blkio: Implement per cfq group latency target and busy queue avg
[safe/jmp/linux-2.6] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/jiffies.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15 #include <linux/blktrace_api.h>
16 #include "blk-cgroup.h"
17
18 /*
19  * tunables
20  */
21 /* max queue in one round of service */
22 static const int cfq_quantum = 4;
23 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
24 /* maximum backwards seek, in KiB */
25 static const int cfq_back_max = 16 * 1024;
26 /* penalty of a backwards seek */
27 static const int cfq_back_penalty = 2;
28 static const int cfq_slice_sync = HZ / 10;
29 static int cfq_slice_async = HZ / 25;
30 static const int cfq_slice_async_rq = 2;
31 static int cfq_slice_idle = HZ / 125;
32 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
33 static const int cfq_hist_divisor = 4;
34
35 /*
36  * offset from end of service tree
37  */
38 #define CFQ_IDLE_DELAY          (HZ / 5)
39
40 /*
41  * below this threshold, we consider thinktime immediate
42  */
43 #define CFQ_MIN_TT              (2)
44
45 /*
46  * Allow merged cfqqs to perform this amount of seeky I/O before
47  * deciding to break the queues up again.
48  */
49 #define CFQQ_COOP_TOUT          (HZ)
50
51 #define CFQ_SLICE_SCALE         (5)
52 #define CFQ_HW_QUEUE_MIN        (5)
53 #define CFQ_SERVICE_SHIFT       12
54
55 #define RQ_CIC(rq)              \
56         ((struct cfq_io_context *) (rq)->elevator_private)
57 #define RQ_CFQQ(rq)             (struct cfq_queue *) ((rq)->elevator_private2)
58
59 static struct kmem_cache *cfq_pool;
60 static struct kmem_cache *cfq_ioc_pool;
61
62 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
63 static struct completion *ioc_gone;
64 static DEFINE_SPINLOCK(ioc_gone_lock);
65
66 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
67 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
68 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
69
70 #define sample_valid(samples)   ((samples) > 80)
71 #define rb_entry_cfqg(node)     rb_entry((node), struct cfq_group, rb_node)
72
73 /*
74  * Most of our rbtree usage is for sorting with min extraction, so
75  * if we cache the leftmost node we don't have to walk down the tree
76  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
77  * move this into the elevator for the rq sorting as well.
78  */
79 struct cfq_rb_root {
80         struct rb_root rb;
81         struct rb_node *left;
82         unsigned count;
83         u64 min_vdisktime;
84         struct rb_node *active;
85         unsigned total_weight;
86 };
87 #define CFQ_RB_ROOT     (struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
88
89 /*
90  * Per process-grouping structure
91  */
92 struct cfq_queue {
93         /* reference count */
94         atomic_t ref;
95         /* various state flags, see below */
96         unsigned int flags;
97         /* parent cfq_data */
98         struct cfq_data *cfqd;
99         /* service_tree member */
100         struct rb_node rb_node;
101         /* service_tree key */
102         unsigned long rb_key;
103         /* prio tree member */
104         struct rb_node p_node;
105         /* prio tree root we belong to, if any */
106         struct rb_root *p_root;
107         /* sorted list of pending requests */
108         struct rb_root sort_list;
109         /* if fifo isn't expired, next request to serve */
110         struct request *next_rq;
111         /* requests queued in sort_list */
112         int queued[2];
113         /* currently allocated requests */
114         int allocated[2];
115         /* fifo list of requests in sort_list */
116         struct list_head fifo;
117
118         unsigned long slice_end;
119         long slice_resid;
120         unsigned int slice_dispatch;
121
122         /* pending metadata requests */
123         int meta_pending;
124         /* number of requests that are on the dispatch list or inside driver */
125         int dispatched;
126
127         /* io prio of this group */
128         unsigned short ioprio, org_ioprio;
129         unsigned short ioprio_class, org_ioprio_class;
130
131         unsigned int seek_samples;
132         u64 seek_total;
133         sector_t seek_mean;
134         sector_t last_request_pos;
135         unsigned long seeky_start;
136
137         pid_t pid;
138
139         struct cfq_rb_root *service_tree;
140         struct cfq_queue *new_cfqq;
141         struct cfq_group *cfqg;
142 };
143
144 /*
145  * First index in the service_trees.
146  * IDLE is handled separately, so it has negative index
147  */
148 enum wl_prio_t {
149         BE_WORKLOAD = 0,
150         RT_WORKLOAD = 1,
151         IDLE_WORKLOAD = 2,
152 };
153
154 /*
155  * Second index in the service_trees.
156  */
157 enum wl_type_t {
158         ASYNC_WORKLOAD = 0,
159         SYNC_NOIDLE_WORKLOAD = 1,
160         SYNC_WORKLOAD = 2
161 };
162
163 /* This is per cgroup per device grouping structure */
164 struct cfq_group {
165         /* group service_tree member */
166         struct rb_node rb_node;
167
168         /* group service_tree key */
169         u64 vdisktime;
170         unsigned int weight;
171         bool on_st;
172
173         /* number of cfqq currently on this group */
174         int nr_cfqq;
175
176         /* Per group busy queus average. Useful for workload slice calc. */
177         unsigned int busy_queues_avg[2];
178         /*
179          * rr lists of queues with requests, onle rr for each priority class.
180          * Counts are embedded in the cfq_rb_root
181          */
182         struct cfq_rb_root service_trees[2][3];
183         struct cfq_rb_root service_tree_idle;
184 };
185
186 /*
187  * Per block device queue structure
188  */
189 struct cfq_data {
190         struct request_queue *queue;
191         /* Root service tree for cfq_groups */
192         struct cfq_rb_root grp_service_tree;
193         struct cfq_group root_group;
194         /* Number of active cfq groups on group service tree */
195         int nr_groups;
196
197         /*
198          * The priority currently being served
199          */
200         enum wl_prio_t serving_prio;
201         enum wl_type_t serving_type;
202         unsigned long workload_expires;
203         struct cfq_group *serving_group;
204         bool noidle_tree_requires_idle;
205
206         /*
207          * Each priority tree is sorted by next_request position.  These
208          * trees are used when determining if two or more queues are
209          * interleaving requests (see cfq_close_cooperator).
210          */
211         struct rb_root prio_trees[CFQ_PRIO_LISTS];
212
213         unsigned int busy_queues;
214
215         int rq_in_driver[2];
216         int sync_flight;
217
218         /*
219          * queue-depth detection
220          */
221         int rq_queued;
222         int hw_tag;
223         /*
224          * hw_tag can be
225          * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
226          *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
227          *  0 => no NCQ
228          */
229         int hw_tag_est_depth;
230         unsigned int hw_tag_samples;
231
232         /*
233          * idle window management
234          */
235         struct timer_list idle_slice_timer;
236         struct work_struct unplug_work;
237
238         struct cfq_queue *active_queue;
239         struct cfq_io_context *active_cic;
240
241         /*
242          * async queue for each priority case
243          */
244         struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
245         struct cfq_queue *async_idle_cfqq;
246
247         sector_t last_position;
248
249         /*
250          * tunables, see top of file
251          */
252         unsigned int cfq_quantum;
253         unsigned int cfq_fifo_expire[2];
254         unsigned int cfq_back_penalty;
255         unsigned int cfq_back_max;
256         unsigned int cfq_slice[2];
257         unsigned int cfq_slice_async_rq;
258         unsigned int cfq_slice_idle;
259         unsigned int cfq_latency;
260
261         struct list_head cic_list;
262
263         /*
264          * Fallback dummy cfqq for extreme OOM conditions
265          */
266         struct cfq_queue oom_cfqq;
267
268         unsigned long last_end_sync_rq;
269 };
270
271 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
272                                             enum wl_prio_t prio,
273                                             enum wl_type_t type,
274                                             struct cfq_data *cfqd)
275 {
276         if (!cfqg)
277                 return NULL;
278
279         if (prio == IDLE_WORKLOAD)
280                 return &cfqg->service_tree_idle;
281
282         return &cfqg->service_trees[prio][type];
283 }
284
285 enum cfqq_state_flags {
286         CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
287         CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
288         CFQ_CFQQ_FLAG_must_dispatch,    /* must be allowed a dispatch */
289         CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
290         CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
291         CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
292         CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
293         CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
294         CFQ_CFQQ_FLAG_sync,             /* synchronous queue */
295         CFQ_CFQQ_FLAG_coop,             /* cfqq is shared */
296         CFQ_CFQQ_FLAG_deep,             /* sync cfqq experienced large depth */
297 };
298
299 #define CFQ_CFQQ_FNS(name)                                              \
300 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
301 {                                                                       \
302         (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);                   \
303 }                                                                       \
304 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
305 {                                                                       \
306         (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                  \
307 }                                                                       \
308 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
309 {                                                                       \
310         return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;      \
311 }
312
313 CFQ_CFQQ_FNS(on_rr);
314 CFQ_CFQQ_FNS(wait_request);
315 CFQ_CFQQ_FNS(must_dispatch);
316 CFQ_CFQQ_FNS(must_alloc_slice);
317 CFQ_CFQQ_FNS(fifo_expire);
318 CFQ_CFQQ_FNS(idle_window);
319 CFQ_CFQQ_FNS(prio_changed);
320 CFQ_CFQQ_FNS(slice_new);
321 CFQ_CFQQ_FNS(sync);
322 CFQ_CFQQ_FNS(coop);
323 CFQ_CFQQ_FNS(deep);
324 #undef CFQ_CFQQ_FNS
325
326 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
327         blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
328 #define cfq_log(cfqd, fmt, args...)     \
329         blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
330
331 /* Traverses through cfq group service trees */
332 #define for_each_cfqg_st(cfqg, i, j, st) \
333         for (i = 0; i <= IDLE_WORKLOAD; i++) \
334                 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
335                         : &cfqg->service_tree_idle; \
336                         (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
337                         (i == IDLE_WORKLOAD && j == 0); \
338                         j++, st = i < IDLE_WORKLOAD ? \
339                         &cfqg->service_trees[i][j]: NULL) \
340
341
342 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
343 {
344         if (cfq_class_idle(cfqq))
345                 return IDLE_WORKLOAD;
346         if (cfq_class_rt(cfqq))
347                 return RT_WORKLOAD;
348         return BE_WORKLOAD;
349 }
350
351
352 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
353 {
354         if (!cfq_cfqq_sync(cfqq))
355                 return ASYNC_WORKLOAD;
356         if (!cfq_cfqq_idle_window(cfqq))
357                 return SYNC_NOIDLE_WORKLOAD;
358         return SYNC_WORKLOAD;
359 }
360
361 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
362                                         struct cfq_data *cfqd,
363                                         struct cfq_group *cfqg)
364 {
365         if (wl == IDLE_WORKLOAD)
366                 return cfqg->service_tree_idle.count;
367
368         return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
369                 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
370                 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
371 }
372
373 static void cfq_dispatch_insert(struct request_queue *, struct request *);
374 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
375                                        struct io_context *, gfp_t);
376 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
377                                                 struct io_context *);
378
379 static inline int rq_in_driver(struct cfq_data *cfqd)
380 {
381         return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
382 }
383
384 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
385                                             bool is_sync)
386 {
387         return cic->cfqq[is_sync];
388 }
389
390 static inline void cic_set_cfqq(struct cfq_io_context *cic,
391                                 struct cfq_queue *cfqq, bool is_sync)
392 {
393         cic->cfqq[is_sync] = cfqq;
394 }
395
396 /*
397  * We regard a request as SYNC, if it's either a read or has the SYNC bit
398  * set (in which case it could also be direct WRITE).
399  */
400 static inline bool cfq_bio_sync(struct bio *bio)
401 {
402         return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
403 }
404
405 /*
406  * scheduler run of queue, if there are requests pending and no one in the
407  * driver that will restart queueing
408  */
409 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
410 {
411         if (cfqd->busy_queues) {
412                 cfq_log(cfqd, "schedule dispatch");
413                 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
414         }
415 }
416
417 static int cfq_queue_empty(struct request_queue *q)
418 {
419         struct cfq_data *cfqd = q->elevator->elevator_data;
420
421         return !cfqd->rq_queued;
422 }
423
424 /*
425  * Scale schedule slice based on io priority. Use the sync time slice only
426  * if a queue is marked sync and has sync io queued. A sync queue with async
427  * io only, should not get full sync slice length.
