555         struct hlist_node *n;
1556
1557         hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1558                 func(ioc, cic);
1559 }
1560
1561 /*
1562  * Call func for each cic attached to this ioc.
1563  */
1564 static void
1565 call_for_each_cic(struct io_context *ioc,
1566                   void (*func)(struct io_context *, struct cfq_io_context *))
1567 {
1568         rcu_read_lock();
1569         __call_for_each_cic(ioc, func);
1570         rcu_read_unlock();
1571 }
1572
1573 static void cfq_cic_free_rcu(struct rcu_head *head)
1574 {
1575         struct cfq_io_context *cic;
1576
1577         cic = container_of(head, struct cfq_io_context, rcu_head);
1578
1579         kmem_cache_free(cfq_ioc_pool, cic);
1580         elv_ioc_count_dec(cfq_ioc_count);
1581
1582         if (ioc_gone) {
1583                 /*
1584                  * CFQ scheduler is exiting, grab exit lock and check
1585                  * the pending io context count. If it hits zero,
1586                  * complete ioc_gone and set it back to NULL
1587                  */
1588                 spin_lock(&ioc_gone_lock);
1589                 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
1590                         complete(ioc_gone);
1591                         ioc_gone = NULL;
1592                 }
1593                 spin_unlock(&ioc_gone_lock);
1594         }
1595 }
1596
1597 static void cfq_cic_free(struct cfq_io_context *cic)
1598 {
1599         call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1600 }
1601
1602 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1603 {
1604         unsigned long flags;
1605
1606         BUG_ON(!cic->dead_key);
1607
1608         spin_lock_irqsave(&ioc->lock, flags);
1609         radix_tree_delete(&ioc->radix_root, cic->dead_key);
1610         hlist_del_rcu(&cic->cic_list);
1611         spin_unlock_irqrestore(&ioc->lock, flags);
1612
1613         cfq_cic_free(cic);
1614 }
1615
1616 /*
1617  * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1618  * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1619  * and ->trim() which is called with the task lock held
1620  */
1621 static void cfq_free_io_context(struct io_context *ioc)
1622 {
1623         /*
1624          * ioc->refcount is zero here, or we are called from elv_unregister(),
1625          * so no more cic's are allowed to be linked into this ioc.  So it
1626          * should be ok to iterate over the known list, we will see all cic's
1627          * since no new ones are added.
1628          */
1629         __call_for_each_cic(ioc, cic_free_func);
1630 }
1631
1632 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1633 {
1634         struct cfq_queue *__cfqq, *next;
1635
1636         if (unlikely(cfqq == cfqd->active_queue)) {
1637                 __cfq_slice_expired(cfqd, cfqq, 0);
1638                 cfq_schedule_dispatch(cfqd);
1639         }
1640
1641         /*
1642          * If this queue was scheduled to merge with another queue, be
1643          * sure to drop the reference taken on that queue (and others in
1644          * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
1645          */
1646         __cfqq = cfqq->new_cfqq;
1647         while (__cfqq) {
1648                 if (__cfqq == cfqq) {
1649                         WARN(1, "cfqq->new_cfqq loop detected\n");
1650                         break;
1651                 }
1652                 next = __cfqq->new_cfqq;
1653                 cfq_put_queue(__cfqq);
1654                 __cfqq = next;
1655         }
1656
1657         cfq_put_queue(cfqq);
1658 }
1659
1660 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1661                                          struct cfq_io_context *cic)
1662 {
1663         struct io_context *ioc = cic->ioc;
1664
1665         list_del_init(&cic->queue_list);
1666
1667         /*
1668          * Make sure key == NULL is seen for dead queues
1669          */
1670         smp_wmb();
1671         cic->dead_key = (unsigned long) cic->key;
1672         cic->key = NULL;
1673
1674         if (ioc->ioc_data == cic)
1675                 rcu_assign_pointer(ioc->ioc_data, NULL);
1676
1677         if (cic->cfqq[BLK_RW_ASYNC]) {
1678                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1679                 cic->cfqq[BLK_RW_ASYNC] = NULL;
1680         }
1681
1682         if (cic->cfqq[BLK_RW_SYNC]) {
1683                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1684                 cic->cfqq[BLK_RW_SYNC] = NULL;
1685         }
1686 }
1687
1688 static void cfq_exit_single_io_context(struct io_context *ioc,
1689                                        struct cfq_io_context *cic)
1690 {
1691         struct cfq_data *cfqd = cic->key;
1692
1693         if (cfqd) {
1694                 struct request_queue *q = cfqd->queue;
1695                 unsigned long flags;
1696
1697                 spin_lock_irqsave(q->queue_lock, flags);
1698
1699                 /*
1700                  * Ensure we get a fresh copy of the ->key to prevent
1701                  * race between exiting task and queue
1702                  */
1703                 smp_read_barrier_depends();
1704                 if (cic->key)
1705                         __cfq_exit_single_io_context(cfqd, cic);
1706
1707                 spin_unlock_irqrestore(q->queue_lock, flags);
1708         }
1709 }
1710
1711 /*
1712  * The process that ioc belongs to has exited, we need to clean up
1713  * and put the internal structures we have that belongs to that process.
