940364edf2b96aacbb5c989b458dfd93abd161cd
[safe/jmp/linux-2.6] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@suse.de>
8  */
9 #include <linux/config.h>
10 #include <linux/module.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/hash.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16
17 /*
18  * tunables
19  */
20 static const int cfq_quantum = 4;               /* max queue in one round of service */
21 static const int cfq_queued = 8;                /* minimum rq allocate limit per-queue*/
22 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
23 static const int cfq_back_max = 16 * 1024;      /* maximum backwards seek, in KiB */
24 static const int cfq_back_penalty = 2;          /* penalty of a backwards seek */
25
26 static const int cfq_slice_sync = HZ / 10;
27 static int cfq_slice_async = HZ / 25;
28 static const int cfq_slice_async_rq = 2;
29 static int cfq_slice_idle = HZ / 125;
30
31 #define CFQ_IDLE_GRACE          (HZ / 10)
32 #define CFQ_SLICE_SCALE         (5)
33
34 #define CFQ_KEY_ASYNC           (0)
35
36 static DEFINE_SPINLOCK(cfq_exit_lock);
37
38 /*
39  * for the hash of cfqq inside the cfqd
40  */
41 #define CFQ_QHASH_SHIFT         6
42 #define CFQ_QHASH_ENTRIES       (1 << CFQ_QHASH_SHIFT)
43 #define list_entry_qhash(entry) hlist_entry((entry), struct cfq_queue, cfq_hash)
44
45 /*
46  * for the hash of crq inside the cfqq
47  */
48 #define CFQ_MHASH_SHIFT         6
49 #define CFQ_MHASH_BLOCK(sec)    ((sec) >> 3)
50 #define CFQ_MHASH_ENTRIES       (1 << CFQ_MHASH_SHIFT)
51 #define CFQ_MHASH_FN(sec)       hash_long(CFQ_MHASH_BLOCK(sec), CFQ_MHASH_SHIFT)
52 #define rq_hash_key(rq)         ((rq)->sector + (rq)->nr_sectors)
53 #define list_entry_hash(ptr)    hlist_entry((ptr), struct cfq_rq, hash)
54
55 #define list_entry_cfqq(ptr)    list_entry((ptr), struct cfq_queue, cfq_list)
56 #define list_entry_fifo(ptr)    list_entry((ptr), struct request, queuelist)
57
58 #define RQ_DATA(rq)             (rq)->elevator_private
59
60 /*
61  * rb-tree defines
62  */
63 #define RB_EMPTY(node)          ((node)->rb_node == NULL)
64 #define RB_CLEAR(node)          do {    \
65                 memset(node, 0, sizeof(*node)); \
66 } while (0)
67 #define RB_CLEAR_ROOT(root)     ((root)->rb_node = NULL)
68 #define rb_entry_crq(node)      rb_entry((node), struct cfq_rq, rb_node)
69 #define rq_rb_key(rq)           (rq)->sector
70
71 static kmem_cache_t *crq_pool;
72 static kmem_cache_t *cfq_pool;
73 static kmem_cache_t *cfq_ioc_pool;
74
75 static atomic_t ioc_count = ATOMIC_INIT(0);
76 static struct completion *ioc_gone;
77
78 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
79 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
80 #define cfq_class_be(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_BE)
81 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
82
83 #define ASYNC                   (0)
84 #define SYNC                    (1)
85
86 #define cfq_cfqq_dispatched(cfqq)       \
87         ((cfqq)->on_dispatch[ASYNC] + (cfqq)->on_dispatch[SYNC])
88
89 #define cfq_cfqq_class_sync(cfqq)       ((cfqq)->key != CFQ_KEY_ASYNC)
90
91 #define cfq_cfqq_sync(cfqq)             \
92         (cfq_cfqq_class_sync(cfqq) || (cfqq)->on_dispatch[SYNC])
93
94 #define sample_valid(samples)   ((samples) > 80)
95
96 /*
97  * Per block device queue structure
98  */
99 struct cfq_data {
100         request_queue_t *queue;
101
102         /*
103          * rr list of queues with requests and the count of them
104          */
105         struct list_head rr_list[CFQ_PRIO_LISTS];
106         struct list_head busy_rr;
107         struct list_head cur_rr;
108         struct list_head idle_rr;
109         unsigned int busy_queues;
110
111         /*
112          * non-ordered list of empty cfqq's
113          */
114         struct list_head empty_list;
115
116         /*
117          * cfqq lookup hash
118          */
119         struct hlist_head *cfq_hash;
120
121         /*
122          * global crq hash for all queues
123          */
124         struct hlist_head *crq_hash;
125
126         mempool_t *crq_pool;
127
128         int rq_in_driver;
129         int hw_tag;
130
131         /*
132          * schedule slice state info
133          */
134         /*
135          * idle window management
136          */
137         struct timer_list idle_slice_timer;
138         struct work_struct unplug_work;
139
140         struct cfq_queue *active_queue;
141         struct cfq_io_context *active_cic;
142         int cur_prio, cur_end_prio;
143         unsigned int dispatch_slice;
144
145         struct timer_list idle_class_timer;
146
147         sector_t last_sector;
148         unsigned long last_end_request;
149
150         unsigned int rq_starved;
151
152         /*
153          * tunables, see top of file
154          */
155         unsigned int cfq_quantum;
156         unsigned int cfq_queued;
157         unsigned int cfq_fifo_expire[2];
158         unsigned int cfq_back_penalty;
159         unsigned int cfq_back_max;
160         unsigned int cfq_slice[2];
161         unsigned int cfq_slice_async_rq;
162         unsigned int cfq_slice_idle;
163
164         struct list_head cic_list;
165 };
166
167 /*
168  * Per process-grouping structure
169  */
170 struct cfq_queue {
171         /* reference count */
172         atomic_t ref;
173         /* parent cfq_data */
174         struct cfq_data *cfqd;
175         /* cfqq lookup hash */
176         struct hlist_node cfq_hash;
177         /* hash key */
178         unsigned int key;
179         /* on either rr or empty list of cfqd */
180         struct list_head cfq_list;
181         /* sorted list of pending requests */
182         struct rb_root sort_list;
183         /* if fifo isn't expired, next request to serve */
184         struct cfq_rq *next_crq;
185         /* requests queued in sort_list */
186         int queued[2];
187         /* currently allocated requests */
188         int allocated[2];
189         /* fifo list of requests in sort_list */
190         struct list_head fifo;
191
192         unsigned long slice_start;
193         unsigned long slice_end;
194         unsigned long slice_left;
195         unsigned long service_last;
196
197         /* number of requests that are on the dispatch list */
198         int on_dispatch[2];
199
200         /* io prio of this group */
201         unsigned short ioprio, org_ioprio;
202         unsigned short ioprio_class, org_ioprio_class;
203
204         /* various state flags, see below */
205         unsigned int flags;
206 };
207
208 struct cfq_rq {
209         struct rb_node rb_node;
210         sector_t rb_key;
211         struct request *request;
212         struct hlist_node hash;
213
214         struct cfq_queue *cfq_queue;
215         struct cfq_io_context *io_context;
216
217         unsigned int crq_flags;
218 };
219
220 enum cfqq_state_flags {
221         CFQ_CFQQ_FLAG_on_rr = 0,
222         CFQ_CFQQ_FLAG_wait_request,
223         CFQ_CFQQ_FLAG_must_alloc,
224         CFQ_CFQQ_FLAG_must_alloc_slice,
225         CFQ_CFQQ_FLAG_must_dispatch,
226         CFQ_CFQQ_FLAG_fifo_expire,
227         CFQ_CFQQ_FLAG_idle_window,
228         CFQ_CFQQ_FLAG_prio_changed,
229 };
230
231 #define CFQ_CFQQ_FNS(name)                                              \
232 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
233 {                                                                       \
234         cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name);                     \
235 }                                                                       \
236 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
237 {                                                                       \
238         cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                    \
239 }                                                                       \
240 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
241 {                                                                       \
242         return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;        \
243 }
244
245 CFQ_CFQQ_FNS(on_rr);
246 CFQ_CFQQ_FNS(wait_request);
247 CFQ_CFQQ_FNS(must_alloc);
248 CFQ_CFQQ_FNS(must_alloc_slice);
249 CFQ_CFQQ_FNS(must_dispatch);
250 CFQ_CFQQ_FNS(fifo_expire);
251 CFQ_CFQQ_FNS(idle_window);
252 CFQ_CFQQ_FNS(prio_changed);
253 #undef CFQ_CFQQ_FNS
254
255 enum cfq_rq_state_flags {
256         CFQ_CRQ_FLAG_is_sync = 0,
257 };
258
259 #define CFQ_CRQ_FNS(name)                                               \
260 static inline void cfq_mark_crq_##name(struct cfq_rq *crq)              \
261 {                                                                       \
262         crq->crq_flags |= (1 << CFQ_CRQ_FLAG_##name);                   \
263 }                                                                       \
264 static inline void cfq_clear_crq_##name(struct cfq_rq *crq)             \
265 {                                                                       \
266         crq->crq_flags &= ~(1 << CFQ_CRQ_FLAG_##name);                  \
267 }                                                                       \
268 static inline int cfq_crq_##name(const struct cfq_rq *crq)              \
269 {                                                                       \
270         return (crq->crq_flags & (1 << CFQ_CRQ_FLAG_##name)) != 0;      \
271 }
272
273 CFQ_CRQ_FNS(is_sync);
274 #undef CFQ_CRQ_FNS
275
276 static struct cfq_queue *cfq_find_cfq_hash(struct cfq_data *, unsigned int, unsigned short);
277 static void cfq_dispatch_insert(request_queue_t *, struct cfq_rq *);
278 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk, gfp_t gfp_mask);
279
280 /*
281  * lots of deadline iosched dupes, can be abstracted later...
