blkio: Determine async workload length based on total number of queues
[safe/jmp/linux-2.6] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/jiffies.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15 #include <linux/blktrace_api.h>
16 #include "blk-cgroup.h"
17
18 /*
19  * tunables
20  */
21 /* max queue in one round of service */
22 static const int cfq_quantum = 4;
23 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
24 /* maximum backwards seek, in KiB */
25 static const int cfq_back_max = 16 * 1024;
26 /* penalty of a backwards seek */
27 static const int cfq_back_penalty = 2;
28 static const int cfq_slice_sync = HZ / 10;
29 static int cfq_slice_async = HZ / 25;
30 static const int cfq_slice_async_rq = 2;
31 static int cfq_slice_idle = HZ / 125;
32 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
33 static const int cfq_hist_divisor = 4;
34
35 /*
36  * offset from end of service tree
37  */
38 #define CFQ_IDLE_DELAY          (HZ / 5)
39
40 /*
41  * below this threshold, we consider thinktime immediate
42  */
43 #define CFQ_MIN_TT              (2)
44
45 /*
46  * Allow merged cfqqs to perform this amount of seeky I/O before
47  * deciding to break the queues up again.
48  */
49 #define CFQQ_COOP_TOUT          (HZ)
50
51 #define CFQ_SLICE_SCALE         (5)
52 #define CFQ_HW_QUEUE_MIN        (5)
53 #define CFQ_SERVICE_SHIFT       12
54
55 #define RQ_CIC(rq)              \
56         ((struct cfq_io_context *) (rq)->elevator_private)
57 #define RQ_CFQQ(rq)             (struct cfq_queue *) ((rq)->elevator_private2)
58
59 static struct kmem_cache *cfq_pool;
60 static struct kmem_cache *cfq_ioc_pool;
61
62 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
63 static struct completion *ioc_gone;
64 static DEFINE_SPINLOCK(ioc_gone_lock);
65
66 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
67 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
68 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
69
70 #define sample_valid(samples)   ((samples) > 80)
71 #define rb_entry_cfqg(node)     rb_entry((node), struct cfq_group, rb_node)
72
73 /*
74  * Most of our rbtree usage is for sorting with min extraction, so
75  * if we cache the leftmost node we don't have to walk down the tree
76  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
77  * move this into the elevator for the rq sorting as well.
78  */
79 struct cfq_rb_root {
80         struct rb_root rb;
81         struct rb_node *left;
82         unsigned count;
83         u64 min_vdisktime;
84         struct rb_node *active;
85         unsigned total_weight;
86 };
87 #define CFQ_RB_ROOT     (struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
88
89 /*
90  * Per process-grouping structure
91  */
92 struct cfq_queue {
93         /* reference count */
94         atomic_t ref;
95         /* various state flags, see below */
96         unsigned int flags;
97         /* parent cfq_data */
98         struct cfq_data *cfqd;
99         /* service_tree member */
100         struct rb_node rb_node;
101         /* service_tree key */
102         unsigned long rb_key;
103         /* prio tree member */
104         struct rb_node p_node;
105         /* prio tree root we belong to, if any */
106         struct rb_root *p_root;
107         /* sorted list of pending requests */
108         struct rb_root sort_list;
109         /* if fifo isn't expired, next request to serve */
110         struct request *next_rq;
111         /* requests queued in sort_list */
112         int queued[2];
113         /* currently allocated requests */
114         int allocated[2];
115         /* fifo list of requests in sort_list */
116         struct list_head fifo;
117
118         /* time when queue got scheduled in to dispatch first request. */
119         unsigned long dispatch_start;
120         unsigned int allocated_slice;
121         /* time when first request from queue completed and slice started. */
122         unsigned long slice_start;
123         unsigned long slice_end;
124         long slice_resid;
125         unsigned int slice_dispatch;
126
127         /* pending metadata requests */
128         int meta_pending;
129         /* number of requests that are on the dispatch list or inside driver */
130         int dispatched;
131
132         /* io prio of this group */
133         unsigned short ioprio, org_ioprio;
134         unsigned short ioprio_class, org_ioprio_class;
135
136         unsigned int seek_samples;
137         u64 seek_total;
138         sector_t seek_mean;
139         sector_t last_request_pos;
140         unsigned long seeky_start;
141
142         pid_t pid;
143
144         struct cfq_rb_root *service_tree;
145         struct cfq_queue *new_cfqq;
146         struct cfq_group *cfqg;
147         /* Sectors dispatched in current dispatch round */
148         unsigned long nr_sectors;
149 };
150
151 /*
152  * First index in the service_trees.
153  * IDLE is handled separately, so it has negative index
154  */
155 enum wl_prio_t {
156         BE_WORKLOAD = 0,
157         RT_WORKLOAD = 1,
158         IDLE_WORKLOAD = 2,
159 };
160
161 /*
162  * Second index in the service_trees.
163  */
164 enum wl_type_t {
165         ASYNC_WORKLOAD = 0,
166         SYNC_NOIDLE_WORKLOAD = 1,
167         SYNC_WORKLOAD = 2
168 };
169
170 /* This is per cgroup per device grouping structure */
171 struct cfq_group {
172         /* group service_tree member */
173         struct rb_node rb_node;
174
175         /* group service_tree key */
176         u64 vdisktime;
177         unsigned int weight;
178         bool on_st;
179
180         /* number of cfqq currently on this group */
181         int nr_cfqq;
182
183         /* Per group busy queus average. Useful for workload slice calc. */
184         unsigned int busy_queues_avg[2];
185         /*
186          * rr lists of queues with requests, onle rr for each priority class.
187          * Counts are embedded in the cfq_rb_root
188          */
189         struct cfq_rb_root service_trees[2][3];
190         struct cfq_rb_root service_tree_idle;
191
192         unsigned long saved_workload_slice;
193         enum wl_type_t saved_workload;
194         enum wl_prio_t saved_serving_prio;
195         struct blkio_group blkg;
196 #ifdef CONFIG_CFQ_GROUP_IOSCHED
197         struct hlist_node cfqd_node;
198         atomic_t ref;
199 #endif
200 };
201
202 /*
203  * Per block device queue structure
204  */
205 struct cfq_data {
206         struct request_queue *queue;
207         /* Root service tree for cfq_groups */
208         struct cfq_rb_root grp_service_tree;
209         struct cfq_group root_group;
210         /* Number of active cfq groups on group service tree */
211         int nr_groups;
212
213         /*
214          * The priority currently being served
215          */
216         enum wl_prio_t serving_prio;
217         enum wl_type_t serving_type;
218         unsigned long workload_expires;
219         struct cfq_group *serving_group;
220         bool noidle_tree_requires_idle;
221
222         /*
223          * Each priority tree is sorted by next_request position.  These
224          * trees are used when determining if two or more queues are
225          * interleaving requests (see cfq_close_cooperator).
226          */
227         struct rb_root prio_trees[CFQ_PRIO_LISTS];
228
229         unsigned int busy_queues;
230
231         int rq_in_driver[2];
232         int sync_flight;
233
234         /*
235          * queue-depth detection
236          */
237         int rq_queued;
238         int hw_tag;
239         /*
240          * hw_tag can be
241          * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
242          *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
243          *  0 => no NCQ
244          */
245         int hw_tag_est_depth;
246         unsigned int hw_tag_samples;
247
248         /*
249          * idle window management
250          */
251         struct timer_list idle_slice_timer;
252         struct work_struct unplug_work;
253
254         struct cfq_queue *active_queue;
255         struct cfq_io_context *active_cic;
256
257         /*
258          * async queue for each priority case
259          */
260         struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
261         struct cfq_queue *async_idle_cfqq;
262
263         sector_t last_position;
264
265         /*
266          * tunables, see top of file
267          */
268         unsigned int cfq_quantum;
269         unsigned int cfq_fifo_expire[2];
270         unsigned int cfq_back_penalty;
271         unsigned int cfq_back_max;
272         unsigned int cfq_slice[2];
273         unsigned int cfq_slice_async_rq;
274         unsigned int cfq_slice_idle;
275         unsigned int cfq_latency;
276
277         struct list_head cic_list;
278
279         /*
280          * Fallback dummy cfqq for extreme OOM conditions
281          */
282         struct cfq_queue oom_cfqq;
283
284         unsigned long last_end_sync_rq;
285
286         /* List of cfq groups being managed on this device*/
287         struct hlist_head cfqg_list;
288 };
289
290 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
291
292 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
293                                             enum wl_prio_t prio,
294                                             enum wl_type_t type,
295                                             struct cfq_data *cfqd)
296 {
297         if (!cfqg)
298                 return NULL;
299
300         if (prio == IDLE_WORKLOAD)
301                 return &cfqg->service_tree_idle;
302
303         return &cfqg->service_trees[prio][type];
304 }
305
306 enum cfqq_state_flags {
307         CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
308         CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
309         CFQ_CFQQ_FLAG_must_dispatch,    /* must be allowed a dispatch */
310         CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
311         CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
312         CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
313         CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
314         CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
315         CFQ_CFQQ_FLAG_sync,             /* synchronous queue */
316         CFQ_CFQQ_FLAG_coop,             /* cfqq is shared */
317         CFQ_CFQQ_FLAG_deep,             /* sync cfqq experienced large depth */
318         CFQ_CFQQ_FLAG_wait_busy,        /* Waiting for next request */
319         CFQ_CFQQ_FLAG_wait_busy_done,   /* Got new request. Expire the queue */
320 };
321
322 #define CFQ_CFQQ_FNS(name)                                              \
323 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
324 {                                                                       \
325         (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);                   \
326 }                                                                       \
327 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
328 {                                                                       \
329         (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                  \
330 }                                                                       \
331 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
332 {                                                                       \
333         return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;      \
334 }
335
336 CFQ_CFQQ_FNS(on_rr);
337 CFQ_CFQQ_FNS(wait_request);
338 CFQ_CFQQ_FNS(must_dispatch);
339 CFQ_CFQQ_FNS(must_alloc_slice);
340 CFQ_CFQQ_FNS(fifo_expire);
341 CFQ_CFQQ_FNS(idle_window);
342 CFQ_CFQQ_FNS(prio_changed);
343 CFQ_CFQQ_FNS(slice_new);
344 CFQ_CFQQ_FNS(sync);
345 CFQ_CFQQ_FNS(coop);
346 CFQ_CFQQ_FNS(deep);
347 CFQ_CFQQ_FNS(wait_busy);
348 CFQ_CFQQ_FNS(wait_busy_done);
349 #undef CFQ_CFQQ_FNS
350
351 #ifdef CONFIG_DEBUG_CFQ_IOSCHED
352 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
353         blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
354                         cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
355                         blkg_path(&(cfqq)->cfqg->blkg), ##args);
356
357 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)                          \
358         blk_add_trace_msg((cfqd)->queue, "%s " fmt,                     \
359                                 blkg_path(&(cfqg)->blkg), ##args);      \
360
361 #else
362 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
363         blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
364 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)          do {} while (0);
365 #endif
366 #define cfq_log(cfqd, fmt, args...)     \
367         blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
368
369 /* Traverses through cfq group service trees */
370 #define for_each_cfqg_st(cfqg, i, j, st) \
371         for (i = 0; i <= IDLE_WORKLOAD; i++) \
372                 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
373                         : &cfqg->service_tree_idle; \
374                         (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
375                         (i == IDLE_WORKLOAD && j == 0); \
376                         j++, st = i < IDLE_WORKLOAD ? \
377                         &cfqg->service_trees[i][j]: NULL) \
378
379
380 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
381 {
382         if (cfq_class_idle(cfqq))
383                 return IDLE_WORKLOAD;
384         if (cfq_class_rt(cfqq))
385                 return RT_WORKLOAD;
386         return BE_WORKLOAD;
387 }
388
389
390 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
391 {
392         if (!cfq_cfqq_sync(cfqq))
393                 return ASYNC_WORKLOAD;
394         if (!cfq_cfqq_idle_window(cfqq))
395                 return SYNC_NOIDLE_WORKLOAD;
396         return SYNC_WORKLOAD;
397 }
398
399 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
400                                         struct cfq_data *cfqd,
401                                         struct cfq_group *cfqg)
402 {
403         if (wl == IDLE_WORKLOAD)
404                 return cfqg->service_tree_idle.count;
405
406         return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
407                 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
408                 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
409 }
410
411 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
412                                         struct cfq_group *cfqg)
413 {
414         return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
415                 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
416 }
417
418 static void cfq_dispatch_insert(struct request_queue *, struct request *);
419 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
420                                        struct io_context *, gfp_t);
421 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
422                                                 struct io_context *);
423
424 static inline int rq_in_driver(struct cfq_data *cfqd)
425 {
426         return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
427 }
428
429 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
430                                             bool is_sync)
431 {
432         return cic->cfqq[is_sync];
433 }
434
435 static inline void cic_set_cfqq(struct cfq_io_context *cic,
436                                 struct cfq_queue *cfqq, bool is_sync)
437 {
438         cic->cfqq[is_sync] = cfqq;
439 }
440
441 /*
442  * We regard a request as SYNC, if it's either a read or has the SYNC bit
443  * set (in which case it could also be direct WRITE).
444  */
445 static inline bool cfq_bio_sync(struct bio *bio)
446 {
447         return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
448 }
449
450 /*
451  * scheduler run of queue, if there are requests pending and no one in the
452  * driver that will restart queueing
453  */
454 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
455 {
456         if (cfqd->busy_queues) {
457                 cfq_log(cfqd, "schedule dispatch");
458                 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
459         }
460 }
461
462 static int cfq_queue_empty(struct request_queue *q)
463 {
464         struct cfq_data *cfqd = q->elevator->elevator_data;
465
466         return !cfqd->rq_queued;
467 }
468
469 /*
470  * Scale schedule slice based on io priority. Use the sync time slice only
471  * if a queue is marked sync and has sync io queued. A sync queue with async
472  * io only, should not get full sync slice length.