1714  */
1715 static void cfq_exit_io_context(struct io_context *ioc)
1716 {
1717         call_for_each_cic(ioc, cfq_exit_single_io_context);
1718 }
1719
1720 static struct cfq_io_context *
1721 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1722 {
1723         struct cfq_io_context *cic;
1724
1725         cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1726                                                         cfqd->queue->node);
1727         if (cic) {
1728                 cic->last_end_request = jiffies;
1729                 INIT_LIST_HEAD(&cic->queue_list);
1730                 INIT_HLIST_NODE(&cic->cic_list);
1731                 cic->dtor = cfq_free_io_context;
1732                 cic->exit = cfq_exit_io_context;
1733                 elv_ioc_count_inc(cfq_ioc_count);
1734         }
1735
1736         return cic;
1737 }
1738
1739 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1740 {
1741         struct task_struct *tsk = current;
1742         int ioprio_class;
1743
1744         if (!cfq_cfqq_prio_changed(cfqq))
1745                 return;
1746
1747         ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1748         switch (ioprio_class) {
1749         default:
1750                 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1751         case IOPRIO_CLASS_NONE:
1752                 /*
1753                  * no prio set, inherit CPU scheduling settings
1754                  */
1755                 cfqq->ioprio = task_nice_ioprio(tsk);
1756                 cfqq->ioprio_class = task_nice_ioclass(tsk);
1757                 break;
1758         case IOPRIO_CLASS_RT:
1759                 cfqq->ioprio = task_ioprio(ioc);
1760                 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1761                 break;
1762         case IOPRIO_CLASS_BE:
1763                 cfqq->ioprio = task_ioprio(ioc);
1764                 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1765                 break;
1766         case IOPRIO_CLASS_IDLE:
1767                 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1768                 cfqq->ioprio = 7;
1769                 cfq_clear_cfqq_idle_window(cfqq);
1770                 break;
1771         }
1772
1773         /*
1774          * keep track of original prio settings in case we have to temporarily
1775          * elevate the priority of this queue
1776          */
1777         cfqq->org_ioprio = cfqq->ioprio;
1778         cfqq->org_ioprio_class = cfqq->ioprio_class;
1779         cfq_clear_cfqq_prio_changed(cfqq);
1780 }
1781
1782 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
1783 {
1784         struct cfq_data *cfqd = cic->key;
1785         struct cfq_queue *cfqq;
1786         unsigned long flags;
1787
1788         if (unlikely(!cfqd))
1789                 return;
1790
1791         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1792
1793         cfqq = cic->cfqq[BLK_RW_ASYNC];
1794         if (cfqq) {
1795                 struct cfq_queue *new_cfqq;
1796                 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
1797                                                 GFP_ATOMIC);
1798                 if (new_cfqq) {
1799                         cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
1800                         cfq_put_queue(cfqq);
1801                 }
1802         }
1803
1804         cfqq = cic->cfqq[BLK_RW_SYNC];
1805         if (cfqq)
1806                 cfq_mark_cfqq_prio_changed(cfqq);
1807
1808         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1809 }
1810
1811 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1812 {
1813         call_for_each_cic(ioc, changed_ioprio);
1814         ioc->ioprio_changed = 0;
1815 }
1816
1817 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1818                           pid_t pid, bool is_sync)
1819 {
1820         RB_CLEAR_NODE(&cfqq->rb_node);
1821         RB_CLEAR_NODE(&cfqq->p_node);
1822         INIT_LIST_HEAD(&cfqq->fifo);
1823
1824         atomic_set(&cfqq->ref, 0);
1825         cfqq->cfqd = cfqd;
1826
1827         cfq_mark_cfqq_prio_changed(cfqq);
1828
1829         if (is_sync) {
1830                 if (!cfq_class_idle(cfqq))
1831                         cfq_mark_cfqq_idle_window(cfqq);
1832                 cfq_mark_cfqq_sync(cfqq);
1833         }
1834         cfqq->pid = pid;
1835 }
1836
1837 static struct cfq_queue *
1838 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
1839                      struct io_context *ioc, gfp_t gfp_mask)
1840 {
1841         struct cfq_queue *cfqq, *new_cfqq = NULL;
1842         struct cfq_io_context *cic;
1843
1844 retry:
1845         cic = cfq_cic_lookup(cfqd, ioc);
1846         /* cic always exists here */
1847         cfqq = cic_to_cfqq(cic, is_sync);
1848
1849         /*
1850          * Always try a new alloc if we fell back to the OOM cfqq
1851          * originally, since it should just be a temporary situation.
1852          */
1853         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
1854                 cfqq = NULL;
1855                 if (new_cfqq) {
1856                         cfqq = new_cfqq;
1857                         new_cfqq = NULL;
1858                 } else if (gfp_mask & __GFP_WAIT) {
1859                         spin_unlock_irq(cfqd->queue->queue_lock);
1860                         new_cfqq = kmem_cache_alloc_node(cfq_pool,
1861                                         gfp_mask | __GFP_ZERO,
1862                                         cfqd->queue->node);
1863                         spin_lock_irq(cfqd->queue->queue_lock);
1864                         if (new_cfqq)
1865                                 goto retry;
1866                 } else {
1867                         cfqq = kmem_cache_alloc_node(cfq_pool,
1868                                         gfp_mask | __GFP_ZERO,
1869                                         cfqd->queue->node);
1870                 }
1871
1872                 if (cfqq) {
1873                         cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
1874                         cfq_init_prio_data(cfqq, ioc);
1875                         cfq_log_cfqq(cfqd, cfqq, "alloced");
1876                 } else
1877                         cfqq = &cfqd->oom_cfqq;
1878         }
1879
1880         if (new_cfqq)
1881                 kmem_cache_free(cfq_pool, new_cfqq);
1882
1883         return cfqq;
1884 }
1885
1886 static struct cfq_queue **
1887 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1888 {
1889         switch (ioprio_class) {
1890         case IOPRIO_CLASS_RT:
1891                 return &cfqd->async_cfqq[0][ioprio];
1892         case IOPRIO_CLASS_BE:
1893                 return &cfqd->async_cfqq[1][ioprio];
1894         case IOPRIO_CLASS_IDLE:
1895                 return &cfqd->async_idle_cfqq;
1896         default:
1897                 BUG();
1898         }
1899 }
1900
1901 static struct cfq_queue *
1902 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
1903               gfp_t gfp_mask)
1904 {
1905         const int ioprio = task_ioprio(ioc);
1906         const int ioprio_class = task_ioprio_class(ioc);
1907         struct cfq_queue **async_cfqq = NULL;
1908         struct cfq_queue *cfqq = NULL;
1909
1910         if (!is_sync) {
1911                 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1912                 cfqq = *async_cfqq;
1913         }
1914
1915         if (!cfqq)
1916                 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
1917
1918         /*
1919          * pin the queue now that it's allocated, scheduler exit will prune it
1920          */
1921         if (!is_sync && !(*async_cfqq)) {
1922                 atomic_inc(&cfqq->ref);
1923                 *async_cfqq = cfqq;
1924         }
1925
1926         atomic_inc(&cfqq->ref);
1927         return cfqq;
1928 }
1929
1930 /*
1931  * We drop cfq io contexts lazily, so we may find a dead one.