282  */
283 static inline void cfq_del_crq_hash(struct cfq_rq *crq)
284 {
285         hlist_del_init(&crq->hash);
286 }
287
288 static inline void cfq_add_crq_hash(struct cfq_data *cfqd, struct cfq_rq *crq)
289 {
290         const int hash_idx = CFQ_MHASH_FN(rq_hash_key(crq->request));
291
292         hlist_add_head(&crq->hash, &cfqd->crq_hash[hash_idx]);
293 }
294
295 static struct request *cfq_find_rq_hash(struct cfq_data *cfqd, sector_t offset)
296 {
297         struct hlist_head *hash_list = &cfqd->crq_hash[CFQ_MHASH_FN(offset)];
298         struct hlist_node *entry, *next;
299
300         hlist_for_each_safe(entry, next, hash_list) {
301                 struct cfq_rq *crq = list_entry_hash(entry);
302                 struct request *__rq = crq->request;
303
304                 if (!rq_mergeable(__rq)) {
305                         cfq_del_crq_hash(crq);
306                         continue;
307                 }
308
309                 if (rq_hash_key(__rq) == offset)
310                         return __rq;
311         }
312
313         return NULL;
314 }
315
316 /*
317  * scheduler run of queue, if there are requests pending and no one in the
318  * driver that will restart queueing
319  */
320 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
321 {
322         if (cfqd->busy_queues)
323                 kblockd_schedule_work(&cfqd->unplug_work);
324 }
325
326 static int cfq_queue_empty(request_queue_t *q)
327 {
328         struct cfq_data *cfqd = q->elevator->elevator_data;
329
330         return !cfqd->busy_queues;
331 }
332
333 static inline pid_t cfq_queue_pid(struct task_struct *task, int rw)
334 {
335         if (rw == READ || rw == WRITE_SYNC)
336                 return task->pid;
337
338         return CFQ_KEY_ASYNC;
339 }
340
341 /*
342  * Lifted from AS - choose which of crq1 and crq2 that is best served now.
343  * We choose the request that is closest to the head right now. Distance
344  * behind the head is penalized and only allowed to a certain extent.
345  */
346 static struct cfq_rq *
347 cfq_choose_req(struct cfq_data *cfqd, struct cfq_rq *crq1, struct cfq_rq *crq2)
348 {
349         sector_t last, s1, s2, d1 = 0, d2 = 0;
350         unsigned long back_max;
351 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
352 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
353         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
354
355         if (crq1 == NULL || crq1 == crq2)
356                 return crq2;
357         if (crq2 == NULL)
358                 return crq1;
359
360         if (cfq_crq_is_sync(crq1) && !cfq_crq_is_sync(crq2))
361                 return crq1;
362         else if (cfq_crq_is_sync(crq2) && !cfq_crq_is_sync(crq1))
363                 return crq2;
364
365         s1 = crq1->request->sector;
366         s2 = crq2->request->sector;
367
368         last = cfqd->last_sector;
369
370         /*
371          * by definition, 1KiB is 2 sectors
372          */
373         back_max = cfqd->cfq_back_max * 2;
374
375         /*
376          * Strict one way elevator _except_ in the case where we allow
377          * short backward seeks which are biased as twice the cost of a
378          * similar forward seek.
379          */
380         if (s1 >= last)
381                 d1 = s1 - last;
382         else if (s1 + back_max >= last)
383                 d1 = (last - s1) * cfqd->cfq_back_penalty;
384         else
385                 wrap |= CFQ_RQ1_WRAP;
386
387         if (s2 >= last)
388                 d2 = s2 - last;
389         else if (s2 + back_max >= last)
390                 d2 = (last - s2) * cfqd->cfq_back_penalty;
391         else
392                 wrap |= CFQ_RQ2_WRAP;
393
394         /* Found required data */
395
396         /*
397          * By doing switch() on the bit mask "wrap" we avoid having to
398          * check two variables for all permutations: --> faster!
399          */
400         switch (wrap) {
401         case 0: /* common case for CFQ: crq1 and crq2 not wrapped */
402                 if (d1 < d2)
403                         return crq1;
404                 else if (d2 < d1)
405                         return crq2;
406                 else {
407                         if (s1 >= s2)
408                                 return crq1;
409                         else
410                                 return crq2;
411                 }
412
413         case CFQ_RQ2_WRAP:
414                 return crq1;
415         case CFQ_RQ1_WRAP:
416                 return crq2;
417         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both crqs wrapped */
418         default:
419                 /*
420                  * Since both rqs are wrapped,
421                  * start with the one that's further behind head
422                  * (--> only *one* back seek required),
423                  * since back seek takes more time than forward.
424                  */
425                 if (s1 <= s2)
426                         return crq1;
427                 else
428                         return crq2;
429         }
430 }
431
432 /*
433  * would be nice to take fifo expire time into account as well
434  */
435 static struct cfq_rq *
436 cfq_find_next_crq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
437                   struct cfq_rq *last)
438 {
439         struct cfq_rq *crq_next = NULL, *crq_prev = NULL;
440         struct rb_node *rbnext, *rbprev;
441
442         if (!(rbnext = rb_next(&last->rb_node))) {
443                 rbnext = rb_first(&cfqq->sort_list);
444                 if (rbnext == &last->rb_node)
445                         rbnext = NULL;
446         }
447
448         rbprev = rb_prev(&last->rb_node);
449
450         if (rbprev)
451                 crq_prev = rb_entry_crq(rbprev);
452         if (rbnext)
453                 crq_next = rb_entry_crq(rbnext);
454
455         return cfq_choose_req(cfqd, crq_next, crq_prev);
456 }
457
458 static void cfq_update_next_crq(struct cfq_rq *crq)
459 {
460         struct cfq_queue *cfqq = crq->cfq_queue;
461
462         if (cfqq->next_crq == crq)
463                 cfqq->next_crq = cfq_find_next_crq(cfqq->cfqd, cfqq, crq);
464 }
465
466 static void cfq_resort_rr_list(struct cfq_queue *cfqq, int preempted)
467 {
468         struct cfq_data *cfqd = cfqq->cfqd;
469         struct list_head *list, *entry;
470
471         BUG_ON(!cfq_cfqq_on_rr(cfqq));
472
473         list_del(&cfqq->cfq_list);
474
475         if (cfq_class_rt(cfqq))
476                 list = &cfqd->cur_rr;
477         else if (cfq_class_idle(cfqq))
478                 list = &cfqd->idle_rr;
479         else {
480                 /*
481                  * if cfqq has requests in flight, don't allow it to be
482                  * found in cfq_set_active_queue before it has finished them.
483                  * this is done to increase fairness between a process that
484                  * has lots of io pending vs one that only generates one
485                  * sporadically or synchronously
486                  */
487                 if (cfq_cfqq_dispatched(cfqq))
488                         list = &cfqd->busy_rr;
489                 else
490                         list = &cfqd->rr_list[cfqq->ioprio];
491         }
492
493         /*
494          * if queue was preempted, just add to front to be fair. busy_rr
495          * isn't sorted, but insert at the back for fairness.
496          */
497         if (preempted || list == &cfqd->busy_rr) {
498                 if (preempted)
499                         list = list->prev;
500
501                 list_add_tail(&cfqq->cfq_list, list);
502                 return;
503         }
504
505         /*
506          * sort by when queue was last serviced
507          */
508         entry = list;
509         while ((entry = entry->prev) != list) {
510                 struct cfq_queue *__cfqq = list_entry_cfqq(entry);
511
512                 if (!__cfqq->service_last)
513                         break;
514                 if (time_before(__cfqq->service_last, cfqq->service_last))
515                         break;
516         }
517
518         list_add(&cfqq->cfq_list, entry);
519 }
520
521 /*
522  * add to busy list of queues for service, trying to be fair in ordering
523  * the pending list according to last request service
524  */
525 static inline void
526 cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
527 {
528         BUG_ON(cfq_cfqq_on_rr(cfqq));
529         cfq_mark_cfqq_on_rr(cfqq);
530         cfqd->busy_queues++;
531
532         cfq_resort_rr_list(cfqq, 0);
533 }
534
535 static inline void
536 cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
537 {
538         BUG_ON(!cfq_cfqq_on_rr(cfqq));
539         cfq_clear_cfqq_on_rr(cfqq);
540         list_move(&cfqq->cfq_list, &cfqd->empty_list);
541
542         BUG_ON(!cfqd->busy_queues);
543         cfqd->busy_queues--;
544 }
545
546 /*
547  * rb tree support functions
548  */
549 static inline void cfq_del_crq_rb(struct cfq_rq *crq)
550 {
551         struct cfq_queue *cfqq = crq->cfq_queue;
552         struct cfq_data *cfqd = cfqq->cfqd;
553         const int sync = cfq_crq_is_sync(crq);
554
555         BUG_ON(!cfqq->queued[sync]);
556         cfqq->queued[sync]--;
557
558         cfq_update_next_crq(crq);
559
560         rb_erase(&crq->rb_node, &cfqq->sort_list);
561
562         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY(&cfqq->sort_list))
563                 cfq_del_cfqq_rr(cfqd, cfqq);
564 }
565
566 static struct cfq_rq *
567 __cfq_add_crq_rb(struct cfq_rq *crq)
568 {
569         struct rb_node **p = &crq->cfq_queue->sort_list.rb_node;
570         struct rb_node *parent = NULL;
571         struct cfq_rq *__crq;
572
573         while (*p) {
574                 parent = *p;
575                 __crq = rb_entry_crq(parent);
576
577                 if (crq->rb_key < __crq->rb_key)
578                         p = &(*p)->rb_left;
579                 else if (crq->rb_key > __crq->rb_key)
580                         p = &(*p)->rb_right;
581                 else
582                         return __crq;
583         }
584
585         rb_link_node(&crq->rb_node, parent, p);
586         return NULL;
587 }
588
589 static void cfq_add_crq_rb(struct cfq_rq *crq)
590 {
591         struct cfq_queue *cfqq = crq->cfq_queue;
592         struct cfq_data *cfqd = cfqq->cfqd;
593         struct request *rq = crq->request;
594         struct cfq_rq *__alias;
595
596         crq->rb_key = rq_rb_key(rq);
597         cfqq->queued[cfq_crq_is_sync(crq)]++;
598
599         /*
600          * looks a little odd, but the first insert might return an alias.
601          * if that happens, put the alias on the dispatch list
602          */
603         while ((__alias = __cfq_add_crq_rb(crq)) != NULL)
604                 cfq_dispatch_insert(cfqd->queue, __alias);
605
606         rb_insert_color(&crq->rb_node, &cfqq->sort_list);
607
608         if (!cfq_cfqq_on_rr(cfqq))
609                 cfq_add_cfqq_rr(cfqd, cfqq);
610
611         /*
612          * check if this request is a better next-serve candidate
613          */
614         cfqq->next_crq = cfq_choose_req(cfqd, cfqq->next_crq, crq);
615 }
616
617 static inline void
618 cfq_reposition_crq_rb(struct cfq_queue *cfqq, struct cfq_rq *crq)
619 {
620         rb_erase(&crq->rb_node, &cfqq->sort_list);
621         cfqq->queued[cfq_crq_is_sync(crq)]--;
622
623         cfq_add_crq_rb(crq);
624 }
625
626 static struct request *
627 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
628 {
629         struct task_struct *tsk = current;
630         pid_t key = cfq_queue_pid(tsk, bio_data_dir(bio));
631         struct cfq_queue *cfqq;
632         struct rb_node *n;
633         sector_t sector;
634
635         cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
636         if (!cfqq)
637                 goto out;
638
639         sector = bio->bi_sector + bio_sectors(bio);
640         n = cfqq->sort_list.rb_node;
641         while (n) {
642                 struct cfq_rq *crq = rb_entry_crq(n);
643
644                 if (sector < crq->rb_key)
645                         n = n->rb_left;
646                 else if (sector > crq->rb_key)
647                         n = n->rb_right;
648                 else
649                         return crq->request;
650         }
651
652 out:
653         return NULL;
654 }
655
656 static void cfq_activate_request(request_queue_t *q, struct request *rq)
657 {
658         struct cfq_data *cfqd = q->elevator->elevator_data;
659
660         cfqd->rq_in_driver++;
661
662         /*
663          * If the depth is larger 1, it really could be queueing. But lets
664          * make the mark a little higher - idling could still be good for
665          * low queueing, and a low queueing number could also just indicate
666          * a SCSI mid layer like behaviour where limit+1 is often seen.