428  */
429 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
430                                  unsigned short prio)
431 {
432         const int base_slice = cfqd->cfq_slice[sync];
433
434         WARN_ON(prio >= IOPRIO_BE_NR);
435
436         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
437 }
438
439 static inline int
440 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
441 {
442         return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
443 }
444
445 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
446 {
447         u64 d = delta << CFQ_SERVICE_SHIFT;
448
449         d = d * BLKIO_WEIGHT_DEFAULT;
450         do_div(d, cfqg->weight);
451         return d;
452 }
453
454 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
455 {
456         s64 delta = (s64)(vdisktime - min_vdisktime);
457         if (delta > 0)
458                 min_vdisktime = vdisktime;
459
460         return min_vdisktime;
461 }
462
463 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
464 {
465         s64 delta = (s64)(vdisktime - min_vdisktime);
466         if (delta < 0)
467                 min_vdisktime = vdisktime;
468
469         return min_vdisktime;
470 }
471
472 static void update_min_vdisktime(struct cfq_rb_root *st)
473 {
474         u64 vdisktime = st->min_vdisktime;
475         struct cfq_group *cfqg;
476
477         if (st->active) {
478                 cfqg = rb_entry_cfqg(st->active);
479                 vdisktime = cfqg->vdisktime;
480         }
481
482         if (st->left) {
483                 cfqg = rb_entry_cfqg(st->left);
484                 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
485         }
486
487         st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
488 }
489
490 /*
491  * get averaged number of queues of RT/BE priority.
492  * average is updated, with a formula that gives more weight to higher numbers,
493  * to quickly follows sudden increases and decrease slowly
494  */
495
496 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
497                                         struct cfq_group *cfqg, bool rt)
498 {
499         unsigned min_q, max_q;
500         unsigned mult  = cfq_hist_divisor - 1;
501         unsigned round = cfq_hist_divisor / 2;
502         unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
503
504         min_q = min(cfqg->busy_queues_avg[rt], busy);
505         max_q = max(cfqg->busy_queues_avg[rt], busy);
506         cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
507                 cfq_hist_divisor;
508         return cfqg->busy_queues_avg[rt];
509 }
510
511 static inline unsigned
512 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
513 {
514         struct cfq_rb_root *st = &cfqd->grp_service_tree;
515
516         return cfq_target_latency * cfqg->weight / st->total_weight;
517 }
518
519 static inline void
520 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
521 {
522         unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
523         if (cfqd->cfq_latency) {
524                 /*
525                  * interested queues (we consider only the ones with the same
526                  * priority class in the cfq group)
527                  */
528                 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
529                                                 cfq_class_rt(cfqq));
530                 unsigned sync_slice = cfqd->cfq_slice[1];
531                 unsigned expect_latency = sync_slice * iq;
532                 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
533
534                 if (expect_latency > group_slice) {
535                         unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
536                         /* scale low_slice according to IO priority
537                          * and sync vs async */
538                         unsigned low_slice =
539                                 min(slice, base_low_slice * slice / sync_slice);
540                         /* the adapted slice value is scaled to fit all iqs
541                          * into the target latency */
542                         slice = max(slice * group_slice / expect_latency,
543                                     low_slice);
544                 }
545         }
546         cfqq->slice_end = jiffies + slice;
547         cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
548 }
549
550 /*
551  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
552  * isn't valid until the first request from the dispatch is activated
553  * and the slice time set.
554  */
555 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
556 {
557         if (cfq_cfqq_slice_new(cfqq))
558                 return 0;
559         if (time_before(jiffies, cfqq->slice_end))
560                 return 0;
561
562         return 1;
563 }
564
565 /*
566  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
567  * We choose the request that is closest to the head right now. Distance
568  * behind the head is penalized and only allowed to a certain extent.
569  */
570 static struct request *
571 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
572 {
573         sector_t s1, s2, d1 = 0, d2 = 0;
574         unsigned long back_max;
575 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
576 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
577         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
578
579         if (rq1 == NULL || rq1 == rq2)
580                 return rq2;
581         if (rq2 == NULL)
582                 return rq1;
583
584         if (rq_is_sync(rq1) && !rq_is_sync(rq2))
585                 return rq1;
586         else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
587                 return rq2;
588         if (rq_is_meta(rq1) && !rq_is_meta(rq2))
589                 return rq1;
590         else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
591                 return rq2;
592
593         s1 = blk_rq_pos(rq1);
594         s2 = blk_rq_pos(rq2);
595
596         /*
597          * by definition, 1KiB is 2 sectors
598          */
599         back_max = cfqd->cfq_back_max * 2;
600
601         /*
602          * Strict one way elevator _except_ in the case where we allow
603          * short backward seeks which are biased as twice the cost of a
604          * similar forward seek.
605          */
606         if (s1 >= last)
607                 d1 = s1 - last;
608         else if (s1 + back_max >= last)
609                 d1 = (last - s1) * cfqd->cfq_back_penalty;
610         else
611                 wrap |= CFQ_RQ1_WRAP;
612
613         if (s2 >= last)
614                 d2 = s2 - last;
615         else if (s2 + back_max >= last)
616                 d2 = (last - s2) * cfqd->cfq_back_penalty;
617         else
618                 wrap |= CFQ_RQ2_WRAP;
619
620         /* Found required data */
621
622         /*
623          * By doing switch() on the bit mask "wrap" we avoid having to
624          * check two variables for all permutations: --> faster!
625          */
626         switch (wrap) {
627         case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
628                 if (d1 < d2)
629                         return rq1;
630                 else if (d2 < d1)
631                         return rq2;
632                 else {
633                         if (s1 >= s2)
634                                 return rq1;
635                         else
636                                 return rq2;
637                 }
638
639         case CFQ_RQ2_WRAP:
640                 return rq1;
641         case CFQ_RQ1_WRAP:
642                 return rq2;
643         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
644         default:
645                 /*
646                  * Since both rqs are wrapped,
647                  * start with the one that's further behind head
648                  * (--> only *one* back seek required),
649                  * since back seek takes more time than forward.
650                  */
651                 if (s1 <= s2)
652                         return rq1;
653                 else
654                         return rq2;
655         }
656 }
657
658 /*
659  * The below is leftmost cache rbtree addon
660  */
661 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
662 {
663         /* Service tree is empty */
664         if (!root->count)
665                 return NULL;
666
667         if (!root->left)
668                 root->left = rb_first(&root->rb);
669
670         if (root->left)
671                 return rb_entry(root->left, struct cfq_queue, rb_node);
672
673         return NULL;
674 }
675
676 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
677 {
678         if (!root->left)
679                 root->left = rb_first(&root->rb);
680
681         if (root->left)
682                 return rb_entry_cfqg(root->left);
683
684         return NULL;
685 }
686
687 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
688 {
689         rb_erase(n, root);
690         RB_CLEAR_NODE(n);
691 }
692
693 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
694 {
695         if (root->left == n)
696                 root->left = NULL;
697         rb_erase_init(n, &root->rb);
698         --root->count;
699 }
700
701 /*
702  * would be nice to take fifo expire time into account as well
703  */
704 static struct request *
705 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
706                   struct request *last)
707 {
708         struct rb_node *rbnext = rb_next(&last->rb_node);
709         struct rb_node *rbprev = rb_prev(&last->rb_node);
710         struct request *next = NULL, *prev = NULL;
711
712         BUG_ON(RB_EMPTY_NODE(&last->rb_node));
713
714         if (rbprev)
715                 prev = rb_entry_rq(rbprev);
716
717         if (rbnext)
718                 next = rb_entry_rq(rbnext);
719         else {
720                 rbnext = rb_first(&cfqq->sort_list);
721                 if (rbnext && rbnext != &last->rb_node)
722                         next = rb_entry_rq(rbnext);
723         }
724
725         return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
726 }
727
728 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
729                                       struct cfq_queue *cfqq)
730 {
731         /*
732          * just an approximation, should be ok.
733          */
734         return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
735                        cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
736 }
737
738 static inline s64
739 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
740 {
741         return cfqg->vdisktime - st->min_vdisktime;
742 }
743
744 static void
745 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
746 {
747         struct rb_node **node = &st->rb.rb_node;
748         struct rb_node *parent = NULL;
749         struct cfq_group *__cfqg;
750         s64 key = cfqg_key(st, cfqg);
751         int left = 1;
752
753         while (*node != NULL) {
754                 parent = *node;
755                 __cfqg = rb_entry_cfqg(parent);
756
757                 if (key < cfqg_key(st, __cfqg))
758                         node = &parent->rb_left;
759                 else {
760                         node = &parent->rb_right;
761                         left = 0;
762                 }
763         }
764
765         if (left)
766                 st->left = &cfqg->rb_node;
767
768         rb_link_node(&cfqg->rb_node, parent, node);
769         rb_insert_color(&cfqg->rb_node, &st->rb);
770 }
771
772 static void
773 cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
774 {
775         struct cfq_rb_root *st = &cfqd->grp_service_tree;
776         struct cfq_group *__cfqg;
777         struct rb_node *n;
778
779         cfqg->nr_cfqq++;
780         if (cfqg->on_st)
781                 return;
782
783         /*
784          * Currently put the group at the end. Later implement something
785          * so that groups get lesser vtime based on their weights, so that
786          * if group does not loose all if it was not continously backlogged.
787          */
788         n = rb_last(&st->rb);
789         if (n) {
790                 __cfqg = rb_entry_cfqg(n);
791                 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
792         } else
793                 cfqg->vdisktime = st->min_vdisktime;
794
795         __cfq_group_service_tree_add(st, cfqg);
796         cfqg->on_st = true;
797         cfqd->nr_groups++;
798         st->total_weight += cfqg->weight;
799 }
800
801 static void
802 cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
803 {
804         struct cfq_rb_root *st = &cfqd->grp_service_tree;
805
806         if (st->active == &cfqg->rb_node)
807                 st->active = NULL;
808
809         BUG_ON(cfqg->nr_cfqq < 1);
810         cfqg->nr_cfqq--;
811
812         /* If there are other cfq queues under this group, don't delete it */
813         if (cfqg->nr_cfqq)
814                 return;
815
816         cfqg->on_st = false;
817         cfqd->nr_groups--;
818         st->total_weight -= cfqg->weight;
819         if (!RB_EMPTY_NODE(&cfqg->rb_node))
820                 cfq_rb_erase(&cfqg->rb_node, st);
821 }
822
823 /*
824  * The cfqd->service_trees holds all pending cfq_queue's that have
825  * requests waiting to be processed. It is sorted in the order that
826  * we will service the queues.
827  */
828 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
829                                  bool add_front)
830 {
831         struct rb_node **p, *parent;
832         struct cfq_queue *__cfqq;
833         unsigned long rb_key;
834         struct cfq_rb_root *service_tree;
835         int left;
836
837         service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
838                                                 cfqq_type(cfqq), cfqd);
839         if (cfq_class_idle(cfqq)) {
840                 rb_key = CFQ_IDLE_DELAY;
841                 parent = rb_last(&service_tree->rb);
842                 if (parent && parent != &cfqq->rb_node) {
843                         __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
844                         rb_key += __cfqq->rb_key;
845                 } else
846                         rb_key += jiffies;
847         } else if (!add_front) {
848                 /*
849                  * Get our rb key offset. Subtract any residual slice
850                  * value carried from last service. A negative resid
851                  * count indicates slice overrun, and this should position
852                  * the next service time further away in the tree.
853                  */
854                 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
855                 rb_key -= cfqq->slice_resid;
856                 cfqq->slice_resid = 0;
857         } else {
858                 rb_key = -HZ;
859                 __cfqq = cfq_rb_first(service_tree);
860                 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
861         }
862
863         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
864                 /*
865                  * same position, nothing more to do
866                  */
867                 if (rb_key == cfqq->rb_key &&
868                     cfqq->service_tree == service_tree)
869                         return;
870
871                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
872                 cfqq->service_tree = NULL;
873         }
874
875         left = 1;
876         parent = NULL;
877         cfqq->service_tree = service_tree;
878         p = &service_tree->rb.rb_node;
879         while (*p) {
880                 struct rb_node **n;
881
882                 parent = *p;
883                 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
884
885                 /*
886                  * sort by key, that represents service time.
887                  */
888                 if (time_before(rb_key, __cfqq->rb_key))
889                         n = &(*p)->rb_left;
890                 else {
891                         n = &(*p)->rb_right;
892                         left = 0;
893                 }
894
895                 p = n;
896         }
897
898         if (left)
899                 service_tree->left = &cfqq->rb_node;
900
901         cfqq->rb_key = rb_key;
902         rb_link_node(&cfqq->rb_node, parent, p);
903         rb_insert_color(&cfqq->rb_node, &service_tree->rb);
904         service_tree->count++;
905         cfq_group_service_tree_add(cfqd, cfqq->cfqg);
906 }
907
908 static struct cfq_queue *
909 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
910                      sector_t sector, struct rb_node **ret_parent,
911                      struct rb_node ***rb_link)
912 {
913         struct rb_node **p, *parent;
914         struct cfq_queue *cfqq = NULL;
915
916         parent = NULL;
917         p = &root->rb_node;
918         while (*p) {
919                 struct rb_node **n;
920
921                 parent = *p;
922                 cfqq = rb_entry(parent, struct cfq_queue, p_node);
923
924                 /*
925                  * Sort strictly based on sector.  Smallest to the left,
926                  * largest to the right.
