cfq: calculate the seek_mean per cfq_queue not per cfq_io_context
[safe/jmp/linux-2.6] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/rbtree.h>
13 #include <linux/ioprio.h>
14 #include <linux/blktrace_api.h>
15
16 /*
17  * tunables
18  */
19 /* max queue in one round of service */
20 static const int cfq_quantum = 4;
21 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
22 /* maximum backwards seek, in KiB */
23 static const int cfq_back_max = 16 * 1024;
24 /* penalty of a backwards seek */
25 static const int cfq_back_penalty = 2;
26 static const int cfq_slice_sync = HZ / 10;
27 static int cfq_slice_async = HZ / 25;
28 static const int cfq_slice_async_rq = 2;
29 static int cfq_slice_idle = HZ / 125;
30
31 /*
32  * offset from end of service tree
33  */
34 #define CFQ_IDLE_DELAY          (HZ / 5)
35
36 /*
37  * below this threshold, we consider thinktime immediate
38  */
39 #define CFQ_MIN_TT              (2)
40
41 #define CFQ_SLICE_SCALE         (5)
42 #define CFQ_HW_QUEUE_MIN        (5)
43
44 #define RQ_CIC(rq)              \
45         ((struct cfq_io_context *) (rq)->elevator_private)
46 #define RQ_CFQQ(rq)             (struct cfq_queue *) ((rq)->elevator_private2)
47
48 static struct kmem_cache *cfq_pool;
49 static struct kmem_cache *cfq_ioc_pool;
50
51 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
52 static struct completion *ioc_gone;
53 static DEFINE_SPINLOCK(ioc_gone_lock);
54
55 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
56 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
57 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
58
59 #define sample_valid(samples)   ((samples) > 80)
60
61 /*
62  * Most of our rbtree usage is for sorting with min extraction, so
63  * if we cache the leftmost node we don't have to walk down the tree
64  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
65  * move this into the elevator for the rq sorting as well.
66  */
67 struct cfq_rb_root {
68         struct rb_root rb;
69         struct rb_node *left;
70 };
71 #define CFQ_RB_ROOT     (struct cfq_rb_root) { RB_ROOT, NULL, }
72
73 /*
74  * Per process-grouping structure
75  */
76 struct cfq_queue {
77         /* reference count */
78         atomic_t ref;
79         /* various state flags, see below */
80         unsigned int flags;
81         /* parent cfq_data */
82         struct cfq_data *cfqd;
83         /* service_tree member */
84         struct rb_node rb_node;
85         /* service_tree key */
86         unsigned long rb_key;
87         /* prio tree member */
88         struct rb_node p_node;
89         /* prio tree root we belong to, if any */
90         struct rb_root *p_root;
91         /* sorted list of pending requests */
92         struct rb_root sort_list;
93         /* if fifo isn't expired, next request to serve */
94         struct request *next_rq;
95         /* requests queued in sort_list */
96         int queued[2];
97         /* currently allocated requests */
98         int allocated[2];
99         /* fifo list of requests in sort_list */
100         struct list_head fifo;
101
102         unsigned long slice_end;
103         long slice_resid;
104         unsigned int slice_dispatch;
105
106         /* pending metadata requests */
107         int meta_pending;
108         /* number of requests that are on the dispatch list or inside driver */
109         int dispatched;
110
111         /* io prio of this group */
112         unsigned short ioprio, org_ioprio;
113         unsigned short ioprio_class, org_ioprio_class;
114
115         unsigned int seek_samples;
116         u64 seek_total;
117         sector_t seek_mean;
118         sector_t last_request_pos;
119
120         pid_t pid;
121 };
122
123 /*
124  * Per block device queue structure
125  */
126 struct cfq_data {
127         struct request_queue *queue;
128
129         /*
130          * rr list of queues with requests and the count of them
131          */
132         struct cfq_rb_root service_tree;
133
134         /*
135          * Each priority tree is sorted by next_request position.  These
136          * trees are used when determining if two or more queues are
137          * interleaving requests (see cfq_close_cooperator).
138          */
139         struct rb_root prio_trees[CFQ_PRIO_LISTS];
140
141         unsigned int busy_queues;
142
143         int rq_in_driver[2];
144         int sync_flight;
145
146         /*
147          * queue-depth detection
148          */
149         int rq_queued;
150         int hw_tag;
151         int hw_tag_samples;
152         int rq_in_driver_peak;
153
154         /*
155          * idle window management
156          */
157         struct timer_list idle_slice_timer;
158         struct work_struct unplug_work;
159
160         struct cfq_queue *active_queue;
161         struct cfq_io_context *active_cic;
162
163         /*
164          * async queue for each priority case
165          */
166         struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
167         struct cfq_queue *async_idle_cfqq;
168
169         sector_t last_position;
170
171         /*
172          * tunables, see top of file
173          */
174         unsigned int cfq_quantum;
175         unsigned int cfq_fifo_expire[2];
176         unsigned int cfq_back_penalty;
177         unsigned int cfq_back_max;
178         unsigned int cfq_slice[2];
179         unsigned int cfq_slice_async_rq;
180         unsigned int cfq_slice_idle;
181         unsigned int cfq_latency;
182
183         struct list_head cic_list;
184
185         /*
186          * Fallback dummy cfqq for extreme OOM conditions
187          */
188         struct cfq_queue oom_cfqq;
189
190         unsigned long last_end_sync_rq;
191 };
192
193 enum cfqq_state_flags {
194         CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
195         CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
196         CFQ_CFQQ_FLAG_must_dispatch,    /* must be allowed a dispatch */
197         CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
198         CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
199         CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
200         CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
201         CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
202         CFQ_CFQQ_FLAG_sync,             /* synchronous queue */
203         CFQ_CFQQ_FLAG_coop,             /* has done a coop jump of the queue */
204 };
205
206 #define CFQ_CFQQ_FNS(name)                                              \
207 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
208 {                                                                       \
209         (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);                   \
210 }                                                                       \
211 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
212 {                                                                       \
213         (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                  \
214 }                                                                       \
215 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
216 {                                                                       \
217         return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;      \
218 }
219
220 CFQ_CFQQ_FNS(on_rr);
221 CFQ_CFQQ_FNS(wait_request);
222 CFQ_CFQQ_FNS(must_dispatch);
223 CFQ_CFQQ_FNS(must_alloc_slice);
224 CFQ_CFQQ_FNS(fifo_expire);
225 CFQ_CFQQ_FNS(idle_window);
226 CFQ_CFQQ_FNS(prio_changed);
227 CFQ_CFQQ_FNS(slice_new);
228 CFQ_CFQQ_FNS(sync);
229 CFQ_CFQQ_FNS(coop);
230 #undef CFQ_CFQQ_FNS
231
232 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
233         blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
234 #define cfq_log(cfqd, fmt, args...)     \
235         blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
236
237 static void cfq_dispatch_insert(struct request_queue *, struct request *);
238 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
239                                        struct io_context *, gfp_t);
240 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
241                                                 struct io_context *);
242
243 static inline int rq_in_driver(struct cfq_data *cfqd)
244 {
245         return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
246 }
247
248 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
249                                             bool is_sync)
250 {
251         return cic->cfqq[is_sync];
252 }
253
254 static inline void cic_set_cfqq(struct cfq_io_context *cic,
255                                 struct cfq_queue *cfqq, bool is_sync)
256 {
257         cic->cfqq[is_sync] = cfqq;
258 }
259
260 /*
261  * We regard a request as SYNC, if it's either a read or has the SYNC bit
262  * set (in which case it could also be direct WRITE).