1932  */
1933 static void
1934 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1935                   struct cfq_io_context *cic)
1936 {
1937         unsigned long flags;
1938
1939         WARN_ON(!list_empty(&cic->queue_list));
1940
1941         spin_lock_irqsave(&ioc->lock, flags);
1942
1943         BUG_ON(ioc->ioc_data == cic);
1944
1945         radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
1946         hlist_del_rcu(&cic->cic_list);
1947         spin_unlock_irqrestore(&ioc->lock, flags);
1948
1949         cfq_cic_free(cic);
1950 }
1951
1952 static struct cfq_io_context *
1953 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1954 {
1955         struct cfq_io_context *cic;
1956         unsigned long flags;
1957         void *k;
1958
1959         if (unlikely(!ioc))
1960                 return NULL;
1961
1962         rcu_read_lock();
1963
1964         /*
1965          * we maintain a last-hit cache, to avoid browsing over the tree
1966          */
1967         cic = rcu_dereference(ioc->ioc_data);
1968         if (cic && cic->key == cfqd) {
1969                 rcu_read_unlock();
1970                 return cic;
1971         }
1972
1973         do {
1974                 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
1975                 rcu_read_unlock();
1976                 if (!cic)
1977                         break;
1978                 /* ->key must be copied to avoid race with cfq_exit_queue() */
1979                 k = cic->key;
1980                 if (unlikely(!k)) {
1981                         cfq_drop_dead_cic(cfqd, ioc, cic);
1982                         rcu_read_lock();
1983                         continue;
1984                 }
1985
1986                 spin_lock_irqsave(&ioc->lock, flags);
1987                 rcu_assign_pointer(ioc->ioc_data, cic);
1988                 spin_unlock_irqrestore(&ioc->lock, flags);
1989                 break;
1990         } while (1);
1991
1992         return cic;
1993 }
1994
1995 /*
1996  * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1997  * the process specific cfq io context when entered from the block layer.
1998  * Also adds the cic to a per-cfqd list, used when this queue is removed.
1999  */
2000 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2001                         struct cfq_io_context *cic, gfp_t gfp_mask)
2002 {
2003         unsigned long flags;
2004         int ret;
2005
2006         ret = radix_tree_preload(gfp_mask);
2007         if (!ret) {
2008                 cic->ioc = ioc;
2009                 cic->key = cfqd;
2010
2011                 spin_lock_irqsave(&ioc->lock, flags);
2012                 ret = radix_tree_insert(&ioc->radix_root,
2013                                                 (unsigned long) cfqd, cic);
2014                 if (!ret)
2015                         hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2016                 spin_unlock_irqrestore(&ioc->lock, flags);
2017
2018                 radix_tree_preload_end();
2019
2020                 if (!ret) {
2021                         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2022                         list_add(&cic->queue_list, &cfqd->cic_list);
2023                         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2024                 }
2025         }
2026
2027         if (ret)
2028                 printk(KERN_ERR "cfq: cic link failed!\n");
2029
2030         return ret;
2031 }
2032
2033 /*
2034  * Setup general io context and cfq io context. There can be several cfq
2035  * io contexts per general io context, if this process is doing io to more
2036  * than one device managed by cfq.
2037  */
2038 static struct cfq_io_context *
2039 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2040 {
2041         struct io_context *ioc = NULL;
2042         struct cfq_io_context *cic;
2043
2044         might_sleep_if(gfp_mask & __GFP_WAIT);
2045
2046         ioc = get_io_context(gfp_mask, cfqd->queue->node);
2047         if (!ioc)
2048                 return NULL;
2049
2050         cic = cfq_cic_lookup(cfqd, ioc);
2051         if (cic)
2052                 goto out;
2053
2054         cic = cfq_alloc_io_context(cfqd, gfp_mask);
2055         if (cic == NULL)
2056                 goto err;
2057
2058         if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2059                 goto err_free;
2060
2061 out:
2062         smp_read_barrier_depends();
2063         if (unlikely(ioc->ioprio_changed))
2064                 cfq_ioc_set_ioprio(ioc);
2065
2066         return cic;
2067 err_free:
2068         cfq_cic_free(cic);
2069 err:
2070         put_io_context(ioc);
2071         return NULL;
2072 }
2073
2074 static void
2075 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
2076 {
2077         unsigned long elapsed = jiffies - cic->last_end_request;
2078         unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2079
2080         cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2081         cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2082         cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2083 }
2084
2085 static void
2086 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2087                        struct request *rq)
2088 {
2089         sector_t sdist;
2090         u64 total;
2091
2092         if (!cfqq->last_request_pos)
2093                 sdist = 0;
2094         else if (cfqq->last_request_pos < blk_rq_pos(rq))
2095                 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2096         else
2097                 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2098
2099         /*
2100          * Don't allow the seek distance to get too large from the
2101          * odd fragment, pagein, etc
2102          */
2103         if (cfqq->seek_samples <= 60) /* second&third seek */
2104                 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
2105         else
2106                 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
2107
2108         cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
2109         cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
2110         total = cfqq->seek_total + (cfqq->seek_samples/2);
2111         do_div(total, cfqq->seek_samples);
2112         cfqq->seek_mean = (sector_t)total;
2113
2114         /*
2115          * If this cfqq is shared between multiple processes, check to
2116          * make sure that those processes are still issuing I/Os within
2117          * the mean seek distance.  If not, it may be time to break the
2118          * queues apart again.