927                  */
928                 if (sector > blk_rq_pos(cfqq->next_rq))
929                         n = &(*p)->rb_right;
930                 else if (sector < blk_rq_pos(cfqq->next_rq))
931                         n = &(*p)->rb_left;
932                 else
933                         break;
934                 p = n;
935                 cfqq = NULL;
936         }
937
938         *ret_parent = parent;
939         if (rb_link)
940                 *rb_link = p;
941         return cfqq;
942 }
943
944 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
945 {
946         struct rb_node **p, *parent;
947         struct cfq_queue *__cfqq;
948
949         if (cfqq->p_root) {
950                 rb_erase(&cfqq->p_node, cfqq->p_root);
951                 cfqq->p_root = NULL;
952         }
953
954         if (cfq_class_idle(cfqq))
955                 return;
956         if (!cfqq->next_rq)
957                 return;
958
959         cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
960         __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
961                                       blk_rq_pos(cfqq->next_rq), &parent, &p);
962         if (!__cfqq) {
963                 rb_link_node(&cfqq->p_node, parent, p);
964                 rb_insert_color(&cfqq->p_node, cfqq->p_root);
965         } else
966                 cfqq->p_root = NULL;
967 }
968
969 /*
970  * Update cfqq's position in the service tree.
971  */
972 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
973 {
974         /*
975          * Resorting requires the cfqq to be on the RR list already.
976          */
977         if (cfq_cfqq_on_rr(cfqq)) {
978                 cfq_service_tree_add(cfqd, cfqq, 0);
979                 cfq_prio_tree_add(cfqd, cfqq);
980         }
981 }
982
983 /*
984  * add to busy list of queues for service, trying to be fair in ordering
985  * the pending list according to last request service
986  */
987 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
988 {
989         cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
990         BUG_ON(cfq_cfqq_on_rr(cfqq));
991         cfq_mark_cfqq_on_rr(cfqq);
992         cfqd->busy_queues++;
993
994         cfq_resort_rr_list(cfqd, cfqq);
995 }
996
997 /*
998  * Called when the cfqq no longer has requests pending, remove it from
999  * the service tree.
1000  */
1001 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1002 {
1003         cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1004         BUG_ON(!cfq_cfqq_on_rr(cfqq));
1005         cfq_clear_cfqq_on_rr(cfqq);
1006
1007         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1008                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1009                 cfqq->service_tree = NULL;
1010         }
1011         if (cfqq->p_root) {
1012                 rb_erase(&cfqq->p_node, cfqq->p_root);
1013                 cfqq->p_root = NULL;
1014         }
1015
1016         cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1017         BUG_ON(!cfqd->busy_queues);
1018         cfqd->busy_queues--;
1019 }
1020
1021 /*
1022  * rb tree support functions
1023  */
1024 static void cfq_del_rq_rb(struct request *rq)
1025 {
1026         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1027         const int sync = rq_is_sync(rq);
1028
1029         BUG_ON(!cfqq->queued[sync]);
1030         cfqq->queued[sync]--;
1031
1032         elv_rb_del(&cfqq->sort_list, rq);
1033
1034         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1035                 /*
1036                  * Queue will be deleted from service tree when we actually
1037                  * expire it later. Right now just remove it from prio tree
1038                  * as it is empty.
1039                  */
1040                 if (cfqq->p_root) {
1041                         rb_erase(&cfqq->p_node, cfqq->p_root);
1042                         cfqq->p_root = NULL;
1043                 }
1044         }
1045 }
1046
1047 static void cfq_add_rq_rb(struct request *rq)
1048 {
1049         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1050         struct cfq_data *cfqd = cfqq->cfqd;
1051         struct request *__alias, *prev;
1052
1053         cfqq->queued[rq_is_sync(rq)]++;
1054
1055         /*
1056          * looks a little odd, but the first insert might return an alias.
1057          * if that happens, put the alias on the dispatch list
1058          */
1059         while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1060                 cfq_dispatch_insert(cfqd->queue, __alias);
1061
1062         if (!cfq_cfqq_on_rr(cfqq))
1063                 cfq_add_cfqq_rr(cfqd, cfqq);
1064
1065         /*
1066          * check if this request is a better next-serve candidate
1067          */
1068         prev = cfqq->next_rq;
1069         cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1070
1071         /*
1072          * adjust priority tree position, if ->next_rq changes
1073          */
1074         if (prev != cfqq->next_rq)
1075                 cfq_prio_tree_add(cfqd, cfqq);
1076
1077         BUG_ON(!cfqq->next_rq);
1078 }
1079
1080 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1081 {
1082         elv_rb_del(&cfqq->sort_list, rq);
1083         cfqq->queued[rq_is_sync(rq)]--;
1084         cfq_add_rq_rb(rq);
1085 }
1086
1087 static struct request *
1088 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1089 {
1090         struct task_struct *tsk = current;
1091         struct cfq_io_context *cic;
1092         struct cfq_queue *cfqq;
1093
1094         cic = cfq_cic_lookup(cfqd, tsk->io_context);
1095         if (!cic)
1096                 return NULL;
1097
1098         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1099         if (cfqq) {
1100                 sector_t sector = bio->bi_sector + bio_sectors(bio);
1101
1102                 return elv_rb_find(&cfqq->sort_list, sector);
1103         }
1104
1105         return NULL;
1106 }
1107
1108 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1109 {
1110         struct cfq_data *cfqd = q->elevator->elevator_data;
1111
1112         cfqd->rq_in_driver[rq_is_sync(rq)]++;
1113         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1114                                                 rq_in_driver(cfqd));
1115
1116         cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1117 }
1118
1119 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1120 {
1121         struct cfq_data *cfqd = q->elevator->elevator_data;
1122         const int sync = rq_is_sync(rq);
1123
1124         WARN_ON(!cfqd->rq_in_driver[sync]);
1125         cfqd->rq_in_driver[sync]--;
1126         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1127                                                 rq_in_driver(cfqd));
1128 }
1129
1130 static void cfq_remove_request(struct request *rq)
1131 {
1132         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1133
1134         if (cfqq->next_rq == rq)
1135                 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1136
1137         list_del_init(&rq->queuelist);
1138         cfq_del_rq_rb(rq);
1139
1140         cfqq->cfqd->rq_queued--;
1141         if (rq_is_meta(rq)) {
1142                 WARN_ON(!cfqq->meta_pending);
1143                 cfqq->meta_pending--;
1144         }
1145 }
1146
1147 static int cfq_merge(struct request_queue *q, struct request **req,
1148                      struct bio *bio)
1149 {
1150         struct cfq_data *cfqd = q->elevator->elevator_data;
1151         struct request *__rq;
1152
1153         __rq = cfq_find_rq_fmerge(cfqd, bio);
1154         if (__rq && elv_rq_merge_ok(__rq, bio)) {
1155                 *req = __rq;
1156                 return ELEVATOR_FRONT_MERGE;
1157         }
1158
1159         return ELEVATOR_NO_MERGE;
1160 }
1161
1162 static void cfq_merged_request(struct request_queue *q, struct request *req,
1163                                int type)
1164 {
1165         if (type == ELEVATOR_FRONT_MERGE) {
1166                 struct cfq_queue *cfqq = RQ_CFQQ(req);
1167
1168                 cfq_reposition_rq_rb(cfqq, req);
1169         }
1170 }
1171
1172 static void
1173 cfq_merged_requests(struct request_queue *q, struct request *rq,
1174                     struct request *next)
1175 {
1176         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1177         /*
1178          * reposition in fifo if next is older than rq
1179          */
1180         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1181             time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1182                 list_move(&rq->queuelist, &next->queuelist);
1183                 rq_set_fifo_time(rq, rq_fifo_time(next));
1184         }
1185
1186         if (cfqq->next_rq == next)
1187                 cfqq->next_rq = rq;
1188         cfq_remove_request(next);
1189 }
1190
1191 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1192                            struct bio *bio)
1193 {
1194         struct cfq_data *cfqd = q->elevator->elevator_data;
1195         struct cfq_io_context *cic;
1196         struct cfq_queue *cfqq;
1197
1198         /*
1199          * Disallow merge of a sync bio into an async request.
1200          */
1201         if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1202                 return false;
1203
1204         /*
1205          * Lookup the cfqq that this bio will be queued with. Allow
1206          * merge only if rq is queued there.
1207          */
1208         cic = cfq_cic_lookup(cfqd, current->io_context);
1209         if (!cic)
1210                 return false;
1211
1212         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1213         return cfqq == RQ_CFQQ(rq);
1214 }
1215
1216 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1217                                    struct cfq_queue *cfqq)
1218 {
1219         if (cfqq) {
1220                 cfq_log_cfqq(cfqd, cfqq, "set_active");
1221                 cfqq->slice_end = 0;
1222                 cfqq->slice_dispatch = 0;
1223
1224                 cfq_clear_cfqq_wait_request(cfqq);
1225                 cfq_clear_cfqq_must_dispatch(cfqq);
1226                 cfq_clear_cfqq_must_alloc_slice(cfqq);
1227                 cfq_clear_cfqq_fifo_expire(cfqq);
1228                 cfq_mark_cfqq_slice_new(cfqq);
1229
1230                 del_timer(&cfqd->idle_slice_timer);
1231         }
1232
1233         cfqd->active_queue = cfqq;
1234 }
1235
1236 /*
1237  * current cfqq expired its slice (or was too idle), select new one
1238  */
1239 static void
1240 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1241                     bool timed_out)
1242 {
1243         cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1244
1245         if (cfq_cfqq_wait_request(cfqq))
1246                 del_timer(&cfqd->idle_slice_timer);
1247
1248         cfq_clear_cfqq_wait_request(cfqq);
1249
1250         /*
1251          * store what was left of this slice, if the queue idled/timed out
1252          */
1253         if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1254                 cfqq->slice_resid = cfqq->slice_end - jiffies;
1255                 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1256         }
1257
1258         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1259                 cfq_del_cfqq_rr(cfqd, cfqq);
1260
1261         cfq_resort_rr_list(cfqd, cfqq);
1262
1263         if (cfqq == cfqd->active_queue)
1264                 cfqd->active_queue = NULL;
1265
1266         if (cfqd->active_cic) {
1267                 put_io_context(cfqd->active_cic->ioc);
1268                 cfqd->active_cic = NULL;
1269         }
1270 }
1271
1272 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1273 {
1274         struct cfq_queue *cfqq = cfqd->active_queue;
1275
1276         if (cfqq)
1277                 __cfq_slice_expired(cfqd, cfqq, timed_out);
1278 }
1279
1280 /*
1281  * Get next queue for service. Unless we have a queue preemption,
1282  * we'll simply select the first cfqq in the service tree.
1283  */
1284 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1285 {
1286         struct cfq_rb_root *service_tree =
1287                 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1288                                         cfqd->serving_type, cfqd);
1289
1290         if (!cfqd->rq_queued)
1291                 return NULL;
1292
1293         /* There is nothing to dispatch */
1294         if (!service_tree)
1295                 return NULL;
1296         if (RB_EMPTY_ROOT(&service_tree->rb))
1297                 return NULL;
1298         return cfq_rb_first(service_tree);
1299 }
1300
1301 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1302 {
1303         struct cfq_group *cfqg = &cfqd->root_group;
1304         struct cfq_queue *cfqq;
1305         int i, j;
1306         struct cfq_rb_root *st;
1307
1308         if (!cfqd->rq_queued)
1309                 return NULL;
1310
1311         for_each_cfqg_st(cfqg, i, j, st)
1312                 if ((cfqq = cfq_rb_first(st)) != NULL)
1313                         return cfqq;
1314         return NULL;
1315 }
1316
1317 /*
1318  * Get and set a new active queue for service.
1319  */
1320 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1321                                               struct cfq_queue *cfqq)
1322 {
1323         if (!cfqq)
1324                 cfqq = cfq_get_next_queue(cfqd);
1325
1326         __cfq_set_active_queue(cfqd, cfqq);
1327         return cfqq;
1328 }
1329
1330 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1331                                           struct request *rq)
1332 {
1333         if (blk_rq_pos(rq) >= cfqd->last_position)
1334                 return blk_rq_pos(rq) - cfqd->last_position;
1335         else
1336                 return cfqd->last_position - blk_rq_pos(rq);
1337 }
1338
1339 #define CFQQ_SEEK_THR           8 * 1024
1340 #define CFQQ_SEEKY(cfqq)        ((cfqq)->seek_mean > CFQQ_SEEK_THR)
1341
1342 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1343                                struct request *rq)
1344 {
1345         sector_t sdist = cfqq->seek_mean;
1346
1347         if (!sample_valid(cfqq->seek_samples))
1348                 sdist = CFQQ_SEEK_THR;
1349
1350         return cfq_dist_from_last(cfqd, rq) <= sdist;
1351 }
1352
1353 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1354                                     struct cfq_queue *cur_cfqq)
1355 {
1356         struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1357         struct rb_node *parent, *node;
1358         struct cfq_queue *__cfqq;
1359         sector_t sector = cfqd->last_position;
1360
1361         if (RB_EMPTY_ROOT(root))
1362                 return NULL;
1363
1364         /*
1365          * First, if we find a request starting at the end of the last
1366          * request, choose it.