263  */
264 static inline bool cfq_bio_sync(struct bio *bio)
265 {
266         return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
267 }
268
269 /*
270  * scheduler run of queue, if there are requests pending and no one in the
271  * driver that will restart queueing
272  */
273 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
274 {
275         if (cfqd->busy_queues) {
276                 cfq_log(cfqd, "schedule dispatch");
277                 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
278         }
279 }
280
281 static int cfq_queue_empty(struct request_queue *q)
282 {
283         struct cfq_data *cfqd = q->elevator->elevator_data;
284
285         return !cfqd->busy_queues;
286 }
287
288 /*
289  * Scale schedule slice based on io priority. Use the sync time slice only
290  * if a queue is marked sync and has sync io queued. A sync queue with async
291  * io only, should not get full sync slice length.
292  */
293 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
294                                  unsigned short prio)
295 {
296         const int base_slice = cfqd->cfq_slice[sync];
297
298         WARN_ON(prio >= IOPRIO_BE_NR);
299
300         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
301 }
302
303 static inline int
304 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
305 {
306         return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
307 }
308
309 static inline void
310 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
311 {
312         cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
313         cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
314 }
315
316 /*
317  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
318  * isn't valid until the first request from the dispatch is activated
319  * and the slice time set.
320  */
321 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
322 {
323         if (cfq_cfqq_slice_new(cfqq))
324                 return 0;
325         if (time_before(jiffies, cfqq->slice_end))
326                 return 0;
327
328         return 1;
329 }
330
331 /*
332  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
333  * We choose the request that is closest to the head right now. Distance
334  * behind the head is penalized and only allowed to a certain extent.
335  */
336 static struct request *
337 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
338 {
339         sector_t last, s1, s2, d1 = 0, d2 = 0;
340         unsigned long back_max;
341 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
342 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
343         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
344
345         if (rq1 == NULL || rq1 == rq2)
346                 return rq2;
347         if (rq2 == NULL)
348                 return rq1;
349
350         if (rq_is_sync(rq1) && !rq_is_sync(rq2))
351                 return rq1;
352         else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
353                 return rq2;
354         if (rq_is_meta(rq1) && !rq_is_meta(rq2))
355                 return rq1;
356         else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
357                 return rq2;
358
359         s1 = blk_rq_pos(rq1);
360         s2 = blk_rq_pos(rq2);
361
362         last = cfqd->last_position;
363
364         /*
365          * by definition, 1KiB is 2 sectors
366          */
367         back_max = cfqd->cfq_back_max * 2;
368
369         /*
370          * Strict one way elevator _except_ in the case where we allow
371          * short backward seeks which are biased as twice the cost of a
372          * similar forward seek.
373          */
374         if (s1 >= last)
375                 d1 = s1 - last;
376         else if (s1 + back_max >= last)
377                 d1 = (last - s1) * cfqd->cfq_back_penalty;
378         else
379                 wrap |= CFQ_RQ1_WRAP;
380
381         if (s2 >= last)
382                 d2 = s2 - last;
383         else if (s2 + back_max >= last)
384                 d2 = (last - s2) * cfqd->cfq_back_penalty;
385         else
386                 wrap |= CFQ_RQ2_WRAP;
387
388         /* Found required data */
389
390         /*
391          * By doing switch() on the bit mask "wrap" we avoid having to
392          * check two variables for all permutations: --> faster!
393          */
394         switch (wrap) {
395         case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
396                 if (d1 < d2)
397                         return rq1;
398                 else if (d2 < d1)
399                         return rq2;
400                 else {
401                         if (s1 >= s2)
402                                 return rq1;
403                         else
404                                 return rq2;
405                 }
406
407         case CFQ_RQ2_WRAP:
408                 return rq1;
409         case CFQ_RQ1_WRAP:
410                 return rq2;
411         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
412         default:
413                 /*
414                  * Since both rqs are wrapped,
415                  * start with the one that's further behind head
416                  * (--> only *one* back seek required),
417                  * since back seek takes more time than forward.
418                  */
419                 if (s1 <= s2)
420                         return rq1;
421                 else
422                         return rq2;
423         }
424 }
425
426 /*
427  * The below is leftmost cache rbtree addon
428  */
429 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
430 {
431         if (!root->left)
432                 root->left = rb_first(&root->rb);
433
434         if (root->left)
435                 return rb_entry(root->left, struct cfq_queue, rb_node);
436
437         return NULL;
438 }
439
440 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
441 {
442         rb_erase(n, root);
443         RB_CLEAR_NODE(n);
444 }
445
446 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
447 {
448         if (root->left == n)
449                 root->left = NULL;
450         rb_erase_init(n, &root->rb);
451 }
452
453 /*
454  * would be nice to take fifo expire time into account as well
455  */
456 static struct request *
457 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
458                   struct request *last)
459 {
460         struct rb_node *rbnext = rb_next(&last->rb_node);
461         struct rb_node *rbprev = rb_prev(&last->rb_node);
462         struct request *next = NULL, *prev = NULL;
463
464         BUG_ON(RB_EMPTY_NODE(&last->rb_node));
465
466         if (rbprev)
467                 prev = rb_entry_rq(rbprev);
468
469         if (rbnext)
470                 next = rb_entry_rq(rbnext);
471         else {
472                 rbnext = rb_first(&cfqq->sort_list);
473                 if (rbnext && rbnext != &last->rb_node)
474                         next = rb_entry_rq(rbnext);
475         }
476
477         return cfq_choose_req(cfqd, next, prev);
478 }
479
480 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
481                                       struct cfq_queue *cfqq)
482 {
483         /*
484          * just an approximation, should be ok.
485          */
486         return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
487                        cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
488 }
489
490 /*
491  * The cfqd->service_tree holds all pending cfq_queue's that have
492  * requests waiting to be processed. It is sorted in the order that
493  * we will service the queues.
494  */
495 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
496                                  bool add_front)
497 {
498         struct rb_node **p, *parent;
499         struct cfq_queue *__cfqq;
500         unsigned long rb_key;
501         int left;
502
503         if (cfq_class_idle(cfqq)) {
504                 rb_key = CFQ_IDLE_DELAY;
505                 parent = rb_last(&cfqd->service_tree.rb);
506                 if (parent && parent != &cfqq->rb_node) {
507                         __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
508                         rb_key += __cfqq->rb_key;
509                 } else
510                         rb_key += jiffies;
511         } else if (!add_front) {
512                 /*
513                  * Get our rb key offset. Subtract any residual slice
514                  * value carried from last service. A negative resid
515                  * count indicates slice overrun, and this should position
516                  * the next service time further away in the tree.
517                  */
518                 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
519                 rb_key -= cfqq->slice_resid;
520                 cfqq->slice_resid = 0;
521         } else {
522                 rb_key = -HZ;
523                 __cfqq = cfq_rb_first(&cfqd->service_tree);
524                 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
525         }
526
527         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
528                 /*
529                  * same position, nothing more to do
530                  */
531                 if (rb_key == cfqq->rb_key)
532                         return;
533
534                 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
535         }
536
537         left = 1;
538         parent = NULL;
539         p = &cfqd->service_tree.rb.rb_node;
540         while (*p) {
541                 struct rb_node **n;
542
543                 parent = *p;
544                 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
545
546                 /*
547                  * sort RT queues first, we always want to give
548                  * preference to them. IDLE queues goes to the back.
549                  * after that, sort on the next service time.