473  */
474 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
475                                  unsigned short prio)
476 {
477         const int base_slice = cfqd->cfq_slice[sync];
478
479         WARN_ON(prio >= IOPRIO_BE_NR);
480
481         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
482 }
483
484 static inline int
485 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
486 {
487         return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
488 }
489
490 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
491 {
492         u64 d = delta << CFQ_SERVICE_SHIFT;
493
494         d = d * BLKIO_WEIGHT_DEFAULT;
495         do_div(d, cfqg->weight);
496         return d;
497 }
498
499 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
500 {
501         s64 delta = (s64)(vdisktime - min_vdisktime);
502         if (delta > 0)
503                 min_vdisktime = vdisktime;
504
505         return min_vdisktime;
506 }
507
508 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
509 {
510         s64 delta = (s64)(vdisktime - min_vdisktime);
511         if (delta < 0)
512                 min_vdisktime = vdisktime;
513
514         return min_vdisktime;
515 }
516
517 static void update_min_vdisktime(struct cfq_rb_root *st)
518 {
519         u64 vdisktime = st->min_vdisktime;
520         struct cfq_group *cfqg;
521
522         if (st->active) {
523                 cfqg = rb_entry_cfqg(st->active);
524                 vdisktime = cfqg->vdisktime;
525         }
526
527         if (st->left) {
528                 cfqg = rb_entry_cfqg(st->left);
529                 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
530         }
531
532         st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
533 }
534
535 /*
536  * get averaged number of queues of RT/BE priority.
537  * average is updated, with a formula that gives more weight to higher numbers,
538  * to quickly follows sudden increases and decrease slowly
539  */
540
541 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
542                                         struct cfq_group *cfqg, bool rt)
543 {
544         unsigned min_q, max_q;
545         unsigned mult  = cfq_hist_divisor - 1;
546         unsigned round = cfq_hist_divisor / 2;
547         unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
548
549         min_q = min(cfqg->busy_queues_avg[rt], busy);
550         max_q = max(cfqg->busy_queues_avg[rt], busy);
551         cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
552                 cfq_hist_divisor;
553         return cfqg->busy_queues_avg[rt];
554 }
555
556 static inline unsigned
557 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
558 {
559         struct cfq_rb_root *st = &cfqd->grp_service_tree;
560
561         return cfq_target_latency * cfqg->weight / st->total_weight;
562 }
563
564 static inline void
565 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
566 {
567         unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
568         if (cfqd->cfq_latency) {
569                 /*
570                  * interested queues (we consider only the ones with the same
571                  * priority class in the cfq group)
572                  */
573                 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
574                                                 cfq_class_rt(cfqq));
575                 unsigned sync_slice = cfqd->cfq_slice[1];
576                 unsigned expect_latency = sync_slice * iq;
577                 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
578
579                 if (expect_latency > group_slice) {
580                         unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
581                         /* scale low_slice according to IO priority
582                          * and sync vs async */
583                         unsigned low_slice =
584                                 min(slice, base_low_slice * slice / sync_slice);
585                         /* the adapted slice value is scaled to fit all iqs
586                          * into the target latency */
587                         slice = max(slice * group_slice / expect_latency,
588                                     low_slice);
589                 }
590         }
591         cfqq->slice_start = jiffies;
592         cfqq->slice_end = jiffies + slice;
593         cfqq->allocated_slice = slice;
594         cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
595 }
596
597 /*
598  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
599  * isn't valid until the first request from the dispatch is activated
600  * and the slice time set.
601  */
602 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
603 {
604         if (cfq_cfqq_slice_new(cfqq))
605                 return 0;
606         if (time_before(jiffies, cfqq->slice_end))
607                 return 0;
608
609         return 1;
610 }
611
612 /*
613  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
614  * We choose the request that is closest to the head right now. Distance
615  * behind the head is penalized and only allowed to a certain extent.
616  */
617 static struct request *
618 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
619 {
620         sector_t s1, s2, d1 = 0, d2 = 0;
621         unsigned long back_max;
622 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
623 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
624         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
625
626         if (rq1 == NULL || rq1 == rq2)
627                 return rq2;
628         if (rq2 == NULL)
629                 return rq1;
630
631         if (rq_is_sync(rq1) && !rq_is_sync(rq2))
632                 return rq1;
633         else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
634                 return rq2;
635         if (rq_is_meta(rq1) && !rq_is_meta(rq2))
636                 return rq1;
637         else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
638                 return rq2;
639
640         s1 = blk_rq_pos(rq1);
641         s2 = blk_rq_pos(rq2);
642
643         /*
644          * by definition, 1KiB is 2 sectors
645          */
646         back_max = cfqd->cfq_back_max * 2;
647
648         /*
649          * Strict one way elevator _except_ in the case where we allow
650          * short backward seeks which are biased as twice the cost of a
651          * similar forward seek.
652          */
653         if (s1 >= last)
654                 d1 = s1 - last;
655         else if (s1 + back_max >= last)
656                 d1 = (last - s1) * cfqd->cfq_back_penalty;
657         else
658                 wrap |= CFQ_RQ1_WRAP;
659
660         if (s2 >= last)
661                 d2 = s2 - last;
662         else if (s2 + back_max >= last)
663                 d2 = (last - s2) * cfqd->cfq_back_penalty;
664         else
665                 wrap |= CFQ_RQ2_WRAP;
666
667         /* Found required data */
668
669         /*
670          * By doing switch() on the bit mask "wrap" we avoid having to
671          * check two variables for all permutations: --> faster!
672          */
673         switch (wrap) {
674         case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
675                 if (d1 < d2)
676                         return rq1;
677                 else if (d2 < d1)
678                         return rq2;
679                 else {
680                         if (s1 >= s2)
681                                 return rq1;
682                         else
683                                 return rq2;
684                 }
685
686         case CFQ_RQ2_WRAP:
687                 return rq1;
688         case CFQ_RQ1_WRAP:
689                 return rq2;
690         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
691         default:
692                 /*
693                  * Since both rqs are wrapped,
694                  * start with the one that's further behind head
695                  * (--> only *one* back seek required),
696                  * since back seek takes more time than forward.
697                  */
698                 if (s1 <= s2)
699                         return rq1;
700                 else
701                         return rq2;
702         }
703 }
704
705 /*
706  * The below is leftmost cache rbtree addon
707  */
708 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
709 {
710         /* Service tree is empty */
711         if (!root->count)
712                 return NULL;
713
714         if (!root->left)
715                 root->left = rb_first(&root->rb);
716
717         if (root->left)
718                 return rb_entry(root->left, struct cfq_queue, rb_node);
719
720         return NULL;
721 }
722
723 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
724 {
725         if (!root->left)
726                 root->left = rb_first(&root->rb);
727
728         if (root->left)
729                 return rb_entry_cfqg(root->left);
730
731         return NULL;
732 }
733
734 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
735 {
736         rb_erase(n, root);
737         RB_CLEAR_NODE(n);
738 }
739
740 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
741 {
742         if (root->left == n)
743                 root->left = NULL;
744         rb_erase_init(n, &root->rb);
745         --root->count;
746 }
747
748 /*
749  * would be nice to take fifo expire time into account as well
750  */
751 static struct request *
752 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
753                   struct request *last)
754 {
755         struct rb_node *rbnext = rb_next(&last->rb_node);
756         struct rb_node *rbprev = rb_prev(&last->rb_node);
757         struct request *next = NULL, *prev = NULL;
758
759         BUG_ON(RB_EMPTY_NODE(&last->rb_node));
760
761         if (rbprev)
762                 prev = rb_entry_rq(rbprev);
763
764         if (rbnext)
765                 next = rb_entry_rq(rbnext);
766         else {
767                 rbnext = rb_first(&cfqq->sort_list);
768                 if (rbnext && rbnext != &last->rb_node)
769                         next = rb_entry_rq(rbnext);
770         }
771
772         return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
773 }
774
775 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
776                                       struct cfq_queue *cfqq)
777 {
778         /*
779          * just an approximation, should be ok.
780          */
781         return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
782                        cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
783 }
784
785 static inline s64
786 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
787 {
788         return cfqg->vdisktime - st->min_vdisktime;
789 }
790
791 static void
792 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
793 {
794         struct rb_node **node = &st->rb.rb_node;
795         struct rb_node *parent = NULL;
796         struct cfq_group *__cfqg;
797         s64 key = cfqg_key(st, cfqg);
798         int left = 1;
799
800         while (*node != NULL) {
801                 parent = *node;
802                 __cfqg = rb_entry_cfqg(parent);
803
804                 if (key < cfqg_key(st, __cfqg))
805                         node = &parent->rb_left;
806                 else {
807                         node = &parent->rb_right;
808                         left = 0;
809                 }
810         }
811
812         if (left)
813                 st->left = &cfqg->rb_node;
814
815         rb_link_node(&cfqg->rb_node, parent, node);
816         rb_insert_color(&cfqg->rb_node, &st->rb);
817 }
818
819 static void
820 cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
821 {
822         struct cfq_rb_root *st = &cfqd->grp_service_tree;
823         struct cfq_group *__cfqg;
824         struct rb_node *n;
825
826         cfqg->nr_cfqq++;
827         if (cfqg->on_st)
828                 return;
829
830         /*
831          * Currently put the group at the end. Later implement something
832          * so that groups get lesser vtime based on their weights, so that
833          * if group does not loose all if it was not continously backlogged.
834          */
835         n = rb_last(&st->rb);
836         if (n) {
837                 __cfqg = rb_entry_cfqg(n);
838                 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
839         } else
840                 cfqg->vdisktime = st->min_vdisktime;
841
842         __cfq_group_service_tree_add(st, cfqg);
843         cfqg->on_st = true;
844         cfqd->nr_groups++;
845         st->total_weight += cfqg->weight;
846 }
847
848 static void
849 cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
850 {
851         struct cfq_rb_root *st = &cfqd->grp_service_tree;
852
853         if (st->active == &cfqg->rb_node)
854                 st->active = NULL;
855
856         BUG_ON(cfqg->nr_cfqq < 1);
857         cfqg->nr_cfqq--;
858
859         /* If there are other cfq queues under this group, don't delete it */
860         if (cfqg->nr_cfqq)
861                 return;
862
863         cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
864         cfqg->on_st = false;
865         cfqd->nr_groups--;
866         st->total_weight -= cfqg->weight;
867         if (!RB_EMPTY_NODE(&cfqg->rb_node))
868                 cfq_rb_erase(&cfqg->rb_node, st);
869         cfqg->saved_workload_slice = 0;
870         blkiocg_update_blkio_group_dequeue_stats(&cfqg->blkg, 1);
871 }
872
873 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
874 {
875         unsigned int slice_used;
876
877         /*
878          * Queue got expired before even a single request completed or
879          * got expired immediately after first request completion.
880          */
881         if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
882                 /*
883                  * Also charge the seek time incurred to the group, otherwise
884                  * if there are mutiple queues in the group, each can dispatch
885                  * a single request on seeky media and cause lots of seek time
886                  * and group will never know it.
887                  */
888                 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
889                                         1);
890         } else {
891                 slice_used = jiffies - cfqq->slice_start;
892                 if (slice_used > cfqq->allocated_slice)
893                         slice_used = cfqq->allocated_slice;
894         }
895
896         cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u sect=%lu", slice_used,
897                                 cfqq->nr_sectors);
898         return slice_used;
899 }
900
901 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
902                                 struct cfq_queue *cfqq)
903 {
904         struct cfq_rb_root *st = &cfqd->grp_service_tree;
905         unsigned int used_sl, charge_sl;
906         int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
907                         - cfqg->service_tree_idle.count;
908
909         BUG_ON(nr_sync < 0);
910         used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
911
912         if (!cfq_cfqq_sync(cfqq) && !nr_sync)
913                 charge_sl = cfqq->allocated_slice;
914
915         /* Can't update vdisktime while group is on service tree */
916         cfq_rb_erase(&cfqg->rb_node, st);
917         cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
918         __cfq_group_service_tree_add(st, cfqg);
919
920         /* This group is being expired. Save the context */
921         if (time_after(cfqd->workload_expires, jiffies)) {
922                 cfqg->saved_workload_slice = cfqd->workload_expires
923                                                 - jiffies;
924                 cfqg->saved_workload = cfqd->serving_type;
925                 cfqg->saved_serving_prio = cfqd->serving_prio;
926         } else
927                 cfqg->saved_workload_slice = 0;
928
929         cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
930                                         st->min_vdisktime);
931         blkiocg_update_blkio_group_stats(&cfqg->blkg, used_sl,
932                                                 cfqq->nr_sectors);
933 }
934
935 #ifdef CONFIG_CFQ_GROUP_IOSCHED
936 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
937 {
938         if (blkg)
939                 return container_of(blkg, struct cfq_group, blkg);
940         return NULL;
941 }
942
943 void
944 cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
945 {
946         cfqg_of_blkg(blkg)->weight = weight;
947 }
948
949 static struct cfq_group *
950 cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
951 {
952         struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
953         struct cfq_group *cfqg = NULL;
954         void *key = cfqd;
955         int i, j;
956         struct cfq_rb_root *st;
957         struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
958         unsigned int major, minor;
959
960         /* Do we need to take this reference */
961         if (!css_tryget(&blkcg->css))
962                 return NULL;;
963
964         cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
965         if (cfqg || !create)
966                 goto done;
967
968         cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
969         if (!cfqg)
970                 goto done;
971
972         cfqg->weight = blkcg->weight;
973         for_each_cfqg_st(cfqg, i, j, st)
974                 *st = CFQ_RB_ROOT;
975         RB_CLEAR_NODE(&cfqg->rb_node);
976
977         /*
978          * Take the initial reference that will be released on destroy
979          * This can be thought of a joint reference by cgroup and
980          * elevator which will be dropped by either elevator exit
981          * or cgroup deletion path depending on who is exiting first.
982          */
983         atomic_set(&cfqg->ref, 1);
984
985         /* Add group onto cgroup list */
986         sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
987         blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
988                                         MKDEV(major, minor));
989
990         /* Add group on cfqd list */
991         hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
992
993 done:
994         css_put(&blkcg->css);
995         return cfqg;
996 }
997
998 /*
999  * Search for the cfq group current task belongs to. If create = 1, then also
1000  * create the cfq group if it does not exist. request_queue lock must be held.
1001  */
1002 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1003 {
1004         struct cgroup *cgroup;
1005         struct cfq_group *cfqg = NULL;
1006
1007         rcu_read_lock();
1008         cgroup = task_cgroup(current, blkio_subsys_id);
1009         cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
1010         if (!cfqg && create)
1011                 cfqg = &cfqd->root_group;
1012         rcu_read_unlock();
1013         return cfqg;
1014 }
1015
1016 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1017 {
1018         /* Currently, all async queues are mapped to root group */
1019         if (!cfq_cfqq_sync(cfqq))
1020                 cfqg = &cfqq->cfqd->root_group;
1021
1022         cfqq->cfqg = cfqg;
1023         /* cfqq reference on cfqg */
1024         atomic_inc(&cfqq->cfqg->ref);
1025 }
1026
1027 static void cfq_put_cfqg(struct cfq_group *cfqg)
1028 {
1029         struct cfq_rb_root *st;
1030         int i, j;
1031
1032         BUG_ON(atomic_read(&cfqg->ref) <= 0);
1033         if (!atomic_dec_and_test(&cfqg->ref))
1034                 return;
1035         for_each_cfqg_st(cfqg, i, j, st)
1036                 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1037         kfree(cfqg);
1038 }
1039
1040 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1041 {
1042         /* Something wrong if we are trying to remove same group twice */
1043         BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1044
1045         hlist_del_init(&cfqg->cfqd_node);
1046
1047         /*
1048          * Put the reference taken at the time of creation so that when all
1049          * queues are gone, group can be destroyed.