1367          */
1368         __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1369         if (__cfqq)
1370                 return __cfqq;
1371
1372         /*
1373          * If the exact sector wasn't found, the parent of the NULL leaf
1374          * will contain the closest sector.
1375          */
1376         __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1377         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1378                 return __cfqq;
1379
1380         if (blk_rq_pos(__cfqq->next_rq) < sector)
1381                 node = rb_next(&__cfqq->p_node);
1382         else
1383                 node = rb_prev(&__cfqq->p_node);
1384         if (!node)
1385                 return NULL;
1386
1387         __cfqq = rb_entry(node, struct cfq_queue, p_node);
1388         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1389                 return __cfqq;
1390
1391         return NULL;
1392 }
1393
1394 /*
1395  * cfqd - obvious
1396  * cur_cfqq - passed in so that we don't decide that the current queue is
1397  *            closely cooperating with itself.
1398  *
1399  * So, basically we're assuming that that cur_cfqq has dispatched at least
1400  * one request, and that cfqd->last_position reflects a position on the disk
1401  * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1402  * assumption.
1403  */
1404 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1405                                               struct cfq_queue *cur_cfqq)
1406 {
1407         struct cfq_queue *cfqq;
1408
1409         if (!cfq_cfqq_sync(cur_cfqq))
1410                 return NULL;
1411         if (CFQQ_SEEKY(cur_cfqq))
1412                 return NULL;
1413
1414         /*
1415          * We should notice if some of the queues are cooperating, eg
1416          * working closely on the same area of the disk. In that case,
1417          * we can group them together and don't waste time idling.
1418          */
1419         cfqq = cfqq_close(cfqd, cur_cfqq);
1420         if (!cfqq)
1421                 return NULL;
1422
1423         /*
1424          * It only makes sense to merge sync queues.
1425          */
1426         if (!cfq_cfqq_sync(cfqq))
1427                 return NULL;
1428         if (CFQQ_SEEKY(cfqq))
1429                 return NULL;
1430
1431         /*
1432          * Do not merge queues of different priority classes
1433          */
1434         if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1435                 return NULL;
1436
1437         return cfqq;
1438 }
1439
1440 /*
1441  * Determine whether we should enforce idle window for this queue.
1442  */
1443
1444 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1445 {
1446         enum wl_prio_t prio = cfqq_prio(cfqq);
1447         struct cfq_rb_root *service_tree = cfqq->service_tree;
1448
1449         BUG_ON(!service_tree);
1450         BUG_ON(!service_tree->count);
1451
1452         /* We never do for idle class queues. */
1453         if (prio == IDLE_WORKLOAD)
1454                 return false;
1455
1456         /* We do for queues that were marked with idle window flag. */
1457         if (cfq_cfqq_idle_window(cfqq))
1458                 return true;
1459
1460         /*
1461          * Otherwise, we do only if they are the last ones
1462          * in their service tree.
1463          */
1464         return service_tree->count == 1;
1465 }
1466
1467 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1468 {
1469         struct cfq_queue *cfqq = cfqd->active_queue;
1470         struct cfq_io_context *cic;
1471         unsigned long sl;
1472
1473         /*
1474          * SSD device without seek penalty, disable idling. But only do so
1475          * for devices that support queuing, otherwise we still have a problem
1476          * with sync vs async workloads.
1477          */
1478         if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1479                 return;
1480
1481         WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1482         WARN_ON(cfq_cfqq_slice_new(cfqq));
1483
1484         /*
1485          * idle is disabled, either manually or by past process history
1486          */
1487         if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
1488                 return;
1489
1490         /*
1491          * still active requests from this queue, don't idle
1492          */
1493         if (cfqq->dispatched)
1494                 return;
1495
1496         /*
1497          * task has exited, don't wait
1498          */
1499         cic = cfqd->active_cic;
1500         if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1501                 return;
1502
1503         /*
1504          * If our average think time is larger than the remaining time
1505          * slice, then don't idle. This avoids overrunning the allotted
1506          * time slice.
1507          */
1508         if (sample_valid(cic->ttime_samples) &&
1509             (cfqq->slice_end - jiffies < cic->ttime_mean))
1510                 return;
1511
1512         cfq_mark_cfqq_wait_request(cfqq);
1513
1514         sl = cfqd->cfq_slice_idle;
1515
1516         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1517         cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1518 }
1519
1520 /*
1521  * Move request from internal lists to the request queue dispatch list.
1522  */
1523 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1524 {
1525         struct cfq_data *cfqd = q->elevator->elevator_data;
1526         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1527
1528         cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1529
1530         cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1531         cfq_remove_request(rq);
1532         cfqq->dispatched++;
1533         elv_dispatch_sort(q, rq);
1534
1535         if (cfq_cfqq_sync(cfqq))
1536                 cfqd->sync_flight++;
1537 }
1538
1539 /*
1540  * return expired entry, or NULL to just start from scratch in rbtree
1541  */
1542 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1543 {
1544         struct request *rq = NULL;
1545
1546         if (cfq_cfqq_fifo_expire(cfqq))
1547                 return NULL;
1548
1549         cfq_mark_cfqq_fifo_expire(cfqq);
1550
1551         if (list_empty(&cfqq->fifo))
1552                 return NULL;
1553
1554         rq = rq_entry_fifo(cfqq->fifo.next);
1555         if (time_before(jiffies, rq_fifo_time(rq)))
1556                 rq = NULL;
1557
1558         cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1559         return rq;
1560 }
1561
1562 static inline int
1563 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1564 {
1565         const int base_rq = cfqd->cfq_slice_async_rq;
1566
1567         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1568
1569         return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1570 }
1571
1572 /*
1573  * Must be called with the queue_lock held.
1574  */
1575 static int cfqq_process_refs(struct cfq_queue *cfqq)
1576 {
1577         int process_refs, io_refs;
1578
1579         io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1580         process_refs = atomic_read(&cfqq->ref) - io_refs;
1581         BUG_ON(process_refs < 0);
1582         return process_refs;
1583 }
1584
1585 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1586 {
1587         int process_refs, new_process_refs;
1588         struct cfq_queue *__cfqq;
1589
1590         /* Avoid a circular list and skip interim queue merges */
1591         while ((__cfqq = new_cfqq->new_cfqq)) {
1592                 if (__cfqq == cfqq)
1593                         return;
1594                 new_cfqq = __cfqq;
1595         }
1596
1597         process_refs = cfqq_process_refs(cfqq);
1598         /*
1599          * If the process for the cfqq has gone away, there is no
1600          * sense in merging the queues.
1601          */
1602         if (process_refs == 0)
1603                 return;
1604
1605         /*
1606          * Merge in the direction of the lesser amount of work.
1607          */
1608         new_process_refs = cfqq_process_refs(new_cfqq);
1609         if (new_process_refs >= process_refs) {
1610                 cfqq->new_cfqq = new_cfqq;
1611                 atomic_add(process_refs, &new_cfqq->ref);
1612         } else {
1613                 new_cfqq->new_cfqq = cfqq;
1614                 atomic_add(new_process_refs, &cfqq->ref);
1615         }
1616 }
1617
1618 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1619                                 struct cfq_group *cfqg, enum wl_prio_t prio,
1620                                 bool prio_changed)
1621 {
1622         struct cfq_queue *queue;
1623         int i;
1624         bool key_valid = false;
1625         unsigned long lowest_key = 0;
1626         enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1627
1628         if (prio_changed) {
1629                 /*
1630                  * When priorities switched, we prefer starting
1631                  * from SYNC_NOIDLE (first choice), or just SYNC
1632                  * over ASYNC
1633                  */
1634                 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1635                         return cur_best;
1636                 cur_best = SYNC_WORKLOAD;
1637                 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1638                         return cur_best;
1639
1640                 return ASYNC_WORKLOAD;
1641         }
1642
1643         for (i = 0; i < 3; ++i) {
1644                 /* otherwise, select the one with lowest rb_key */
1645                 queue = cfq_rb_first(service_tree_for(cfqg, prio, i, cfqd));
1646                 if (queue &&
1647                     (!key_valid || time_before(queue->rb_key, lowest_key))) {
1648                         lowest_key = queue->rb_key;
1649                         cur_best = i;
1650                         key_valid = true;
1651                 }
1652         }
1653
1654         return cur_best;
1655 }
1656
1657 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
1658 {
1659         enum wl_prio_t previous_prio = cfqd->serving_prio;
1660         bool prio_changed;
1661         unsigned slice;
1662         unsigned count;
1663         struct cfq_rb_root *st;
1664         unsigned group_slice;
1665
1666         if (!cfqg) {
1667                 cfqd->serving_prio = IDLE_WORKLOAD;
1668                 cfqd->workload_expires = jiffies + 1;
1669                 return;
1670         }
1671
1672         /* Choose next priority. RT > BE > IDLE */
1673         if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
1674                 cfqd->serving_prio = RT_WORKLOAD;
1675         else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
1676                 cfqd->serving_prio = BE_WORKLOAD;
1677         else {
1678                 cfqd->serving_prio = IDLE_WORKLOAD;
1679                 cfqd->workload_expires = jiffies + 1;
1680                 return;
1681         }
1682
1683         /*
1684          * For RT and BE, we have to choose also the type
1685          * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
1686          * expiration time
1687          */
1688         prio_changed = (cfqd->serving_prio != previous_prio);
1689         st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
1690                                 cfqd);
1691         count = st->count;
1692
1693         /*
1694          * If priority didn't change, check workload expiration,
1695          * and that we still have other queues ready
1696          */
1697         if (!prio_changed && count &&
1698             !time_after(jiffies, cfqd->workload_expires))
1699                 return;
1700
1701         /* otherwise select new workload type */
1702         cfqd->serving_type =
1703                 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio, prio_changed);
1704         st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
1705                                 cfqd);
1706         count = st->count;
1707
1708         /*
1709          * the workload slice is computed as a fraction of target latency
1710          * proportional to the number of queues in that workload, over
1711          * all the queues in the same priority class
1712          */
1713         group_slice = cfq_group_slice(cfqd, cfqg);
1714
1715         slice = group_slice * count /
1716                 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
1717                       cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
1718
1719         if (cfqd->serving_type == ASYNC_WORKLOAD)
1720                 /* async workload slice is scaled down according to
1721                  * the sync/async slice ratio. */
1722                 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
1723         else
1724                 /* sync workload slice is at least 2 * cfq_slice_idle */
1725                 slice = max(slice, 2 * cfqd->cfq_slice_idle);
1726
1727         slice = max_t(unsigned, slice, CFQ_MIN_TT);
1728         cfqd->workload_expires = jiffies + slice;
1729         cfqd->noidle_tree_requires_idle = false;
1730 }
1731
1732 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
1733 {
1734         struct cfq_rb_root *st = &cfqd->grp_service_tree;
1735         struct cfq_group *cfqg;
1736
1737         if (RB_EMPTY_ROOT(&st->rb))
1738                 return NULL;
1739         cfqg = cfq_rb_first_group(st);
1740         st->active = &cfqg->rb_node;
1741         update_min_vdisktime(st);
1742         return cfqg;
1743 }
1744
1745 static void cfq_choose_cfqg(struct cfq_data *cfqd)
1746 {
1747         struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
1748
1749         cfqd->serving_group = cfqg;
1750         choose_service_tree(cfqd, cfqg);
1751 }
1752
1753 /*
1754  * Select a queue for service. If we have a current active queue,
1755  * check whether to continue servicing it, or retrieve and set a new one.
1756  */
1757 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1758 {
1759         struct cfq_queue *cfqq, *new_cfqq = NULL;
1760
1761         cfqq = cfqd->active_queue;
1762         if (!cfqq)
1763                 goto new_queue;
1764
1765         if (!cfqd->rq_queued)
1766                 return NULL;
1767         /*
1768          * The active queue has run out of time, expire it and select new.
1769          */
1770         if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
1771                 goto expire;
1772
1773         /*
1774          * The active queue has requests and isn't expired, allow it to
1775          * dispatch.
1776          */
1777         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1778                 goto keep_queue;
1779
1780         /*
1781          * If another queue has a request waiting within our mean seek
1782          * distance, let it run.  The expire code will check for close
1783          * cooperators and put the close queue at the front of the service
1784          * tree.  If possible, merge the expiring queue with the new cfqq.
1785          */
1786         new_cfqq = cfq_close_cooperator(cfqd, cfqq);
1787         if (new_cfqq) {
1788                 if (!cfqq->new_cfqq)
1789                         cfq_setup_merge(cfqq, new_cfqq);
1790                 goto expire;
1791         }
1792
1793         /*
1794          * No requests pending. If the active queue still has requests in
1795          * flight or is idling for a new request, allow either of these
1796          * conditions to happen (or time out) before selecting a new queue.