2119          */
2120         if (cfq_cfqq_coop(cfqq)) {
2121                 if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
2122                         cfqq->seeky_start = jiffies;
2123                 else if (!CFQQ_SEEKY(cfqq))
2124                         cfqq->seeky_start = 0;
2125         }
2126 }
2127
2128 /*
2129  * Disable idle window if the process thinks too long or seeks so much that
2130  * it doesn't matter
2131  */
2132 static void
2133 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2134                        struct cfq_io_context *cic)
2135 {
2136         int old_idle, enable_idle;
2137
2138         /*
2139          * Don't idle for async or idle io prio class
2140          */
2141         if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
2142                 return;
2143
2144         enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
2145
2146         if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
2147             (!cfqd->cfq_latency && cfqd->hw_tag && CFQQ_SEEKY(cfqq)))
2148                 enable_idle = 0;
2149         else if (sample_valid(cic->ttime_samples)) {
2150                 unsigned int slice_idle = cfqd->cfq_slice_idle;
2151                 if (sample_valid(cfqq->seek_samples) && CFQQ_SEEKY(cfqq))
2152                         slice_idle = msecs_to_jiffies(CFQ_MIN_TT);
2153                 if (cic->ttime_mean > slice_idle)
2154                         enable_idle = 0;
2155                 else
2156                         enable_idle = 1;
2157         }
2158
2159         if (old_idle != enable_idle) {
2160                 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
2161                 if (enable_idle)
2162                         cfq_mark_cfqq_idle_window(cfqq);
2163                 else
2164                         cfq_clear_cfqq_idle_window(cfqq);
2165         }
2166 }
2167
2168 /*
2169  * Check if new_cfqq should preempt the currently active queue. Return 0 for
2170  * no or if we aren't sure, a 1 will cause a preempt.
2171  */
2172 static bool
2173 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
2174                    struct request *rq)
2175 {
2176         struct cfq_queue *cfqq;
2177
2178         cfqq = cfqd->active_queue;
2179         if (!cfqq)
2180                 return false;
2181
2182         if (cfq_slice_used(cfqq))
2183                 return true;
2184
2185         if (cfq_class_idle(new_cfqq))
2186                 return false;
2187
2188         if (cfq_class_idle(cfqq))
2189                 return true;
2190
2191         /*
2192          * if the new request is sync, but the currently running queue is
2193          * not, let the sync request have priority.
2194          */
2195         if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
2196                 return true;
2197
2198         /*
2199          * So both queues are sync. Let the new request get disk time if
2200          * it's a metadata request and the current queue is doing regular IO.
2201          */
2202         if (rq_is_meta(rq) && !cfqq->meta_pending)
2203                 return false;
2204
2205         /*
2206          * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2207          */
2208         if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2209                 return true;
2210
2211         if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2212                 return false;
2213
2214         /*
2215          * if this request is as-good as one we would expect from the
2216          * current cfqq, let it preempt
2217          */
2218         if (cfq_rq_close(cfqd, cfqq, rq))
2219                 return true;
2220
2221         return false;
2222 }
2223
2224 /*
2225  * cfqq preempts the active queue. if we allowed preempt with no slice left,
2226  * let it have half of its nominal slice.
2227  */
2228 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2229 {
2230         cfq_log_cfqq(cfqd, cfqq, "preempt");
2231         cfq_slice_expired(cfqd, 1);
2232
2233         /*
2234          * Put the new queue at the front of the of the current list,
2235          * so we know that it will be selected next.
2236          */
2237         BUG_ON(!cfq_cfqq_on_rr(cfqq));
2238
2239         cfq_service_tree_add(cfqd, cfqq, 1);
2240
2241         cfqq->slice_end = 0;
2242         cfq_mark_cfqq_slice_new(cfqq);
2243 }
2244
2245 /*
2246  * Called when a new fs request (rq) is added (to cfqq). Check if there's
2247  * something we should do about it
2248  */
2249 static void
2250 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2251                 struct request *rq)
2252 {
2253         struct cfq_io_context *cic = RQ_CIC(rq);
2254
2255         cfqd->rq_queued++;
2256         if (rq_is_meta(rq))
2257                 cfqq->meta_pending++;
2258
2259         cfq_update_io_thinktime(cfqd, cic);
2260         cfq_update_io_seektime(cfqd, cfqq, rq);
2261         cfq_update_idle_window(cfqd, cfqq, cic);
2262
2263         cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
2264
2265         if (cfqq == cfqd->active_queue) {
2266                 /*
2267                  * Remember that we saw a request from this process, but
2268                  * don't start queuing just yet. Otherwise we risk seeing lots
2269                  * of tiny requests, because we disrupt the normal plugging
2270                  * and merging. If the request is already larger than a single
2271                  * page, let it rip immediately. For that case we assume that
2272                  * merging is already done. Ditto for a busy system that
2273                  * has other work pending, don't risk delaying until the
2274                  * idle timer unplug to continue working.