1050          */
1051         cfq_put_cfqg(cfqg);
1052 }
1053
1054 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1055 {
1056         struct hlist_node *pos, *n;
1057         struct cfq_group *cfqg;
1058
1059         hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1060                 /*
1061                  * If cgroup removal path got to blk_group first and removed
1062                  * it from cgroup list, then it will take care of destroying
1063                  * cfqg also.
1064                  */
1065                 if (!blkiocg_del_blkio_group(&cfqg->blkg))
1066                         cfq_destroy_cfqg(cfqd, cfqg);
1067         }
1068 }
1069
1070 /*
1071  * Blk cgroup controller notification saying that blkio_group object is being
1072  * delinked as associated cgroup object is going away. That also means that
1073  * no new IO will come in this group. So get rid of this group as soon as
1074  * any pending IO in the group is finished.
1075  *
1076  * This function is called under rcu_read_lock(). key is the rcu protected
1077  * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1078  * read lock.
1079  *
1080  * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1081  * it should not be NULL as even if elevator was exiting, cgroup deltion
1082  * path got to it first.
1083  */
1084 void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1085 {
1086         unsigned long  flags;
1087         struct cfq_data *cfqd = key;
1088
1089         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1090         cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1091         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1092 }
1093
1094 #else /* GROUP_IOSCHED */
1095 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1096 {
1097         return &cfqd->root_group;
1098 }
1099 static inline void
1100 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1101         cfqq->cfqg = cfqg;
1102 }
1103
1104 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1105 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1106
1107 #endif /* GROUP_IOSCHED */
1108
1109 /*
1110  * The cfqd->service_trees holds all pending cfq_queue's that have
1111  * requests waiting to be processed. It is sorted in the order that
1112  * we will service the queues.
1113  */
1114 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1115                                  bool add_front)
1116 {
1117         struct rb_node **p, *parent;
1118         struct cfq_queue *__cfqq;
1119         unsigned long rb_key;
1120         struct cfq_rb_root *service_tree;
1121         int left;
1122         int new_cfqq = 1;
1123
1124         service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1125                                                 cfqq_type(cfqq), cfqd);
1126         if (cfq_class_idle(cfqq)) {
1127                 rb_key = CFQ_IDLE_DELAY;
1128                 parent = rb_last(&service_tree->rb);
1129                 if (parent && parent != &cfqq->rb_node) {
1130                         __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1131                         rb_key += __cfqq->rb_key;
1132                 } else
1133                         rb_key += jiffies;
1134         } else if (!add_front) {
1135                 /*
1136                  * Get our rb key offset. Subtract any residual slice
1137                  * value carried from last service. A negative resid
1138                  * count indicates slice overrun, and this should position
1139                  * the next service time further away in the tree.
1140                  */
1141                 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1142                 rb_key -= cfqq->slice_resid;
1143                 cfqq->slice_resid = 0;
1144         } else {
1145                 rb_key = -HZ;
1146                 __cfqq = cfq_rb_first(service_tree);
1147                 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1148         }
1149
1150         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1151                 new_cfqq = 0;
1152                 /*
1153                  * same position, nothing more to do
1154                  */
1155                 if (rb_key == cfqq->rb_key &&
1156                     cfqq->service_tree == service_tree)
1157                         return;
1158
1159                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1160                 cfqq->service_tree = NULL;
1161         }
1162
1163         left = 1;
1164         parent = NULL;
1165         cfqq->service_tree = service_tree;
1166         p = &service_tree->rb.rb_node;
1167         while (*p) {
1168                 struct rb_node **n;
1169
1170                 parent = *p;
1171                 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1172
1173                 /*
1174                  * sort by key, that represents service time.
1175                  */
1176                 if (time_before(rb_key, __cfqq->rb_key))
1177                         n = &(*p)->rb_left;
1178                 else {
1179                         n = &(*p)->rb_right;
1180                         left = 0;
1181                 }
1182
1183                 p = n;
1184         }
1185
1186         if (left)
1187                 service_tree->left = &cfqq->rb_node;
1188
1189         cfqq->rb_key = rb_key;
1190         rb_link_node(&cfqq->rb_node, parent, p);
1191         rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1192         service_tree->count++;
1193         if (add_front || !new_cfqq)
1194                 return;
1195         cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1196 }
1197
1198 static struct cfq_queue *
1199 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1200                      sector_t sector, struct rb_node **ret_parent,
1201                      struct rb_node ***rb_link)
1202 {
1203         struct rb_node **p, *parent;
1204         struct cfq_queue *cfqq = NULL;
1205
1206         parent = NULL;
1207         p = &root->rb_node;
1208         while (*p) {
1209                 struct rb_node **n;
1210
1211                 parent = *p;
1212                 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1213
1214                 /*
1215                  * Sort strictly based on sector.  Smallest to the left,
1216                  * largest to the right.
1217                  */
1218                 if (sector > blk_rq_pos(cfqq->next_rq))
1219                         n = &(*p)->rb_right;
1220                 else if (sector < blk_rq_pos(cfqq->next_rq))
1221                         n = &(*p)->rb_left;
1222                 else
1223                         break;
1224                 p = n;
1225                 cfqq = NULL;
1226         }
1227
1228         *ret_parent = parent;
1229         if (rb_link)
1230                 *rb_link = p;
1231         return cfqq;
1232 }
1233
1234 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1235 {
1236         struct rb_node **p, *parent;
1237         struct cfq_queue *__cfqq;
1238
1239         if (cfqq->p_root) {
1240                 rb_erase(&cfqq->p_node, cfqq->p_root);
1241                 cfqq->p_root = NULL;
1242         }
1243
1244         if (cfq_class_idle(cfqq))
1245                 return;
1246         if (!cfqq->next_rq)
1247                 return;
1248
1249         cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1250         __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1251                                       blk_rq_pos(cfqq->next_rq), &parent, &p);
1252         if (!__cfqq) {
1253                 rb_link_node(&cfqq->p_node, parent, p);
1254                 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1255         } else
1256                 cfqq->p_root = NULL;
1257 }
1258
1259 /*
1260  * Update cfqq's position in the service tree.
1261  */
1262 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1263 {
1264         /*
1265          * Resorting requires the cfqq to be on the RR list already.
1266          */
1267         if (cfq_cfqq_on_rr(cfqq)) {
1268                 cfq_service_tree_add(cfqd, cfqq, 0);
1269                 cfq_prio_tree_add(cfqd, cfqq);
1270         }
1271 }
1272
1273 /*
1274  * add to busy list of queues for service, trying to be fair in ordering
1275  * the pending list according to last request service
1276  */
1277 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1278 {
1279         cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1280         BUG_ON(cfq_cfqq_on_rr(cfqq));
1281         cfq_mark_cfqq_on_rr(cfqq);
1282         cfqd->busy_queues++;
1283
1284         cfq_resort_rr_list(cfqd, cfqq);
1285 }
1286
1287 /*
1288  * Called when the cfqq no longer has requests pending, remove it from
1289  * the service tree.
1290  */
1291 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1292 {
1293         cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1294         BUG_ON(!cfq_cfqq_on_rr(cfqq));
1295         cfq_clear_cfqq_on_rr(cfqq);
1296
1297         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1298                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1299                 cfqq->service_tree = NULL;
1300         }
1301         if (cfqq->p_root) {
1302                 rb_erase(&cfqq->p_node, cfqq->p_root);
1303                 cfqq->p_root = NULL;
1304         }
1305
1306         cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1307         BUG_ON(!cfqd->busy_queues);
1308         cfqd->busy_queues--;
1309 }
1310
1311 /*
1312  * rb tree support functions
1313  */
1314 static void cfq_del_rq_rb(struct request *rq)
1315 {
1316         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1317         const int sync = rq_is_sync(rq);
1318
1319         BUG_ON(!cfqq->queued[sync]);
1320         cfqq->queued[sync]--;
1321
1322         elv_rb_del(&cfqq->sort_list, rq);
1323
1324         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1325                 /*
1326                  * Queue will be deleted from service tree when we actually
1327                  * expire it later. Right now just remove it from prio tree
1328                  * as it is empty.
1329                  */
1330                 if (cfqq->p_root) {
1331                         rb_erase(&cfqq->p_node, cfqq->p_root);
1332                         cfqq->p_root = NULL;
1333                 }
1334         }
1335 }
1336
1337 static void cfq_add_rq_rb(struct request *rq)
1338 {
1339         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1340         struct cfq_data *cfqd = cfqq->cfqd;
1341         struct request *__alias, *prev;
1342
1343         cfqq->queued[rq_is_sync(rq)]++;
1344
1345         /*
1346          * looks a little odd, but the first insert might return an alias.
1347          * if that happens, put the alias on the dispatch list
1348          */
1349         while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1350                 cfq_dispatch_insert(cfqd->queue, __alias);
1351
1352         if (!cfq_cfqq_on_rr(cfqq))
1353                 cfq_add_cfqq_rr(cfqd, cfqq);
1354
1355         /*
1356          * check if this request is a better next-serve candidate
1357          */
1358         prev = cfqq->next_rq;
1359         cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1360
1361         /*
1362          * adjust priority tree position, if ->next_rq changes
1363          */
1364         if (prev != cfqq->next_rq)
1365                 cfq_prio_tree_add(cfqd, cfqq);
1366
1367         BUG_ON(!cfqq->next_rq);
1368 }
1369
1370 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1371 {
1372         elv_rb_del(&cfqq->sort_list, rq);
1373         cfqq->queued[rq_is_sync(rq)]--;
1374         cfq_add_rq_rb(rq);
1375 }
1376
1377 static struct request *
1378 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1379 {
1380         struct task_struct *tsk = current;
1381         struct cfq_io_context *cic;
1382         struct cfq_queue *cfqq;
1383
1384         cic = cfq_cic_lookup(cfqd, tsk->io_context);
1385         if (!cic)
1386                 return NULL;
1387
1388         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1389         if (cfqq) {
1390                 sector_t sector = bio->bi_sector + bio_sectors(bio);
1391
1392                 return elv_rb_find(&cfqq->sort_list, sector);
1393         }
1394
1395         return NULL;
1396 }
1397
1398 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1399 {
1400         struct cfq_data *cfqd = q->elevator->elevator_data;
1401
1402         cfqd->rq_in_driver[rq_is_sync(rq)]++;
1403         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1404                                                 rq_in_driver(cfqd));
1405
1406         cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1407 }
1408
1409 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1410 {
1411         struct cfq_data *cfqd = q->elevator->elevator_data;
1412         const int sync = rq_is_sync(rq);
1413
1414         WARN_ON(!cfqd->rq_in_driver[sync]);
1415         cfqd->rq_in_driver[sync]--;
1416         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1417                                                 rq_in_driver(cfqd));
1418 }
1419
1420 static void cfq_remove_request(struct request *rq)
1421 {
1422         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1423
1424         if (cfqq->next_rq == rq)
1425                 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1426
1427         list_del_init(&rq->queuelist);
1428         cfq_del_rq_rb(rq);
1429
1430         cfqq->cfqd->rq_queued--;
1431         if (rq_is_meta(rq)) {
1432                 WARN_ON(!cfqq->meta_pending);
1433                 cfqq->meta_pending--;
1434         }
1435 }
1436
1437 static int cfq_merge(struct request_queue *q, struct request **req,
1438                      struct bio *bio)
1439 {
1440         struct cfq_data *cfqd = q->elevator->elevator_data;
1441         struct request *__rq;
1442
1443         __rq = cfq_find_rq_fmerge(cfqd, bio);
1444         if (__rq && elv_rq_merge_ok(__rq, bio)) {
1445                 *req = __rq;
1446                 return ELEVATOR_FRONT_MERGE;
1447         }
1448
1449         return ELEVATOR_NO_MERGE;
1450 }
1451
1452 static void cfq_merged_request(struct request_queue *q, struct request *req,
1453                                int type)
1454 {
1455         if (type == ELEVATOR_FRONT_MERGE) {
1456                 struct cfq_queue *cfqq = RQ_CFQQ(req);
1457
1458                 cfq_reposition_rq_rb(cfqq, req);
1459         }
1460 }
1461
1462 static void
1463 cfq_merged_requests(struct request_queue *q, struct request *rq,
1464                     struct request *next)
1465 {
1466         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1467         /*
1468          * reposition in fifo if next is older than rq
1469          */
1470         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1471             time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1472                 list_move(&rq->queuelist, &next->queuelist);
1473                 rq_set_fifo_time(rq, rq_fifo_time(next));
1474         }
1475
1476         if (cfqq->next_rq == next)
1477                 cfqq->next_rq = rq;
1478         cfq_remove_request(next);
1479 }
1480
1481 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1482                            struct bio *bio)
1483 {
1484         struct cfq_data *cfqd = q->elevator->elevator_data;
1485         struct cfq_io_context *cic;
1486         struct cfq_queue *cfqq;
1487
1488         /* Deny merge if bio and rq don't belong to same cfq group */
1489         if ((RQ_CFQQ(rq))->cfqg != cfq_get_cfqg(cfqd, 0))
1490                 return false;
1491         /*
1492          * Disallow merge of a sync bio into an async request.
1493          */
1494         if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1495                 return false;
1496
1497         /*
1498          * Lookup the cfqq that this bio will be queued with. Allow
1499          * merge only if rq is queued there.