550                  */
551                 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
552                         n = &(*p)->rb_left;
553                 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
554                         n = &(*p)->rb_right;
555                 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
556                         n = &(*p)->rb_left;
557                 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
558                         n = &(*p)->rb_right;
559                 else if (time_before(rb_key, __cfqq->rb_key))
560                         n = &(*p)->rb_left;
561                 else
562                         n = &(*p)->rb_right;
563
564                 if (n == &(*p)->rb_right)
565                         left = 0;
566
567                 p = n;
568         }
569
570         if (left)
571                 cfqd->service_tree.left = &cfqq->rb_node;
572
573         cfqq->rb_key = rb_key;
574         rb_link_node(&cfqq->rb_node, parent, p);
575         rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
576 }
577
578 static struct cfq_queue *
579 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
580                      sector_t sector, struct rb_node **ret_parent,
581                      struct rb_node ***rb_link)
582 {
583         struct rb_node **p, *parent;
584         struct cfq_queue *cfqq = NULL;
585
586         parent = NULL;
587         p = &root->rb_node;
588         while (*p) {
589                 struct rb_node **n;
590
591                 parent = *p;
592                 cfqq = rb_entry(parent, struct cfq_queue, p_node);
593
594                 /*
595                  * Sort strictly based on sector.  Smallest to the left,
596                  * largest to the right.
597                  */
598                 if (sector > blk_rq_pos(cfqq->next_rq))
599                         n = &(*p)->rb_right;
600                 else if (sector < blk_rq_pos(cfqq->next_rq))
601                         n = &(*p)->rb_left;
602                 else
603                         break;
604                 p = n;
605                 cfqq = NULL;
606         }
607
608         *ret_parent = parent;
609         if (rb_link)
610                 *rb_link = p;
611         return cfqq;
612 }
613
614 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
615 {
616         struct rb_node **p, *parent;
617         struct cfq_queue *__cfqq;
618
619         if (cfqq->p_root) {
620                 rb_erase(&cfqq->p_node, cfqq->p_root);
621                 cfqq->p_root = NULL;
622         }
623
624         if (cfq_class_idle(cfqq))
625                 return;
626         if (!cfqq->next_rq)
627                 return;
628
629         cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
630         __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
631                                       blk_rq_pos(cfqq->next_rq), &parent, &p);
632         if (!__cfqq) {
633                 rb_link_node(&cfqq->p_node, parent, p);
634                 rb_insert_color(&cfqq->p_node, cfqq->p_root);
635         } else
636                 cfqq->p_root = NULL;
637 }
638
639 /*
640  * Update cfqq's position in the service tree.
641  */
642 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
643 {
644         /*
645          * Resorting requires the cfqq to be on the RR list already.
646          */
647         if (cfq_cfqq_on_rr(cfqq)) {
648                 cfq_service_tree_add(cfqd, cfqq, 0);
649                 cfq_prio_tree_add(cfqd, cfqq);
650         }
651 }
652
653 /*
654  * add to busy list of queues for service, trying to be fair in ordering
655  * the pending list according to last request service
656  */
657 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
658 {
659         cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
660         BUG_ON(cfq_cfqq_on_rr(cfqq));
661         cfq_mark_cfqq_on_rr(cfqq);
662         cfqd->busy_queues++;
663
664         cfq_resort_rr_list(cfqd, cfqq);
665 }
666
667 /*
668  * Called when the cfqq no longer has requests pending, remove it from
669  * the service tree.
670  */
671 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
672 {
673         cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
674         BUG_ON(!cfq_cfqq_on_rr(cfqq));
675         cfq_clear_cfqq_on_rr(cfqq);
676
677         if (!RB_EMPTY_NODE(&cfqq->rb_node))
678                 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
679         if (cfqq->p_root) {
680                 rb_erase(&cfqq->p_node, cfqq->p_root);
681                 cfqq->p_root = NULL;
682         }
683
684         BUG_ON(!cfqd->busy_queues);
685         cfqd->busy_queues--;
686 }
687
688 /*
689  * rb tree support functions
690  */
691 static void cfq_del_rq_rb(struct request *rq)
692 {
693         struct cfq_queue *cfqq = RQ_CFQQ(rq);
694         struct cfq_data *cfqd = cfqq->cfqd;
695         const int sync = rq_is_sync(rq);
696
697         BUG_ON(!cfqq->queued[sync]);
698         cfqq->queued[sync]--;
699
700         elv_rb_del(&cfqq->sort_list, rq);
701
702         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
703                 cfq_del_cfqq_rr(cfqd, cfqq);
704 }
705
706 static void cfq_add_rq_rb(struct request *rq)
707 {
708         struct cfq_queue *cfqq = RQ_CFQQ(rq);
709         struct cfq_data *cfqd = cfqq->cfqd;
710         struct request *__alias, *prev;
711
712         cfqq->queued[rq_is_sync(rq)]++;
713
714         /*
715          * looks a little odd, but the first insert might return an alias.
716          * if that happens, put the alias on the dispatch list
717          */
718         while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
719                 cfq_dispatch_insert(cfqd->queue, __alias);
720
721         if (!cfq_cfqq_on_rr(cfqq))
722                 cfq_add_cfqq_rr(cfqd, cfqq);
723
724         /*
725          * check if this request is a better next-serve candidate
726          */
727         prev = cfqq->next_rq;
728         cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
729
730         /*
731          * adjust priority tree position, if ->next_rq changes
732          */
733         if (prev != cfqq->next_rq)
734                 cfq_prio_tree_add(cfqd, cfqq);
735
736         BUG_ON(!cfqq->next_rq);
737 }
738
739 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
740 {
741         elv_rb_del(&cfqq->sort_list, rq);
742         cfqq->queued[rq_is_sync(rq)]--;
743         cfq_add_rq_rb(rq);
744 }
745
746 static struct request *
747 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
748 {
749         struct task_struct *tsk = current;
750         struct cfq_io_context *cic;
751         struct cfq_queue *cfqq;
752
753         cic = cfq_cic_lookup(cfqd, tsk->io_context);
754         if (!cic)
755                 return NULL;
756
757         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
758         if (cfqq) {
759                 sector_t sector = bio->bi_sector + bio_sectors(bio);
760
761                 return elv_rb_find(&cfqq->sort_list, sector);
762         }
763
764         return NULL;
765 }
766
767 static void cfq_activate_request(struct request_queue *q, struct request *rq)
768 {
769         struct cfq_data *cfqd = q->elevator->elevator_data;
770
771         cfqd->rq_in_driver[rq_is_sync(rq)]++;
772         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
773                                                 rq_in_driver(cfqd));
774
775         cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
776 }
777
778 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
779 {
780         struct cfq_data *cfqd = q->elevator->elevator_data;
781         const int sync = rq_is_sync(rq);
782
783         WARN_ON(!cfqd->rq_in_driver[sync]);
784         cfqd->rq_in_driver[sync]--;
785         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
786                                                 rq_in_driver(cfqd));
787 }
788
789 static void cfq_remove_request(struct request *rq)
790 {
791         struct cfq_queue *cfqq = RQ_CFQQ(rq);
792
793         if (cfqq->next_rq == rq)
794                 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
795
796         list_del_init(&rq->queuelist);
797         cfq_del_rq_rb(rq);
798
799         cfqq->cfqd->rq_queued--;
800         if (rq_is_meta(rq)) {
801                 WARN_ON(!cfqq->meta_pending);
802                 cfqq->meta_pending--;
803         }
804 }
805
806 static int cfq_merge(struct request_queue *q, struct request **req,
807                      struct bio *bio)
808 {
809         struct cfq_data *cfqd = q->elevator->elevator_data;
810         struct request *__rq;
811
812         __rq = cfq_find_rq_fmerge(cfqd, bio);
813         if (__rq && elv_rq_merge_ok(__rq, bio)) {
814                 *req = __rq;
815                 return ELEVATOR_FRONT_MERGE;
816         }
817
818         return ELEVATOR_NO_MERGE;
819 }
820
821 static void cfq_merged_request(struct request_queue *q, struct request *req,
822                                int type)
823 {
824         if (type == ELEVATOR_FRONT_MERGE) {
825                 struct cfq_queue *cfqq = RQ_CFQQ(req);
826
827                 cfq_reposition_rq_rb(cfqq, req);
828         }
829 }
830
831 static void
832 cfq_merged_requests(struct request_queue *q, struct request *rq,
833                     struct request *next)
834 {
835         /*
836          * reposition in fifo if next is older than rq
837          */
838         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
839             time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
840                 list_move(&rq->queuelist, &next->queuelist);
841                 rq_set_fifo_time(rq, rq_fifo_time(next));
842         }
843
844         cfq_remove_request(next);
845 }
846
847 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
848                            struct bio *bio)
849 {
850         struct cfq_data *cfqd = q->elevator->elevator_data;
851         struct cfq_io_context *cic;
852         struct cfq_queue *cfqq;
853
854         /*
855          * Disallow merge of a sync bio into an async request.