2275                  */
2276                 if (cfq_cfqq_wait_request(cfqq)) {
2277                         if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2278                             cfqd->busy_queues > 1) {
2279                                 del_timer(&cfqd->idle_slice_timer);
2280                         __blk_run_queue(cfqd->queue);
2281                         }
2282                         cfq_mark_cfqq_must_dispatch(cfqq);
2283                 }
2284         } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
2285                 /*
2286                  * not the active queue - expire current slice if it is
2287                  * idle and has expired it's mean thinktime or this new queue
2288                  * has some old slice time left and is of higher priority or
2289                  * this new queue is RT and the current one is BE
2290                  */
2291                 cfq_preempt_queue(cfqd, cfqq);
2292                 __blk_run_queue(cfqd->queue);
2293         }
2294 }
2295
2296 static void cfq_insert_request(struct request_queue *q, struct request *rq)
2297 {
2298         struct cfq_data *cfqd = q->elevator->elevator_data;
2299         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2300
2301         cfq_log_cfqq(cfqd, cfqq, "insert_request");
2302         cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
2303
2304         rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
2305         list_add_tail(&rq->queuelist, &cfqq->fifo);
2306         cfq_add_rq_rb(rq);
2307
2308         cfq_rq_enqueued(cfqd, cfqq, rq);
2309 }
2310
2311 /*
2312  * Update hw_tag based on peak queue depth over 50 samples under
2313  * sufficient load.
2314  */
2315 static void cfq_update_hw_tag(struct cfq_data *cfqd)
2316 {
2317         struct cfq_queue *cfqq = cfqd->active_queue;
2318
2319         if (rq_in_driver(cfqd) > cfqd->rq_in_driver_peak)
2320                 cfqd->rq_in_driver_peak = rq_in_driver(cfqd);
2321
2322         if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
2323             rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
2324                 return;
2325
2326         /*
2327          * If active queue hasn't enough requests and can idle, cfq might not
2328          * dispatch sufficient requests to hardware. Don't zero hw_tag in this
2329          * case
2330          */
2331         if (cfqq && cfq_cfqq_idle_window(cfqq) &&
2332             cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
2333             CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
2334                 return;
2335
2336         if (cfqd->hw_tag_samples++ < 50)
2337                 return;
2338
2339         if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
2340                 cfqd->hw_tag = 1;
2341         else
2342                 cfqd->hw_tag = 0;
2343
2344         cfqd->hw_tag_samples = 0;
2345         cfqd->rq_in_driver_peak = 0;
2346 }
2347
2348 static void cfq_completed_request(struct request_queue *q, struct request *rq)
2349 {
2350         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2351         struct cfq_data *cfqd = cfqq->cfqd;
2352         const int sync = rq_is_sync(rq);
2353         unsigned long now;
2354
2355         now = jiffies;
2356         cfq_log_cfqq(cfqd, cfqq, "complete");
2357
2358         cfq_update_hw_tag(cfqd);
2359
2360         WARN_ON(!cfqd->rq_in_driver[sync]);
2361         WARN_ON(!cfqq->dispatched);
2362         cfqd->rq_in_driver[sync]--;
2363         cfqq->dispatched--;
2364
2365         if (cfq_cfqq_sync(cfqq))
2366                 cfqd->sync_flight--;
2367
2368         if (sync) {
2369                 RQ_CIC(rq)->last_end_request = now;
2370                 cfqd->last_end_sync_rq = now;
2371         }
2372
2373         /*
2374          * If this is the active queue, check if it needs to be expired,
2375          * or if we want to idle in case it has no pending requests.
2376          */
2377         if (cfqd->active_queue == cfqq) {
2378                 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2379
2380                 if (cfq_cfqq_slice_new(cfqq)) {
2381                         cfq_set_prio_slice(cfqd, cfqq);
2382                         cfq_clear_cfqq_slice_new(cfqq);
2383                 }
2384                 /*
2385                  * If there are no requests waiting in this queue, and
2386                  * there are other queues ready to issue requests, AND
2387                  * those other queues are issuing requests within our
2388                  * mean seek distance, give them a chance to run instead
2389                  * of idling.
2390                  */
2391                 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
2392                         cfq_slice_expired(cfqd, 1);
2393                 else if (cfqq_empty && !cfq_close_cooperator(cfqd, cfqq) &&
2394                          sync && !rq_noidle(rq))
2395                         cfq_arm_slice_timer(cfqd);
2396         }
2397
2398         if (!rq_in_driver(cfqd))
2399                 cfq_schedule_dispatch(cfqd);
2400 }
2401
2402 /*
2403  * we temporarily boost lower priority queues if they are holding fs exclusive
2404  * resources. they are boosted to normal prio (CLASS_BE/4)
2405  */
2406 static void cfq_prio_boost(struct cfq_queue *cfqq)
2407 {
2408         if (has_fs_excl()) {
2409                 /*
2410                  * boost idle prio on transactions that would lock out other
2411                  * users of the filesystem
2412                  */
2413                 if (cfq_class_idle(cfqq))
2414                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
2415                 if (cfqq->ioprio > IOPRIO_NORM)
2416                         cfqq->ioprio = IOPRIO_NORM;
2417         } else {
2418                 /*
2419                  * check if we need to unboost the queue
2420                  */
2421                 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
2422                         cfqq->ioprio_class = cfqq->org_ioprio_class;
2423                 if (cfqq->ioprio != cfqq->org_ioprio)
2424                         cfqq->ioprio = cfqq->org_ioprio;
2425         }
2426 }
2427
2428 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
2429 {
2430         if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
2431                 cfq_mark_cfqq_must_alloc_slice(cfqq);
2432                 return ELV_MQUEUE_MUST;
2433         }
2434
2435         return ELV_MQUEUE_MAY;
2436 }
2437
2438 static int cfq_may_queue(struct request_queue *q, int rw)
2439 {
2440         struct cfq_data *cfqd = q->elevator->elevator_data;
2441         struct task_struct *tsk = current;
2442         struct cfq_io_context *cic;
2443         struct cfq_queue *cfqq;
2444
2445         /*
2446          * don't force setup of a queue from here, as a call to may_queue
2447          * does not necessarily imply that a request actually will be queued.