1797          */
1798         if (timer_pending(&cfqd->idle_slice_timer) ||
1799             (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
1800                 cfqq = NULL;
1801                 goto keep_queue;
1802         }
1803
1804 expire:
1805         cfq_slice_expired(cfqd, 0);
1806 new_queue:
1807         /*
1808          * Current queue expired. Check if we have to switch to a new
1809          * service tree
1810          */
1811         if (!new_cfqq)
1812                 cfq_choose_cfqg(cfqd);
1813
1814         cfqq = cfq_set_active_queue(cfqd, new_cfqq);
1815 keep_queue:
1816         return cfqq;
1817 }
1818
1819 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1820 {
1821         int dispatched = 0;
1822
1823         while (cfqq->next_rq) {
1824                 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1825                 dispatched++;
1826         }
1827
1828         BUG_ON(!list_empty(&cfqq->fifo));
1829
1830         /* By default cfqq is not expired if it is empty. Do it explicitly */
1831         __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
1832         return dispatched;
1833 }
1834
1835 /*
1836  * Drain our current requests. Used for barriers and when switching
1837  * io schedulers on-the-fly.
1838  */
1839 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1840 {
1841         struct cfq_queue *cfqq;
1842         int dispatched = 0;
1843
1844         while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
1845                 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1846
1847         cfq_slice_expired(cfqd, 0);
1848         BUG_ON(cfqd->busy_queues);
1849
1850         cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1851         return dispatched;
1852 }
1853
1854 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1855 {
1856         unsigned int max_dispatch;
1857
1858         /*
1859          * Drain async requests before we start sync IO
1860          */
1861         if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
1862                 return false;
1863
1864         /*
1865          * If this is an async queue and we have sync IO in flight, let it wait
1866          */
1867         if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1868                 return false;
1869
1870         max_dispatch = cfqd->cfq_quantum;
1871         if (cfq_class_idle(cfqq))
1872                 max_dispatch = 1;
1873
1874         /*
1875          * Does this cfqq already have too much IO in flight?
1876          */
1877         if (cfqq->dispatched >= max_dispatch) {
1878                 /*
1879                  * idle queue must always only have a single IO in flight
1880                  */
1881                 if (cfq_class_idle(cfqq))
1882                         return false;
1883
1884                 /*
1885                  * We have other queues, don't allow more IO from this one
1886                  */
1887                 if (cfqd->busy_queues > 1)
1888                         return false;
1889
1890                 /*
1891                  * Sole queue user, no limit
1892                  */
1893                 max_dispatch = -1;
1894         }
1895
1896         /*
1897          * Async queues must wait a bit before being allowed dispatch.
1898          * We also ramp up the dispatch depth gradually for async IO,
1899          * based on the last sync IO we serviced
1900          */
1901         if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
1902                 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
1903                 unsigned int depth;
1904
1905                 depth = last_sync / cfqd->cfq_slice[1];
1906                 if (!depth && !cfqq->dispatched)
1907                         depth = 1;
1908                 if (depth < max_dispatch)
1909                         max_dispatch = depth;
1910         }
1911
1912         /*
1913          * If we're below the current max, allow a dispatch
1914          */
1915         return cfqq->dispatched < max_dispatch;
1916 }
1917
1918 /*
1919  * Dispatch a request from cfqq, moving them to the request queue
1920  * dispatch list.
1921  */
1922 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1923 {
1924         struct request *rq;
1925
1926         BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1927
1928         if (!cfq_may_dispatch(cfqd, cfqq))
1929                 return false;
1930
1931         /*
1932          * follow expired path, else get first next available
1933          */
1934         rq = cfq_check_fifo(cfqq);
1935         if (!rq)
1936                 rq = cfqq->next_rq;
1937
1938         /*
1939          * insert request into driver dispatch list
1940          */
1941         cfq_dispatch_insert(cfqd->queue, rq);
1942
1943         if (!cfqd->active_cic) {
1944                 struct cfq_io_context *cic = RQ_CIC(rq);
1945
1946                 atomic_long_inc(&cic->ioc->refcount);
1947                 cfqd->active_cic = cic;
1948         }
1949
1950         return true;
1951 }
1952
1953 /*
1954  * Find the cfqq that we need to service and move a request from that to the
1955  * dispatch list
1956  */
1957 static int cfq_dispatch_requests(struct request_queue *q, int force)
1958 {
1959         struct cfq_data *cfqd = q->elevator->elevator_data;
1960         struct cfq_queue *cfqq;
1961
1962         if (!cfqd->busy_queues)
1963                 return 0;
1964
1965         if (unlikely(force))
1966                 return cfq_forced_dispatch(cfqd);
1967
1968         cfqq = cfq_select_queue(cfqd);
1969         if (!cfqq)
1970                 return 0;
1971
1972         /*
1973          * Dispatch a request from this cfqq, if it is allowed
1974          */
1975         if (!cfq_dispatch_request(cfqd, cfqq))
1976                 return 0;
1977
1978         cfqq->slice_dispatch++;
1979         cfq_clear_cfqq_must_dispatch(cfqq);
1980
1981         /*
1982          * expire an async queue immediately if it has used up its slice. idle
1983          * queue always expire after 1 dispatch round.
1984          */
1985         if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1986             cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1987             cfq_class_idle(cfqq))) {
1988                 cfqq->slice_end = jiffies + 1;
1989                 cfq_slice_expired(cfqd, 0);
1990         }
1991
1992         cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
1993         return 1;
1994 }
1995
1996 /*
1997  * task holds one reference to the queue, dropped when task exits. each rq
1998  * in-flight on this queue also holds a reference, dropped when rq is freed.
1999  *
2000  * queue lock must be held here.
2001  */
2002 static void cfq_put_queue(struct cfq_queue *cfqq)
2003 {
2004         struct cfq_data *cfqd = cfqq->cfqd;
2005
2006         BUG_ON(atomic_read(&cfqq->ref) <= 0);
2007
2008         if (!atomic_dec_and_test(&cfqq->ref))
2009                 return;
2010
2011         cfq_log_cfqq(cfqd, cfqq, "put_queue");
2012         BUG_ON(rb_first(&cfqq->sort_list));
2013         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2014
2015         if (unlikely(cfqd->active_queue == cfqq)) {
2016                 __cfq_slice_expired(cfqd, cfqq, 0);
2017                 cfq_schedule_dispatch(cfqd);
2018         }
2019
2020         BUG_ON(cfq_cfqq_on_rr(cfqq));
2021         kmem_cache_free(cfq_pool, cfqq);
2022 }
2023
2024 /*
2025  * Must always be called with the rcu_read_lock() held
2026  */
2027 static void
2028 __call_for_each_cic(struct io_context *ioc,
2029                     void (*func)(struct io_context *, struct cfq_io_context *))
2030 {
2031         struct cfq_io_context *cic;
2032         struct hlist_node *n;
2033
2034         hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2035                 func(ioc, cic);
2036 }
2037
2038 /*
2039  * Call func for each cic attached to this ioc.
2040  */
2041 static void
2042 call_for_each_cic(struct io_context *ioc,
2043                   void (*func)(struct io_context *, struct cfq_io_context *))
2044 {
2045         rcu_read_lock();
2046         __call_for_each_cic(ioc, func);
2047         rcu_read_unlock();
2048 }
2049
2050 static void cfq_cic_free_rcu(struct rcu_head *head)
2051 {
2052         struct cfq_io_context *cic;
2053
2054         cic = container_of(head, struct cfq_io_context, rcu_head);
2055
2056         kmem_cache_free(cfq_ioc_pool, cic);
2057         elv_ioc_count_dec(cfq_ioc_count);
2058
2059         if (ioc_gone) {
2060                 /*
2061                  * CFQ scheduler is exiting, grab exit lock and check
2062                  * the pending io context count. If it hits zero,
2063                  * complete ioc_gone and set it back to NULL
2064                  */
2065                 spin_lock(&ioc_gone_lock);
2066                 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2067                         complete(ioc_gone);
2068                         ioc_gone = NULL;
2069                 }
2070                 spin_unlock(&ioc_gone_lock);
2071         }
2072 }
2073
2074 static void cfq_cic_free(struct cfq_io_context *cic)
2075 {
2076         call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2077 }
2078
2079 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2080 {
2081         unsigned long flags;
2082
2083         BUG_ON(!cic->dead_key);
2084
2085         spin_lock_irqsave(&ioc->lock, flags);
2086         radix_tree_delete(&ioc->radix_root, cic->dead_key);
2087         hlist_del_rcu(&cic->cic_list);
2088         spin_unlock_irqrestore(&ioc->lock, flags);
2089
2090         cfq_cic_free(cic);
2091 }
2092
2093 /*
2094  * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2095  * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2096  * and ->trim() which is called with the task lock held
2097  */
2098 static void cfq_free_io_context(struct io_context *ioc)
2099 {
2100         /*
2101          * ioc->refcount is zero here, or we are called from elv_unregister(),
2102          * so no more cic's are allowed to be linked into this ioc.  So it
2103          * should be ok to iterate over the known list, we will see all cic's
2104          * since no new ones are added.
2105          */
2106         __call_for_each_cic(ioc, cic_free_func);
2107 }
2108
2109 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2110 {
2111         struct cfq_queue *__cfqq, *next;
2112
2113         if (unlikely(cfqq == cfqd->active_queue)) {
2114                 __cfq_slice_expired(cfqd, cfqq, 0);
2115                 cfq_schedule_dispatch(cfqd);
2116         }
2117
2118         /*
2119          * If this queue was scheduled to merge with another queue, be
2120          * sure to drop the reference taken on that queue (and others in
2121          * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
2122          */
2123         __cfqq = cfqq->new_cfqq;
2124         while (__cfqq) {
2125                 if (__cfqq == cfqq) {
2126                         WARN(1, "cfqq->new_cfqq loop detected\n");
2127                         break;
2128                 }
2129                 next = __cfqq->new_cfqq;
2130                 cfq_put_queue(__cfqq);
2131                 __cfqq = next;
2132         }
2133
2134         cfq_put_queue(cfqq);
2135 }
2136
2137 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2138                                          struct cfq_io_context *cic)
2139 {
2140         struct io_context *ioc = cic->ioc;
2141
2142         list_del_init(&cic->queue_list);
2143
2144         /*
2145          * Make sure key == NULL is seen for dead queues
2146          */
2147         smp_wmb();
2148         cic->dead_key = (unsigned long) cic->key;
2149         cic->key = NULL;
2150
2151         if (ioc->ioc_data == cic)
2152                 rcu_assign_pointer(ioc->ioc_data, NULL);
2153
2154         if (cic->cfqq[BLK_RW_ASYNC]) {
2155                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2156                 cic->cfqq[BLK_RW_ASYNC] = NULL;
2157         }
2158
2159         if (cic->cfqq[BLK_RW_SYNC]) {
2160                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2161                 cic->cfqq[BLK_RW_SYNC] = NULL;
2162         }
2163 }
2164
2165 static void cfq_exit_single_io_context(struct io_context *ioc,
2166                                        struct cfq_io_context *cic)
2167 {
2168         struct cfq_data *cfqd = cic->key;
2169
2170         if (cfqd) {
2171                 struct request_queue *q = cfqd->queue;
2172                 unsigned long flags;
2173
2174                 spin_lock_irqsave(q->queue_lock, flags);
2175
2176                 /*
2177                  * Ensure we get a fresh copy of the ->key to prevent
2178                  * race between exiting task and queue
2179                  */
2180                 smp_read_barrier_depends();
2181                 if (cic->key)
2182                         __cfq_exit_single_io_context(cfqd, cic);
2183
2184                 spin_unlock_irqrestore(q->queue_lock, flags);
2185         }
2186 }
2187
2188 /*
2189  * The process that ioc belongs to has exited, we need to clean up
2190  * and put the internal structures we have that belongs to that process.