856          */
857         if (cfq_bio_sync(bio) && !rq_is_sync(rq))
858                 return false;
859
860         /*
861          * Lookup the cfqq that this bio will be queued with. Allow
862          * merge only if rq is queued there.
863          */
864         cic = cfq_cic_lookup(cfqd, current->io_context);
865         if (!cic)
866                 return false;
867
868         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
869         return cfqq == RQ_CFQQ(rq);
870 }
871
872 static void __cfq_set_active_queue(struct cfq_data *cfqd,
873                                    struct cfq_queue *cfqq)
874 {
875         if (cfqq) {
876                 cfq_log_cfqq(cfqd, cfqq, "set_active");
877                 cfqq->slice_end = 0;
878                 cfqq->slice_dispatch = 0;
879
880                 cfq_clear_cfqq_wait_request(cfqq);
881                 cfq_clear_cfqq_must_dispatch(cfqq);
882                 cfq_clear_cfqq_must_alloc_slice(cfqq);
883                 cfq_clear_cfqq_fifo_expire(cfqq);
884                 cfq_mark_cfqq_slice_new(cfqq);
885
886                 del_timer(&cfqd->idle_slice_timer);
887         }
888
889         cfqd->active_queue = cfqq;
890 }
891
892 /*
893  * current cfqq expired its slice (or was too idle), select new one
894  */
895 static void
896 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
897                     bool timed_out)
898 {
899         cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
900
901         if (cfq_cfqq_wait_request(cfqq))
902                 del_timer(&cfqd->idle_slice_timer);
903
904         cfq_clear_cfqq_wait_request(cfqq);
905
906         /*
907          * store what was left of this slice, if the queue idled/timed out
908          */
909         if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
910                 cfqq->slice_resid = cfqq->slice_end - jiffies;
911                 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
912         }
913
914         cfq_resort_rr_list(cfqd, cfqq);
915
916         if (cfqq == cfqd->active_queue)
917                 cfqd->active_queue = NULL;
918
919         if (cfqd->active_cic) {
920                 put_io_context(cfqd->active_cic->ioc);
921                 cfqd->active_cic = NULL;
922         }
923 }
924
925 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
926 {
927         struct cfq_queue *cfqq = cfqd->active_queue;
928
929         if (cfqq)
930                 __cfq_slice_expired(cfqd, cfqq, timed_out);
931 }
932
933 /*
934  * Get next queue for service. Unless we have a queue preemption,
935  * we'll simply select the first cfqq in the service tree.
936  */
937 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
938 {
939         if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
940                 return NULL;
941
942         return cfq_rb_first(&cfqd->service_tree);
943 }
944
945 /*
946  * Get and set a new active queue for service.
947  */
948 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
949                                               struct cfq_queue *cfqq)
950 {
951         if (!cfqq) {
952                 cfqq = cfq_get_next_queue(cfqd);
953                 if (cfqq)
954                         cfq_clear_cfqq_coop(cfqq);
955         }
956
957         __cfq_set_active_queue(cfqd, cfqq);
958         return cfqq;
959 }
960
961 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
962                                           struct request *rq)
963 {
964         if (blk_rq_pos(rq) >= cfqd->last_position)
965                 return blk_rq_pos(rq) - cfqd->last_position;
966         else
967                 return cfqd->last_position - blk_rq_pos(rq);
968 }
969
970 #define CFQQ_SEEK_THR           8 * 1024
971 #define CFQQ_SEEKY(cfqq)        ((cfqq)->seek_mean > CFQQ_SEEK_THR)
972
973 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
974                                struct request *rq)
975 {
976         sector_t sdist = cfqq->seek_mean;
977
978         if (!sample_valid(cfqq->seek_samples))
979                 sdist = CFQQ_SEEK_THR;
980
981         return cfq_dist_from_last(cfqd, rq) <= sdist;
982 }
983
984 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
985                                     struct cfq_queue *cur_cfqq)
986 {
987         struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
988         struct rb_node *parent, *node;
989         struct cfq_queue *__cfqq;
990         sector_t sector = cfqd->last_position;
991
992         if (RB_EMPTY_ROOT(root))
993                 return NULL;
994
995         /*
996          * First, if we find a request starting at the end of the last
997          * request, choose it.
998          */
999         __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1000         if (__cfqq)
1001                 return __cfqq;
1002
1003         /*
1004          * If the exact sector wasn't found, the parent of the NULL leaf
1005          * will contain the closest sector.
1006          */
1007         __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1008         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1009                 return __cfqq;
1010
1011         if (blk_rq_pos(__cfqq->next_rq) < sector)
1012                 node = rb_next(&__cfqq->p_node);
1013         else
1014                 node = rb_prev(&__cfqq->p_node);
1015         if (!node)
1016                 return NULL;
1017
1018         __cfqq = rb_entry(node, struct cfq_queue, p_node);
1019         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1020                 return __cfqq;
1021
1022         return NULL;
1023 }
1024
1025 /*
1026  * cfqd - obvious
1027  * cur_cfqq - passed in so that we don't decide that the current queue is
1028  *            closely cooperating with itself.
1029  *
1030  * So, basically we're assuming that that cur_cfqq has dispatched at least
1031  * one request, and that cfqd->last_position reflects a position on the disk
1032  * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1033  * assumption.
1034  */
1035 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1036                                               struct cfq_queue *cur_cfqq,
1037                                               bool probe)
1038 {
1039         struct cfq_queue *cfqq;
1040
1041         /*
1042          * We should notice if some of the queues are cooperating, eg
1043          * working closely on the same area of the disk. In that case,
1044          * we can group them together and don't waste time idling.
1045          */
1046         cfqq = cfqq_close(cfqd, cur_cfqq);
1047         if (!cfqq)
1048                 return NULL;
1049
1050         if (cfq_cfqq_coop(cfqq))
1051                 return NULL;
1052
1053         if (!probe)
1054                 cfq_mark_cfqq_coop(cfqq);
1055         return cfqq;
1056 }
1057
1058 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1059 {
1060         struct cfq_queue *cfqq = cfqd->active_queue;
1061         struct cfq_io_context *cic;
1062         unsigned long sl;
1063
1064         /*
1065          * SSD device without seek penalty, disable idling. But only do so
1066          * for devices that support queuing, otherwise we still have a problem
1067          * with sync vs async workloads.