1500          */
1501         cic = cfq_cic_lookup(cfqd, current->io_context);
1502         if (!cic)
1503                 return false;
1504
1505         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1506         return cfqq == RQ_CFQQ(rq);
1507 }
1508
1509 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1510                                    struct cfq_queue *cfqq)
1511 {
1512         if (cfqq) {
1513                 cfq_log_cfqq(cfqd, cfqq, "set_active");
1514                 cfqq->slice_start = 0;
1515                 cfqq->dispatch_start = jiffies;
1516                 cfqq->allocated_slice = 0;
1517                 cfqq->slice_end = 0;
1518                 cfqq->slice_dispatch = 0;
1519                 cfqq->nr_sectors = 0;
1520
1521                 cfq_clear_cfqq_wait_request(cfqq);
1522                 cfq_clear_cfqq_must_dispatch(cfqq);
1523                 cfq_clear_cfqq_must_alloc_slice(cfqq);
1524                 cfq_clear_cfqq_fifo_expire(cfqq);
1525                 cfq_mark_cfqq_slice_new(cfqq);
1526
1527                 del_timer(&cfqd->idle_slice_timer);
1528         }
1529
1530         cfqd->active_queue = cfqq;
1531 }
1532
1533 /*
1534  * current cfqq expired its slice (or was too idle), select new one
1535  */
1536 static void
1537 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1538                     bool timed_out)
1539 {
1540         cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1541
1542         if (cfq_cfqq_wait_request(cfqq))
1543                 del_timer(&cfqd->idle_slice_timer);
1544
1545         cfq_clear_cfqq_wait_request(cfqq);
1546         cfq_clear_cfqq_wait_busy(cfqq);
1547         cfq_clear_cfqq_wait_busy_done(cfqq);
1548
1549         /*
1550          * store what was left of this slice, if the queue idled/timed out
1551          */
1552         if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1553                 cfqq->slice_resid = cfqq->slice_end - jiffies;
1554                 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1555         }
1556
1557         cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1558
1559         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1560                 cfq_del_cfqq_rr(cfqd, cfqq);
1561
1562         cfq_resort_rr_list(cfqd, cfqq);
1563
1564         if (cfqq == cfqd->active_queue)
1565                 cfqd->active_queue = NULL;
1566
1567         if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1568                 cfqd->grp_service_tree.active = NULL;
1569
1570         if (cfqd->active_cic) {
1571                 put_io_context(cfqd->active_cic->ioc);
1572                 cfqd->active_cic = NULL;
1573         }
1574 }
1575
1576 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1577 {
1578         struct cfq_queue *cfqq = cfqd->active_queue;
1579
1580         if (cfqq)
1581                 __cfq_slice_expired(cfqd, cfqq, timed_out);
1582 }
1583
1584 /*
1585  * Get next queue for service. Unless we have a queue preemption,
1586  * we'll simply select the first cfqq in the service tree.
1587  */
1588 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1589 {
1590         struct cfq_rb_root *service_tree =
1591                 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1592                                         cfqd->serving_type, cfqd);
1593
1594         if (!cfqd->rq_queued)
1595                 return NULL;
1596
1597         /* There is nothing to dispatch */
1598         if (!service_tree)
1599                 return NULL;
1600         if (RB_EMPTY_ROOT(&service_tree->rb))
1601                 return NULL;
1602         return cfq_rb_first(service_tree);
1603 }
1604
1605 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1606 {
1607         struct cfq_group *cfqg;
1608         struct cfq_queue *cfqq;
1609         int i, j;
1610         struct cfq_rb_root *st;
1611
1612         if (!cfqd->rq_queued)
1613                 return NULL;
1614
1615         cfqg = cfq_get_next_cfqg(cfqd);
1616         if (!cfqg)
1617                 return NULL;
1618
1619         for_each_cfqg_st(cfqg, i, j, st)
1620                 if ((cfqq = cfq_rb_first(st)) != NULL)
1621                         return cfqq;
1622         return NULL;
1623 }
1624
1625 /*
1626  * Get and set a new active queue for service.
1627  */
1628 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1629                                               struct cfq_queue *cfqq)
1630 {
1631         if (!cfqq)
1632                 cfqq = cfq_get_next_queue(cfqd);
1633
1634         __cfq_set_active_queue(cfqd, cfqq);
1635         return cfqq;
1636 }
1637
1638 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1639                                           struct request *rq)
1640 {
1641         if (blk_rq_pos(rq) >= cfqd->last_position)
1642                 return blk_rq_pos(rq) - cfqd->last_position;
1643         else
1644                 return cfqd->last_position - blk_rq_pos(rq);
1645 }
1646
1647 #define CFQQ_SEEK_THR           8 * 1024
1648 #define CFQQ_SEEKY(cfqq)        ((cfqq)->seek_mean > CFQQ_SEEK_THR)
1649
1650 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1651                                struct request *rq)
1652 {
1653         sector_t sdist = cfqq->seek_mean;
1654
1655         if (!sample_valid(cfqq->seek_samples))
1656                 sdist = CFQQ_SEEK_THR;
1657
1658         return cfq_dist_from_last(cfqd, rq) <= sdist;
1659 }
1660
1661 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1662                                     struct cfq_queue *cur_cfqq)
1663 {
1664         struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1665         struct rb_node *parent, *node;
1666         struct cfq_queue *__cfqq;
1667         sector_t sector = cfqd->last_position;
1668
1669         if (RB_EMPTY_ROOT(root))
1670                 return NULL;
1671
1672         /*
1673          * First, if we find a request starting at the end of the last
1674          * request, choose it.
1675          */
1676         __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1677         if (__cfqq)
1678                 return __cfqq;
1679
1680         /*
1681          * If the exact sector wasn't found, the parent of the NULL leaf
1682          * will contain the closest sector.
1683          */
1684         __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1685         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1686                 return __cfqq;
1687
1688         if (blk_rq_pos(__cfqq->next_rq) < sector)
1689                 node = rb_next(&__cfqq->p_node);
1690         else
1691                 node = rb_prev(&__cfqq->p_node);
1692         if (!node)
1693                 return NULL;
1694
1695         __cfqq = rb_entry(node, struct cfq_queue, p_node);
1696         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1697                 return __cfqq;
1698
1699         return NULL;
1700 }
1701
1702 /*
1703  * cfqd - obvious
1704  * cur_cfqq - passed in so that we don't decide that the current queue is
1705  *            closely cooperating with itself.
1706  *
1707  * So, basically we're assuming that that cur_cfqq has dispatched at least
1708  * one request, and that cfqd->last_position reflects a position on the disk
1709  * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1710  * assumption.
1711  */
1712 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1713                                               struct cfq_queue *cur_cfqq)
1714 {
1715         struct cfq_queue *cfqq;
1716
1717         if (!cfq_cfqq_sync(cur_cfqq))
1718                 return NULL;
1719         if (CFQQ_SEEKY(cur_cfqq))
1720                 return NULL;
1721
1722         /*
1723          * We should notice if some of the queues are cooperating, eg
1724          * working closely on the same area of the disk. In that case,
1725          * we can group them together and don't waste time idling.
1726          */
1727         cfqq = cfqq_close(cfqd, cur_cfqq);
1728         if (!cfqq)
1729                 return NULL;
1730
1731         /* If new queue belongs to different cfq_group, don't choose it */
1732         if (cur_cfqq->cfqg != cfqq->cfqg)
1733                 return NULL;
1734
1735         /*
1736          * It only makes sense to merge sync queues.
1737          */
1738         if (!cfq_cfqq_sync(cfqq))
1739                 return NULL;
1740         if (CFQQ_SEEKY(cfqq))
1741                 return NULL;
1742
1743         /*
1744          * Do not merge queues of different priority classes
1745          */
1746         if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1747                 return NULL;
1748
1749         return cfqq;
1750 }
1751
1752 /*
1753  * Determine whether we should enforce idle window for this queue.
1754  */
1755
1756 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1757 {
1758         enum wl_prio_t prio = cfqq_prio(cfqq);
1759         struct cfq_rb_root *service_tree = cfqq->service_tree;
1760
1761         BUG_ON(!service_tree);
1762         BUG_ON(!service_tree->count);
1763
1764         /* We never do for idle class queues. */
1765         if (prio == IDLE_WORKLOAD)
1766                 return false;
1767
1768         /* We do for queues that were marked with idle window flag. */
1769         if (cfq_cfqq_idle_window(cfqq))
1770                 return true;
1771
1772         /*
1773          * Otherwise, we do only if they are the last ones
1774          * in their service tree.
1775          */
1776         return service_tree->count == 1;
1777 }
1778
1779 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1780 {
1781         struct cfq_queue *cfqq = cfqd->active_queue;
1782         struct cfq_io_context *cic;
1783         unsigned long sl;
1784
1785         /*
1786          * SSD device without seek penalty, disable idling. But only do so
1787          * for devices that support queuing, otherwise we still have a problem
1788          * with sync vs async workloads.
1789          */
1790         if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1791                 return;
1792
1793         WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1794         WARN_ON(cfq_cfqq_slice_new(cfqq));
1795
1796         /*
1797          * idle is disabled, either manually or by past process history
1798          */
1799         if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
1800                 return;
1801
1802         /*
1803          * still active requests from this queue, don't idle
1804          */
1805         if (cfqq->dispatched)
1806                 return;
1807
1808         /*
1809          * task has exited, don't wait
1810          */
1811         cic = cfqd->active_cic;
1812         if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1813                 return;
1814
1815         /*
1816          * If our average think time is larger than the remaining time
1817          * slice, then don't idle. This avoids overrunning the allotted
1818          * time slice.
1819          */
1820         if (sample_valid(cic->ttime_samples) &&
1821             (cfqq->slice_end - jiffies < cic->ttime_mean))
1822                 return;
1823
1824         cfq_mark_cfqq_wait_request(cfqq);
1825
1826         sl = cfqd->cfq_slice_idle;
1827
1828         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1829         cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1830 }
1831
1832 /*
1833  * Move request from internal lists to the request queue dispatch list.
1834  */
1835 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1836 {
1837         struct cfq_data *cfqd = q->elevator->elevator_data;
1838         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1839
1840         cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1841
1842         cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1843         cfq_remove_request(rq);
1844         cfqq->dispatched++;
1845         elv_dispatch_sort(q, rq);
1846
1847         if (cfq_cfqq_sync(cfqq))
1848                 cfqd->sync_flight++;
1849         cfqq->nr_sectors += blk_rq_sectors(rq);
1850 }
1851
1852 /*
1853  * return expired entry, or NULL to just start from scratch in rbtree
1854  */
1855 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1856 {
1857         struct request *rq = NULL;
1858
1859         if (cfq_cfqq_fifo_expire(cfqq))
1860                 return NULL;
1861
1862         cfq_mark_cfqq_fifo_expire(cfqq);
1863
1864         if (list_empty(&cfqq->fifo))
1865                 return NULL;
1866
1867         rq = rq_entry_fifo(cfqq->fifo.next);
1868         if (time_before(jiffies, rq_fifo_time(rq)))
1869                 rq = NULL;
1870
1871         cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1872         return rq;
1873 }
1874
1875 static inline int
1876 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1877 {
1878         const int base_rq = cfqd->cfq_slice_async_rq;
1879
1880         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1881
1882         return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1883 }
1884
1885 /*
1886  * Must be called with the queue_lock held.
1887  */
1888 static int cfqq_process_refs(struct cfq_queue *cfqq)
1889 {
1890         int process_refs, io_refs;
1891
1892         io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1893         process_refs = atomic_read(&cfqq->ref) - io_refs;
1894         BUG_ON(process_refs < 0);
1895         return process_refs;
1896 }
1897
1898 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1899 {
1900         int process_refs, new_process_refs;
1901         struct cfq_queue *__cfqq;
1902
1903         /* Avoid a circular list and skip interim queue merges */
1904         while ((__cfqq = new_cfqq->new_cfqq)) {
1905                 if (__cfqq == cfqq)
1906                         return;
1907                 new_cfqq = __cfqq;
1908         }
1909
1910         process_refs = cfqq_process_refs(cfqq);
1911         /*
1912          * If the process for the cfqq has gone away, there is no
1913          * sense in merging the queues.
1914          */
1915         if (process_refs == 0)
1916                 return;
1917
1918         /*
1919          * Merge in the direction of the lesser amount of work.
1920          */
1921         new_process_refs = cfqq_process_refs(new_cfqq);
1922         if (new_process_refs >= process_refs) {
1923                 cfqq->new_cfqq = new_cfqq;
1924                 atomic_add(process_refs, &new_cfqq->ref);
1925         } else {
1926                 new_cfqq->new_cfqq = cfqq;
1927                 atomic_add(new_process_refs, &cfqq->ref);
1928         }
1929 }
1930
1931 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1932                                 struct cfq_group *cfqg, enum wl_prio_t prio,
1933                                 bool prio_changed)
1934 {
1935         struct cfq_queue *queue;
1936         int i;
1937         bool key_valid = false;
1938         unsigned long lowest_key = 0;
1939         enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1940
1941         if (prio_changed) {
1942                 /*
1943                  * When priorities switched, we prefer starting
1944                  * from SYNC_NOIDLE (first choice), or just SYNC
1945                  * over ASYNC
1946                  */
1947                 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1948                         return cur_best;
1949                 cur_best = SYNC_WORKLOAD;
1950                 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1951                         return cur_best;
1952
1953                 return ASYNC_WORKLOAD;
1954         }
1955
1956         for (i = 0; i < 3; ++i) {
1957                 /* otherwise, select the one with lowest rb_key */
1958                 queue = cfq_rb_first(service_tree_for(cfqg, prio, i, cfqd));
1959                 if (queue &&
1960                     (!key_valid || time_before(queue->rb_key, lowest_key))) {
1961                         lowest_key = queue->rb_key;
1962                         cur_best = i;
1963                         key_valid = true;
1964                 }
1965         }
1966
1967         return cur_best;
1968 }
1969
1970 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
1971 {
1972         enum wl_prio_t previous_prio = cfqd->serving_prio;
1973         bool prio_changed;
1974         unsigned slice;
1975         unsigned count;
1976         struct cfq_rb_root *st;
1977         unsigned group_slice;
1978
1979         if (!cfqg) {
1980                 cfqd->serving_prio = IDLE_WORKLOAD;
1981                 cfqd->workload_expires = jiffies + 1;
1982                 return;
1983         }
1984
1985         /* Choose next priority. RT > BE > IDLE */
1986         if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
1987                 cfqd->serving_prio = RT_WORKLOAD;
1988         else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
1989                 cfqd->serving_prio = BE_WORKLOAD;
1990         else {
1991                 cfqd->serving_prio = IDLE_WORKLOAD;
1992                 cfqd->workload_expires = jiffies + 1;
1993                 return;
1994         }
1995
1996         /*
1997          * For RT and BE, we have to choose also the type
1998          * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
1999          * expiration time
2000          */
2001         prio_changed = (cfqd->serving_prio != previous_prio);
2002         st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
2003                                 cfqd);
2004         count = st->count;
2005
2006         /*
2007          * If priority didn't change, check workload expiration,
2008          * and that we still have other queues ready
2009          */
2010         if (!prio_changed && count &&
2011             !time_after(jiffies, cfqd->workload_expires))
2012                 return;
2013
2014         /* otherwise select new workload type */
2015         cfqd->serving_type =
2016                 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio, prio_changed);
2017         st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
2018                                 cfqd);
2019         count = st->count;
2020
2021         /*
2022          * the workload slice is computed as a fraction of target latency
2023          * proportional to the number of queues in that workload, over
2024          * all the queues in the same priority class
2025          */
2026         group_slice = cfq_group_slice(cfqd, cfqg);
2027
2028         slice = group_slice * count /
2029                 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2030                       cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2031
2032         if (cfqd->serving_type == ASYNC_WORKLOAD) {
2033                 unsigned int tmp;
2034
2035                 /*
2036                  * Async queues are currently system wide. Just taking
2037                  * proportion of queues with-in same group will lead to higher
2038                  * async ratio system wide as generally root group is going
2039                  * to have higher weight. A more accurate thing would be to
2040                  * calculate system wide asnc/sync ratio.