667          */
668         if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
669                 cfqd->hw_tag = 1;
670 }
671
672 static void cfq_deactivate_request(request_queue_t *q, struct request *rq)
673 {
674         struct cfq_data *cfqd = q->elevator->elevator_data;
675
676         WARN_ON(!cfqd->rq_in_driver);
677         cfqd->rq_in_driver--;
678 }
679
680 static void cfq_remove_request(struct request *rq)
681 {
682         struct cfq_rq *crq = RQ_DATA(rq);
683
684         list_del_init(&rq->queuelist);
685         cfq_del_crq_rb(crq);
686         cfq_del_crq_hash(crq);
687 }
688
689 static int
690 cfq_merge(request_queue_t *q, struct request **req, struct bio *bio)
691 {
692         struct cfq_data *cfqd = q->elevator->elevator_data;
693         struct request *__rq;
694         int ret;
695
696         __rq = cfq_find_rq_hash(cfqd, bio->bi_sector);
697         if (__rq && elv_rq_merge_ok(__rq, bio)) {
698                 ret = ELEVATOR_BACK_MERGE;
699                 goto out;
700         }
701
702         __rq = cfq_find_rq_fmerge(cfqd, bio);
703         if (__rq && elv_rq_merge_ok(__rq, bio)) {
704                 ret = ELEVATOR_FRONT_MERGE;
705                 goto out;
706         }
707
708         return ELEVATOR_NO_MERGE;
709 out:
710         *req = __rq;
711         return ret;
712 }
713
714 static void cfq_merged_request(request_queue_t *q, struct request *req)
715 {
716         struct cfq_data *cfqd = q->elevator->elevator_data;
717         struct cfq_rq *crq = RQ_DATA(req);
718
719         cfq_del_crq_hash(crq);
720         cfq_add_crq_hash(cfqd, crq);
721
722         if (rq_rb_key(req) != crq->rb_key) {
723                 struct cfq_queue *cfqq = crq->cfq_queue;
724
725                 cfq_update_next_crq(crq);
726                 cfq_reposition_crq_rb(cfqq, crq);
727         }
728 }
729
730 static void
731 cfq_merged_requests(request_queue_t *q, struct request *rq,
732                     struct request *next)
733 {
734         cfq_merged_request(q, rq);
735
736         /*
737          * reposition in fifo if next is older than rq
738          */
739         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
740             time_before(next->start_time, rq->start_time))
741                 list_move(&rq->queuelist, &next->queuelist);
742
743         cfq_remove_request(next);
744 }
745
746 static inline void
747 __cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
748 {
749         if (cfqq) {
750                 /*
751                  * stop potential idle class queues waiting service
752                  */
753                 del_timer(&cfqd->idle_class_timer);
754
755                 cfqq->slice_start = jiffies;
756                 cfqq->slice_end = 0;
757                 cfqq->slice_left = 0;
758                 cfq_clear_cfqq_must_alloc_slice(cfqq);
759                 cfq_clear_cfqq_fifo_expire(cfqq);
760         }
761
762         cfqd->active_queue = cfqq;
763 }
764
765 /*
766  * current cfqq expired its slice (or was too idle), select new one
767  */
768 static void
769 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
770                     int preempted)
771 {
772         unsigned long now = jiffies;
773
774         if (cfq_cfqq_wait_request(cfqq))
775                 del_timer(&cfqd->idle_slice_timer);
776
777         if (!preempted && !cfq_cfqq_dispatched(cfqq)) {
778                 cfqq->service_last = now;
779                 cfq_schedule_dispatch(cfqd);
780         }
781
782         cfq_clear_cfqq_must_dispatch(cfqq);
783         cfq_clear_cfqq_wait_request(cfqq);
784
785         /*
786          * store what was left of this slice, if the queue idled out
787          * or was preempted
788          */
789         if (time_after(cfqq->slice_end, now))
790                 cfqq->slice_left = cfqq->slice_end - now;
791         else
792                 cfqq->slice_left = 0;
793
794         if (cfq_cfqq_on_rr(cfqq))
795                 cfq_resort_rr_list(cfqq, preempted);
796
797         if (cfqq == cfqd->active_queue)
798                 cfqd->active_queue = NULL;
799
800         if (cfqd->active_cic) {
801                 put_io_context(cfqd->active_cic->ioc);
802                 cfqd->active_cic = NULL;
803         }
804
805         cfqd->dispatch_slice = 0;
806 }
807
808 static inline void cfq_slice_expired(struct cfq_data *cfqd, int preempted)
809 {
810         struct cfq_queue *cfqq = cfqd->active_queue;
811
812         if (cfqq)
813                 __cfq_slice_expired(cfqd, cfqq, preempted);
814 }
815
816 /*
817  * 0
818  * 0,1
819  * 0,1,2
820  * 0,1,2,3
821  * 0,1,2,3,4
822  * 0,1,2,3,4,5
823  * 0,1,2,3,4,5,6
824  * 0,1,2,3,4,5,6,7
825  */
826 static int cfq_get_next_prio_level(struct cfq_data *cfqd)
827 {
828         int prio, wrap;
829
830         prio = -1;
831         wrap = 0;
832         do {
833                 int p;
834
835                 for (p = cfqd->cur_prio; p <= cfqd->cur_end_prio; p++) {
836                         if (!list_empty(&cfqd->rr_list[p])) {
837                                 prio = p;
838                                 break;
839                         }
840                 }
841
842                 if (prio != -1)
843                         break;
844                 cfqd->cur_prio = 0;
845                 if (++cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
846                         cfqd->cur_end_prio = 0;
847                         if (wrap)
848                                 break;
849                         wrap = 1;
850                 }
851         } while (1);
852
853         if (unlikely(prio == -1))
854                 return -1;
855
856         BUG_ON(prio >= CFQ_PRIO_LISTS);
857
858         list_splice_init(&cfqd->rr_list[prio], &cfqd->cur_rr);
859
860         cfqd->cur_prio = prio + 1;
861         if (cfqd->cur_prio > cfqd->cur_end_prio) {
862                 cfqd->cur_end_prio = cfqd->cur_prio;
863                 cfqd->cur_prio = 0;
864         }
865         if (cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
866                 cfqd->cur_prio = 0;
867                 cfqd->cur_end_prio = 0;
868         }
869
870         return prio;
871 }
872
873 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
874 {
875         struct cfq_queue *cfqq = NULL;
876
877         /*
878          * if current list is non-empty, grab first entry. if it is empty,
879          * get next prio level and grab first entry then if any are spliced
880          */
881         if (!list_empty(&cfqd->cur_rr) || cfq_get_next_prio_level(cfqd) != -1)
882                 cfqq = list_entry_cfqq(cfqd->cur_rr.next);
883
884         /*
885          * If no new queues are available, check if the busy list has some
886          * before falling back to idle io.
887          */
888         if (!cfqq && !list_empty(&cfqd->busy_rr))
889                 cfqq = list_entry_cfqq(cfqd->busy_rr.next);
890
891         /*
892          * if we have idle queues and no rt or be queues had pending
893          * requests, either allow immediate service if the grace period
894          * has passed or arm the idle grace timer
895          */
896         if (!cfqq && !list_empty(&cfqd->idle_rr)) {
897                 unsigned long end = cfqd->last_end_request + CFQ_IDLE_GRACE;
898
899                 if (time_after_eq(jiffies, end))
900                         cfqq = list_entry_cfqq(cfqd->idle_rr.next);
901                 else
902                         mod_timer(&cfqd->idle_class_timer, end);
903         }
904
905         __cfq_set_active_queue(cfqd, cfqq);
906         return cfqq;
907 }
908
909 #define CIC_SEEKY(cic) ((cic)->seek_mean > (128 * 1024))
910
911 static int cfq_arm_slice_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
912
913 {
914         struct cfq_io_context *cic;
915         unsigned long sl;
916
917         WARN_ON(!RB_EMPTY(&cfqq->sort_list));
918         WARN_ON(cfqq != cfqd->active_queue);
919
920         /*
921          * idle is disabled, either manually or by past process history
922          */
923         if (!cfqd->cfq_slice_idle)
924                 return 0;
925         if (!cfq_cfqq_idle_window(cfqq))
926                 return 0;
927         /*
928          * task has exited, don't wait
929          */
930         cic = cfqd->active_cic;
931         if (!cic || !cic->ioc->task)
932                 return 0;
933
934         cfq_mark_cfqq_must_dispatch(cfqq);
935         cfq_mark_cfqq_wait_request(cfqq);
936
937         sl = min(cfqq->slice_end - 1, (unsigned long) cfqd->cfq_slice_idle);
938
939         /*
940          * we don't want to idle for seeks, but we do want to allow
941          * fair distribution of slice time for a process doing back-to-back
942          * seeks. so allow a little bit of time for him to submit a new rq
943          */
944         if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
945                 sl = 2;
946
947         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
948         return 1;
949 }
950
951 static void cfq_dispatch_insert(request_queue_t *q, struct cfq_rq *crq)
952 {
953         struct cfq_data *cfqd = q->elevator->elevator_data;
954         struct cfq_queue *cfqq = crq->cfq_queue;
955         struct request *rq;
956
957         cfqq->next_crq = cfq_find_next_crq(cfqd, cfqq, crq);
958         cfq_remove_request(crq->request);
959         cfqq->on_dispatch[cfq_crq_is_sync(crq)]++;
960         elv_dispatch_sort(q, crq->request);
961
962         rq = list_entry(q->queue_head.prev, struct request, queuelist);
963         cfqd->last_sector = rq->sector + rq->nr_sectors;
964 }
965
966 /*
967  * return expired entry, or NULL to just start from scratch in rbtree
968  */
969 static inline struct cfq_rq *cfq_check_fifo(struct cfq_queue *cfqq)
970 {
971         struct cfq_data *cfqd = cfqq->cfqd;
972         struct request *rq;
973         struct cfq_rq *crq;
974
975         if (cfq_cfqq_fifo_expire(cfqq))
976                 return NULL;
977
978         if (!list_empty(&cfqq->fifo)) {
979                 int fifo = cfq_cfqq_class_sync(cfqq);
980
981                 crq = RQ_DATA(list_entry_fifo(cfqq->fifo.next));
982                 rq = crq->request;
983                 if (time_after(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo])) {
984                         cfq_mark_cfqq_fifo_expire(cfqq);
985                         return crq;
986                 }
987         }
988
989         return NULL;
990 }
991
992 /*
993  * Scale schedule slice based on io priority. Use the sync time slice only
994  * if a queue is marked sync and has sync io queued. A sync queue with async
995  * io only, should not get full sync slice length.