1068          */
1069         if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1070                 return;
1071
1072         WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1073         WARN_ON(cfq_cfqq_slice_new(cfqq));
1074
1075         /*
1076          * idle is disabled, either manually or by past process history
1077          */
1078         if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
1079                 return;
1080
1081         /*
1082          * still requests with the driver, don't idle
1083          */
1084         if (rq_in_driver(cfqd))
1085                 return;
1086
1087         /*
1088          * task has exited, don't wait
1089          */
1090         cic = cfqd->active_cic;
1091         if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1092                 return;
1093
1094         /*
1095          * If our average think time is larger than the remaining time
1096          * slice, then don't idle. This avoids overrunning the allotted
1097          * time slice.
1098          */
1099         if (sample_valid(cic->ttime_samples) &&
1100             (cfqq->slice_end - jiffies < cic->ttime_mean))
1101                 return;
1102
1103         cfq_mark_cfqq_wait_request(cfqq);
1104
1105         /*
1106          * we don't want to idle for seeks, but we do want to allow
1107          * fair distribution of slice time for a process doing back-to-back
1108          * seeks. so allow a little bit of time for him to submit a new rq
1109          */
1110         sl = cfqd->cfq_slice_idle;
1111         if (sample_valid(cfqq->seek_samples) && CFQQ_SEEKY(cfqq))
1112                 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
1113
1114         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1115         cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1116 }
1117
1118 /*
1119  * Move request from internal lists to the request queue dispatch list.
1120  */
1121 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1122 {
1123         struct cfq_data *cfqd = q->elevator->elevator_data;
1124         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1125
1126         cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1127
1128         cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1129         cfq_remove_request(rq);
1130         cfqq->dispatched++;
1131         elv_dispatch_sort(q, rq);
1132
1133         if (cfq_cfqq_sync(cfqq))
1134                 cfqd->sync_flight++;
1135 }
1136
1137 /*
1138  * return expired entry, or NULL to just start from scratch in rbtree
1139  */
1140 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1141 {
1142         struct request *rq = NULL;
1143
1144         if (cfq_cfqq_fifo_expire(cfqq))
1145                 return NULL;
1146
1147         cfq_mark_cfqq_fifo_expire(cfqq);
1148
1149         if (list_empty(&cfqq->fifo))
1150                 return NULL;
1151
1152         rq = rq_entry_fifo(cfqq->fifo.next);
1153         if (time_before(jiffies, rq_fifo_time(rq)))
1154                 rq = NULL;
1155
1156         cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1157         return rq;
1158 }
1159
1160 static inline int
1161 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1162 {
1163         const int base_rq = cfqd->cfq_slice_async_rq;
1164
1165         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1166
1167         return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1168 }
1169
1170 /*
1171  * Select a queue for service. If we have a current active queue,
1172  * check whether to continue servicing it, or retrieve and set a new one.
1173  */
1174 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1175 {
1176         struct cfq_queue *cfqq, *new_cfqq = NULL;
1177
1178         cfqq = cfqd->active_queue;
1179         if (!cfqq)
1180                 goto new_queue;
1181
1182         /*
1183          * The active queue has run out of time, expire it and select new.
1184          */
1185         if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
1186                 goto expire;
1187
1188         /*
1189          * The active queue has requests and isn't expired, allow it to
1190          * dispatch.
1191          */
1192         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1193                 goto keep_queue;
1194
1195         /*
1196          * If another queue has a request waiting within our mean seek
1197          * distance, let it run.  The expire code will check for close
1198          * cooperators and put the close queue at the front of the service
1199          * tree.
1200          */
1201         new_cfqq = cfq_close_cooperator(cfqd, cfqq, 0);
1202         if (new_cfqq)
1203                 goto expire;
1204
1205         /*
1206          * No requests pending. If the active queue still has requests in
1207          * flight or is idling for a new request, allow either of these
1208          * conditions to happen (or time out) before selecting a new queue.
1209          */
1210         if (timer_pending(&cfqd->idle_slice_timer) ||
1211             (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
1212                 cfqq = NULL;
1213                 goto keep_queue;
1214         }
1215
1216 expire:
1217         cfq_slice_expired(cfqd, 0);
1218 new_queue:
1219         cfqq = cfq_set_active_queue(cfqd, new_cfqq);
1220 keep_queue:
1221         return cfqq;
1222 }
1223
1224 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1225 {
1226         int dispatched = 0;
1227
1228         while (cfqq->next_rq) {
1229                 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1230                 dispatched++;
1231         }
1232
1233         BUG_ON(!list_empty(&cfqq->fifo));
1234         return dispatched;
1235 }
1236
1237 /*
1238  * Drain our current requests. Used for barriers and when switching
1239  * io schedulers on-the-fly.
1240  */
1241 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1242 {
1243         struct cfq_queue *cfqq;
1244         int dispatched = 0;
1245
1246         while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
1247                 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1248
1249         cfq_slice_expired(cfqd, 0);
1250
1251         BUG_ON(cfqd->busy_queues);
1252
1253         cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1254         return dispatched;
1255 }
1256
1257 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1258 {
1259         unsigned int max_dispatch;
1260
1261         /*
1262          * Drain async requests before we start sync IO
1263          */
1264         if (cfq_cfqq_idle_window(cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
1265                 return false;
1266
1267         /*
1268          * If this is an async queue and we have sync IO in flight, let it wait
1269          */
1270         if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1271                 return false;
1272
1273         max_dispatch = cfqd->cfq_quantum;
1274         if (cfq_class_idle(cfqq))
1275                 max_dispatch = 1;
1276
1277         /*
1278          * Does this cfqq already have too much IO in flight?
1279          */
1280         if (cfqq->dispatched >= max_dispatch) {
1281                 /*
1282                  * idle queue must always only have a single IO in flight
1283                  */
1284                 if (cfq_class_idle(cfqq))
1285                         return false;
1286
1287                 /*
1288                  * We have other queues, don't allow more IO from this one
1289                  */
1290                 if (cfqd->busy_queues > 1)
1291                         return false;
1292
1293                 /*
1294                  * Sole queue user, allow bigger slice
1295                  */
1296                 max_dispatch *= 4;
1297         }
1298
1299         /*
1300          * Async queues must wait a bit before being allowed dispatch.
1301          * We also ramp up the dispatch depth gradually for async IO,
1302          * based on the last sync IO we serviced
1303          */
1304         if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
1305                 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
1306                 unsigned int depth;
1307
1308                 depth = last_sync / cfqd->cfq_slice[1];
1309                 if (!depth && !cfqq->dispatched)
1310                         depth = 1;
1311                 if (depth < max_dispatch)
1312                         max_dispatch = depth;
1313         }
1314
1315         /*
1316          * If we're below the current max, allow a dispatch
1317          */
1318         return cfqq->dispatched < max_dispatch;
1319 }
1320
1321 /*
1322  * Dispatch a request from cfqq, moving them to the request queue
1323  * dispatch list.
1324  */
1325 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1326 {
1327         struct request *rq;
1328
1329         BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1330
1331         if (!cfq_may_dispatch(cfqd, cfqq))
1332                 return false;
1333
1334         /*
1335          * follow expired path, else get first next available
1336          */
1337         rq = cfq_check_fifo(cfqq);
1338         if (!rq)
1339                 rq = cfqq->next_rq;
1340
1341         /*
1342          * insert request into driver dispatch list
1343          */
1344         cfq_dispatch_insert(cfqd->queue, rq);
1345
1346         if (!cfqd->active_cic) {
1347                 struct cfq_io_context *cic = RQ_CIC(rq);
1348
1349                 atomic_long_inc(&cic->ioc->refcount);
1350                 cfqd->active_cic = cic;
1351         }
1352
1353         return true;
1354 }
1355
1356 /*
1357  * Find the cfqq that we need to service and move a request from that to the
1358  * dispatch list
1359  */
1360 static int cfq_dispatch_requests(struct request_queue *q, int force)
1361 {
1362         struct cfq_data *cfqd = q->elevator->elevator_data;
1363         struct cfq_queue *cfqq;
1364
1365         if (!cfqd->busy_queues)
1366                 return 0;
1367
1368         if (unlikely(force))
1369                 return cfq_forced_dispatch(cfqd);
1370
1371         cfqq = cfq_select_queue(cfqd);
1372         if (!cfqq)
1373                 return 0;
1374
1375         /*
1376          * Dispatch a request from this cfqq, if it is allowed
1377          */
1378         if (!cfq_dispatch_request(cfqd, cfqq))
1379                 return 0;
1380
1381         cfqq->slice_dispatch++;
1382         cfq_clear_cfqq_must_dispatch(cfqq);
1383
1384         /*
1385          * expire an async queue immediately if it has used up its slice. idle
1386          * queue always expire after 1 dispatch round.