2191  */
2192 static void cfq_exit_io_context(struct io_context *ioc)
2193 {
2194         call_for_each_cic(ioc, cfq_exit_single_io_context);
2195 }
2196
2197 static struct cfq_io_context *
2198 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2199 {
2200         struct cfq_io_context *cic;
2201
2202         cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2203                                                         cfqd->queue->node);
2204         if (cic) {
2205                 cic->last_end_request = jiffies;
2206                 INIT_LIST_HEAD(&cic->queue_list);
2207                 INIT_HLIST_NODE(&cic->cic_list);
2208                 cic->dtor = cfq_free_io_context;
2209                 cic->exit = cfq_exit_io_context;
2210                 elv_ioc_count_inc(cfq_ioc_count);
2211         }
2212
2213         return cic;
2214 }
2215
2216 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2217 {
2218         struct task_struct *tsk = current;
2219         int ioprio_class;
2220
2221         if (!cfq_cfqq_prio_changed(cfqq))
2222                 return;
2223
2224         ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2225         switch (ioprio_class) {
2226         default:
2227                 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2228         case IOPRIO_CLASS_NONE:
2229                 /*
2230                  * no prio set, inherit CPU scheduling settings
2231                  */
2232                 cfqq->ioprio = task_nice_ioprio(tsk);
2233                 cfqq->ioprio_class = task_nice_ioclass(tsk);
2234                 break;
2235         case IOPRIO_CLASS_RT:
2236                 cfqq->ioprio = task_ioprio(ioc);
2237                 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2238                 break;
2239         case IOPRIO_CLASS_BE:
2240                 cfqq->ioprio = task_ioprio(ioc);
2241                 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2242                 break;
2243         case IOPRIO_CLASS_IDLE:
2244                 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2245                 cfqq->ioprio = 7;
2246                 cfq_clear_cfqq_idle_window(cfqq);
2247                 break;
2248         }
2249
2250         /*
2251          * keep track of original prio settings in case we have to temporarily
2252          * elevate the priority of this queue
2253          */
2254         cfqq->org_ioprio = cfqq->ioprio;
2255         cfqq->org_ioprio_class = cfqq->ioprio_class;
2256         cfq_clear_cfqq_prio_changed(cfqq);
2257 }
2258
2259 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2260 {
2261         struct cfq_data *cfqd = cic->key;
2262         struct cfq_queue *cfqq;
2263         unsigned long flags;
2264
2265         if (unlikely(!cfqd))
2266                 return;
2267
2268         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2269
2270         cfqq = cic->cfqq[BLK_RW_ASYNC];
2271         if (cfqq) {
2272                 struct cfq_queue *new_cfqq;
2273                 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2274                                                 GFP_ATOMIC);
2275                 if (new_cfqq) {
2276                         cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2277                         cfq_put_queue(cfqq);
2278                 }
2279         }
2280
2281         cfqq = cic->cfqq[BLK_RW_SYNC];
2282         if (cfqq)
2283                 cfq_mark_cfqq_prio_changed(cfqq);
2284
2285         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2286 }
2287
2288 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2289 {
2290         call_for_each_cic(ioc, changed_ioprio);
2291         ioc->ioprio_changed = 0;
2292 }
2293
2294 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2295                           pid_t pid, bool is_sync)
2296 {
2297         RB_CLEAR_NODE(&cfqq->rb_node);
2298         RB_CLEAR_NODE(&cfqq->p_node);
2299         INIT_LIST_HEAD(&cfqq->fifo);
2300
2301         atomic_set(&cfqq->ref, 0);
2302         cfqq->cfqd = cfqd;
2303
2304         cfq_mark_cfqq_prio_changed(cfqq);
2305
2306         if (is_sync) {
2307                 if (!cfq_class_idle(cfqq))
2308                         cfq_mark_cfqq_idle_window(cfqq);
2309                 cfq_mark_cfqq_sync(cfqq);
2310         }
2311         cfqq->pid = pid;
2312 }
2313
2314 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
2315 {
2316         cfqq->cfqg = cfqg;
2317 }
2318
2319 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
2320 {
2321         return &cfqd->root_group;
2322 }
2323
2324 static struct cfq_queue *
2325 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2326                      struct io_context *ioc, gfp_t gfp_mask)
2327 {
2328         struct cfq_queue *cfqq, *new_cfqq = NULL;
2329         struct cfq_io_context *cic;
2330         struct cfq_group *cfqg;
2331
2332 retry:
2333         cfqg = cfq_get_cfqg(cfqd, 1);
2334         cic = cfq_cic_lookup(cfqd, ioc);
2335         /* cic always exists here */
2336         cfqq = cic_to_cfqq(cic, is_sync);
2337
2338         /*
2339          * Always try a new alloc if we fell back to the OOM cfqq
2340          * originally, since it should just be a temporary situation.
2341          */
2342         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2343                 cfqq = NULL;
2344                 if (new_cfqq) {
2345                         cfqq = new_cfqq;
2346                         new_cfqq = NULL;
2347                 } else if (gfp_mask & __GFP_WAIT) {
2348                         spin_unlock_irq(cfqd->queue->queue_lock);
2349                         new_cfqq = kmem_cache_alloc_node(cfq_pool,
2350                                         gfp_mask | __GFP_ZERO,
2351                                         cfqd->queue->node);
2352                         spin_lock_irq(cfqd->queue->queue_lock);
2353                         if (new_cfqq)
2354                                 goto retry;
2355                 } else {
2356                         cfqq = kmem_cache_alloc_node(cfq_pool,
2357                                         gfp_mask | __GFP_ZERO,
2358                                         cfqd->queue->node);
2359                 }
2360
2361                 if (cfqq) {
2362                         cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2363                         cfq_init_prio_data(cfqq, ioc);
2364                         cfq_link_cfqq_cfqg(cfqq, cfqg);
2365                         cfq_log_cfqq(cfqd, cfqq, "alloced");
2366                 } else
2367                         cfqq = &cfqd->oom_cfqq;
2368         }
2369
2370         if (new_cfqq)
2371                 kmem_cache_free(cfq_pool, new_cfqq);
2372
2373         return cfqq;
2374 }
2375
2376 static struct cfq_queue **
2377 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2378 {
2379         switch (ioprio_class) {
2380         case IOPRIO_CLASS_RT:
2381                 return &cfqd->async_cfqq[0][ioprio];
2382         case IOPRIO_CLASS_BE:
2383                 return &cfqd->async_cfqq[1][ioprio];
2384         case IOPRIO_CLASS_IDLE:
2385                 return &cfqd->async_idle_cfqq;
2386         default:
2387                 BUG();
2388         }
2389 }
2390
2391 static struct cfq_queue *
2392 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2393               gfp_t gfp_mask)
2394 {
2395         const int ioprio = task_ioprio(ioc);
2396         const int ioprio_class = task_ioprio_class(ioc);
2397         struct cfq_queue **async_cfqq = NULL;
2398         struct cfq_queue *cfqq = NULL;
2399
2400         if (!is_sync) {
2401                 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2402                 cfqq = *async_cfqq;
2403         }
2404
2405         if (!cfqq)
2406                 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2407
2408         /*
2409          * pin the queue now that it's allocated, scheduler exit will prune it
2410          */
2411         if (!is_sync && !(*async_cfqq)) {
2412                 atomic_inc(&cfqq->ref);
2413                 *async_cfqq = cfqq;
2414         }
2415
2416         atomic_inc(&cfqq->ref);
2417         return cfqq;
2418 }
2419
2420 /*
2421  * We drop cfq io contexts lazily, so we may find a dead one.
2422  */
2423 static void
2424 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2425                   struct cfq_io_context *cic)
2426 {
2427         unsigned long flags;
2428
2429         WARN_ON(!list_empty(&cic->queue_list));
2430
2431         spin_lock_irqsave(&ioc->lock, flags);
2432
2433         BUG_ON(ioc->ioc_data == cic);
2434
2435         radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2436         hlist_del_rcu(&cic->cic_list);
2437         spin_unlock_irqrestore(&ioc->lock, flags);
2438
2439         cfq_cic_free(cic);
2440 }
2441
2442 static struct cfq_io_context *
2443 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2444 {
2445         struct cfq_io_context *cic;
2446         unsigned long flags;
2447         void *k;
2448
2449         if (unlikely(!ioc))
2450                 return NULL;
2451
2452         rcu_read_lock();
2453
2454         /*
2455          * we maintain a last-hit cache, to avoid browsing over the tree
2456          */
2457         cic = rcu_dereference(ioc->ioc_data);
2458         if (cic && cic->key == cfqd) {
2459                 rcu_read_unlock();
2460                 return cic;
2461         }
2462
2463         do {
2464                 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2465                 rcu_read_unlock();
2466                 if (!cic)
2467                         break;
2468                 /* ->key must be copied to avoid race with cfq_exit_queue() */
2469                 k = cic->key;
2470                 if (unlikely(!k)) {
2471                         cfq_drop_dead_cic(cfqd, ioc, cic);
2472                         rcu_read_lock();
2473                         continue;
2474                 }
2475
2476                 spin_lock_irqsave(&ioc->lock, flags);
2477                 rcu_assign_pointer(ioc->ioc_data, cic);
2478                 spin_unlock_irqrestore(&ioc->lock, flags);
2479                 break;
2480         } while (1);
2481
2482         return cic;
2483 }
2484
2485 /*
2486  * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2487  * the process specific cfq io context when entered from the block layer.
2488  * Also adds the cic to a per-cfqd list, used when this queue is removed.
2489  */
2490 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2491                         struct cfq_io_context *cic, gfp_t gfp_mask)
2492 {
2493         unsigned long flags;
2494         int ret;
2495
2496         ret = radix_tree_preload(gfp_mask);
2497         if (!ret) {
2498                 cic->ioc = ioc;
2499                 cic->key = cfqd;
2500
2501                 spin_lock_irqsave(&ioc->lock, flags);
2502                 ret = radix_tree_insert(&ioc->radix_root,
2503                                                 (unsigned long) cfqd, cic);
2504                 if (!ret)
2505                         hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2506                 spin_unlock_irqrestore(&ioc->lock, flags);
2507
2508                 radix_tree_preload_end();
2509
2510                 if (!ret) {
2511                         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2512                         list_add(&cic->queue_list, &cfqd->cic_list);
2513                         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2514                 }
2515         }
2516
2517         if (ret)
2518                 printk(KERN_ERR "cfq: cic link failed!\n");
2519
2520         return ret;
2521 }
2522
2523 /*
2524  * Setup general io context and cfq io context. There can be several cfq
2525  * io contexts per general io context, if this process is doing io to more
2526  * than one device managed by cfq.
2527  */
2528 static struct cfq_io_context *
2529 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2530 {
2531         struct io_context *ioc = NULL;
2532         struct cfq_io_context *cic;
2533
2534         might_sleep_if(gfp_mask & __GFP_WAIT);
2535
2536         ioc = get_io_context(gfp_mask, cfqd->queue->node);
2537         if (!ioc)
2538                 return NULL;
2539
2540         cic = cfq_cic_lookup(cfqd, ioc);
2541         if (cic)
2542                 goto out;
2543
2544         cic = cfq_alloc_io_context(cfqd, gfp_mask);
2545         if (cic == NULL)
2546                 goto err;
2547
2548         if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2549                 goto err_free;
2550
2551 out:
2552         smp_read_barrier_depends();
2553         if (unlikely(ioc->ioprio_changed))
2554                 cfq_ioc_set_ioprio(ioc);
2555
2556         return cic;
2557 err_free:
2558         cfq_cic_free(cic);
2559 err:
2560         put_io_context(ioc);
2561         return NULL;
2562 }
2563
2564 static void
2565 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
2566 {
2567         unsigned long elapsed = jiffies - cic->last_end_request;
2568         unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2569
2570         cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2571         cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2572         cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2573 }
2574
2575 static void
2576 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2577                        struct request *rq)
2578 {
2579         sector_t sdist;
2580         u64 total;
2581
2582         if (!cfqq->last_request_pos)
2583                 sdist = 0;
2584         else if (cfqq->last_request_pos < blk_rq_pos(rq))
2585                 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2586         else
2587                 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2588
2589         /*
2590          * Don't allow the seek distance to get too large from the
2591          * odd fragment, pagein, etc
2592          */
2593         if (cfqq->seek_samples <= 60) /* second&third seek */
2594                 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
2595         else
2596                 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
2597
2598         cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
2599         cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
2600         total = cfqq->seek_total + (cfqq->seek_samples/2);
2601         do_div(total, cfqq->seek_samples);
2602         cfqq->seek_mean = (sector_t)total;
2603
2604         /*
2605          * If this cfqq is shared between multiple processes, check to
2606          * make sure that those processes are still issuing I/Os within
2607          * the mean seek distance.  If not, it may be time to break the
2608          * queues apart again.
2609          */
2610         if (cfq_cfqq_coop(cfqq)) {
2611                 if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
2612                         cfqq->seeky_start = jiffies;
2613                 else if (!CFQQ_SEEKY(cfqq))
2614                         cfqq->seeky_start = 0;
2615         }
2616 }
2617
2618 /*
2619  * Disable idle window if the process thinks too long or seeks so much that
2620  * it doesn't matter
2621  */
2622 static void
2623 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2624                        struct cfq_io_context *cic)
2625 {
2626         int old_idle, enable_idle;
2627
2628         /*
2629          * Don't idle for async or idle io prio class
2630          */
2631         if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
2632                 return;
2633
2634         enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
2635
2636         if (cfqq->queued[0] + cfqq->queued[1] >= 4)
2637                 cfq_mark_cfqq_deep(cfqq);
2638
2639         if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
2640             (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
2641              && CFQQ_SEEKY(cfqq)))
2642                 enable_idle = 0;
2643         else if (sample_valid(cic->ttime_samples)) {
2644                 if (cic->ttime_mean > cfqd->cfq_slice_idle)
2645                         enable_idle = 0;
2646                 else
2647                         enable_idle = 1;
2648         }
2649
2650         if (old_idle != enable_idle) {
2651                 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
2652                 if (enable_idle)
2653                         cfq_mark_cfqq_idle_window(cfqq);
2654                 else
2655                         cfq_clear_cfqq_idle_window(cfqq);
2656         }
2657 }
2658
2659 /*
2660  * Check if new_cfqq should preempt the currently active queue. Return 0 for
2661  * no or if we aren't sure, a 1 will cause a preempt.