2448          * so just lookup a possibly existing queue, or return 'may queue'
2449          * if that fails
2450          */
2451         cic = cfq_cic_lookup(cfqd, tsk->io_context);
2452         if (!cic)
2453                 return ELV_MQUEUE_MAY;
2454
2455         cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
2456         if (cfqq) {
2457                 cfq_init_prio_data(cfqq, cic->ioc);
2458                 cfq_prio_boost(cfqq);
2459
2460                 return __cfq_may_queue(cfqq);
2461         }
2462
2463         return ELV_MQUEUE_MAY;
2464 }
2465
2466 /*
2467  * queue lock held here
2468  */
2469 static void cfq_put_request(struct request *rq)
2470 {
2471         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2472
2473         if (cfqq) {
2474                 const int rw = rq_data_dir(rq);
2475
2476                 BUG_ON(!cfqq->allocated[rw]);
2477                 cfqq->allocated[rw]--;
2478
2479                 put_io_context(RQ_CIC(rq)->ioc);
2480
2481                 rq->elevator_private = NULL;
2482                 rq->elevator_private2 = NULL;
2483
2484                 cfq_put_queue(cfqq);
2485         }
2486 }
2487
2488 static struct cfq_queue *
2489 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
2490                 struct cfq_queue *cfqq)
2491 {
2492         cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
2493         cic_set_cfqq(cic, cfqq->new_cfqq, 1);
2494         cfq_mark_cfqq_coop(cfqq->new_cfqq);
2495         cfq_put_queue(cfqq);
2496         return cic_to_cfqq(cic, 1);
2497 }
2498
2499 static int should_split_cfqq(struct cfq_queue *cfqq)
2500 {
2501         if (cfqq->seeky_start &&
2502             time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
2503                 return 1;
2504         return 0;
2505 }
2506
2507 /*
2508  * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
2509  * was the last process referring to said cfqq.
2510  */
2511 static struct cfq_queue *
2512 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
2513 {
2514         if (cfqq_process_refs(cfqq) == 1) {
2515                 cfqq->seeky_start = 0;
2516                 cfqq->pid = current->pid;
2517                 cfq_clear_cfqq_coop(cfqq);
2518                 return cfqq;
2519         }
2520
2521         cic_set_cfqq(cic, NULL, 1);
2522         cfq_put_queue(cfqq);
2523         return NULL;
2524 }
2525 /*
2526  * Allocate cfq data structures associated with this request.
2527  */
2528 static int
2529 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
2530 {
2531         struct cfq_data *cfqd = q->elevator->elevator_data;
2532         struct cfq_io_context *cic;
2533         const int rw = rq_data_dir(rq);
2534         const bool is_sync = rq_is_sync(rq);
2535         struct cfq_queue *cfqq;
2536         unsigned long flags;
2537
2538         might_sleep_if(gfp_mask & __GFP_WAIT);
2539
2540         cic = cfq_get_io_context(cfqd, gfp_mask);
2541
2542         spin_lock_irqsave(q->queue_lock, flags);
2543
2544         if (!cic)
2545                 goto queue_fail;
2546
2547 new_queue:
2548         cfqq = cic_to_cfqq(cic, is_sync);
2549         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2550                 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2551                 cic_set_cfqq(cic, cfqq, is_sync);
2552         } else {
2553                 /*
2554                  * If the queue was seeky for too long, break it apart.
2555                  */
2556                 if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
2557                         cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
2558                         cfqq = split_cfqq(cic, cfqq);
2559                         if (!cfqq)
2560                                 goto new_queue;
2561                 }
2562
2563                 /*
2564                  * Check to see if this queue is scheduled to merge with
2565                  * another, closely cooperating queue.  The merging of
2566                  * queues happens here as it must be done in process context.
2567                  * The reference on new_cfqq was taken in merge_cfqqs.