1387          */
1388         if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1389             cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1390             cfq_class_idle(cfqq))) {
1391                 cfqq->slice_end = jiffies + 1;
1392                 cfq_slice_expired(cfqd, 0);
1393         }
1394
1395         cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
1396         return 1;
1397 }
1398
1399 /*
1400  * task holds one reference to the queue, dropped when task exits. each rq
1401  * in-flight on this queue also holds a reference, dropped when rq is freed.
1402  *
1403  * queue lock must be held here.
1404  */
1405 static void cfq_put_queue(struct cfq_queue *cfqq)
1406 {
1407         struct cfq_data *cfqd = cfqq->cfqd;
1408
1409         BUG_ON(atomic_read(&cfqq->ref) <= 0);
1410
1411         if (!atomic_dec_and_test(&cfqq->ref))
1412                 return;
1413
1414         cfq_log_cfqq(cfqd, cfqq, "put_queue");
1415         BUG_ON(rb_first(&cfqq->sort_list));
1416         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1417         BUG_ON(cfq_cfqq_on_rr(cfqq));
1418
1419         if (unlikely(cfqd->active_queue == cfqq)) {
1420                 __cfq_slice_expired(cfqd, cfqq, 0);
1421                 cfq_schedule_dispatch(cfqd);
1422         }
1423
1424         kmem_cache_free(cfq_pool, cfqq);
1425 }
1426
1427 /*
1428  * Must always be called with the rcu_read_lock() held
1429  */
1430 static void
1431 __call_for_each_cic(struct io_context *ioc,
1432                     void (*func)(struct io_context *, struct cfq_io_context *))
1433 {
1434         struct cfq_io_context *cic;
1435         struct hlist_node *n;
1436
1437         hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1438                 func(ioc, cic);
1439 }
1440
1441 /*
1442  * Call func for each cic attached to this ioc.
1443  */
1444 static void
1445 call_for_each_cic(struct io_context *ioc,
1446                   void (*func)(struct io_context *, struct cfq_io_context *))
1447 {
1448         rcu_read_lock();
1449         __call_for_each_cic(ioc, func);
1450         rcu_read_unlock();
1451 }
1452
1453 static void cfq_cic_free_rcu(struct rcu_head *head)
1454 {
1455         struct cfq_io_context *cic;
1456
1457         cic = container_of(head, struct cfq_io_context, rcu_head);
1458
1459         kmem_cache_free(cfq_ioc_pool, cic);
1460         elv_ioc_count_dec(cfq_ioc_count);
1461
1462         if (ioc_gone) {
1463                 /*
1464                  * CFQ scheduler is exiting, grab exit lock and check
1465                  * the pending io context count. If it hits zero,
1466                  * complete ioc_gone and set it back to NULL
1467                  */
1468                 spin_lock(&ioc_gone_lock);
1469                 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
1470                         complete(ioc_gone);
1471                         ioc_gone = NULL;
1472                 }
1473                 spin_unlock(&ioc_gone_lock);
1474         }
1475 }
1476
1477 static void cfq_cic_free(struct cfq_io_context *cic)
1478 {
1479         call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1480 }
1481
1482 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1483 {
1484         unsigned long flags;
1485
1486         BUG_ON(!cic->dead_key);
1487
1488         spin_lock_irqsave(&ioc->lock, flags);
1489         radix_tree_delete(&ioc->radix_root, cic->dead_key);
1490         hlist_del_rcu(&cic->cic_list);
1491         spin_unlock_irqrestore(&ioc->lock, flags);
1492
1493         cfq_cic_free(cic);
1494 }
1495
1496 /*
1497  * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1498  * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1499  * and ->trim() which is called with the task lock held
1500  */
1501 static void cfq_free_io_context(struct io_context *ioc)
1502 {
1503         /*
1504          * ioc->refcount is zero here, or we are called from elv_unregister(),
1505          * so no more cic's are allowed to be linked into this ioc.  So it
1506          * should be ok to iterate over the known list, we will see all cic's
1507          * since no new ones are added.
1508          */
1509         __call_for_each_cic(ioc, cic_free_func);
1510 }
1511
1512 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1513 {
1514         if (unlikely(cfqq == cfqd->active_queue)) {
1515                 __cfq_slice_expired(cfqd, cfqq, 0);
1516                 cfq_schedule_dispatch(cfqd);
1517         }
1518
1519         cfq_put_queue(cfqq);
1520 }
1521
1522 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1523                                          struct cfq_io_context *cic)
1524 {
1525         struct io_context *ioc = cic->ioc;
1526
1527         list_del_init(&cic->queue_list);
1528
1529         /*
1530          * Make sure key == NULL is seen for dead queues
1531          */
1532         smp_wmb();
1533         cic->dead_key = (unsigned long) cic->key;
1534         cic->key = NULL;
1535
1536         if (ioc->ioc_data == cic)
1537                 rcu_assign_pointer(ioc->ioc_data, NULL);
1538
1539         if (cic->cfqq[BLK_RW_ASYNC]) {
1540                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1541                 cic->cfqq[BLK_RW_ASYNC] = NULL;
1542         }
1543
1544         if (cic->cfqq[BLK_RW_SYNC]) {
1545                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1546                 cic->cfqq[BLK_RW_SYNC] = NULL;
1547         }
1548 }
1549
1550 static void cfq_exit_single_io_context(struct io_context *ioc,
1551                                        struct cfq_io_context *cic)
1552 {
1553         struct cfq_data *cfqd = cic->key;
1554
1555         if (cfqd) {
1556                 struct request_queue *q = cfqd->queue;
1557                 unsigned long flags;
1558
1559                 spin_lock_irqsave(q->queue_lock, flags);
1560
1561                 /*
1562                  * Ensure we get a fresh copy of the ->key to prevent
1563                  * race between exiting task and queue
1564                  */
1565                 smp_read_barrier_depends();
1566                 if (cic->key)
1567                         __cfq_exit_single_io_context(cfqd, cic);
1568
1569                 spin_unlock_irqrestore(q->queue_lock, flags);
1570         }
1571 }
1572
1573 /*
1574  * The process that ioc belongs to has exited, we need to clean up
1575  * and put the internal structures we have that belongs to that process.