2662  */
2663 static bool
2664 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
2665                    struct request *rq)
2666 {
2667         struct cfq_queue *cfqq;
2668
2669         cfqq = cfqd->active_queue;
2670         if (!cfqq)
2671                 return false;
2672
2673         if (cfq_slice_used(cfqq))
2674                 return true;
2675
2676         if (cfq_class_idle(new_cfqq))
2677                 return false;
2678
2679         if (cfq_class_idle(cfqq))
2680                 return true;
2681
2682         /* Allow preemption only if we are idling on sync-noidle tree */
2683         if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
2684             cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
2685             new_cfqq->service_tree->count == 2 &&
2686             RB_EMPTY_ROOT(&cfqq->sort_list))
2687                 return true;
2688
2689         /*
2690          * if the new request is sync, but the currently running queue is
2691          * not, let the sync request have priority.
2692          */
2693         if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
2694                 return true;
2695
2696         /*
2697          * So both queues are sync. Let the new request get disk time if
2698          * it's a metadata request and the current queue is doing regular IO.
2699          */
2700         if (rq_is_meta(rq) && !cfqq->meta_pending)
2701                 return true;
2702
2703         /*
2704          * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2705          */
2706         if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2707                 return true;
2708
2709         if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2710                 return false;
2711
2712         /*
2713          * if this request is as-good as one we would expect from the
2714          * current cfqq, let it preempt
2715          */
2716         if (cfq_rq_close(cfqd, cfqq, rq))
2717                 return true;
2718
2719         return false;
2720 }
2721
2722 /*
2723  * cfqq preempts the active queue. if we allowed preempt with no slice left,
2724  * let it have half of its nominal slice.
2725  */
2726 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2727 {
2728         cfq_log_cfqq(cfqd, cfqq, "preempt");
2729         cfq_slice_expired(cfqd, 1);
2730
2731         /*
2732          * Put the new queue at the front of the of the current list,
2733          * so we know that it will be selected next.
2734          */
2735         BUG_ON(!cfq_cfqq_on_rr(cfqq));
2736
2737         cfq_service_tree_add(cfqd, cfqq, 1);
2738
2739         cfqq->slice_end = 0;
2740         cfq_mark_cfqq_slice_new(cfqq);
2741 }
2742
2743 /*
2744  * Called when a new fs request (rq) is added (to cfqq). Check if there's
2745  * something we should do about it
2746  */
2747 static void
2748 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2749                 struct request *rq)
2750 {
2751         struct cfq_io_context *cic = RQ_CIC(rq);
2752
2753         cfqd->rq_queued++;
2754         if (rq_is_meta(rq))
2755                 cfqq->meta_pending++;
2756
2757         cfq_update_io_thinktime(cfqd, cic);
2758         cfq_update_io_seektime(cfqd, cfqq, rq);
2759         cfq_update_idle_window(cfqd, cfqq, cic);
2760
2761         cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
2762
2763         if (cfqq == cfqd->active_queue) {
2764                 /*
2765                  * Remember that we saw a request from this process, but
2766                  * don't start queuing just yet. Otherwise we risk seeing lots
2767                  * of tiny requests, because we disrupt the normal plugging
2768                  * and merging. If the request is already larger than a single
2769                  * page, let it rip immediately. For that case we assume that
2770                  * merging is already done. Ditto for a busy system that
2771                  * has other work pending, don't risk delaying until the
2772                  * idle timer unplug to continue working.
2773                  */
2774                 if (cfq_cfqq_wait_request(cfqq)) {
2775                         if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2776                             cfqd->busy_queues > 1) {
2777                                 del_timer(&cfqd->idle_slice_timer);
2778                                 __blk_run_queue(cfqd->queue);
2779                         } else
2780                                 cfq_mark_cfqq_must_dispatch(cfqq);
2781                 }
2782         } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
2783                 /*
2784                  * not the active queue - expire current slice if it is
2785                  * idle and has expired it's mean thinktime or this new queue
2786                  * has some old slice time left and is of higher priority or
2787                  * this new queue is RT and the current one is BE
2788                  */
2789                 cfq_preempt_queue(cfqd, cfqq);
2790                 __blk_run_queue(cfqd->queue);
2791         }
2792 }
2793
2794 static void cfq_insert_request(struct request_queue *q, struct request *rq)
2795 {
2796         struct cfq_data *cfqd = q->elevator->elevator_data;
2797         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2798
2799         cfq_log_cfqq(cfqd, cfqq, "insert_request");
2800         cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
2801
2802         rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
2803         list_add_tail(&rq->queuelist, &cfqq->fifo);
2804         cfq_add_rq_rb(rq);
2805
2806         cfq_rq_enqueued(cfqd, cfqq, rq);
2807 }
2808
2809 /*
2810  * Update hw_tag based on peak queue depth over 50 samples under
2811  * sufficient load.
2812  */
2813 static void cfq_update_hw_tag(struct cfq_data *cfqd)
2814 {
2815         struct cfq_queue *cfqq = cfqd->active_queue;
2816
2817         if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
2818                 cfqd->hw_tag_est_depth = rq_in_driver(cfqd);
2819
2820         if (cfqd->hw_tag == 1)
2821                 return;
2822
2823         if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
2824             rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
2825                 return;
2826
2827         /*
2828          * If active queue hasn't enough requests and can idle, cfq might not
2829          * dispatch sufficient requests to hardware. Don't zero hw_tag in this
2830          * case
2831          */
2832         if (cfqq && cfq_cfqq_idle_window(cfqq) &&
2833             cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
2834             CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
2835                 return;
2836
2837         if (cfqd->hw_tag_samples++ < 50)
2838                 return;
2839
2840         if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
2841                 cfqd->hw_tag = 1;
2842         else
2843                 cfqd->hw_tag = 0;
2844 }
2845
2846 static void cfq_completed_request(struct request_queue *q, struct request *rq)
2847 {
2848         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2849         struct cfq_data *cfqd = cfqq->cfqd;
2850         const int sync = rq_is_sync(rq);
2851         unsigned long now;
2852
2853         now = jiffies;
2854         cfq_log_cfqq(cfqd, cfqq, "complete");
2855
2856         cfq_update_hw_tag(cfqd);
2857
2858         WARN_ON(!cfqd->rq_in_driver[sync]);
2859         WARN_ON(!cfqq->dispatched);
2860         cfqd->rq_in_driver[sync]--;
2861         cfqq->dispatched--;
2862
2863         if (cfq_cfqq_sync(cfqq))
2864                 cfqd->sync_flight--;
2865
2866         if (sync) {
2867                 RQ_CIC(rq)->last_end_request = now;
2868                 cfqd->last_end_sync_rq = now;
2869         }
2870
2871         /*
2872          * If this is the active queue, check if it needs to be expired,
2873          * or if we want to idle in case it has no pending requests.
2874          */
2875         if (cfqd->active_queue == cfqq) {
2876                 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2877
2878                 if (cfq_cfqq_slice_new(cfqq)) {
2879                         cfq_set_prio_slice(cfqd, cfqq);
2880                         cfq_clear_cfqq_slice_new(cfqq);
2881                 }
2882                 /*
2883                  * Idling is not enabled on:
2884                  * - expired queues
2885                  * - idle-priority queues
2886                  * - async queues
2887                  * - queues with still some requests queued
2888                  * - when there is a close cooperator
2889                  */
2890                 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
2891                         cfq_slice_expired(cfqd, 1);
2892                 else if (sync && cfqq_empty &&
2893                          !cfq_close_cooperator(cfqd, cfqq)) {
2894                         cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
2895                         /*
2896                          * Idling is enabled for SYNC_WORKLOAD.
2897                          * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
2898                          * only if we processed at least one !rq_noidle request
2899                          */
2900                         if (cfqd->serving_type == SYNC_WORKLOAD
2901                             || cfqd->noidle_tree_requires_idle)
2902                                 cfq_arm_slice_timer(cfqd);
2903                 }
2904         }
2905
2906         if (!rq_in_driver(cfqd))
2907                 cfq_schedule_dispatch(cfqd);
2908 }
2909
2910 /*
2911  * we temporarily boost lower priority queues if they are holding fs exclusive
2912  * resources. they are boosted to normal prio (CLASS_BE/4)
2913  */
2914 static void cfq_prio_boost(struct cfq_queue *cfqq)
2915 {
2916         if (has_fs_excl()) {
2917                 /*
2918                  * boost idle prio on transactions that would lock out other
2919                  * users of the filesystem
2920                  */
2921                 if (cfq_class_idle(cfqq))
2922                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
2923                 if (cfqq->ioprio > IOPRIO_NORM)
2924                         cfqq->ioprio = IOPRIO_NORM;
2925         } else {
2926                 /*
2927                  * unboost the queue (if needed)
2928                  */
2929                 cfqq->ioprio_class = cfqq->org_ioprio_class;
2930                 cfqq->ioprio = cfqq->org_ioprio;
2931         }
2932 }
2933
2934 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
2935 {
2936         if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
2937                 cfq_mark_cfqq_must_alloc_slice(cfqq);
2938                 return ELV_MQUEUE_MUST;
2939         }
2940
2941         return ELV_MQUEUE_MAY;
2942 }
2943
2944 static int cfq_may_queue(struct request_queue *q, int rw)
2945 {
2946         struct cfq_data *cfqd = q->elevator->elevator_data;
2947         struct task_struct *tsk = current;
2948         struct cfq_io_context *cic;
2949         struct cfq_queue *cfqq;
2950
2951         /*
2952          * don't force setup of a queue from here, as a call to may_queue
2953          * does not necessarily imply that a request actually will be queued.
2954          * so just lookup a possibly existing queue, or return 'may queue'
2955          * if that fails
2956          */
2957         cic = cfq_cic_lookup(cfqd, tsk->io_context);
2958         if (!cic)
2959                 return ELV_MQUEUE_MAY;
2960
2961         cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
2962         if (cfqq) {
2963                 cfq_init_prio_data(cfqq, cic->ioc);
2964                 cfq_prio_boost(cfqq);
2965
2966                 return __cfq_may_queue(cfqq);
2967         }
2968
2969         return ELV_MQUEUE_MAY;
2970 }
2971
2972 /*
2973  * queue lock held here
2974  */
2975 static void cfq_put_request(struct request *rq)
2976 {
2977         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2978
2979         if (cfqq) {
2980                 const int rw = rq_data_dir(rq);
2981
2982                 BUG_ON(!cfqq->allocated[rw]);
2983                 cfqq->allocated[rw]--;
2984
2985                 put_io_context(RQ_CIC(rq)->ioc);
2986
2987                 rq->elevator_private = NULL;
2988                 rq->elevator_private2 = NULL;
2989
2990                 cfq_put_queue(cfqq);
2991         }
2992 }
2993
2994 static struct cfq_queue *
2995 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
2996                 struct cfq_queue *cfqq)
2997 {
2998         cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
2999         cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3000         cfq_mark_cfqq_coop(cfqq->new_cfqq);
3001         cfq_put_queue(cfqq);
3002         return cic_to_cfqq(cic, 1);
3003 }
3004
3005 static int should_split_cfqq(struct cfq_queue *cfqq)
3006 {
3007         if (cfqq->seeky_start &&
3008             time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
3009                 return 1;
3010         return 0;
3011 }
3012
3013 /*
3014  * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3015  * was the last process referring to said cfqq.
3016  */
3017 static struct cfq_queue *
3018 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3019 {
3020         if (cfqq_process_refs(cfqq) == 1) {
3021                 cfqq->seeky_start = 0;
3022                 cfqq->pid = current->pid;
3023                 cfq_clear_cfqq_coop(cfqq);
3024                 return cfqq;
3025         }
3026
3027         cic_set_cfqq(cic, NULL, 1);
3028         cfq_put_queue(cfqq);
3029         return NULL;
3030 }
3031 /*
3032  * Allocate cfq data structures associated with this request.
3033  */
3034 static int
3035 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3036 {
3037         struct cfq_data *cfqd = q->elevator->elevator_data;
3038         struct cfq_io_context *cic;
3039         const int rw = rq_data_dir(rq);
3040         const bool is_sync = rq_is_sync(rq);
3041         struct cfq_queue *cfqq;
3042         unsigned long flags;
3043
3044         might_sleep_if(gfp_mask & __GFP_WAIT);
3045
3046         cic = cfq_get_io_context(cfqd, gfp_mask);
3047
3048         spin_lock_irqsave(q->queue_lock, flags);
3049
3050         if (!cic)
3051                 goto queue_fail;
3052
3053 new_queue:
3054         cfqq = cic_to_cfqq(cic, is_sync);
3055         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3056                 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3057                 cic_set_cfqq(cic, cfqq, is_sync);
3058         } else {
3059                 /*
3060                  * If the queue was seeky for too long, break it apart.