2568                  */
2569                 if (cfqq->new_cfqq)
2570                         cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
2571         }
2572
2573         cfqq->allocated[rw]++;
2574         atomic_inc(&cfqq->ref);
2575
2576         spin_unlock_irqrestore(q->queue_lock, flags);
2577
2578         rq->elevator_private = cic;
2579         rq->elevator_private2 = cfqq;
2580         return 0;
2581
2582 queue_fail:
2583         if (cic)
2584                 put_io_context(cic->ioc);
2585
2586         cfq_schedule_dispatch(cfqd);
2587         spin_unlock_irqrestore(q->queue_lock, flags);
2588         cfq_log(cfqd, "set_request fail");
2589         return 1;
2590 }
2591
2592 static void cfq_kick_queue(struct work_struct *work)
2593 {
2594         struct cfq_data *cfqd =
2595                 container_of(work, struct cfq_data, unplug_work);
2596         struct request_queue *q = cfqd->queue;
2597
2598         spin_lock_irq(q->queue_lock);
2599         __blk_run_queue(cfqd->queue);
2600         spin_unlock_irq(q->queue_lock);
2601 }
2602
2603 /*
2604  * Timer running if the active_queue is currently idling inside its time slice
2605  */
2606 static void cfq_idle_slice_timer(unsigned long data)
2607 {
2608         struct cfq_data *cfqd = (struct cfq_data *) data;
2609         struct cfq_queue *cfqq;
2610         unsigned long flags;
2611         int timed_out = 1;
2612
2613         cfq_log(cfqd, "idle timer fired");
2614
2615         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2616
2617         cfqq = cfqd->active_queue;
2618         if (cfqq) {
2619                 timed_out = 0;
2620
2621                 /*
2622                  * We saw a request before the queue expired, let it through
2623                  */
2624                 if (cfq_cfqq_must_dispatch(cfqq))
2625                         goto out_kick;
2626
2627                 /*
2628                  * expired
2629                  */
2630                 if (cfq_slice_used(cfqq))
2631                         goto expire;
2632
2633                 /*
2634                  * only expire and reinvoke request handler, if there are
2635                  * other queues with pending requests
2636                  */
2637                 if (!cfqd->busy_queues)
2638                         goto out_cont;
2639
2640                 /*
2641                  * not expired and it has a request pending, let it dispatch
2642                  */
2643                 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2644                         goto out_kick;
2645         }
2646 expire:
2647         cfq_slice_expired(cfqd, timed_out);
2648 out_kick:
2649         cfq_schedule_dispatch(cfqd);
2650 out_cont:
2651         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2652 }
2653
2654 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2655 {
2656         del_timer_sync(&cfqd->idle_slice_timer);
2657         cancel_work_sync(&cfqd->unplug_work);
2658 }
2659
2660 static void cfq_put_async_queues(struct cfq_data *cfqd)
2661 {
2662         int i;
2663
2664         for (i = 0; i < IOPRIO_BE_NR; i++) {
2665                 if (cfqd->async_cfqq[0][i])
2666                         cfq_put_queue(cfqd->async_cfqq[0][i]);
2667                 if (cfqd->async_cfqq[1][i])
2668                         cfq_put_queue(cfqd->async_cfqq[1][i]);
2669         }
2670
2671         if (cfqd->async_idle_cfqq)
2672                 cfq_put_queue(cfqd->async_idle_cfqq);
2673 }
2674
2675 static void cfq_exit_queue(struct elevator_queue *e)
2676 {
2677         struct cfq_data *cfqd = e->elevator_data;
2678         struct request_queue *q = cfqd->queue;
2679
2680         cfq_shutdown_timer_wq(cfqd);
2681
2682         spin_lock_irq(q->queue_lock);
2683
2684         if (cfqd->active_queue)
2685                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2686
2687         while (!list_empty(&cfqd->cic_list)) {
2688                 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2689                                                         struct cfq_io_context,
2690                                                         queue_list);
2691
2692                 __cfq_exit_single_io_context(cfqd, cic);
2693         }
2694
2695         cfq_put_async_queues(cfqd);
2696
2697         spin_unlock_irq(q->queue_lock);
2698
2699         cfq_shutdown_timer_wq(cfqd);
2700
2701         kfree(cfqd);
2702 }
2703
2704 static void *cfq_init_queue(struct request_queue *q)
2705 {
2706         struct cfq_data *cfqd;
2707         int i;
2708
2709         cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2710         if (!cfqd)
2711                 return NULL;
2712
2713         cfqd->service_tree = CFQ_RB_ROOT;
2714
2715         /*
2716          * Not strictly needed (since RB_ROOT just clears the node and we
2717          * zeroed cfqd on alloc), but better be safe in case someone decides
2718          * to add magic to the rb code
2719          */
2720         for (i = 0; i < CFQ_PRIO_LISTS; i++)
2721                 cfqd->prio_trees[i] = RB_ROOT;
2722
2723         /*
2724          * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
2725          * Grab a permanent reference to it, so that the normal code flow
2726          * will not attempt to free it.
2727          */
2728         cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
2729         atomic_inc(&cfqd->oom_cfqq.ref);
2730
2731         INIT_LIST_HEAD(&cfqd->cic_list);
2732
2733         cfqd->queue = q;
2734
2735         init_timer(&cfqd->idle_slice_timer);
2736         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2737         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2738
2739         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2740
2741         cfqd->cfq_quantum = cfq_quantum;
2742         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2743         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2744         cfqd->cfq_back_max = cfq_back_max;
2745         cfqd->cfq_back_penalty = cfq_back_penalty;
2746         cfqd->cfq_slice[0] = cfq_slice_async;
2747         cfqd->cfq_slice[1] = cfq_slice_sync;
2748         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2749         cfqd->cfq_slice_idle = cfq_slice_idle;
2750         cfqd->cfq_latency = 1;
2751         cfqd->hw_tag = 1;
2752         cfqd->last_end_sync_rq = jiffies;
2753         return cfqd;
2754 }
2755
2756 static void cfq_slab_kill(void)
2757 {
2758         /*
2759          * Caller already ensured that pending RCU callbacks are completed,
2760          * so we should have no busy allocations at this point.