1576  */
1577 static void cfq_exit_io_context(struct io_context *ioc)
1578 {
1579         call_for_each_cic(ioc, cfq_exit_single_io_context);
1580 }
1581
1582 static struct cfq_io_context *
1583 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1584 {
1585         struct cfq_io_context *cic;
1586
1587         cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1588                                                         cfqd->queue->node);
1589         if (cic) {
1590                 cic->last_end_request = jiffies;
1591                 INIT_LIST_HEAD(&cic->queue_list);
1592                 INIT_HLIST_NODE(&cic->cic_list);
1593                 cic->dtor = cfq_free_io_context;
1594                 cic->exit = cfq_exit_io_context;
1595                 elv_ioc_count_inc(cfq_ioc_count);
1596         }
1597
1598         return cic;
1599 }
1600
1601 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1602 {
1603         struct task_struct *tsk = current;
1604         int ioprio_class;
1605
1606         if (!cfq_cfqq_prio_changed(cfqq))
1607                 return;
1608
1609         ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1610         switch (ioprio_class) {
1611         default:
1612                 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1613         case IOPRIO_CLASS_NONE:
1614                 /*
1615                  * no prio set, inherit CPU scheduling settings
1616                  */
1617                 cfqq->ioprio = task_nice_ioprio(tsk);
1618                 cfqq->ioprio_class = task_nice_ioclass(tsk);
1619                 break;
1620         case IOPRIO_CLASS_RT:
1621                 cfqq->ioprio = task_ioprio(ioc);
1622                 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1623                 break;
1624         case IOPRIO_CLASS_BE:
1625                 cfqq->ioprio = task_ioprio(ioc);
1626                 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1627                 break;
1628         case IOPRIO_CLASS_IDLE:
1629                 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1630                 cfqq->ioprio = 7;
1631                 cfq_clear_cfqq_idle_window(cfqq);
1632                 break;
1633         }
1634
1635         /*
1636          * keep track of original prio settings in case we have to temporarily
1637          * elevate the priority of this queue
1638          */
1639         cfqq->org_ioprio = cfqq->ioprio;
1640         cfqq->org_ioprio_class = cfqq->ioprio_class;
1641         cfq_clear_cfqq_prio_changed(cfqq);
1642 }
1643
1644 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
1645 {
1646         struct cfq_data *cfqd = cic->key;
1647         struct cfq_queue *cfqq;
1648         unsigned long flags;
1649
1650         if (unlikely(!cfqd))
1651                 return;
1652
1653         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1654
1655         cfqq = cic->cfqq[BLK_RW_ASYNC];
1656         if (cfqq) {
1657                 struct cfq_queue *new_cfqq;
1658                 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
1659                                                 GFP_ATOMIC);
1660                 if (new_cfqq) {
1661                         cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
1662                         cfq_put_queue(cfqq);
1663                 }
1664         }
1665
1666         cfqq = cic->cfqq[BLK_RW_SYNC];
1667         if (cfqq)
1668                 cfq_mark_cfqq_prio_changed(cfqq);
1669
1670         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1671 }
1672
1673 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1674 {
1675         call_for_each_cic(ioc, changed_ioprio);
1676         ioc->ioprio_changed = 0;
1677 }
1678
1679 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1680                           pid_t pid, bool is_sync)
1681 {
1682         RB_CLEAR_NODE(&cfqq->rb_node);
1683         RB_CLEAR_NODE(&cfqq->p_node);
1684         INIT_LIST_HEAD(&cfqq->fifo);
1685
1686         atomic_set(&cfqq->ref, 0);
1687         cfqq->cfqd = cfqd;
1688
1689         cfq_mark_cfqq_prio_changed(cfqq);
1690
1691         if (is_sync) {
1692                 if (!cfq_class_idle(cfqq))
1693                         cfq_mark_cfqq_idle_window(cfqq);
1694                 cfq_mark_cfqq_sync(cfqq);
1695         }
1696         cfqq->pid = pid;
1697 }
1698
1699 static struct cfq_queue *
1700 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
1701                      struct io_context *ioc, gfp_t gfp_mask)
1702 {
1703         struct cfq_queue *cfqq, *new_cfqq = NULL;
1704         struct cfq_io_context *cic;
1705
1706 retry:
1707         cic = cfq_cic_lookup(cfqd, ioc);
1708         /* cic always exists here */
1709         cfqq = cic_to_cfqq(cic, is_sync);
1710
1711         /*
1712          * Always try a new alloc if we fell back to the OOM cfqq
1713          * originally, since it should just be a temporary situation.
1714          */
1715         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
1716                 cfqq = NULL;
1717                 if (new_cfqq) {
1718                         cfqq = new_cfqq;
1719                         new_cfqq = NULL;
1720                 } else if (gfp_mask & __GFP_WAIT) {
1721                         spin_unlock_irq(cfqd->queue->queue_lock);
1722                         new_cfqq = kmem_cache_alloc_node(cfq_pool,
1723                                         gfp_mask | __GFP_ZERO,
1724                                         cfqd->queue->node);
1725                         spin_lock_irq(cfqd->queue->queue_lock);
1726                         if (new_cfqq)
1727                                 goto retry;
1728                 } else {
1729                         cfqq = kmem_cache_alloc_node(cfq_pool,
1730                                         gfp_mask | __GFP_ZERO,
1731                                         cfqd->queue->node);
1732                 }
1733
1734                 if (cfqq) {
1735                         cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
1736                         cfq_init_prio_data(cfqq, ioc);
1737                         cfq_log_cfqq(cfqd, cfqq, "alloced");
1738                 } else
1739                         cfqq = &cfqd->oom_cfqq;
1740         }
1741
1742         if (new_cfqq)
1743                 kmem_cache_free(cfq_pool, new_cfqq);
1744
1745         return cfqq;
1746 }
1747
1748 static struct cfq_queue **
1749 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1750 {
1751         switch (ioprio_class) {
1752         case IOPRIO_CLASS_RT:
1753                 return &cfqd->async_cfqq[0][ioprio];
1754         case IOPRIO_CLASS_BE:
1755                 return &cfqd->async_cfqq[1][ioprio];
1756         case IOPRIO_CLASS_IDLE:
1757                 return &cfqd->async_idle_cfqq;
1758         default:
1759                 BUG();
1760         }
1761 }
1762
1763 static struct cfq_queue *
1764 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
1765               gfp_t gfp_mask)
1766 {
1767         const int ioprio = task_ioprio(ioc);
1768         const int ioprio_class = task_ioprio_class(ioc);
1769         struct cfq_queue **async_cfqq = NULL;
1770         struct cfq_queue *cfqq = NULL;
1771
1772         if (!is_sync) {
1773                 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1774                 cfqq = *async_cfqq;
1775         }
1776
1777         if (!cfqq)
1778                 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
1779
1780         /*
1781          * pin the queue now that it's allocated, scheduler exit will prune it
1782          */
1783         if (!is_sync && !(*async_cfqq)) {
1784                 atomic_inc(&cfqq->ref);
1785                 *async_cfqq = cfqq;
1786         }
1787
1788         atomic_inc(&cfqq->ref);
1789         return cfqq;
1790 }
1791
1792 /*
1793  * We drop cfq io contexts lazily, so we may find a dead one.