3061                  */
3062                 if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
3063                         cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3064                         cfqq = split_cfqq(cic, cfqq);
3065                         if (!cfqq)
3066                                 goto new_queue;
3067                 }
3068
3069                 /*
3070                  * Check to see if this queue is scheduled to merge with
3071                  * another, closely cooperating queue.  The merging of
3072                  * queues happens here as it must be done in process context.
3073                  * The reference on new_cfqq was taken in merge_cfqqs.
3074                  */
3075                 if (cfqq->new_cfqq)
3076                         cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3077         }
3078
3079         cfqq->allocated[rw]++;
3080         atomic_inc(&cfqq->ref);
3081
3082         spin_unlock_irqrestore(q->queue_lock, flags);
3083
3084         rq->elevator_private = cic;
3085         rq->elevator_private2 = cfqq;
3086         return 0;
3087
3088 queue_fail:
3089         if (cic)
3090                 put_io_context(cic->ioc);
3091
3092         cfq_schedule_dispatch(cfqd);
3093         spin_unlock_irqrestore(q->queue_lock, flags);
3094         cfq_log(cfqd, "set_request fail");
3095         return 1;
3096 }
3097
3098 static void cfq_kick_queue(struct work_struct *work)
3099 {
3100         struct cfq_data *cfqd =
3101                 container_of(work, struct cfq_data, unplug_work);
3102         struct request_queue *q = cfqd->queue;
3103
3104         spin_lock_irq(q->queue_lock);
3105         __blk_run_queue(cfqd->queue);
3106         spin_unlock_irq(q->queue_lock);
3107 }
3108
3109 /*
3110  * Timer running if the active_queue is currently idling inside its time slice
3111  */
3112 static void cfq_idle_slice_timer(unsigned long data)
3113 {
3114         struct cfq_data *cfqd = (struct cfq_data *) data;
3115         struct cfq_queue *cfqq;
3116         unsigned long flags;
3117         int timed_out = 1;
3118
3119         cfq_log(cfqd, "idle timer fired");
3120
3121         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3122
3123         cfqq = cfqd->active_queue;
3124         if (cfqq) {
3125                 timed_out = 0;
3126
3127                 /*
3128                  * We saw a request before the queue expired, let it through
3129                  */
3130                 if (cfq_cfqq_must_dispatch(cfqq))
3131                         goto out_kick;
3132
3133                 /*
3134                  * expired
3135                  */
3136                 if (cfq_slice_used(cfqq))
3137                         goto expire;
3138
3139                 /*
3140                  * only expire and reinvoke request handler, if there are
3141                  * other queues with pending requests
3142                  */
3143                 if (!cfqd->busy_queues)
3144                         goto out_cont;
3145
3146                 /*
3147                  * not expired and it has a request pending, let it dispatch
3148                  */
3149                 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3150                         goto out_kick;
3151
3152                 /*
3153                  * Queue depth flag is reset only when the idle didn't succeed
3154                  */
3155                 cfq_clear_cfqq_deep(cfqq);
3156         }
3157 expire:
3158         cfq_slice_expired(cfqd, timed_out);
3159 out_kick:
3160         cfq_schedule_dispatch(cfqd);
3161 out_cont:
3162         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3163 }
3164
3165 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3166 {
3167         del_timer_sync(&cfqd->idle_slice_timer);
3168         cancel_work_sync(&cfqd->unplug_work);
3169 }
3170
3171 static void cfq_put_async_queues(struct cfq_data *cfqd)
3172 {
3173         int i;
3174
3175         for (i = 0; i < IOPRIO_BE_NR; i++) {
3176                 if (cfqd->async_cfqq[0][i])
3177                         cfq_put_queue(cfqd->async_cfqq[0][i]);
3178                 if (cfqd->async_cfqq[1][i])
3179                         cfq_put_queue(cfqd->async_cfqq[1][i]);
3180         }
3181
3182         if (cfqd->async_idle_cfqq)
3183                 cfq_put_queue(cfqd->async_idle_cfqq);
3184 }
3185
3186 static void cfq_exit_queue(struct elevator_queue *e)
3187 {
3188         struct cfq_data *cfqd = e->elevator_data;
3189         struct request_queue *q = cfqd->queue;
3190
3191         cfq_shutdown_timer_wq(cfqd);
3192
3193         spin_lock_irq(q->queue_lock);
3194
3195         if (cfqd->active_queue)
3196                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3197
3198         while (!list_empty(&cfqd->cic_list)) {
3199                 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3200                                                         struct cfq_io_context,
3201                                                         queue_list);
3202
3203                 __cfq_exit_single_io_context(cfqd, cic);
3204         }
3205
3206         cfq_put_async_queues(cfqd);
3207
3208         spin_unlock_irq(q->queue_lock);
3209
3210         cfq_shutdown_timer_wq(cfqd);
3211
3212         kfree(cfqd);
3213 }
3214
3215 static void *cfq_init_queue(struct request_queue *q)
3216 {
3217         struct cfq_data *cfqd;
3218         int i, j;
3219         struct cfq_group *cfqg;
3220         struct cfq_rb_root *st;
3221
3222         cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3223         if (!cfqd)
3224                 return NULL;
3225
3226         /* Init root service tree */
3227         cfqd->grp_service_tree = CFQ_RB_ROOT;
3228
3229         /* Init root group */
3230         cfqg = &cfqd->root_group;
3231         for_each_cfqg_st(cfqg, i, j, st)
3232                 *st = CFQ_RB_ROOT;
3233         RB_CLEAR_NODE(&cfqg->rb_node);
3234
3235         /* Give preference to root group over other groups */
3236         cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3237
3238         /*
3239          * Not strictly needed (since RB_ROOT just clears the node and we
3240          * zeroed cfqd on alloc), but better be safe in case someone decides
3241          * to add magic to the rb code
3242          */
3243         for (i = 0; i < CFQ_PRIO_LISTS; i++)
3244                 cfqd->prio_trees[i] = RB_ROOT;
3245
3246         /*
3247          * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3248          * Grab a permanent reference to it, so that the normal code flow
3249          * will not attempt to free it.
3250          */
3251         cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3252         atomic_inc(&cfqd->oom_cfqq.ref);
3253         cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3254
3255         INIT_LIST_HEAD(&cfqd->cic_list);
3256
3257         cfqd->queue = q;
3258
3259         init_timer(&cfqd->idle_slice_timer);
3260         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3261         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3262
3263         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3264
3265         cfqd->cfq_quantum = cfq_quantum;
3266         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3267         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3268         cfqd->cfq_back_max = cfq_back_max;
3269         cfqd->cfq_back_penalty = cfq_back_penalty;
3270         cfqd->cfq_slice[0] = cfq_slice_async;
3271         cfqd->cfq_slice[1] = cfq_slice_sync;
3272         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3273         cfqd->cfq_slice_idle = cfq_slice_idle;
3274         cfqd->cfq_latency = 1;
3275         cfqd->hw_tag = -1;
3276         cfqd->last_end_sync_rq = jiffies;
3277         return cfqd;
3278 }
3279
3280 static void cfq_slab_kill(void)
3281 {
3282         /*
3283          * Caller already ensured that pending RCU callbacks are completed,
3284          * so we should have no busy allocations at this point.
3285          */
3286         if (cfq_pool)
3287                 kmem_cache_destroy(cfq_pool);
3288         if (cfq_ioc_pool)
3289                 kmem_cache_destroy(cfq_ioc_pool);
3290 }
3291
3292 static int __init cfq_slab_setup(void)
3293 {
3294         cfq_pool = KMEM_CACHE(cfq_queue, 0);
3295         if (!cfq_pool)
3296                 goto fail;
3297
3298         cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3299         if (!cfq_ioc_pool)
3300                 goto fail;
3301
3302         return 0;
3303 fail:
3304         cfq_slab_kill();
3305         return -ENOMEM;
3306 }
3307
3308 /*
3309  * sysfs parts below -->
3310  */
3311 static ssize_t
3312 cfq_var_show(unsigned int var, char *page)
3313 {
3314         return sprintf(page, "%d\n", var);
3315 }
3316
3317 static ssize_t
3318 cfq_var_store(unsigned int *var, const char *page, size_t count)
3319 {
3320         char *p = (char *) page;
3321
3322         *var = simple_strtoul(p, &p, 10);
3323         return count;
3324 }
3325
3326 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
3327 static ssize_t __FUNC(struct elevator_queue *e, char *page)             \
3328 {                                                                       \
3329         struct cfq_data *cfqd = e->elevator_data;                       \
3330         unsigned int __data = __VAR;                                    \
3331         if (__CONV)                                                     \
3332                 __data = jiffies_to_msecs(__data);                      \
3333         return cfq_var_show(__data, (page));                            \
3334 }
3335 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3336 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3337 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3338 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3339 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3340 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3341 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3342 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3343 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3344 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3345 #undef SHOW_FUNCTION
3346
3347 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
3348 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3349 {                                                                       \
3350         struct cfq_data *cfqd = e->elevator_data;                       \
3351         unsigned int __data;                                            \
3352         int ret = cfq_var_store(&__data, (page), count);                \
3353         if (__data < (MIN))                                             \
3354                 __data = (MIN);                                         \
3355         else if (__data > (MAX))                                        \
3356                 __data = (MAX);                                         \
3357         if (__CONV)                                                     \
3358                 *(__PTR) = msecs_to_jiffies(__data);                    \
3359         else                                                            \
3360                 *(__PTR) = __data;                                      \
3361         return ret;                                                     \
3362 }
3363 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3364 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3365                 UINT_MAX, 1);
3366 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3367                 UINT_MAX, 1);
3368 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3369 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3370                 UINT_MAX, 0);
3371 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3372 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3373 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3374 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3375                 UINT_MAX, 0);
3376 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3377 #undef STORE_FUNCTION
3378
3379 #define CFQ_ATTR(name) \
3380         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3381
3382 static struct elv_fs_entry cfq_attrs[] = {
3383         CFQ_ATTR(quantum),
3384         CFQ_ATTR(fifo_expire_sync),
3385         CFQ_ATTR(fifo_expire_async),
3386         CFQ_ATTR(back_seek_max),
3387         CFQ_ATTR(back_seek_penalty),
3388         CFQ_ATTR(slice_sync),
3389         CFQ_ATTR(slice_async),
3390         CFQ_ATTR(slice_async_rq),
3391         CFQ_ATTR(slice_idle),
3392         CFQ_ATTR(low_latency),
3393         __ATTR_NULL
3394 };
3395
3396 static struct elevator_type iosched_cfq = {
3397         .ops = {
3398                 .elevator_merge_fn =            cfq_merge,
3399                 .elevator_merged_fn =           cfq_merged_request,
3400                 .elevator_merge_req_fn =        cfq_merged_requests,
3401                 .elevator_allow_merge_fn =      cfq_allow_merge,
3402                 .elevator_dispatch_fn =         cfq_dispatch_requests,
3403                 .elevator_add_req_fn =          cfq_insert_request,
3404                 .elevator_activate_req_fn =     cfq_activate_request,
3405                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
3406                 .elevator_queue_empty_fn =      cfq_queue_empty,
3407                 .elevator_completed_req_fn =    cfq_completed_request,
3408                 .elevator_former_req_fn =       elv_rb_former_request,
3409                 .elevator_latter_req_fn =       elv_rb_latter_request,
3410                 .elevator_set_req_fn =          cfq_set_request,
3411                 .elevator_put_req_fn =          cfq_put_request,
3412                 .elevator_may_queue_fn =        cfq_may_queue,
3413                 .elevator_init_fn =             cfq_init_queue,
3414                 .elevator_exit_fn =             cfq_exit_queue,
3415                 .trim =                         cfq_free_io_context,
3416         },
3417         .elevator_attrs =       cfq_attrs,
3418         .elevator_name =        "cfq",
3419         .elevator_owner =       THIS_MODULE,
3420 };
3421
3422 static int __init cfq_init(void)
3423 {
3424         /*
3425          * could be 0 on HZ < 1000 setups
3426          */
3427         if (!cfq_slice_async)
3428                 cfq_slice_async = 1;
3429         if (!cfq_slice_idle)
3430                 cfq_slice_idle = 1;
3431
3432         if (cfq_slab_setup())
3433                 return -ENOMEM;
3434
3435         elv_register(&iosched_cfq);
3436
3437         return 0;
3438 }
3439
3440 static void __exit cfq_exit(void)
3441 {
3442         DECLARE_COMPLETION_ONSTACK(all_gone);
3443         elv_unregister(&iosched_cfq);
3444         ioc_gone = &all_gone;
3445         /* ioc_gone's update must be visible before reading ioc_count */
3446         smp_wmb();
3447
3448         /*
3449          * this also protects us from entering cfq_slab_kill() with
3450          * pending RCU callbacks
3451          */
3452         if (elv_ioc_count_read(cfq_ioc_count))
3453                 wait_for_completion(&all_gone);
3454         cfq_slab_kill();
3455 }
3456
3457 module_init(cfq_init);
3458 module_exit(cfq_exit);
3459
3460 MODULE_AUTHOR("Jens Axboe");
3461 MODULE_LICENSE("GPL");
3462 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");