2761          */
2762         if (cfq_pool)
2763                 kmem_cache_destroy(cfq_pool);
2764         if (cfq_ioc_pool)
2765                 kmem_cache_destroy(cfq_ioc_pool);
2766 }
2767
2768 static int __init cfq_slab_setup(void)
2769 {
2770         cfq_pool = KMEM_CACHE(cfq_queue, 0);
2771         if (!cfq_pool)
2772                 goto fail;
2773
2774         cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
2775         if (!cfq_ioc_pool)
2776                 goto fail;
2777
2778         return 0;
2779 fail:
2780         cfq_slab_kill();
2781         return -ENOMEM;
2782 }
2783
2784 /*
2785  * sysfs parts below -->
2786  */
2787 static ssize_t
2788 cfq_var_show(unsigned int var, char *page)
2789 {
2790         return sprintf(page, "%d\n", var);
2791 }
2792
2793 static ssize_t
2794 cfq_var_store(unsigned int *var, const char *page, size_t count)
2795 {
2796         char *p = (char *) page;
2797
2798         *var = simple_strtoul(p, &p, 10);
2799         return count;
2800 }
2801
2802 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
2803 static ssize_t __FUNC(struct elevator_queue *e, char *page)             \
2804 {                                                                       \
2805         struct cfq_data *cfqd = e->elevator_data;                       \
2806         unsigned int __data = __VAR;                                    \
2807         if (__CONV)                                                     \
2808                 __data = jiffies_to_msecs(__data);                      \
2809         return cfq_var_show(__data, (page));                            \
2810 }
2811 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2812 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2813 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2814 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2815 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2816 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2817 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2818 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2819 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2820 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
2821 #undef SHOW_FUNCTION
2822
2823 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
2824 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
2825 {                                                                       \
2826         struct cfq_data *cfqd = e->elevator_data;                       \
2827         unsigned int __data;                                            \
2828         int ret = cfq_var_store(&__data, (page), count);                \
2829         if (__data < (MIN))                                             \
2830                 __data = (MIN);                                         \
2831         else if (__data > (MAX))                                        \
2832                 __data = (MAX);                                         \
2833         if (__CONV)                                                     \
2834                 *(__PTR) = msecs_to_jiffies(__data);                    \
2835         else                                                            \
2836                 *(__PTR) = __data;                                      \
2837         return ret;                                                     \
2838 }
2839 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2840 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
2841                 UINT_MAX, 1);
2842 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
2843                 UINT_MAX, 1);
2844 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2845 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
2846                 UINT_MAX, 0);
2847 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2848 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2849 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2850 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
2851                 UINT_MAX, 0);
2852 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
2853 #undef STORE_FUNCTION
2854
2855 #define CFQ_ATTR(name) \
2856         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2857
2858 static struct elv_fs_entry cfq_attrs[] = {
2859         CFQ_ATTR(quantum),
2860         CFQ_ATTR(fifo_expire_sync),
2861         CFQ_ATTR(fifo_expire_async),
2862         CFQ_ATTR(back_seek_max),
2863         CFQ_ATTR(back_seek_penalty),
2864         CFQ_ATTR(slice_sync),
2865         CFQ_ATTR(slice_async),
2866         CFQ_ATTR(slice_async_rq),
2867         CFQ_ATTR(slice_idle),
2868         CFQ_ATTR(low_latency),
2869         __ATTR_NULL
2870 };
2871
2872 static struct elevator_type iosched_cfq = {
2873         .ops = {
2874                 .elevator_merge_fn =            cfq_merge,
2875                 .elevator_merged_fn =           cfq_merged_request,
2876                 .elevator_merge_req_fn =        cfq_merged_requests,
2877                 .elevator_allow_merge_fn =      cfq_allow_merge,
2878                 .elevator_dispatch_fn =         cfq_dispatch_requests,
2879                 .elevator_add_req_fn =          cfq_insert_request,
2880                 .elevator_activate_req_fn =     cfq_activate_request,
2881                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
2882                 .elevator_queue_empty_fn =      cfq_queue_empty,
2883                 .elevator_completed_req_fn =    cfq_completed_request,
2884                 .elevator_former_req_fn =       elv_rb_former_request,
2885                 .elevator_latter_req_fn =       elv_rb_latter_request,
2886                 .elevator_set_req_fn =          cfq_set_request,
2887                 .elevator_put_req_fn =          cfq_put_request,
2888                 .elevator_may_queue_fn =        cfq_may_queue,
2889                 .elevator_init_fn =             cfq_init_queue,
2890                 .elevator_exit_fn =             cfq_exit_queue,
2891                 .trim =                         cfq_free_io_context,
2892         },
2893         .elevator_attrs =       cfq_attrs,
2894         .elevator_name =        "cfq",
2895         .elevator_owner =       THIS_MODULE,
2896 };
2897
2898 static int __init cfq_init(void)
2899 {
2900         /*
2901          * could be 0 on HZ < 1000 setups
2902          */
2903         if (!cfq_slice_async)
2904                 cfq_slice_async = 1;
2905         if (!cfq_slice_idle)
2906                 cfq_slice_idle = 1;
2907
2908         if (cfq_slab_setup())
2909                 return -ENOMEM;
2910
2911         elv_register(&iosched_cfq);
2912
2913         return 0;
2914 }
2915
2916 static void __exit cfq_exit(void)
2917 {
2918         DECLARE_COMPLETION_ONSTACK(all_gone);
2919         elv_unregister(&iosched_cfq);
2920         ioc_gone = &all_gone;
2921         /* ioc_gone's update must be visible before reading ioc_count */
2922         smp_wmb();
2923
2924         /*
2925          * this also protects us from entering cfq_slab_kill() with
2926          * pending RCU callbacks
2927          */
2928         if (elv_ioc_count_read(cfq_ioc_count))
2929                 wait_for_completion(&all_gone);
2930         cfq_slab_kill();
2931 }
2932
2933 module_init(cfq_init);
2934 module_exit(cfq_exit);
2935
2936 MODULE_AUTHOR("Jens Axboe");
2937 MODULE_LICENSE("GPL");
2938 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");