996  */
997 static inline int
998 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
999 {
1000         const int base_slice = cfqd->cfq_slice[cfq_cfqq_sync(cfqq)];
1001
1002         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1003
1004         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - cfqq->ioprio));
1005 }
1006
1007 static inline void
1008 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1009 {
1010         cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
1011 }
1012
1013 static inline int
1014 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1015 {
1016         const int base_rq = cfqd->cfq_slice_async_rq;
1017
1018         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1019
1020         return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1021 }
1022
1023 /*
1024  * get next queue for service
1025  */
1026 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1027 {
1028         unsigned long now = jiffies;
1029         struct cfq_queue *cfqq;
1030
1031         cfqq = cfqd->active_queue;
1032         if (!cfqq)
1033                 goto new_queue;
1034
1035         /*
1036          * slice has expired
1037          */
1038         if (!cfq_cfqq_must_dispatch(cfqq) && time_after(now, cfqq->slice_end))
1039                 goto expire;
1040
1041         /*
1042          * if queue has requests, dispatch one. if not, check if
1043          * enough slice is left to wait for one
1044          */
1045         if (!RB_EMPTY(&cfqq->sort_list))
1046                 goto keep_queue;
1047         else if (cfq_cfqq_dispatched(cfqq)) {
1048                 cfqq = NULL;
1049                 goto keep_queue;
1050         } else if (cfq_cfqq_class_sync(cfqq)) {
1051                 if (cfq_arm_slice_timer(cfqd, cfqq))
1052                         return NULL;
1053         }
1054
1055 expire:
1056         cfq_slice_expired(cfqd, 0);
1057 new_queue:
1058         cfqq = cfq_set_active_queue(cfqd);
1059 keep_queue:
1060         return cfqq;
1061 }
1062
1063 static int
1064 __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1065                         int max_dispatch)
1066 {
1067         int dispatched = 0;
1068
1069         BUG_ON(RB_EMPTY(&cfqq->sort_list));
1070
1071         do {
1072                 struct cfq_rq *crq;
1073
1074                 /*
1075                  * follow expired path, else get first next available
1076                  */
1077                 if ((crq = cfq_check_fifo(cfqq)) == NULL)
1078                         crq = cfqq->next_crq;
1079
1080                 /*
1081                  * finally, insert request into driver dispatch list
1082                  */
1083                 cfq_dispatch_insert(cfqd->queue, crq);
1084
1085                 cfqd->dispatch_slice++;
1086                 dispatched++;
1087
1088                 if (!cfqd->active_cic) {
1089                         atomic_inc(&crq->io_context->ioc->refcount);
1090                         cfqd->active_cic = crq->io_context;
1091                 }
1092
1093                 if (RB_EMPTY(&cfqq->sort_list))
1094                         break;
1095
1096         } while (dispatched < max_dispatch);
1097
1098         /*
1099          * if slice end isn't set yet, set it.
1100          */
1101         if (!cfqq->slice_end)
1102                 cfq_set_prio_slice(cfqd, cfqq);
1103
1104         /*
1105          * expire an async queue immediately if it has used up its slice. idle
1106          * queue always expire after 1 dispatch round.
1107          */
1108         if ((!cfq_cfqq_sync(cfqq) &&
1109             cfqd->dispatch_slice >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1110             cfq_class_idle(cfqq) ||
1111             !cfq_cfqq_idle_window(cfqq))
1112                 cfq_slice_expired(cfqd, 0);
1113
1114         return dispatched;
1115 }
1116
1117 static int
1118 cfq_forced_dispatch_cfqqs(struct list_head *list)
1119 {
1120         struct cfq_queue *cfqq, *next;
1121         struct cfq_rq *crq;
1122         int dispatched;
1123
1124         dispatched = 0;
1125         list_for_each_entry_safe(cfqq, next, list, cfq_list) {
1126                 while ((crq = cfqq->next_crq)) {
1127                         cfq_dispatch_insert(cfqq->cfqd->queue, crq);
1128                         dispatched++;
1129                 }
1130                 BUG_ON(!list_empty(&cfqq->fifo));
1131         }
1132
1133         return dispatched;
1134 }
1135
1136 static int
1137 cfq_forced_dispatch(struct cfq_data *cfqd)
1138 {
1139         int i, dispatched = 0;
1140
1141         for (i = 0; i < CFQ_PRIO_LISTS; i++)
1142                 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->rr_list[i]);
1143
1144         dispatched += cfq_forced_dispatch_cfqqs(&cfqd->busy_rr);
1145         dispatched += cfq_forced_dispatch_cfqqs(&cfqd->cur_rr);
1146         dispatched += cfq_forced_dispatch_cfqqs(&cfqd->idle_rr);
1147
1148         cfq_slice_expired(cfqd, 0);
1149
1150         BUG_ON(cfqd->busy_queues);
1151
1152         return dispatched;
1153 }
1154
1155 static int
1156 cfq_dispatch_requests(request_queue_t *q, int force)
1157 {
1158         struct cfq_data *cfqd = q->elevator->elevator_data;
1159         struct cfq_queue *cfqq, *prev_cfqq;
1160         int dispatched;
1161
1162         if (!cfqd->busy_queues)
1163                 return 0;
1164
1165         if (unlikely(force))
1166                 return cfq_forced_dispatch(cfqd);
1167
1168         dispatched = 0;
1169         prev_cfqq = NULL;
1170         while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
1171                 int max_dispatch;
1172
1173                 /*
1174                  * Don't repeat dispatch from the previous queue.
1175                  */
1176                 if (prev_cfqq == cfqq)
1177                         break;
1178
1179                 cfq_clear_cfqq_must_dispatch(cfqq);
1180                 cfq_clear_cfqq_wait_request(cfqq);
1181                 del_timer(&cfqd->idle_slice_timer);
1182
1183                 max_dispatch = cfqd->cfq_quantum;
1184                 if (cfq_class_idle(cfqq))
1185                         max_dispatch = 1;
1186
1187                 dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1188
1189                 /*
1190                  * If the dispatch cfqq has idling enabled and is still
1191                  * the active queue, break out.
1192                  */
1193                 if (cfq_cfqq_idle_window(cfqq) && cfqd->active_queue)
1194                         break;
1195
1196                 prev_cfqq = cfqq;
1197         }
1198
1199         return dispatched;
1200 }
1201
1202 /*
1203  * task holds one reference to the queue, dropped when task exits. each crq
1204  * in-flight on this queue also holds a reference, dropped when crq is freed.
1205  *
1206  * queue lock must be held here.
1207  */
1208 static void cfq_put_queue(struct cfq_queue *cfqq)
1209 {
1210         struct cfq_data *cfqd = cfqq->cfqd;
1211
1212         BUG_ON(atomic_read(&cfqq->ref) <= 0);
1213
1214         if (!atomic_dec_and_test(&cfqq->ref))
1215                 return;
1216
1217         BUG_ON(rb_first(&cfqq->sort_list));
1218         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1219         BUG_ON(cfq_cfqq_on_rr(cfqq));
1220
1221         if (unlikely(cfqd->active_queue == cfqq))
1222                 __cfq_slice_expired(cfqd, cfqq, 0);
1223
1224         /*
1225          * it's on the empty list and still hashed
1226          */
1227         list_del(&cfqq->cfq_list);
1228         hlist_del(&cfqq->cfq_hash);
1229         kmem_cache_free(cfq_pool, cfqq);
1230 }
1231
1232 static inline struct cfq_queue *
1233 __cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned int prio,
1234                     const int hashval)
1235 {
1236         struct hlist_head *hash_list = &cfqd->cfq_hash[hashval];
1237         struct hlist_node *entry;
1238         struct cfq_queue *__cfqq;
1239
1240         hlist_for_each_entry(__cfqq, entry, hash_list, cfq_hash) {
1241                 const unsigned short __p = IOPRIO_PRIO_VALUE(__cfqq->org_ioprio_class, __cfqq->org_ioprio);
1242
1243                 if (__cfqq->key == key && (__p == prio || !prio))
1244                         return __cfqq;
1245         }
1246
1247         return NULL;
1248 }
1249
1250 static struct cfq_queue *
1251 cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned short prio)
1252 {
1253         return __cfq_find_cfq_hash(cfqd, key, prio, hash_long(key, CFQ_QHASH_SHIFT));
1254 }
1255
1256 static void cfq_free_io_context(struct io_context *ioc)
1257 {
1258         struct cfq_io_context *__cic;
1259         struct rb_node *n;
1260         int freed = 0;
1261
1262         while ((n = rb_first(&ioc->cic_root)) != NULL) {
1263                 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1264                 rb_erase(&__cic->rb_node, &ioc->cic_root);
1265                 kmem_cache_free(cfq_ioc_pool, __cic);
1266                 freed++;
1267         }
1268
1269         if (atomic_sub_and_test(freed, &ioc_count) && ioc_gone)
1270                 complete(ioc_gone);
1271 }
1272
1273 static void cfq_trim(struct io_context *ioc)
1274 {
1275         ioc->set_ioprio = NULL;
1276         cfq_free_io_context(ioc);
1277 }
1278
1279 /*
1280  * Called with interrupts disabled
1281  */
1282 static void cfq_exit_single_io_context(struct cfq_io_context *cic)
1283 {
1284         struct cfq_data *cfqd = cic->key;
1285         request_queue_t *q;
1286
1287         if (!cfqd)
1288                 return;
1289
1290         q = cfqd->queue;
1291
1292         WARN_ON(!irqs_disabled());
1293
1294         spin_lock(q->queue_lock);
1295
1296         if (cic->cfqq[ASYNC]) {
1297                 if (unlikely(cic->cfqq[ASYNC] == cfqd->active_queue))
1298                         __cfq_slice_expired(cfqd, cic->cfqq[ASYNC], 0);
1299                 cfq_put_queue(cic->cfqq[ASYNC]);
1300                 cic->cfqq[ASYNC] = NULL;
1301         }
1302
1303         if (cic->cfqq[SYNC]) {
1304                 if (unlikely(cic->cfqq[SYNC] == cfqd->active_queue))
1305                         __cfq_slice_expired(cfqd, cic->cfqq[SYNC], 0);