2041                  */
2042                 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2043                 tmp = tmp/cfqd->busy_queues;
2044                 slice = min_t(unsigned, slice, tmp);
2045
2046                 /* async workload slice is scaled down according to
2047                  * the sync/async slice ratio. */
2048                 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2049         } else
2050                 /* sync workload slice is at least 2 * cfq_slice_idle */
2051                 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2052
2053         slice = max_t(unsigned, slice, CFQ_MIN_TT);
2054         cfqd->workload_expires = jiffies + slice;
2055         cfqd->noidle_tree_requires_idle = false;
2056 }
2057
2058 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2059 {
2060         struct cfq_rb_root *st = &cfqd->grp_service_tree;
2061         struct cfq_group *cfqg;
2062
2063         if (RB_EMPTY_ROOT(&st->rb))
2064                 return NULL;
2065         cfqg = cfq_rb_first_group(st);
2066         st->active = &cfqg->rb_node;
2067         update_min_vdisktime(st);
2068         return cfqg;
2069 }
2070
2071 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2072 {
2073         struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2074
2075         cfqd->serving_group = cfqg;
2076
2077         /* Restore the workload type data */
2078         if (cfqg->saved_workload_slice) {
2079                 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2080                 cfqd->serving_type = cfqg->saved_workload;
2081                 cfqd->serving_prio = cfqg->saved_serving_prio;
2082         }
2083         choose_service_tree(cfqd, cfqg);
2084 }
2085
2086 /*
2087  * Select a queue for service. If we have a current active queue,
2088  * check whether to continue servicing it, or retrieve and set a new one.
2089  */
2090 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2091 {
2092         struct cfq_queue *cfqq, *new_cfqq = NULL;
2093
2094         cfqq = cfqd->active_queue;
2095         if (!cfqq)
2096                 goto new_queue;
2097
2098         if (!cfqd->rq_queued)
2099                 return NULL;
2100         /*
2101          * The active queue has run out of time, expire it and select new.
2102          */
2103         if ((cfq_slice_used(cfqq) || cfq_cfqq_wait_busy_done(cfqq))
2104              && !cfq_cfqq_must_dispatch(cfqq))
2105                 goto expire;
2106
2107         /*
2108          * The active queue has requests and isn't expired, allow it to
2109          * dispatch.
2110          */
2111         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2112                 goto keep_queue;
2113
2114         /*
2115          * If another queue has a request waiting within our mean seek
2116          * distance, let it run.  The expire code will check for close
2117          * cooperators and put the close queue at the front of the service
2118          * tree.  If possible, merge the expiring queue with the new cfqq.
2119          */
2120         new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2121         if (new_cfqq) {
2122                 if (!cfqq->new_cfqq)
2123                         cfq_setup_merge(cfqq, new_cfqq);
2124                 goto expire;
2125         }
2126
2127         /*
2128          * No requests pending. If the active queue still has requests in
2129          * flight or is idling for a new request, allow either of these
2130          * conditions to happen (or time out) before selecting a new queue.
2131          */
2132         if (timer_pending(&cfqd->idle_slice_timer) ||
2133             (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
2134                 cfqq = NULL;
2135                 goto keep_queue;
2136         }
2137
2138 expire:
2139         cfq_slice_expired(cfqd, 0);
2140 new_queue:
2141         /*
2142          * Current queue expired. Check if we have to switch to a new
2143          * service tree
2144          */
2145         if (!new_cfqq)
2146                 cfq_choose_cfqg(cfqd);
2147
2148         cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2149 keep_queue:
2150         return cfqq;
2151 }
2152
2153 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2154 {
2155         int dispatched = 0;
2156
2157         while (cfqq->next_rq) {
2158                 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2159                 dispatched++;
2160         }
2161
2162         BUG_ON(!list_empty(&cfqq->fifo));
2163
2164         /* By default cfqq is not expired if it is empty. Do it explicitly */
2165         __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2166         return dispatched;
2167 }
2168
2169 /*
2170  * Drain our current requests. Used for barriers and when switching
2171  * io schedulers on-the-fly.
2172  */
2173 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2174 {
2175         struct cfq_queue *cfqq;
2176         int dispatched = 0;
2177
2178         while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
2179                 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2180
2181         cfq_slice_expired(cfqd, 0);
2182         BUG_ON(cfqd->busy_queues);
2183
2184         cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2185         return dispatched;
2186 }
2187
2188 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2189 {
2190         unsigned int max_dispatch;
2191
2192         /*
2193          * Drain async requests before we start sync IO
2194          */
2195         if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
2196                 return false;
2197
2198         /*
2199          * If this is an async queue and we have sync IO in flight, let it wait
2200          */
2201         if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
2202                 return false;
2203
2204         max_dispatch = cfqd->cfq_quantum;
2205         if (cfq_class_idle(cfqq))
2206                 max_dispatch = 1;
2207
2208         /*
2209          * Does this cfqq already have too much IO in flight?
2210          */
2211         if (cfqq->dispatched >= max_dispatch) {
2212                 /*
2213                  * idle queue must always only have a single IO in flight
2214                  */
2215                 if (cfq_class_idle(cfqq))
2216                         return false;
2217
2218                 /*
2219                  * We have other queues, don't allow more IO from this one
2220                  */
2221                 if (cfqd->busy_queues > 1)
2222                         return false;
2223
2224                 /*
2225                  * Sole queue user, no limit
2226                  */
2227                 max_dispatch = -1;
2228         }
2229
2230         /*
2231          * Async queues must wait a bit before being allowed dispatch.
2232          * We also ramp up the dispatch depth gradually for async IO,
2233          * based on the last sync IO we serviced
2234          */
2235         if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2236                 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
2237                 unsigned int depth;
2238
2239                 depth = last_sync / cfqd->cfq_slice[1];
2240                 if (!depth && !cfqq->dispatched)
2241                         depth = 1;
2242                 if (depth < max_dispatch)
2243                         max_dispatch = depth;
2244         }
2245
2246         /*
2247          * If we're below the current max, allow a dispatch
2248          */
2249         return cfqq->dispatched < max_dispatch;
2250 }
2251
2252 /*
2253  * Dispatch a request from cfqq, moving them to the request queue
2254  * dispatch list.
2255  */
2256 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2257 {
2258         struct request *rq;
2259
2260         BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2261
2262         if (!cfq_may_dispatch(cfqd, cfqq))
2263                 return false;
2264
2265         /*
2266          * follow expired path, else get first next available
2267          */
2268         rq = cfq_check_fifo(cfqq);
2269         if (!rq)
2270                 rq = cfqq->next_rq;
2271
2272         /*
2273          * insert request into driver dispatch list
2274          */
2275         cfq_dispatch_insert(cfqd->queue, rq);
2276
2277         if (!cfqd->active_cic) {
2278                 struct cfq_io_context *cic = RQ_CIC(rq);
2279
2280                 atomic_long_inc(&cic->ioc->refcount);
2281                 cfqd->active_cic = cic;
2282         }
2283
2284         return true;
2285 }
2286
2287 /*
2288  * Find the cfqq that we need to service and move a request from that to the
2289  * dispatch list
2290  */
2291 static int cfq_dispatch_requests(struct request_queue *q, int force)
2292 {
2293         struct cfq_data *cfqd = q->elevator->elevator_data;
2294         struct cfq_queue *cfqq;
2295
2296         if (!cfqd->busy_queues)
2297                 return 0;
2298
2299         if (unlikely(force))
2300                 return cfq_forced_dispatch(cfqd);
2301
2302         cfqq = cfq_select_queue(cfqd);
2303         if (!cfqq)
2304                 return 0;
2305
2306         /*
2307          * Dispatch a request from this cfqq, if it is allowed
2308          */
2309         if (!cfq_dispatch_request(cfqd, cfqq))
2310                 return 0;
2311
2312         cfqq->slice_dispatch++;
2313         cfq_clear_cfqq_must_dispatch(cfqq);
2314
2315         /*
2316          * expire an async queue immediately if it has used up its slice. idle
2317          * queue always expire after 1 dispatch round.
2318          */
2319         if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2320             cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2321             cfq_class_idle(cfqq))) {
2322                 cfqq->slice_end = jiffies + 1;
2323                 cfq_slice_expired(cfqd, 0);
2324         }
2325
2326         cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2327         return 1;
2328 }
2329
2330 /*
2331  * task holds one reference to the queue, dropped when task exits. each rq
2332  * in-flight on this queue also holds a reference, dropped when rq is freed.
2333  *
2334  * Each cfq queue took a reference on the parent group. Drop it now.
2335  * queue lock must be held here.
2336  */
2337 static void cfq_put_queue(struct cfq_queue *cfqq)
2338 {
2339         struct cfq_data *cfqd = cfqq->cfqd;
2340         struct cfq_group *cfqg;
2341
2342         BUG_ON(atomic_read(&cfqq->ref) <= 0);
2343
2344         if (!atomic_dec_and_test(&cfqq->ref))
2345                 return;
2346
2347         cfq_log_cfqq(cfqd, cfqq, "put_queue");
2348         BUG_ON(rb_first(&cfqq->sort_list));
2349         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2350         cfqg = cfqq->cfqg;
2351
2352         if (unlikely(cfqd->active_queue == cfqq)) {
2353                 __cfq_slice_expired(cfqd, cfqq, 0);
2354                 cfq_schedule_dispatch(cfqd);
2355         }
2356
2357         BUG_ON(cfq_cfqq_on_rr(cfqq));
2358         kmem_cache_free(cfq_pool, cfqq);
2359         cfq_put_cfqg(cfqg);
2360 }
2361
2362 /*
2363  * Must always be called with the rcu_read_lock() held
2364  */
2365 static void
2366 __call_for_each_cic(struct io_context *ioc,
2367                     void (*func)(struct io_context *, struct cfq_io_context *))
2368 {
2369         struct cfq_io_context *cic;
2370         struct hlist_node *n;
2371
2372         hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2373                 func(ioc, cic);
2374 }
2375
2376 /*
2377  * Call func for each cic attached to this ioc.
2378  */
2379 static void
2380 call_for_each_cic(struct io_context *ioc,
2381                   void (*func)(struct io_context *, struct cfq_io_context *))
2382 {
2383         rcu_read_lock();
2384         __call_for_each_cic(ioc, func);
2385         rcu_read_unlock();
2386 }
2387
2388 static void cfq_cic_free_rcu(struct rcu_head *head)
2389 {
2390         struct cfq_io_context *cic;
2391
2392         cic = container_of(head, struct cfq_io_context, rcu_head);
2393
2394         kmem_cache_free(cfq_ioc_pool, cic);
2395         elv_ioc_count_dec(cfq_ioc_count);
2396
2397         if (ioc_gone) {
2398                 /*
2399                  * CFQ scheduler is exiting, grab exit lock and check
2400                  * the pending io context count. If it hits zero,
2401                  * complete ioc_gone and set it back to NULL
2402                  */
2403                 spin_lock(&ioc_gone_lock);
2404                 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2405                         complete(ioc_gone);
2406                         ioc_gone = NULL;
2407                 }
2408                 spin_unlock(&ioc_gone_lock);
2409         }
2410 }
2411
2412 static void cfq_cic_free(struct cfq_io_context *cic)
2413 {
2414         call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2415 }
2416
2417 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2418 {
2419         unsigned long flags;
2420
2421         BUG_ON(!cic->dead_key);
2422
2423         spin_lock_irqsave(&ioc->lock, flags);
2424         radix_tree_delete(&ioc->radix_root, cic->dead_key);
2425         hlist_del_rcu(&cic->cic_list);
2426         spin_unlock_irqrestore(&ioc->lock, flags);
2427
2428         cfq_cic_free(cic);
2429 }
2430
2431 /*
2432  * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2433  * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2434  * and ->trim() which is called with the task lock held
2435  */
2436 static void cfq_free_io_context(struct io_context *ioc)
2437 {
2438         /*
2439          * ioc->refcount is zero here, or we are called from elv_unregister(),
2440          * so no more cic's are allowed to be linked into this ioc.  So it
2441          * should be ok to iterate over the known list, we will see all cic's
2442          * since no new ones are added.