1306                 cfq_put_queue(cic->cfqq[SYNC]);
1307                 cic->cfqq[SYNC] = NULL;
1308         }
1309
1310         cic->key = NULL;
1311         list_del_init(&cic->queue_list);
1312         spin_unlock(q->queue_lock);
1313 }
1314
1315 static void cfq_exit_io_context(struct io_context *ioc)
1316 {
1317         struct cfq_io_context *__cic;
1318         unsigned long flags;
1319         struct rb_node *n;
1320
1321         /*
1322          * put the reference this task is holding to the various queues
1323          */
1324         spin_lock_irqsave(&cfq_exit_lock, flags);
1325
1326         n = rb_first(&ioc->cic_root);
1327         while (n != NULL) {
1328                 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1329
1330                 cfq_exit_single_io_context(__cic);
1331                 n = rb_next(n);
1332         }
1333
1334         spin_unlock_irqrestore(&cfq_exit_lock, flags);
1335 }
1336
1337 static struct cfq_io_context *
1338 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1339 {
1340         struct cfq_io_context *cic = kmem_cache_alloc(cfq_ioc_pool, gfp_mask);
1341
1342         if (cic) {
1343                 memset(cic, 0, sizeof(*cic));
1344                 cic->last_end_request = jiffies;
1345                 INIT_LIST_HEAD(&cic->queue_list);
1346                 cic->dtor = cfq_free_io_context;
1347                 cic->exit = cfq_exit_io_context;
1348                 atomic_inc(&ioc_count);
1349         }
1350
1351         return cic;
1352 }
1353
1354 static void cfq_init_prio_data(struct cfq_queue *cfqq)
1355 {
1356         struct task_struct *tsk = current;
1357         int ioprio_class;
1358
1359         if (!cfq_cfqq_prio_changed(cfqq))
1360                 return;
1361
1362         ioprio_class = IOPRIO_PRIO_CLASS(tsk->ioprio);
1363         switch (ioprio_class) {
1364                 default:
1365                         printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1366                 case IOPRIO_CLASS_NONE:
1367                         /*
1368                          * no prio set, place us in the middle of the BE classes
1369                          */
1370                         cfqq->ioprio = task_nice_ioprio(tsk);
1371                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
1372                         break;
1373                 case IOPRIO_CLASS_RT:
1374                         cfqq->ioprio = task_ioprio(tsk);
1375                         cfqq->ioprio_class = IOPRIO_CLASS_RT;
1376                         break;
1377                 case IOPRIO_CLASS_BE:
1378                         cfqq->ioprio = task_ioprio(tsk);
1379                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
1380                         break;
1381                 case IOPRIO_CLASS_IDLE:
1382                         cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1383                         cfqq->ioprio = 7;
1384                         cfq_clear_cfqq_idle_window(cfqq);
1385                         break;
1386         }
1387
1388         /*
1389          * keep track of original prio settings in case we have to temporarily
1390          * elevate the priority of this queue
1391          */
1392         cfqq->org_ioprio = cfqq->ioprio;
1393         cfqq->org_ioprio_class = cfqq->ioprio_class;
1394
1395         if (cfq_cfqq_on_rr(cfqq))
1396                 cfq_resort_rr_list(cfqq, 0);
1397
1398         cfq_clear_cfqq_prio_changed(cfqq);
1399 }
1400
1401 static inline void changed_ioprio(struct cfq_io_context *cic)
1402 {
1403         struct cfq_data *cfqd = cic->key;
1404         struct cfq_queue *cfqq;
1405
1406         if (unlikely(!cfqd))
1407                 return;
1408
1409         spin_lock(cfqd->queue->queue_lock);
1410
1411         cfqq = cic->cfqq[ASYNC];
1412         if (cfqq) {
1413                 struct cfq_queue *new_cfqq;
1414                 new_cfqq = cfq_get_queue(cfqd, CFQ_KEY_ASYNC, cic->ioc->task,
1415                                          GFP_ATOMIC);
1416                 if (new_cfqq) {
1417                         cic->cfqq[ASYNC] = new_cfqq;
1418                         cfq_put_queue(cfqq);
1419                 }
1420         }
1421
1422         cfqq = cic->cfqq[SYNC];
1423         if (cfqq)
1424                 cfq_mark_cfqq_prio_changed(cfqq);
1425
1426         spin_unlock(cfqd->queue->queue_lock);
1427 }
1428
1429 /*
1430  * callback from sys_ioprio_set, irqs are disabled
1431  */
1432 static int cfq_ioc_set_ioprio(struct io_context *ioc, unsigned int ioprio)
1433 {
1434         struct cfq_io_context *cic;
1435         struct rb_node *n;
1436
1437         spin_lock(&cfq_exit_lock);
1438
1439         n = rb_first(&ioc->cic_root);
1440         while (n != NULL) {
1441                 cic = rb_entry(n, struct cfq_io_context, rb_node);
1442
1443                 changed_ioprio(cic);
1444                 n = rb_next(n);
1445         }
1446
1447         spin_unlock(&cfq_exit_lock);
1448
1449         return 0;
1450 }
1451
1452 static struct cfq_queue *
1453 cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk,
1454               gfp_t gfp_mask)
1455 {
1456         const int hashval = hash_long(key, CFQ_QHASH_SHIFT);
1457         struct cfq_queue *cfqq, *new_cfqq = NULL;
1458         unsigned short ioprio;
1459
1460 retry:
1461         ioprio = tsk->ioprio;
1462         cfqq = __cfq_find_cfq_hash(cfqd, key, ioprio, hashval);
1463
1464         if (!cfqq) {
1465                 if (new_cfqq) {
1466                         cfqq = new_cfqq;
1467                         new_cfqq = NULL;
1468                 } else if (gfp_mask & __GFP_WAIT) {
1469                         spin_unlock_irq(cfqd->queue->queue_lock);
1470                         new_cfqq = kmem_cache_alloc(cfq_pool, gfp_mask);
1471                         spin_lock_irq(cfqd->queue->queue_lock);
1472                         goto retry;
1473                 } else {
1474                         cfqq = kmem_cache_alloc(cfq_pool, gfp_mask);
1475                         if (!cfqq)
1476                                 goto out;
1477                 }
1478
1479                 memset(cfqq, 0, sizeof(*cfqq));
1480
1481                 INIT_HLIST_NODE(&cfqq->cfq_hash);
1482                 INIT_LIST_HEAD(&cfqq->cfq_list);
1483                 RB_CLEAR_ROOT(&cfqq->sort_list);
1484                 INIT_LIST_HEAD(&cfqq->fifo);
1485
1486                 cfqq->key = key;
1487                 hlist_add_head(&cfqq->cfq_hash, &cfqd->cfq_hash[hashval]);
1488                 atomic_set(&cfqq->ref, 0);
1489                 cfqq->cfqd = cfqd;
1490                 cfqq->service_last = 0;
1491                 /*
1492                  * set ->slice_left to allow preemption for a new process
1493                  */
1494                 cfqq->slice_left = 2 * cfqd->cfq_slice_idle;
1495                 cfq_mark_cfqq_idle_window(cfqq);
1496                 cfq_mark_cfqq_prio_changed(cfqq);
1497                 cfq_init_prio_data(cfqq);
1498         }
1499
1500         if (new_cfqq)
1501                 kmem_cache_free(cfq_pool, new_cfqq);
1502
1503         atomic_inc(&cfqq->ref);
1504 out:
1505         WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1506         return cfqq;
1507 }
1508
1509 static void
1510 cfq_drop_dead_cic(struct io_context *ioc, struct cfq_io_context *cic)
1511 {
1512         spin_lock(&cfq_exit_lock);
1513         rb_erase(&cic->rb_node, &ioc->cic_root);
1514         list_del_init(&cic->queue_list);
1515         spin_unlock(&cfq_exit_lock);
1516         kmem_cache_free(cfq_ioc_pool, cic);
1517         atomic_dec(&ioc_count);
1518 }
1519
1520 static struct cfq_io_context *
1521 cfq_cic_rb_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1522 {
1523         struct rb_node *n;
1524         struct cfq_io_context *cic;
1525         void *k, *key = cfqd;
1526
1527 restart:
1528         n = ioc->cic_root.rb_node;
1529         while (n) {
1530                 cic = rb_entry(n, struct cfq_io_context, rb_node);
1531                 /* ->key must be copied to avoid race with cfq_exit_queue() */
1532                 k = cic->key;
1533                 if (unlikely(!k)) {
1534                         cfq_drop_dead_cic(ioc, cic);
1535                         goto restart;
1536                 }
1537
1538                 if (key < k)
1539                         n = n->rb_left;
1540                 else if (key > k)
1541                         n = n->rb_right;
1542                 else
1543                         return cic;
1544         }
1545
1546         return NULL;
1547 }
1548
1549 static inline void
1550 cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1551              struct cfq_io_context *cic)
1552 {
1553         struct rb_node **p;
1554         struct rb_node *parent;
1555         struct cfq_io_context *__cic;
1556         void *k;
1557
1558         cic->ioc = ioc;
1559         cic->key = cfqd;
1560
1561         ioc->set_ioprio = cfq_ioc_set_ioprio;
1562 restart:
1563         parent = NULL;
1564         p = &ioc->cic_root.rb_node;
1565         while (*p) {
1566                 parent = *p;
1567                 __cic = rb_entry(parent, struct cfq_io_context, rb_node);
1568                 /* ->key must be copied to avoid race with cfq_exit_queue() */
1569                 k = __cic->key;
1570                 if (unlikely(!k)) {
1571                         cfq_drop_dead_cic(ioc, cic);
1572                         goto restart;
1573                 }
1574
1575                 if (cic->key < k)
1576                         p = &(*p)->rb_left;
1577                 else if (cic->key > k)
1578                         p = &(*p)->rb_right;
1579                 else
1580                         BUG();
1581         }
1582
1583         spin_lock(&cfq_exit_lock);
1584         rb_link_node(&cic->rb_node, parent, p);
1585         rb_insert_color(&cic->rb_node, &ioc->cic_root);
1586         list_add(&cic->queue_list, &cfqd->cic_list);
1587         spin_unlock(&cfq_exit_lock);
1588 }
1589
1590 /*
1591  * Setup general io context and cfq io context. There can be several cfq
1592  * io contexts per general io context, if this process is doing io to more
1593  * than one device managed by cfq.