2443          */
2444         __call_for_each_cic(ioc, cic_free_func);
2445 }
2446
2447 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2448 {
2449         struct cfq_queue *__cfqq, *next;
2450
2451         if (unlikely(cfqq == cfqd->active_queue)) {
2452                 __cfq_slice_expired(cfqd, cfqq, 0);
2453                 cfq_schedule_dispatch(cfqd);
2454         }
2455
2456         /*
2457          * If this queue was scheduled to merge with another queue, be
2458          * sure to drop the reference taken on that queue (and others in
2459          * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
2460          */
2461         __cfqq = cfqq->new_cfqq;
2462         while (__cfqq) {
2463                 if (__cfqq == cfqq) {
2464                         WARN(1, "cfqq->new_cfqq loop detected\n");
2465                         break;
2466                 }
2467                 next = __cfqq->new_cfqq;
2468                 cfq_put_queue(__cfqq);
2469                 __cfqq = next;
2470         }
2471
2472         cfq_put_queue(cfqq);
2473 }
2474
2475 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2476                                          struct cfq_io_context *cic)
2477 {
2478         struct io_context *ioc = cic->ioc;
2479
2480         list_del_init(&cic->queue_list);
2481
2482         /*
2483          * Make sure key == NULL is seen for dead queues
2484          */
2485         smp_wmb();
2486         cic->dead_key = (unsigned long) cic->key;
2487         cic->key = NULL;
2488
2489         if (ioc->ioc_data == cic)
2490                 rcu_assign_pointer(ioc->ioc_data, NULL);
2491
2492         if (cic->cfqq[BLK_RW_ASYNC]) {
2493                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2494                 cic->cfqq[BLK_RW_ASYNC] = NULL;
2495         }
2496
2497         if (cic->cfqq[BLK_RW_SYNC]) {
2498                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2499                 cic->cfqq[BLK_RW_SYNC] = NULL;
2500         }
2501 }
2502
2503 static void cfq_exit_single_io_context(struct io_context *ioc,
2504                                        struct cfq_io_context *cic)
2505 {
2506         struct cfq_data *cfqd = cic->key;
2507
2508         if (cfqd) {
2509                 struct request_queue *q = cfqd->queue;
2510                 unsigned long flags;
2511
2512                 spin_lock_irqsave(q->queue_lock, flags);
2513
2514                 /*
2515                  * Ensure we get a fresh copy of the ->key to prevent
2516                  * race between exiting task and queue
2517                  */
2518                 smp_read_barrier_depends();
2519                 if (cic->key)
2520                         __cfq_exit_single_io_context(cfqd, cic);
2521
2522                 spin_unlock_irqrestore(q->queue_lock, flags);
2523         }
2524 }
2525
2526 /*
2527  * The process that ioc belongs to has exited, we need to clean up
2528  * and put the internal structures we have that belongs to that process.
2529  */
2530 static void cfq_exit_io_context(struct io_context *ioc)
2531 {
2532         call_for_each_cic(ioc, cfq_exit_single_io_context);
2533 }
2534
2535 static struct cfq_io_context *
2536 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2537 {
2538         struct cfq_io_context *cic;
2539
2540         cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2541                                                         cfqd->queue->node);
2542         if (cic) {
2543                 cic->last_end_request = jiffies;
2544                 INIT_LIST_HEAD(&cic->queue_list);
2545                 INIT_HLIST_NODE(&cic->cic_list);
2546                 cic->dtor = cfq_free_io_context;
2547                 cic->exit = cfq_exit_io_context;
2548                 elv_ioc_count_inc(cfq_ioc_count);
2549         }
2550
2551         return cic;
2552 }
2553
2554 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2555 {
2556         struct task_struct *tsk = current;
2557         int ioprio_class;
2558
2559         if (!cfq_cfqq_prio_changed(cfqq))
2560                 return;
2561
2562         ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2563         switch (ioprio_class) {
2564         default:
2565                 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2566         case IOPRIO_CLASS_NONE:
2567                 /*
2568                  * no prio set, inherit CPU scheduling settings
2569                  */
2570                 cfqq->ioprio = task_nice_ioprio(tsk);
2571                 cfqq->ioprio_class = task_nice_ioclass(tsk);
2572                 break;
2573         case IOPRIO_CLASS_RT:
2574                 cfqq->ioprio = task_ioprio(ioc);
2575                 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2576                 break;
2577         case IOPRIO_CLASS_BE:
2578                 cfqq->ioprio = task_ioprio(ioc);
2579                 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2580                 break;
2581         case IOPRIO_CLASS_IDLE:
2582                 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2583                 cfqq->ioprio = 7;
2584                 cfq_clear_cfqq_idle_window(cfqq);
2585                 break;
2586         }
2587
2588         /*
2589          * keep track of original prio settings in case we have to temporarily
2590          * elevate the priority of this queue
2591          */
2592         cfqq->org_ioprio = cfqq->ioprio;
2593         cfqq->org_ioprio_class = cfqq->ioprio_class;
2594         cfq_clear_cfqq_prio_changed(cfqq);
2595 }
2596
2597 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2598 {
2599         struct cfq_data *cfqd = cic->key;
2600         struct cfq_queue *cfqq;
2601         unsigned long flags;
2602
2603         if (unlikely(!cfqd))
2604                 return;
2605
2606         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2607
2608         cfqq = cic->cfqq[BLK_RW_ASYNC];
2609         if (cfqq) {
2610                 struct cfq_queue *new_cfqq;
2611                 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2612                                                 GFP_ATOMIC);
2613                 if (new_cfqq) {
2614                         cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2615                         cfq_put_queue(cfqq);
2616                 }
2617         }
2618
2619         cfqq = cic->cfqq[BLK_RW_SYNC];
2620         if (cfqq)
2621                 cfq_mark_cfqq_prio_changed(cfqq);
2622
2623         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2624 }
2625
2626 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2627 {
2628         call_for_each_cic(ioc, changed_ioprio);
2629         ioc->ioprio_changed = 0;
2630 }
2631
2632 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2633                           pid_t pid, bool is_sync)
2634 {
2635         RB_CLEAR_NODE(&cfqq->rb_node);
2636         RB_CLEAR_NODE(&cfqq->p_node);
2637         INIT_LIST_HEAD(&cfqq->fifo);
2638
2639         atomic_set(&cfqq->ref, 0);
2640         cfqq->cfqd = cfqd;
2641
2642         cfq_mark_cfqq_prio_changed(cfqq);
2643
2644         if (is_sync) {
2645                 if (!cfq_class_idle(cfqq))
2646                         cfq_mark_cfqq_idle_window(cfqq);
2647                 cfq_mark_cfqq_sync(cfqq);
2648         }
2649         cfqq->pid = pid;
2650 }
2651
2652 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2653 static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2654 {
2655         struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2656         struct cfq_data *cfqd = cic->key;
2657         unsigned long flags;
2658         struct request_queue *q;
2659
2660         if (unlikely(!cfqd))
2661                 return;
2662
2663         q = cfqd->queue;
2664
2665         spin_lock_irqsave(q->queue_lock, flags);
2666
2667         if (sync_cfqq) {
2668                 /*
2669                  * Drop reference to sync queue. A new sync queue will be
2670                  * assigned in new group upon arrival of a fresh request.
2671                  */
2672                 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2673                 cic_set_cfqq(cic, NULL, 1);
2674                 cfq_put_queue(sync_cfqq);
2675         }
2676
2677         spin_unlock_irqrestore(q->queue_lock, flags);
2678 }
2679
2680 static void cfq_ioc_set_cgroup(struct io_context *ioc)
2681 {
2682         call_for_each_cic(ioc, changed_cgroup);
2683         ioc->cgroup_changed = 0;
2684 }
2685 #endif  /* CONFIG_CFQ_GROUP_IOSCHED */
2686
2687 static struct cfq_queue *
2688 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2689                      struct io_context *ioc, gfp_t gfp_mask)
2690 {
2691         struct cfq_queue *cfqq, *new_cfqq = NULL;
2692         struct cfq_io_context *cic;
2693         struct cfq_group *cfqg;
2694
2695 retry:
2696         cfqg = cfq_get_cfqg(cfqd, 1);
2697         cic = cfq_cic_lookup(cfqd, ioc);
2698         /* cic always exists here */
2699         cfqq = cic_to_cfqq(cic, is_sync);
2700
2701         /*
2702          * Always try a new alloc if we fell back to the OOM cfqq
2703          * originally, since it should just be a temporary situation.
2704          */
2705         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2706                 cfqq = NULL;
2707                 if (new_cfqq) {
2708                         cfqq = new_cfqq;
2709                         new_cfqq = NULL;
2710                 } else if (gfp_mask & __GFP_WAIT) {
2711                         spin_unlock_irq(cfqd->queue->queue_lock);
2712                         new_cfqq = kmem_cache_alloc_node(cfq_pool,
2713                                         gfp_mask | __GFP_ZERO,
2714                                         cfqd->queue->node);
2715                         spin_lock_irq(cfqd->queue->queue_lock);
2716                         if (new_cfqq)
2717                                 goto retry;
2718                 } else {
2719                         cfqq = kmem_cache_alloc_node(cfq_pool,
2720                                         gfp_mask | __GFP_ZERO,
2721                                         cfqd->queue->node);
2722                 }
2723
2724                 if (cfqq) {
2725                         cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2726                         cfq_init_prio_data(cfqq, ioc);
2727                         cfq_link_cfqq_cfqg(cfqq, cfqg);
2728                         cfq_log_cfqq(cfqd, cfqq, "alloced");
2729                 } else
2730                         cfqq = &cfqd->oom_cfqq;
2731         }
2732
2733         if (new_cfqq)
2734                 kmem_cache_free(cfq_pool, new_cfqq);
2735
2736         return cfqq;
2737 }
2738
2739 static struct cfq_queue **
2740 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2741 {
2742         switch (ioprio_class) {
2743         case IOPRIO_CLASS_RT:
2744                 return &cfqd->async_cfqq[0][ioprio];
2745         case IOPRIO_CLASS_BE:
2746                 return &cfqd->async_cfqq[1][ioprio];
2747         case IOPRIO_CLASS_IDLE:
2748                 return &cfqd->async_idle_cfqq;
2749         default:
2750                 BUG();
2751         }
2752 }
2753
2754 static struct cfq_queue *
2755 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2756               gfp_t gfp_mask)
2757 {
2758         const int ioprio = task_ioprio(ioc);
2759         const int ioprio_class = task_ioprio_class(ioc);
2760         struct cfq_queue **async_cfqq = NULL;
2761         struct cfq_queue *cfqq = NULL;
2762
2763         if (!is_sync) {
2764                 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2765                 cfqq = *async_cfqq;
2766         }
2767
2768         if (!cfqq)
2769                 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2770
2771         /*
2772          * pin the queue now that it's allocated, scheduler exit will prune it
2773          */
2774         if (!is_sync && !(*async_cfqq)) {
2775                 atomic_inc(&cfqq->ref);
2776                 *async_cfqq = cfqq;
2777         }
2778
2779         atomic_inc(&cfqq->ref);
2780         return cfqq;
2781 }
2782
2783 /*
2784  * We drop cfq io contexts lazily, so we may find a dead one.
2785  */
2786 static void
2787 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2788                   struct cfq_io_context *cic)
2789 {
2790         unsigned long flags;
2791
2792         WARN_ON(!list_empty(&cic->queue_list));
2793
2794         spin_lock_irqsave(&ioc->lock, flags);
2795
2796         BUG_ON(ioc->ioc_data == cic);
2797
2798         radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2799         hlist_del_rcu(&cic->cic_list);
2800         spin_unlock_irqrestore(&ioc->lock, flags);
2801
2802         cfq_cic_free(cic);
2803 }
2804
2805 static struct cfq_io_context *
2806 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2807 {
2808         struct cfq_io_context *cic;
2809         unsigned long flags;
2810         void *k;
2811
2812         if (unlikely(!ioc))
2813                 return NULL;
2814
2815         rcu_read_lock();
2816
2817         /*
2818          * we maintain a last-hit cache, to avoid browsing over the tree
2819          */
2820         cic = rcu_dereference(ioc->ioc_data);
2821         if (cic && cic->key == cfqd) {
2822                 rcu_read_unlock();
2823                 return cic;
2824         }
2825
2826         do {
2827                 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2828                 rcu_read_unlock();
2829                 if (!cic)
2830                         break;
2831                 /* ->key must be copied to avoid race with cfq_exit_queue() */
2832                 k = cic->key;
2833                 if (unlikely(!k)) {
2834                         cfq_drop_dead_cic(cfqd, ioc, cic);
2835                         rcu_read_lock();
2836                         continue;
2837                 }
2838
2839                 spin_lock_irqsave(&ioc->lock, flags);
2840                 rcu_assign_pointer(ioc->ioc_data, cic);
2841                 spin_unlock_irqrestore(&ioc->lock, flags);
2842                 break;
2843         } while (1);
2844
2845         return cic;
2846 }
2847
2848 /*
2849  * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2850  * the process specific cfq io context when entered from the block layer.
2851  * Also adds the cic to a per-cfqd list, used when this queue is removed.
2852  */
2853 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2854                         struct cfq_io_context *cic, gfp_t gfp_mask)
2855 {
2856         unsigned long flags;
2857         int ret;
2858
2859         ret = radix_tree_preload(gfp_mask);
2860         if (!ret) {
2861                 cic->ioc = ioc;
2862                 cic->key = cfqd;
2863
2864                 spin_lock_irqsave(&ioc->lock, flags);
2865                 ret = radix_tree_insert(&ioc->radix_root,
2866                                                 (unsigned long) cfqd, cic);
2867                 if (!ret)
2868                         hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2869                 spin_unlock_irqrestore(&ioc->lock, flags);
2870
2871                 radix_tree_preload_end();
2872
2873                 if (!ret) {
2874                         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2875                         list_add(&cic->queue_list, &cfqd->cic_list);
2876                         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2877                 }
2878         }
2879
2880         if (ret)
2881                 printk(KERN_ERR "cfq: cic link failed!\n");
2882
2883         return ret;
2884 }
2885
2886 /*
2887  * Setup general io context and cfq io context. There can be several cfq
2888  * io contexts per general io context, if this process is doing io to more
2889  * than one device managed by cfq.
2890  */
2891 static struct cfq_io_context *
2892 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2893 {
2894         struct io_context *ioc = NULL;
2895         struct cfq_io_context *cic;
2896
2897         might_sleep_if(gfp_mask & __GFP_WAIT);
2898
2899         ioc = get_io_context(gfp_mask, cfqd->queue->node);
2900         if (!ioc)
2901                 return NULL;
2902
2903         cic = cfq_cic_lookup(cfqd, ioc);
2904         if (cic)
2905                 goto out;
2906
2907         cic = cfq_alloc_io_context(cfqd, gfp_mask);
2908         if (cic == NULL)
2909                 goto err;
2910
2911         if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2912                 goto err_free;
2913
2914 out:
2915         smp_read_barrier_depends();
2916         if (unlikely(ioc->ioprio_changed))
2917                 cfq_ioc_set_ioprio(ioc);
2918
2919 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2920         if (unlikely(ioc->cgroup_changed))
2921                 cfq_ioc_set_cgroup(ioc);
2922 #endif
2923         return cic;
2924 err_free:
2925         cfq_cic_free(cic);
2926 err:
2927         put_io_context(ioc);
2928         return NULL;
2929 }
2930
2931 static void
2932 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
2933 {
2934         unsigned long elapsed = jiffies - cic->last_end_request;
2935         unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2936
2937         cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2938         cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2939         cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2940 }
2941
2942 static void
2943 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2944                        struct request *rq)
2945 {
2946         sector_t sdist;
2947         u64 total;
2948
2949         if (!cfqq->last_request_pos)
2950                 sdist = 0;
2951         else if (cfqq->last_request_pos < blk_rq_pos(rq))
2952                 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2953         else
2954                 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2955
2956         /*
2957          * Don't allow the seek distance to get too large from the
2958          * odd fragment, pagein, etc
2959          */
2960         if (cfqq->seek_samples <= 60) /* second&third seek */
2961                 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
2962         else
2963                 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
2964
2965         cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
2966         cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
2967         total = cfqq->seek_total + (cfqq->seek_samples/2);
2968         do_div(total, cfqq->seek_samples);
2969         cfqq->seek_mean = (sector_t)total;
2970
2971         /*
2972          * If this cfqq is shared between multiple processes, check to
2973          * make sure that those processes are still issuing I/Os within
2974          * the mean seek distance.  If not, it may be time to break the
2975          * queues apart again.