1594  */
1595 static struct cfq_io_context *
1596 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1597 {
1598         struct io_context *ioc = NULL;
1599         struct cfq_io_context *cic;
1600
1601         might_sleep_if(gfp_mask & __GFP_WAIT);
1602
1603         ioc = get_io_context(gfp_mask);
1604         if (!ioc)
1605                 return NULL;
1606
1607         cic = cfq_cic_rb_lookup(cfqd, ioc);
1608         if (cic)
1609                 goto out;
1610
1611         cic = cfq_alloc_io_context(cfqd, gfp_mask);
1612         if (cic == NULL)
1613                 goto err;
1614
1615         cfq_cic_link(cfqd, ioc, cic);
1616 out:
1617         return cic;
1618 err:
1619         put_io_context(ioc);
1620         return NULL;
1621 }
1622
1623 static void
1624 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1625 {
1626         unsigned long elapsed, ttime;
1627
1628         /*
1629          * if this context already has stuff queued, thinktime is from
1630          * last queue not last end
1631          */
1632 #if 0
1633         if (time_after(cic->last_end_request, cic->last_queue))
1634                 elapsed = jiffies - cic->last_end_request;
1635         else
1636                 elapsed = jiffies - cic->last_queue;
1637 #else
1638                 elapsed = jiffies - cic->last_end_request;
1639 #endif
1640
1641         ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1642
1643         cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1644         cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1645         cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1646 }
1647
1648 static void
1649 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1650                        struct cfq_rq *crq)
1651 {
1652         sector_t sdist;
1653         u64 total;
1654
1655         if (cic->last_request_pos < crq->request->sector)
1656                 sdist = crq->request->sector - cic->last_request_pos;
1657         else
1658                 sdist = cic->last_request_pos - crq->request->sector;
1659
1660         /*
1661          * Don't allow the seek distance to get too large from the
1662          * odd fragment, pagein, etc
1663          */
1664         if (cic->seek_samples <= 60) /* second&third seek */
1665                 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1666         else
1667                 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1668
1669         cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1670         cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1671         total = cic->seek_total + (cic->seek_samples/2);
1672         do_div(total, cic->seek_samples);
1673         cic->seek_mean = (sector_t)total;
1674 }
1675
1676 /*
1677  * Disable idle window if the process thinks too long or seeks so much that
1678  * it doesn't matter
1679  */
1680 static void
1681 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1682                        struct cfq_io_context *cic)
1683 {
1684         int enable_idle = cfq_cfqq_idle_window(cfqq);
1685
1686         if (!cic->ioc->task || !cfqd->cfq_slice_idle ||
1687             (cfqd->hw_tag && CIC_SEEKY(cic)))
1688                 enable_idle = 0;
1689         else if (sample_valid(cic->ttime_samples)) {
1690                 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1691                         enable_idle = 0;
1692                 else
1693                         enable_idle = 1;
1694         }
1695
1696         if (enable_idle)
1697                 cfq_mark_cfqq_idle_window(cfqq);
1698         else
1699                 cfq_clear_cfqq_idle_window(cfqq);
1700 }
1701
1702
1703 /*
1704  * Check if new_cfqq should preempt the currently active queue. Return 0 for
1705  * no or if we aren't sure, a 1 will cause a preempt.
1706  */
1707 static int
1708 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1709                    struct cfq_rq *crq)
1710 {
1711         struct cfq_queue *cfqq = cfqd->active_queue;
1712
1713         if (cfq_class_idle(new_cfqq))
1714                 return 0;
1715
1716         if (!cfqq)
1717                 return 0;
1718
1719         if (cfq_class_idle(cfqq))
1720                 return 1;
1721         if (!cfq_cfqq_wait_request(new_cfqq))
1722                 return 0;
1723         /*
1724          * if it doesn't have slice left, forget it
1725          */
1726         if (new_cfqq->slice_left < cfqd->cfq_slice_idle)
1727                 return 0;
1728         if (cfq_crq_is_sync(crq) && !cfq_cfqq_sync(cfqq))
1729                 return 1;
1730
1731         return 0;
1732 }
1733
1734 /*
1735  * cfqq preempts the active queue. if we allowed preempt with no slice left,
1736  * let it have half of its nominal slice.
1737  */
1738 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1739 {
1740         struct cfq_queue *__cfqq, *next;
1741
1742         list_for_each_entry_safe(__cfqq, next, &cfqd->cur_rr, cfq_list)
1743                 cfq_resort_rr_list(__cfqq, 1);
1744
1745         if (!cfqq->slice_left)
1746                 cfqq->slice_left = cfq_prio_to_slice(cfqd, cfqq) / 2;
1747
1748         cfqq->slice_end = cfqq->slice_left + jiffies;
1749         cfq_slice_expired(cfqd, 1);
1750         __cfq_set_active_queue(cfqd, cfqq);
1751 }
1752
1753 /*
1754  * should really be a ll_rw_blk.c helper
1755  */
1756 static void cfq_start_queueing(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1757 {
1758         request_queue_t *q = cfqd->queue;
1759
1760         if (!blk_queue_plugged(q))
1761                 q->request_fn(q);
1762         else
1763                 __generic_unplug_device(q);
1764 }
1765
1766 /*
1767  * Called when a new fs request (crq) is added (to cfqq). Check if there's
1768  * something we should do about it
1769  */
1770 static void
1771 cfq_crq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1772                  struct cfq_rq *crq)
1773 {
1774         struct cfq_io_context *cic = crq->io_context;
1775
1776         /*
1777          * we never wait for an async request and we don't allow preemption
1778          * of an async request. so just return early
1779          */
1780         if (!cfq_crq_is_sync(crq)) {
1781                 /*
1782                  * sync process issued an async request, if it's waiting
1783                  * then expire it and kick rq handling.
1784                  */
1785                 if (cic == cfqd->active_cic &&
1786                     del_timer(&cfqd->idle_slice_timer)) {
1787                         cfq_slice_expired(cfqd, 0);
1788                         cfq_start_queueing(cfqd, cfqq);
1789                 }
1790                 return;
1791         }
1792
1793         cfq_update_io_thinktime(cfqd, cic);
1794         cfq_update_io_seektime(cfqd, cic, crq);
1795         cfq_update_idle_window(cfqd, cfqq, cic);
1796
1797         cic->last_queue = jiffies;
1798         cic->last_request_pos = crq->request->sector + crq->request->nr_sectors;
1799
1800         if (cfqq == cfqd->active_queue) {
1801                 /*
1802                  * if we are waiting for a request for this queue, let it rip
1803                  * immediately and flag that we must not expire this queue
1804                  * just now
1805                  */
1806                 if (cfq_cfqq_wait_request(cfqq)) {
1807                         cfq_mark_cfqq_must_dispatch(cfqq);
1808                         del_timer(&cfqd->idle_slice_timer);
1809                         cfq_start_queueing(cfqd, cfqq);
1810                 }
1811         } else if (cfq_should_preempt(cfqd, cfqq, crq)) {
1812                 /*
1813                  * not the active queue - expire current slice if it is
1814                  * idle and has expired it's mean thinktime or this new queue
1815                  * has some old slice time left and is of higher priority
1816                  */
1817                 cfq_preempt_queue(cfqd, cfqq);
1818                 cfq_mark_cfqq_must_dispatch(cfqq);
1819                 cfq_start_queueing(cfqd, cfqq);
1820         }
1821 }
1822
1823 static void cfq_insert_request(request_queue_t *q, struct request *rq)
1824 {
1825         struct cfq_data *cfqd = q->elevator->elevator_data;
1826         struct cfq_rq *crq = RQ_DATA(rq);
1827         struct cfq_queue *cfqq = crq->cfq_queue;
1828
1829         cfq_init_prio_data(cfqq);
1830
1831         cfq_add_crq_rb(crq);
1832
1833         list_add_tail(&rq->queuelist, &cfqq->fifo);
1834
1835         if (rq_mergeable(rq))
1836                 cfq_add_crq_hash(cfqd, crq);
1837
1838         cfq_crq_enqueued(cfqd, cfqq, crq);
1839 }
1840
1841 static void cfq_completed_request(request_queue_t *q, struct request *rq)
1842 {
1843         struct cfq_rq *crq = RQ_DATA(rq);
1844         struct cfq_queue *cfqq = crq->cfq_queue;
1845         struct cfq_data *cfqd = cfqq->cfqd;
1846         const int sync = cfq_crq_is_sync(crq);
1847         unsigned long now;
1848
1849         now = jiffies;
1850
1851         WARN_ON(!cfqd->rq_in_driver);
1852         WARN_ON(!cfqq->on_dispatch[sync]);
1853         cfqd->rq_in_driver--;
1854         cfqq->on_dispatch[sync]--;
1855
1856         if (!cfq_class_idle(cfqq))
1857                 cfqd->last_end_request = now;
1858
1859         if (!cfq_cfqq_dispatched(cfqq)) {
1860                 if (cfq_cfqq_on_rr(cfqq)) {
1861                         cfqq->service_last = now;
1862                         cfq_resort_rr_list(cfqq, 0);
1863                 }
1864         }
1865
1866         if (sync)
1867                 crq->io_context->last_end_request = now;
1868
1869         /*
1870          * If this is the active queue, check if it needs to be expired,
1871          * or if we want to idle in case it has no pending requests.