2976          */
2977         if (cfq_cfqq_coop(cfqq)) {
2978                 if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
2979                         cfqq->seeky_start = jiffies;
2980                 else if (!CFQQ_SEEKY(cfqq))
2981                         cfqq->seeky_start = 0;
2982         }
2983 }
2984
2985 /*
2986  * Disable idle window if the process thinks too long or seeks so much that
2987  * it doesn't matter
2988  */
2989 static void
2990 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2991                        struct cfq_io_context *cic)
2992 {
2993         int old_idle, enable_idle;
2994
2995         /*
2996          * Don't idle for async or idle io prio class
2997          */
2998         if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
2999                 return;
3000
3001         enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3002
3003         if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3004                 cfq_mark_cfqq_deep(cfqq);
3005
3006         if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3007             (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
3008              && CFQQ_SEEKY(cfqq)))
3009                 enable_idle = 0;
3010         else if (sample_valid(cic->ttime_samples)) {
3011                 if (cic->ttime_mean > cfqd->cfq_slice_idle)
3012                         enable_idle = 0;
3013                 else
3014                         enable_idle = 1;
3015         }
3016
3017         if (old_idle != enable_idle) {
3018                 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3019                 if (enable_idle)
3020                         cfq_mark_cfqq_idle_window(cfqq);
3021                 else
3022                         cfq_clear_cfqq_idle_window(cfqq);
3023         }
3024 }
3025
3026 /*
3027  * Check if new_cfqq should preempt the currently active queue. Return 0 for
3028  * no or if we aren't sure, a 1 will cause a preempt.
3029  */
3030 static bool
3031 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3032                    struct request *rq)
3033 {
3034         struct cfq_queue *cfqq;
3035
3036         cfqq = cfqd->active_queue;
3037         if (!cfqq)
3038                 return false;
3039
3040         if (cfq_class_idle(new_cfqq))
3041                 return false;
3042
3043         if (cfq_class_idle(cfqq))
3044                 return true;
3045
3046         /*
3047          * if the new request is sync, but the currently running queue is
3048          * not, let the sync request have priority.
3049          */
3050         if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3051                 return true;
3052
3053         if (new_cfqq->cfqg != cfqq->cfqg)
3054                 return false;
3055
3056         if (cfq_slice_used(cfqq))
3057                 return true;
3058
3059         /* Allow preemption only if we are idling on sync-noidle tree */
3060         if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3061             cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3062             new_cfqq->service_tree->count == 2 &&
3063             RB_EMPTY_ROOT(&cfqq->sort_list))
3064                 return true;
3065
3066         /*
3067          * So both queues are sync. Let the new request get disk time if
3068          * it's a metadata request and the current queue is doing regular IO.
3069          */
3070         if (rq_is_meta(rq) && !cfqq->meta_pending)
3071                 return true;
3072
3073         /*
3074          * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3075          */
3076         if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3077                 return true;
3078
3079         if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3080                 return false;
3081
3082         /*
3083          * if this request is as-good as one we would expect from the
3084          * current cfqq, let it preempt
3085          */
3086         if (cfq_rq_close(cfqd, cfqq, rq))
3087                 return true;
3088
3089         return false;
3090 }
3091
3092 /*
3093  * cfqq preempts the active queue. if we allowed preempt with no slice left,
3094  * let it have half of its nominal slice.
3095  */
3096 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3097 {
3098         cfq_log_cfqq(cfqd, cfqq, "preempt");
3099         cfq_slice_expired(cfqd, 1);
3100
3101         /*
3102          * Put the new queue at the front of the of the current list,
3103          * so we know that it will be selected next.
3104          */
3105         BUG_ON(!cfq_cfqq_on_rr(cfqq));
3106
3107         cfq_service_tree_add(cfqd, cfqq, 1);
3108
3109         cfqq->slice_end = 0;
3110         cfq_mark_cfqq_slice_new(cfqq);
3111 }
3112
3113 /*
3114  * Called when a new fs request (rq) is added (to cfqq). Check if there's
3115  * something we should do about it
3116  */
3117 static void
3118 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3119                 struct request *rq)
3120 {
3121         struct cfq_io_context *cic = RQ_CIC(rq);
3122
3123         cfqd->rq_queued++;
3124         if (rq_is_meta(rq))
3125                 cfqq->meta_pending++;
3126
3127         cfq_update_io_thinktime(cfqd, cic);
3128         cfq_update_io_seektime(cfqd, cfqq, rq);
3129         cfq_update_idle_window(cfqd, cfqq, cic);
3130
3131         cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3132
3133         if (cfqq == cfqd->active_queue) {
3134                 if (cfq_cfqq_wait_busy(cfqq)) {
3135                         cfq_clear_cfqq_wait_busy(cfqq);
3136                         cfq_mark_cfqq_wait_busy_done(cfqq);
3137                 }
3138                 /*
3139                  * Remember that we saw a request from this process, but
3140                  * don't start queuing just yet. Otherwise we risk seeing lots
3141                  * of tiny requests, because we disrupt the normal plugging
3142                  * and merging. If the request is already larger than a single
3143                  * page, let it rip immediately. For that case we assume that
3144                  * merging is already done. Ditto for a busy system that
3145                  * has other work pending, don't risk delaying until the
3146                  * idle timer unplug to continue working.
3147                  */
3148                 if (cfq_cfqq_wait_request(cfqq)) {
3149                         if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3150                             cfqd->busy_queues > 1) {
3151                                 del_timer(&cfqd->idle_slice_timer);
3152                                 __blk_run_queue(cfqd->queue);
3153                         } else
3154                                 cfq_mark_cfqq_must_dispatch(cfqq);
3155                 }
3156         } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3157                 /*
3158                  * not the active queue - expire current slice if it is
3159                  * idle and has expired it's mean thinktime or this new queue
3160                  * has some old slice time left and is of higher priority or
3161                  * this new queue is RT and the current one is BE
3162                  */
3163                 cfq_preempt_queue(cfqd, cfqq);
3164                 __blk_run_queue(cfqd->queue);
3165         }
3166 }
3167
3168 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3169 {
3170         struct cfq_data *cfqd = q->elevator->elevator_data;
3171         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3172
3173         cfq_log_cfqq(cfqd, cfqq, "insert_request");
3174         cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3175
3176         rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3177         list_add_tail(&rq->queuelist, &cfqq->fifo);
3178         cfq_add_rq_rb(rq);
3179
3180         cfq_rq_enqueued(cfqd, cfqq, rq);
3181 }
3182
3183 /*
3184  * Update hw_tag based on peak queue depth over 50 samples under
3185  * sufficient load.
3186  */
3187 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3188 {
3189         struct cfq_queue *cfqq = cfqd->active_queue;
3190
3191         if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
3192                 cfqd->hw_tag_est_depth = rq_in_driver(cfqd);
3193
3194         if (cfqd->hw_tag == 1)
3195                 return;
3196
3197         if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3198             rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
3199                 return;
3200
3201         /*
3202          * If active queue hasn't enough requests and can idle, cfq might not
3203          * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3204          * case
3205          */
3206         if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3207             cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3208             CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
3209                 return;
3210
3211         if (cfqd->hw_tag_samples++ < 50)
3212                 return;
3213
3214         if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3215                 cfqd->hw_tag = 1;
3216         else
3217                 cfqd->hw_tag = 0;
3218 }
3219
3220 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3221 {
3222         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3223         struct cfq_data *cfqd = cfqq->cfqd;
3224         const int sync = rq_is_sync(rq);
3225         unsigned long now;
3226
3227         now = jiffies;
3228         cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
3229
3230         cfq_update_hw_tag(cfqd);
3231
3232         WARN_ON(!cfqd->rq_in_driver[sync]);
3233         WARN_ON(!cfqq->dispatched);
3234         cfqd->rq_in_driver[sync]--;
3235         cfqq->dispatched--;
3236
3237         if (cfq_cfqq_sync(cfqq))
3238                 cfqd->sync_flight--;
3239
3240         if (sync) {
3241                 RQ_CIC(rq)->last_end_request = now;
3242                 cfqd->last_end_sync_rq = now;
3243         }
3244
3245         /*
3246          * If this is the active queue, check if it needs to be expired,
3247          * or if we want to idle in case it has no pending requests.
3248          */
3249         if (cfqd->active_queue == cfqq) {
3250                 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3251
3252                 if (cfq_cfqq_slice_new(cfqq)) {
3253                         cfq_set_prio_slice(cfqd, cfqq);
3254                         cfq_clear_cfqq_slice_new(cfqq);
3255                 }
3256
3257                 /*
3258                  * If this queue consumed its slice and this is last queue
3259                  * in the group, wait for next request before we expire
3260                  * the queue
3261                  */
3262                 if (cfq_slice_used(cfqq) && cfqq->cfqg->nr_cfqq == 1) {
3263                         cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
3264                         cfq_mark_cfqq_wait_busy(cfqq);
3265                 }
3266
3267                 /*
3268                  * Idling is not enabled on:
3269                  * - expired queues
3270                  * - idle-priority queues
3271                  * - async queues
3272                  * - queues with still some requests queued
3273                  * - when there is a close cooperator
3274                  */
3275                 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3276                         cfq_slice_expired(cfqd, 1);
3277                 else if (sync && cfqq_empty &&
3278                          !cfq_close_cooperator(cfqd, cfqq)) {
3279                         cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3280                         /*
3281                          * Idling is enabled for SYNC_WORKLOAD.
3282                          * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3283                          * only if we processed at least one !rq_noidle request
3284                          */
3285                         if (cfqd->serving_type == SYNC_WORKLOAD
3286                             || cfqd->noidle_tree_requires_idle)
3287                                 cfq_arm_slice_timer(cfqd);
3288                 }
3289         }
3290
3291         if (!rq_in_driver(cfqd))
3292                 cfq_schedule_dispatch(cfqd);
3293 }
3294
3295 /*
3296  * we temporarily boost lower priority queues if they are holding fs exclusive
3297  * resources. they are boosted to normal prio (CLASS_BE/4)
3298  */
3299 static void cfq_prio_boost(struct cfq_queue *cfqq)
3300 {
3301         if (has_fs_excl()) {
3302                 /*
3303                  * boost idle prio on transactions that would lock out other
3304                  * users of the filesystem
3305                  */
3306                 if (cfq_class_idle(cfqq))
3307                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
3308                 if (cfqq->ioprio > IOPRIO_NORM)
3309                         cfqq->ioprio = IOPRIO_NORM;
3310         } else {
3311                 /*
3312                  * unboost the queue (if needed)
3313                  */
3314                 cfqq->ioprio_class = cfqq->org_ioprio_class;
3315                 cfqq->ioprio = cfqq->org_ioprio;
3316         }
3317 }
3318
3319 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3320 {
3321         if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3322                 cfq_mark_cfqq_must_alloc_slice(cfqq);
3323                 return ELV_MQUEUE_MUST;
3324         }
3325
3326         return ELV_MQUEUE_MAY;
3327 }
3328
3329 static int cfq_may_queue(struct request_queue *q, int rw)
3330 {
3331         struct cfq_data *cfqd = q->elevator->elevator_data;
3332         struct task_struct *tsk = current;
3333         struct cfq_io_context *cic;
3334         struct cfq_queue *cfqq;
3335
3336         /*
3337          * don't force setup of a queue from here, as a call to may_queue
3338          * does not necessarily imply that a request actually will be queued.
3339          * so just lookup a possibly existing queue, or return 'may queue'
3340          * if that fails
3341          */
3342         cic = cfq_cic_lookup(cfqd, tsk->io_context);
3343         if (!cic)
3344                 return ELV_MQUEUE_MAY;
3345
3346         cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3347         if (cfqq) {
3348                 cfq_init_prio_data(cfqq, cic->ioc);
3349                 cfq_prio_boost(cfqq);
3350
3351                 return __cfq_may_queue(cfqq);
3352         }
3353
3354         return ELV_MQUEUE_MAY;
3355 }
3356
3357 /*
3358  * queue lock held here
3359  */
3360 static void cfq_put_request(struct request *rq)
3361 {
3362         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3363
3364         if (cfqq) {
3365                 const int rw = rq_data_dir(rq);
3366
3367                 BUG_ON(!cfqq->allocated[rw]);
3368                 cfqq->allocated[rw]--;
3369
3370                 put_io_context(RQ_CIC(rq)->ioc);
3371
3372                 rq->elevator_private = NULL;
3373                 rq->elevator_private2 = NULL;
3374
3375                 cfq_put_queue(cfqq);
3376         }
3377 }
3378
3379 static struct cfq_queue *
3380 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3381                 struct cfq_queue *cfqq)
3382 {
3383         cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3384         cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3385         cfq_mark_cfqq_coop(cfqq->new_cfqq);
3386         cfq_put_queue(cfqq);
3387         return cic_to_cfqq(cic, 1);
3388 }
3389
3390 static int should_split_cfqq(struct cfq_queue *cfqq)
3391 {
3392         if (cfqq->seeky_start &&
3393             time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
3394                 return 1;
3395         return 0;
3396 }
3397
3398 /*
3399  * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3400  * was the last process referring to said cfqq.
3401  */
3402 static struct cfq_queue *
3403 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3404 {
3405         if (cfqq_process_refs(cfqq) == 1) {
3406                 cfqq->seeky_start = 0;
3407                 cfqq->pid = current->pid;
3408                 cfq_clear_cfqq_coop(cfqq);
3409                 return cfqq;
3410         }
3411
3412         cic_set_cfqq(cic, NULL, 1);
3413         cfq_put_queue(cfqq);
3414         return NULL;
3415 }
3416 /*
3417  * Allocate cfq data structures associated with this request.