1872          */
1873         if (cfqd->active_queue == cfqq) {
1874                 if (time_after(now, cfqq->slice_end))
1875                         cfq_slice_expired(cfqd, 0);
1876                 else if (sync && RB_EMPTY(&cfqq->sort_list)) {
1877                         if (!cfq_arm_slice_timer(cfqd, cfqq))
1878                                 cfq_schedule_dispatch(cfqd);
1879                 }
1880         }
1881 }
1882
1883 static struct request *
1884 cfq_former_request(request_queue_t *q, struct request *rq)
1885 {
1886         struct cfq_rq *crq = RQ_DATA(rq);
1887         struct rb_node *rbprev = rb_prev(&crq->rb_node);
1888
1889         if (rbprev)
1890                 return rb_entry_crq(rbprev)->request;
1891
1892         return NULL;
1893 }
1894
1895 static struct request *
1896 cfq_latter_request(request_queue_t *q, struct request *rq)
1897 {
1898         struct cfq_rq *crq = RQ_DATA(rq);
1899         struct rb_node *rbnext = rb_next(&crq->rb_node);
1900
1901         if (rbnext)
1902                 return rb_entry_crq(rbnext)->request;
1903
1904         return NULL;
1905 }
1906
1907 /*
1908  * we temporarily boost lower priority queues if they are holding fs exclusive
1909  * resources. they are boosted to normal prio (CLASS_BE/4)
1910  */
1911 static void cfq_prio_boost(struct cfq_queue *cfqq)
1912 {
1913         const int ioprio_class = cfqq->ioprio_class;
1914         const int ioprio = cfqq->ioprio;
1915
1916         if (has_fs_excl()) {
1917                 /*
1918                  * boost idle prio on transactions that would lock out other
1919                  * users of the filesystem
1920                  */
1921                 if (cfq_class_idle(cfqq))
1922                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
1923                 if (cfqq->ioprio > IOPRIO_NORM)
1924                         cfqq->ioprio = IOPRIO_NORM;
1925         } else {
1926                 /*
1927                  * check if we need to unboost the queue
1928                  */
1929                 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1930                         cfqq->ioprio_class = cfqq->org_ioprio_class;
1931                 if (cfqq->ioprio != cfqq->org_ioprio)
1932                         cfqq->ioprio = cfqq->org_ioprio;
1933         }
1934
1935         /*
1936          * refile between round-robin lists if we moved the priority class
1937          */
1938         if ((ioprio_class != cfqq->ioprio_class || ioprio != cfqq->ioprio) &&
1939             cfq_cfqq_on_rr(cfqq))
1940                 cfq_resort_rr_list(cfqq, 0);
1941 }
1942
1943 static inline int
1944 __cfq_may_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1945                 struct task_struct *task, int rw)
1946 {
1947         if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1948             !cfq_cfqq_must_alloc_slice(cfqq)) {
1949                 cfq_mark_cfqq_must_alloc_slice(cfqq);
1950                 return ELV_MQUEUE_MUST;
1951         }
1952
1953         return ELV_MQUEUE_MAY;
1954 }
1955
1956 static int cfq_may_queue(request_queue_t *q, int rw, struct bio *bio)
1957 {
1958         struct cfq_data *cfqd = q->elevator->elevator_data;
1959         struct task_struct *tsk = current;
1960         struct cfq_queue *cfqq;
1961
1962         /*
1963          * don't force setup of a queue from here, as a call to may_queue
1964          * does not necessarily imply that a request actually will be queued.
1965          * so just lookup a possibly existing queue, or return 'may queue'
1966          * if that fails
1967          */
1968         cfqq = cfq_find_cfq_hash(cfqd, cfq_queue_pid(tsk, rw), tsk->ioprio);
1969         if (cfqq) {
1970                 cfq_init_prio_data(cfqq);
1971                 cfq_prio_boost(cfqq);
1972
1973                 return __cfq_may_queue(cfqd, cfqq, tsk, rw);
1974         }
1975
1976         return ELV_MQUEUE_MAY;
1977 }
1978
1979 static void cfq_check_waiters(request_queue_t *q, struct cfq_queue *cfqq)
1980 {
1981         struct cfq_data *cfqd = q->elevator->elevator_data;
1982
1983         if (unlikely(cfqd->rq_starved)) {
1984                 struct request_list *rl = &q->rq;
1985
1986                 smp_mb();
1987                 if (waitqueue_active(&rl->wait[READ]))
1988                         wake_up(&rl->wait[READ]);
1989                 if (waitqueue_active(&rl->wait[WRITE]))
1990                         wake_up(&rl->wait[WRITE]);
1991         }
1992 }
1993
1994 /*
1995  * queue lock held here
1996  */
1997 static void cfq_put_request(request_queue_t *q, struct request *rq)
1998 {
1999         struct cfq_data *cfqd = q->elevator->elevator_data;
2000         struct cfq_rq *crq = RQ_DATA(rq);
2001
2002         if (crq) {
2003                 struct cfq_queue *cfqq = crq->cfq_queue;
2004                 const int rw = rq_data_dir(rq);
2005
2006                 BUG_ON(!cfqq->allocated[rw]);
2007                 cfqq->allocated[rw]--;
2008
2009                 put_io_context(crq->io_context->ioc);
2010
2011                 mempool_free(crq, cfqd->crq_pool);
2012                 rq->elevator_private = NULL;
2013
2014                 cfq_check_waiters(q, cfqq);
2015                 cfq_put_queue(cfqq);
2016         }
2017 }
2018
2019 /*
2020  * Allocate cfq data structures associated with this request.
2021  */
2022 static int
2023 cfq_set_request(request_queue_t *q, struct request *rq, struct bio *bio,
2024                 gfp_t gfp_mask)
2025 {
2026         struct cfq_data *cfqd = q->elevator->elevator_data;
2027         struct task_struct *tsk = current;
2028         struct cfq_io_context *cic;
2029         const int rw = rq_data_dir(rq);
2030         pid_t key = cfq_queue_pid(tsk, rw);
2031         struct cfq_queue *cfqq;
2032         struct cfq_rq *crq;
2033         unsigned long flags;
2034         int is_sync = key != CFQ_KEY_ASYNC;
2035
2036         might_sleep_if(gfp_mask & __GFP_WAIT);
2037
2038         cic = cfq_get_io_context(cfqd, gfp_mask);
2039
2040         spin_lock_irqsave(q->queue_lock, flags);
2041
2042         if (!cic)
2043                 goto queue_fail;
2044
2045         if (!cic->cfqq[is_sync]) {
2046                 cfqq = cfq_get_queue(cfqd, key, tsk, gfp_mask);
2047                 if (!cfqq)
2048                         goto queue_fail;
2049
2050                 cic->cfqq[is_sync] = cfqq;
2051         } else
2052                 cfqq = cic->cfqq[is_sync];
2053
2054         cfqq->allocated[rw]++;
2055         cfq_clear_cfqq_must_alloc(cfqq);
2056         cfqd->rq_starved = 0;
2057         atomic_inc(&cfqq->ref);
2058         spin_unlock_irqrestore(q->queue_lock, flags);
2059
2060         crq = mempool_alloc(cfqd->crq_pool, gfp_mask);
2061         if (crq) {
2062                 RB_CLEAR(&crq->rb_node);
2063                 crq->rb_key = 0;
2064                 crq->request = rq;
2065                 INIT_HLIST_NODE(&crq->hash);
2066                 crq->cfq_queue = cfqq;
2067                 crq->io_context = cic;
2068
2069                 if (is_sync)
2070                         cfq_mark_crq_is_sync(crq);
2071                 else
2072                         cfq_clear_crq_is_sync(crq);
2073
2074                 rq->elevator_private = crq;
2075                 return 0;
2076         }
2077
2078         spin_lock_irqsave(q->queue_lock, flags);
2079         cfqq->allocated[rw]--;
2080         if (!(cfqq->allocated[0] + cfqq->allocated[1]))
2081                 cfq_mark_cfqq_must_alloc(cfqq);
2082         cfq_put_queue(cfqq);
2083 queue_fail:
2084         if (cic)
2085                 put_io_context(cic->ioc);
2086         /*
2087          * mark us rq allocation starved. we need to kickstart the process
2088          * ourselves if there are no pending requests that can do it for us.
2089          * that would be an extremely rare OOM situation
2090          */
2091         cfqd->rq_starved = 1;
2092         cfq_schedule_dispatch(cfqd);
2093         spin_unlock_irqrestore(q->queue_lock, flags);
2094         return 1;
2095 }
2096
2097 static void cfq_kick_queue(void *data)
2098 {
2099         request_queue_t *q = data;
2100         struct cfq_data *cfqd = q->elevator->elevator_data;
2101         unsigned long flags;
2102
2103         spin_lock_irqsave(q->queue_lock, flags);
2104
2105         if (cfqd->rq_starved) {
2106                 struct request_list *rl = &q->rq;
2107
2108                 /*
2109                  * we aren't guaranteed to get a request after this, but we
2110                  * have to be opportunistic
2111                  */
2112                 smp_mb();
2113                 if (waitqueue_active(&rl->wait[READ]))
2114                         wake_up(&rl->wait[READ]);
2115                 if (waitqueue_active(&rl->wait[WRITE]))
2116                         wake_up(&rl->wait[WRITE]);
2117         }
2118
2119         blk_remove_plug(q);
2120         q->request_fn(q);
2121         spin_unlock_irqrestore(q->queue_lock, flags);
2122 }
2123
2124 /*
2125  * Timer running if the active_queue is currently idling inside its time slice
2126  */
2127 static void cfq_idle_slice_timer(unsigned long data)
2128 {
2129         struct cfq_data *cfqd = (struct cfq_data *) data;
2130         struct cfq_queue *cfqq;
2131         unsigned long flags;
2132
2133         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2134
2135         if ((cfqq = cfqd->active_queue) != NULL) {
2136                 unsigned long now = jiffies;
2137
2138                 /*
2139                  * expired
2140                  */
2141                 if (time_after(now, cfqq->slice_end))
2142                         goto expire;
2143
2144                 /*
2145                  * only expire and reinvoke request handler, if there are
2146                  * other queues with pending requests
2147                  */
2148                 if (!cfqd->busy_queues)
2149                         goto out_cont;
2150
2151                 /*
2152                  * not expired and it has a request pending, let it dispatch
2153                  */
2154                 if (!RB_EMPTY(&cfqq->sort_list)) {
2155                         cfq_mark_cfqq_must_dispatch(cfqq);
2156                         goto out_kick;
2157                 }
2158         }
2159 expire:
2160         cfq_slice_expired(cfqd, 0);
2161 out_kick:
2162         cfq_schedule_dispatch(cfqd);
2163 out_cont:
2164         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2165 }
2166
2167 /*
2168  * Timer running if an idle class queue is waiting for service
2169  */
2170 static void cfq_idle_class_timer(unsigned long data)
2171 {
2172         struct cfq_data *cfqd = (struct cfq_data *) data;
2173         unsigned long flags, end;
2174
2175         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2176
2177         /*
2178          * race with a non-idle queue, reset timer
2179          */
2180         end = cfqd->last_end_request + CFQ_IDLE_GRACE;
2181         if (!time_after_eq(jiffies, end))
2182                 mod_timer(&cfqd->idle_class_timer, end);
2183         else
2184                 cfq_schedule_dispatch(cfqd);
2185
2186         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2187 }
2188
2189 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2190 {
2191         del_timer_sync(&cfqd->idle_slice_timer);
2192         del_timer_sync(&cfqd->idle_class_timer);
2193         blk_sync_queue(cfqd->queue);
2194 }
2195
2196 static void cfq_exit_queue(elevator_t *e)
2197 {
2198         struct cfq_data *cfqd = e->elevator_data;
2199         request_queue_t *q = cfqd->queue;
2200
2201         cfq_shutdown_timer_wq(cfqd);
2202
2203         spin_lock(&cfq_exit_lock);
2204         spin_lock_irq(q->queue_lock);
2205
2206         if (cfqd->active_queue)
2207                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2208
2209         while (!list_empty(&cfqd->cic_list)) {
2210                 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2211                                                         struct cfq_io_context,
2212                                                         queue_list);
2213                 if (cic->cfqq[ASYNC]) {
2214                         cfq_put_queue(cic->cfqq[ASYNC]);
2215                         cic->cfqq[ASYNC] = NULL;
2216                 }
2217                 if (cic->cfqq[SYNC]) {
2218                         cfq_put_queue(cic->cfqq[SYNC]);
2219                         cic->cfqq[SYNC] = NULL;
2220                 }
2221                 cic->key = NULL;
2222                 list_del_init(&cic->queue_list);
2223         }
2224
2225         spin_unlock_irq(q->queue_lock);
2226         spin_unlock(&cfq_exit_lock);
2227
2228         cfq_shutdown_timer_wq(cfqd);
2229
2230         mempool_destroy(cfqd->crq_pool);
2231         kfree(cfqd->crq_hash);
2232         kfree(cfqd->cfq_hash);
2233         kfree(cfqd);
2234 }
2235
2236 static void *cfq_init_queue(request_queue_t *q, elevator_t *e)
2237 {
2238         struct cfq_data *cfqd;
2239         int i;
2240
2241         cfqd = kmalloc(sizeof(*cfqd), GFP_KERNEL);
2242         if (!cfqd)
2243                 return NULL;
2244
2245         memset(cfqd, 0, sizeof(*cfqd));
2246
2247         for (i = 0; i < CFQ_PRIO_LISTS; i++)
2248                 INIT_LIST_HEAD(&cfqd->rr_list[i]);
2249
2250         INIT_LIST_HEAD(&cfqd->busy_rr);
2251         INIT_LIST_HEAD(&cfqd->cur_rr);
2252         INIT_LIST_HEAD(&cfqd->idle_rr);
2253         INIT_LIST_HEAD(&cfqd->empty_list);
2254         INIT_LIST_HEAD(&cfqd->cic_list);
2255
2256         cfqd->crq_hash = kmalloc(sizeof(struct hlist_head) * CFQ_MHASH_ENTRIES, GFP_KERNEL);
2257         if (!cfqd->crq_hash)
2258                 goto out_crqhash;
2259
2260         cfqd->cfq_hash = kmalloc(sizeof(struct hlist_head) * CFQ_QHASH_ENTRIES, GFP_KERNEL);
2261         if (!cfqd->cfq_hash)
2262                 goto out_cfqhash;
2263
2264         cfqd->crq_pool = mempool_create_slab_pool(BLKDEV_MIN_RQ, crq_pool);
2265         if (!cfqd->crq_pool)
2266                 goto out_crqpool;
2267
2268         for (i = 0; i < CFQ_MHASH_ENTRIES; i++)
2269                 INIT_HLIST_HEAD(&cfqd->crq_hash[i]);
2270         for (i = 0; i < CFQ_QHASH_ENTRIES; i++)
2271                 INIT_HLIST_HEAD(&cfqd->cfq_hash[i]);
2272
2273         cfqd->queue = q;
2274
2275         init_timer(&cfqd->idle_slice_timer);
2276         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2277         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2278
2279         init_timer(&cfqd->idle_class_timer);
2280         cfqd->idle_class_timer.function = cfq_idle_class_timer;
2281         cfqd->idle_class_timer.data = (unsigned long) cfqd;
2282
2283         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue, q);
2284
2285         cfqd->cfq_queued = cfq_queued;
2286         cfqd->cfq_quantum = cfq_quantum;
2287         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2288         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2289         cfqd->cfq_back_max = cfq_back_max;
2290         cfqd->cfq_back_penalty = cfq_back_penalty;
2291         cfqd->cfq_slice[0] = cfq_slice_async;
2292         cfqd->cfq_slice[1] = cfq_slice_sync;
2293         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2294         cfqd->cfq_slice_idle = cfq_slice_idle;
2295
2296         return cfqd;
2297 out_crqpool:
2298         kfree(cfqd->cfq_hash);
2299 out_cfqhash:
2300         kfree(cfqd->crq_hash);
2301 out_crqhash:
2302         kfree(cfqd);
2303         return NULL;
2304 }
2305
2306 static void cfq_slab_kill(void)
2307 {
2308         if (crq_pool)
2309                 kmem_cache_destroy(crq_pool);
2310         if (cfq_pool)
2311                 kmem_cache_destroy(cfq_pool);
2312         if (cfq_ioc_pool)
2313                 kmem_cache_destroy(cfq_ioc_pool);
2314 }
2315
2316 static int __init cfq_slab_setup(void)
2317 {
2318         crq_pool = kmem_cache_create("crq_pool", sizeof(struct cfq_rq), 0, 0,
2319                                         NULL, NULL);
2320         if (!crq_pool)
2321                 goto fail;
2322
2323         cfq_pool = kmem_cache_create("cfq_pool", sizeof(struct cfq_queue), 0, 0,
2324                                         NULL, NULL);
2325         if (!cfq_pool)
2326                 goto fail;
2327
2328         cfq_ioc_pool = kmem_cache_create("cfq_ioc_pool",
2329                         sizeof(struct cfq_io_context), 0, 0, NULL, NULL);
2330         if (!cfq_ioc_pool)
2331                 goto fail;
2332
2333         return 0;
2334 fail:
2335         cfq_slab_kill();
2336         return -ENOMEM;
2337 }
2338
2339 /*
2340  * sysfs parts below -->
2341  */
2342
2343 static ssize_t
2344 cfq_var_show(unsigned int var, char *page)
2345 {
2346         return sprintf(page, "%d\n", var);
2347 }
2348
2349 static ssize_t
2350 cfq_var_store(unsigned int *var, const char *page, size_t count)
2351 {
2352         char *p = (char *) page;
2353
2354         *var = simple_strtoul(p, &p, 10);
2355         return count;
2356 }
2357
2358 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
2359 static ssize_t __FUNC(elevator_t *e, char *page)                        \
2360 {                                                                       \
2361         struct cfq_data *cfqd = e->elevator_data;                       \
2362         unsigned int __data = __VAR;                                    \
2363         if (__CONV)                                                     \
2364                 __data = jiffies_to_msecs(__data);                      \
2365         return cfq_var_show(__data, (page));                            \
2366 }
2367 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2368 SHOW_FUNCTION(cfq_queued_show, cfqd->cfq_queued, 0);
2369 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2370 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2371 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2372 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2373 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2374 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2375 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2376 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2377 #undef SHOW_FUNCTION
2378
2379 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
2380 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count)    \
2381 {                                                                       \
2382         struct cfq_data *cfqd = e->elevator_data;                       \
2383         unsigned int __data;                                            \
2384         int ret = cfq_var_store(&__data, (page), count);                \
2385         if (__data < (MIN))                                             \
2386                 __data = (MIN);                                         \
2387         else if (__data > (MAX))                                        \
2388                 __data = (MAX);                                         \
2389         if (__CONV)                                                     \
2390                 *(__PTR) = msecs_to_jiffies(__data);                    \
2391         else                                                            \
2392                 *(__PTR) = __data;                                      \
2393         return ret;                                                     \
2394 }
2395 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2396 STORE_FUNCTION(cfq_queued_store, &cfqd->cfq_queued, 1, UINT_MAX, 0);
2397 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
2398 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
2399 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2400 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
2401 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2402 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2403 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2404 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
2405 #undef STORE_FUNCTION
2406
2407 #define CFQ_ATTR(name) \
2408         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2409
2410 static struct elv_fs_entry cfq_attrs[] = {
2411         CFQ_ATTR(quantum),
2412         CFQ_ATTR(queued),
2413         CFQ_ATTR(fifo_expire_sync),
2414         CFQ_ATTR(fifo_expire_async),
2415         CFQ_ATTR(back_seek_max),
2416         CFQ_ATTR(back_seek_penalty),
2417         CFQ_ATTR(slice_sync),
2418         CFQ_ATTR(slice_async),
2419         CFQ_ATTR(slice_async_rq),
2420         CFQ_ATTR(slice_idle),
2421         __ATTR_NULL
2422 };
2423
2424 static struct elevator_type iosched_cfq = {
2425         .ops = {
2426                 .elevator_merge_fn =            cfq_merge,
2427                 .elevator_merged_fn =           cfq_merged_request,
2428                 .elevator_merge_req_fn =        cfq_merged_requests,
2429                 .elevator_dispatch_fn =         cfq_dispatch_requests,
2430                 .elevator_add_req_fn =          cfq_insert_request,
2431                 .elevator_activate_req_fn =     cfq_activate_request,
2432                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
2433                 .elevator_queue_empty_fn =      cfq_queue_empty,
2434                 .elevator_completed_req_fn =    cfq_completed_request,
2435                 .elevator_former_req_fn =       cfq_former_request,
2436                 .elevator_latter_req_fn =       cfq_latter_request,
2437                 .elevator_set_req_fn =          cfq_set_request,
2438                 .elevator_put_req_fn =          cfq_put_request,
2439                 .elevator_may_queue_fn =        cfq_may_queue,
2440                 .elevator_init_fn =             cfq_init_queue,
2441                 .elevator_exit_fn =             cfq_exit_queue,
2442                 .trim =                         cfq_trim,
2443         },
2444         .elevator_attrs =       cfq_attrs,
2445         .elevator_name =        "cfq",
2446         .elevator_owner =       THIS_MODULE,
2447 };
2448
2449 static int __init cfq_init(void)
2450 {
2451         int ret;
2452
2453         /*
2454          * could be 0 on HZ < 1000 setups
2455          */
2456         if (!cfq_slice_async)
2457                 cfq_slice_async = 1;
2458         if (!cfq_slice_idle)
2459                 cfq_slice_idle = 1;
2460
2461         if (cfq_slab_setup())
2462                 return -ENOMEM;
2463
2464         ret = elv_register(&iosched_cfq);
2465         if (ret)
2466                 cfq_slab_kill();
2467
2468         return ret;
2469 }
2470
2471 static void __exit cfq_exit(void)
2472 {
2473         DECLARE_COMPLETION(all_gone);
2474         elv_unregister(&iosched_cfq);
2475         ioc_gone = &all_gone;
2476         /* ioc_gone's update must be visible before reading ioc_count */
2477         smp_wmb();
2478         if (atomic_read(&ioc_count))
2479                 wait_for_completion(ioc_gone);
2480         synchronize_rcu();
2481         cfq_slab_kill();
2482 }
2483
2484 module_init(cfq_init);
2485 module_exit(cfq_exit);
2486
2487 MODULE_AUTHOR("Jens Axboe");
2488 MODULE_LICENSE("GPL");
2489 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");