3418  */
3419 static int
3420 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3421 {
3422         struct cfq_data *cfqd = q->elevator->elevator_data;
3423         struct cfq_io_context *cic;
3424         const int rw = rq_data_dir(rq);
3425         const bool is_sync = rq_is_sync(rq);
3426         struct cfq_queue *cfqq;
3427         unsigned long flags;
3428
3429         might_sleep_if(gfp_mask & __GFP_WAIT);
3430
3431         cic = cfq_get_io_context(cfqd, gfp_mask);
3432
3433         spin_lock_irqsave(q->queue_lock, flags);
3434
3435         if (!cic)
3436                 goto queue_fail;
3437
3438 new_queue:
3439         cfqq = cic_to_cfqq(cic, is_sync);
3440         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3441                 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3442                 cic_set_cfqq(cic, cfqq, is_sync);
3443         } else {
3444                 /*
3445                  * If the queue was seeky for too long, break it apart.
3446                  */
3447                 if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
3448                         cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3449                         cfqq = split_cfqq(cic, cfqq);
3450                         if (!cfqq)
3451                                 goto new_queue;
3452                 }
3453
3454                 /*
3455                  * Check to see if this queue is scheduled to merge with
3456                  * another, closely cooperating queue.  The merging of
3457                  * queues happens here as it must be done in process context.
3458                  * The reference on new_cfqq was taken in merge_cfqqs.
3459                  */
3460                 if (cfqq->new_cfqq)
3461                         cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3462         }
3463
3464         cfqq->allocated[rw]++;
3465         atomic_inc(&cfqq->ref);
3466
3467         spin_unlock_irqrestore(q->queue_lock, flags);
3468
3469         rq->elevator_private = cic;
3470         rq->elevator_private2 = cfqq;
3471         return 0;
3472
3473 queue_fail:
3474         if (cic)
3475                 put_io_context(cic->ioc);
3476
3477         cfq_schedule_dispatch(cfqd);
3478         spin_unlock_irqrestore(q->queue_lock, flags);
3479         cfq_log(cfqd, "set_request fail");
3480         return 1;
3481 }
3482
3483 static void cfq_kick_queue(struct work_struct *work)
3484 {
3485         struct cfq_data *cfqd =
3486                 container_of(work, struct cfq_data, unplug_work);
3487         struct request_queue *q = cfqd->queue;
3488
3489         spin_lock_irq(q->queue_lock);
3490         __blk_run_queue(cfqd->queue);
3491         spin_unlock_irq(q->queue_lock);
3492 }
3493
3494 /*
3495  * Timer running if the active_queue is currently idling inside its time slice
3496  */
3497 static void cfq_idle_slice_timer(unsigned long data)
3498 {
3499         struct cfq_data *cfqd = (struct cfq_data *) data;
3500         struct cfq_queue *cfqq;
3501         unsigned long flags;
3502         int timed_out = 1;
3503
3504         cfq_log(cfqd, "idle timer fired");
3505
3506         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3507
3508         cfqq = cfqd->active_queue;
3509         if (cfqq) {
3510                 timed_out = 0;
3511
3512                 /*
3513                  * We saw a request before the queue expired, let it through
3514                  */
3515                 if (cfq_cfqq_must_dispatch(cfqq))
3516                         goto out_kick;
3517
3518                 /*
3519                  * expired
3520                  */
3521                 if (cfq_slice_used(cfqq))
3522                         goto expire;
3523
3524                 /*
3525                  * only expire and reinvoke request handler, if there are
3526                  * other queues with pending requests
3527                  */
3528                 if (!cfqd->busy_queues)
3529                         goto out_cont;
3530
3531                 /*
3532                  * not expired and it has a request pending, let it dispatch
3533                  */
3534                 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3535                         goto out_kick;
3536
3537                 /*
3538                  * Queue depth flag is reset only when the idle didn't succeed
3539                  */
3540                 cfq_clear_cfqq_deep(cfqq);
3541         }
3542 expire:
3543         cfq_slice_expired(cfqd, timed_out);
3544 out_kick:
3545         cfq_schedule_dispatch(cfqd);
3546 out_cont:
3547         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3548 }
3549
3550 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3551 {
3552         del_timer_sync(&cfqd->idle_slice_timer);
3553         cancel_work_sync(&cfqd->unplug_work);
3554 }
3555
3556 static void cfq_put_async_queues(struct cfq_data *cfqd)
3557 {
3558         int i;
3559
3560         for (i = 0; i < IOPRIO_BE_NR; i++) {
3561                 if (cfqd->async_cfqq[0][i])
3562                         cfq_put_queue(cfqd->async_cfqq[0][i]);
3563                 if (cfqd->async_cfqq[1][i])
3564                         cfq_put_queue(cfqd->async_cfqq[1][i]);
3565         }
3566
3567         if (cfqd->async_idle_cfqq)
3568                 cfq_put_queue(cfqd->async_idle_cfqq);
3569 }
3570
3571 static void cfq_exit_queue(struct elevator_queue *e)
3572 {
3573         struct cfq_data *cfqd = e->elevator_data;
3574         struct request_queue *q = cfqd->queue;
3575
3576         cfq_shutdown_timer_wq(cfqd);
3577
3578         spin_lock_irq(q->queue_lock);
3579
3580         if (cfqd->active_queue)
3581                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3582
3583         while (!list_empty(&cfqd->cic_list)) {
3584                 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3585                                                         struct cfq_io_context,
3586                                                         queue_list);
3587
3588                 __cfq_exit_single_io_context(cfqd, cic);
3589         }
3590
3591         cfq_put_async_queues(cfqd);
3592         cfq_release_cfq_groups(cfqd);
3593         blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3594
3595         spin_unlock_irq(q->queue_lock);
3596
3597         cfq_shutdown_timer_wq(cfqd);
3598
3599         /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3600         synchronize_rcu();
3601         kfree(cfqd);
3602 }
3603
3604 static void *cfq_init_queue(struct request_queue *q)
3605 {
3606         struct cfq_data *cfqd;
3607         int i, j;
3608         struct cfq_group *cfqg;
3609         struct cfq_rb_root *st;
3610
3611         cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3612         if (!cfqd)
3613                 return NULL;
3614
3615         /* Init root service tree */
3616         cfqd->grp_service_tree = CFQ_RB_ROOT;
3617
3618         /* Init root group */
3619         cfqg = &cfqd->root_group;
3620         for_each_cfqg_st(cfqg, i, j, st)
3621                 *st = CFQ_RB_ROOT;
3622         RB_CLEAR_NODE(&cfqg->rb_node);
3623
3624         /* Give preference to root group over other groups */
3625         cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3626
3627 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3628         /*
3629          * Take a reference to root group which we never drop. This is just
3630          * to make sure that cfq_put_cfqg() does not try to kfree root group
3631          */
3632         atomic_set(&cfqg->ref, 1);
3633         blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
3634                                         0);
3635 #endif
3636         /*
3637          * Not strictly needed (since RB_ROOT just clears the node and we
3638          * zeroed cfqd on alloc), but better be safe in case someone decides
3639          * to add magic to the rb code
3640          */
3641         for (i = 0; i < CFQ_PRIO_LISTS; i++)
3642                 cfqd->prio_trees[i] = RB_ROOT;
3643
3644         /*
3645          * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3646          * Grab a permanent reference to it, so that the normal code flow
3647          * will not attempt to free it.
3648          */
3649         cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3650         atomic_inc(&cfqd->oom_cfqq.ref);
3651         cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3652
3653         INIT_LIST_HEAD(&cfqd->cic_list);
3654
3655         cfqd->queue = q;
3656
3657         init_timer(&cfqd->idle_slice_timer);
3658         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3659         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3660
3661         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3662
3663         cfqd->cfq_quantum = cfq_quantum;
3664         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3665         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3666         cfqd->cfq_back_max = cfq_back_max;
3667         cfqd->cfq_back_penalty = cfq_back_penalty;
3668         cfqd->cfq_slice[0] = cfq_slice_async;
3669         cfqd->cfq_slice[1] = cfq_slice_sync;
3670         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3671         cfqd->cfq_slice_idle = cfq_slice_idle;
3672         cfqd->cfq_latency = 1;
3673         cfqd->hw_tag = -1;
3674         cfqd->last_end_sync_rq = jiffies;
3675         return cfqd;
3676 }
3677
3678 static void cfq_slab_kill(void)
3679 {
3680         /*
3681          * Caller already ensured that pending RCU callbacks are completed,
3682          * so we should have no busy allocations at this point.
3683          */
3684         if (cfq_pool)
3685                 kmem_cache_destroy(cfq_pool);
3686         if (cfq_ioc_pool)
3687                 kmem_cache_destroy(cfq_ioc_pool);
3688 }
3689
3690 static int __init cfq_slab_setup(void)
3691 {
3692         cfq_pool = KMEM_CACHE(cfq_queue, 0);
3693         if (!cfq_pool)
3694                 goto fail;
3695
3696         cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3697         if (!cfq_ioc_pool)
3698                 goto fail;
3699
3700         return 0;
3701 fail:
3702         cfq_slab_kill();
3703         return -ENOMEM;
3704 }
3705
3706 /*
3707  * sysfs parts below -->
3708  */
3709 static ssize_t
3710 cfq_var_show(unsigned int var, char *page)
3711 {
3712         return sprintf(page, "%d\n", var);
3713 }
3714
3715 static ssize_t
3716 cfq_var_store(unsigned int *var, const char *page, size_t count)
3717 {
3718         char *p = (char *) page;
3719
3720         *var = simple_strtoul(p, &p, 10);
3721         return count;
3722 }
3723
3724 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
3725 static ssize_t __FUNC(struct elevator_queue *e, char *page)             \
3726 {                                                                       \
3727         struct cfq_data *cfqd = e->elevator_data;                       \
3728         unsigned int __data = __VAR;                                    \
3729         if (__CONV)                                                     \
3730                 __data = jiffies_to_msecs(__data);                      \
3731         return cfq_var_show(__data, (page));                            \
3732 }
3733 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3734 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3735 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3736 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3737 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3738 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3739 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3740 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3741 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3742 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3743 #undef SHOW_FUNCTION
3744
3745 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
3746 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3747 {                                                                       \
3748         struct cfq_data *cfqd = e->elevator_data;                       \
3749         unsigned int __data;                                            \
3750         int ret = cfq_var_store(&__data, (page), count);                \
3751         if (__data < (MIN))                                             \
3752                 __data = (MIN);                                         \
3753         else if (__data > (MAX))                                        \
3754                 __data = (MAX);                                         \
3755         if (__CONV)                                                     \
3756                 *(__PTR) = msecs_to_jiffies(__data);                    \
3757         else                                                            \
3758                 *(__PTR) = __data;                                      \
3759         return ret;                                                     \
3760 }
3761 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3762 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3763                 UINT_MAX, 1);
3764 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3765                 UINT_MAX, 1);
3766 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3767 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3768                 UINT_MAX, 0);
3769 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3770 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3771 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3772 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3773                 UINT_MAX, 0);
3774 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3775 #undef STORE_FUNCTION
3776
3777 #define CFQ_ATTR(name) \
3778         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3779
3780 static struct elv_fs_entry cfq_attrs[] = {
3781         CFQ_ATTR(quantum),
3782         CFQ_ATTR(fifo_expire_sync),
3783         CFQ_ATTR(fifo_expire_async),
3784         CFQ_ATTR(back_seek_max),
3785         CFQ_ATTR(back_seek_penalty),
3786         CFQ_ATTR(slice_sync),
3787         CFQ_ATTR(slice_async),
3788         CFQ_ATTR(slice_async_rq),
3789         CFQ_ATTR(slice_idle),
3790         CFQ_ATTR(low_latency),
3791         __ATTR_NULL
3792 };
3793
3794 static struct elevator_type iosched_cfq = {
3795         .ops = {
3796                 .elevator_merge_fn =            cfq_merge,
3797                 .elevator_merged_fn =           cfq_merged_request,
3798                 .elevator_merge_req_fn =        cfq_merged_requests,
3799                 .elevator_allow_merge_fn =      cfq_allow_merge,
3800                 .elevator_dispatch_fn =         cfq_dispatch_requests,
3801                 .elevator_add_req_fn =          cfq_insert_request,
3802                 .elevator_activate_req_fn =     cfq_activate_request,
3803                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
3804                 .elevator_queue_empty_fn =      cfq_queue_empty,
3805                 .elevator_completed_req_fn =    cfq_completed_request,
3806                 .elevator_former_req_fn =       elv_rb_former_request,
3807                 .elevator_latter_req_fn =       elv_rb_latter_request,
3808                 .elevator_set_req_fn =          cfq_set_request,
3809                 .elevator_put_req_fn =          cfq_put_request,
3810                 .elevator_may_queue_fn =        cfq_may_queue,
3811                 .elevator_init_fn =             cfq_init_queue,
3812                 .elevator_exit_fn =             cfq_exit_queue,
3813                 .trim =                         cfq_free_io_context,
3814         },
3815         .elevator_attrs =       cfq_attrs,
3816         .elevator_name =        "cfq",
3817         .elevator_owner =       THIS_MODULE,
3818 };
3819
3820 static int __init cfq_init(void)
3821 {
3822         /*
3823          * could be 0 on HZ < 1000 setups
3824          */
3825         if (!cfq_slice_async)
3826                 cfq_slice_async = 1;
3827         if (!cfq_slice_idle)
3828                 cfq_slice_idle = 1;
3829
3830         if (cfq_slab_setup())
3831                 return -ENOMEM;
3832
3833         elv_register(&iosched_cfq);
3834
3835         return 0;
3836 }
3837
3838 static void __exit cfq_exit(void)
3839 {
3840         DECLARE_COMPLETION_ONSTACK(all_gone);
3841         elv_unregister(&iosched_cfq);
3842         ioc_gone = &all_gone;
3843         /* ioc_gone's update must be visible before reading ioc_count */
3844         smp_wmb();
3845
3846         /*
3847          * this also protects us from entering cfq_slab_kill() with
3848          * pending RCU callbacks
3849          */
3850         if (elv_ioc_count_read(cfq_ioc_count))
3851                 wait_for_completion(&all_gone);
3852         cfq_slab_kill();
3853 }
3854
3855 module_init(cfq_init);
3856 module_exit(cfq_exit);
3857
3858 MODULE_AUTHOR("Jens Axboe");
3859 MODULE_LICENSE("GPL");
3860 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");