1794  */
1795 static void
1796 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1797                   struct cfq_io_context *cic)
1798 {
1799         unsigned long flags;
1800
1801         WARN_ON(!list_empty(&cic->queue_list));
1802
1803         spin_lock_irqsave(&ioc->lock, flags);
1804
1805         BUG_ON(ioc->ioc_data == cic);
1806
1807         radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
1808         hlist_del_rcu(&cic->cic_list);
1809         spin_unlock_irqrestore(&ioc->lock, flags);
1810
1811         cfq_cic_free(cic);
1812 }
1813
1814 static struct cfq_io_context *
1815 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1816 {
1817         struct cfq_io_context *cic;
1818         unsigned long flags;
1819         void *k;
1820
1821         if (unlikely(!ioc))
1822                 return NULL;
1823
1824         rcu_read_lock();
1825
1826         /*
1827          * we maintain a last-hit cache, to avoid browsing over the tree
1828          */
1829         cic = rcu_dereference(ioc->ioc_data);
1830         if (cic && cic->key == cfqd) {
1831                 rcu_read_unlock();
1832                 return cic;
1833         }
1834
1835         do {
1836                 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
1837                 rcu_read_unlock();
1838                 if (!cic)
1839                         break;
1840                 /* ->key must be copied to avoid race with cfq_exit_queue() */
1841                 k = cic->key;
1842                 if (unlikely(!k)) {
1843                         cfq_drop_dead_cic(cfqd, ioc, cic);
1844                         rcu_read_lock();
1845                         continue;
1846                 }
1847
1848                 spin_lock_irqsave(&ioc->lock, flags);
1849                 rcu_assign_pointer(ioc->ioc_data, cic);
1850                 spin_unlock_irqrestore(&ioc->lock, flags);
1851                 break;
1852         } while (1);
1853
1854         return cic;
1855 }
1856
1857 /*
1858  * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1859  * the process specific cfq io context when entered from the block layer.
1860  * Also adds the cic to a per-cfqd list, used when this queue is removed.
1861  */
1862 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1863                         struct cfq_io_context *cic, gfp_t gfp_mask)
1864 {
1865         unsigned long flags;
1866         int ret;
1867
1868         ret = radix_tree_preload(gfp_mask);
1869         if (!ret) {
1870                 cic->ioc = ioc;
1871                 cic->key = cfqd;
1872
1873                 spin_lock_irqsave(&ioc->lock, flags);
1874                 ret = radix_tree_insert(&ioc->radix_root,
1875                                                 (unsigned long) cfqd, cic);
1876                 if (!ret)
1877                         hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
1878                 spin_unlock_irqrestore(&ioc->lock, flags);
1879
1880                 radix_tree_preload_end();
1881
1882                 if (!ret) {
1883                         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1884                         list_add(&cic->queue_list, &cfqd->cic_list);
1885                         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1886                 }
1887         }
1888
1889         if (ret)
1890                 printk(KERN_ERR "cfq: cic link failed!\n");
1891
1892         return ret;
1893 }
1894
1895 /*
1896  * Setup general io context and cfq io context. There can be several cfq
1897  * io contexts per general io context, if this process is doing io to more
1898  * than one device managed by cfq.
1899  */
1900 static struct cfq_io_context *
1901 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1902 {
1903         struct io_context *ioc = NULL;
1904         struct cfq_io_context *cic;
1905
1906         might_sleep_if(gfp_mask & __GFP_WAIT);
1907
1908         ioc = get_io_context(gfp_mask, cfqd->queue->node);
1909         if (!ioc)
1910                 return NULL;
1911
1912         cic = cfq_cic_lookup(cfqd, ioc);
1913         if (cic)
1914                 goto out;
1915
1916         cic = cfq_alloc_io_context(cfqd, gfp_mask);
1917         if (cic == NULL)
1918                 goto err;
1919
1920         if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
1921                 goto err_free;
1922
1923 out:
1924         smp_read_barrier_depends();
1925         if (unlikely(ioc->ioprio_changed))
1926                 cfq_ioc_set_ioprio(ioc);
1927
1928         return cic;
1929 err_free:
1930         cfq_cic_free(cic);
1931 err:
1932         put_io_context(ioc);
1933         return NULL;
1934 }
1935
1936 static void
1937 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1938 {
1939         unsigned long elapsed = jiffies - cic->last_end_request;
1940         unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1941
1942         cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1943         cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1944         cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1945 }
1946
1947 static void
1948 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1949                        struct request *rq)
1950 {
1951         sector_t sdist;
1952         u64 total;
1953
1954         if (!cfqq->last_request_pos)
1955                 sdist = 0;
1956         else if (cfqq->last_request_pos < blk_rq_pos(rq))
1957                 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
1958         else
1959                 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
1960
1961         /*
1962          * Don't allow the seek distance to get too large from the
1963          * odd fragment, pagein, etc
1964          */
1965         if (cfqq->seek_samples <= 60) /* second&third seek */
1966                 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
1967         else
1968                 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
1969
1970         cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
1971         cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
1972         total = cfqq->seek_total + (cfqq->seek_samples/2);
1973         do_div(total, cfqq->seek_samples);
1974         cfqq->seek_mean = (sector_t)total;
1975 }
1976
1977 /*
1978  * Disable idle window if the process thinks too long or seeks so much that
1979  * it doesn't matter
1980  */
1981 static void
1982 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1983                        struct cfq_io_context *cic)
1984 {
1985         int old_idle, enable_idle;
1986
1987         /*
1988          * Don't idle for async or idle io prio class
1989          */
1990         if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1991                 return;
1992
1993         enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1994
1995         if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
1996             (!cfqd->cfq_latency && cfqd->hw_tag && CFQQ_SEEKY(cfqq)))
1997                 enable_idle = 0;
1998         else if (sample_valid(cic->ttime_samples)) {
1999                 unsigned int slice_idle = cfqd->cfq_slice_idle;
2000                 if (sample_valid(cfqq->seek_samples) && CFQQ_SEEKY(cfqq))
2001                         slice_idle = msecs_to_jiffies(CFQ_MIN_TT);
2002                 if (cic->ttime_mean > slice_idle)
2003                         enable_idle = 0;
2004                 else
2005                         enable_idle = 1;
2006         }
2007
2008         if (old_idle != enable_idle) {
2009                 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
2010                 if (enable_idle)
2011                         cfq_mark_cfqq_idle_window(cfqq);
2012                 else
2013                         cfq_clear_cfqq_idle_window(cfqq);
2014         }
2015 }
2016
2017 /*
2018  * Check if new_cfqq should preempt the currently active queue. Return 0 for
2019  * no or if we aren't sure, a 1 will cause a preempt.
2020  */
2021 static bool
2022 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
2023                    struct request *rq)
2024 {
2025         struct cfq_queue *cfqq;
2026
2027         cfqq = cfqd->active_queue;
2028         if (!cfqq)
2029                 return false;
2030
2031         if (cfq_slice_used(cfqq))
2032                 return true;
2033
2034         if (cfq_class_idle(new_cfqq))
2035                 return false;
2036
2037         if (cfq_class_idle(cfqq))
2038                 return true;
2039
2040         /*
2041          * if the new request is sync, but the currently running queue is
2042          * not, let the sync request have priority.
2043          */
2044         if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
2045                 return true;
2046
2047         /*
2048          * So both queues are sync. Let the new request get disk time if
2049          * it's a metadata request and the current queue is doing regular IO.
2050          */
2051         if (rq_is_meta(rq) && !cfqq->meta_pending)
2052                 return false;
2053
2054         /*
2055          * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2056          */
2057         if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2058                 return true;
2059
2060         if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2061                 return false;
2062
2063         /*
2064          * if this request is as-good as one we would expect from the
2065          * current cfqq, let it preempt
2066          */
2067         if (cfq_rq_close(cfqd, cfqq, rq))
2068                 return true;
2069
2070         return false;
2071 }
2072
2073 /*
2074  * cfqq preempts the active queue. if we allowed preempt with no slice left,
2075  * let it have half of its nominal slice.
2076  */
2077 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2078 {
2079         cfq_log_cfqq(cfqd, cfqq, "preempt");
2080         cfq_slice_expired(cfqd, 1);
2081
2082         /*
2083          * Put the new queue at the front of the of the current list,
2084          * so we know that it will be selected next.
2085          */
2086         BUG_ON(!cfq_cfqq_on_rr(cfqq));
2087
2088         cfq_service_tree_add(cfqd, cfqq, 1);
2089
2090         cfqq->slice_end = 0;
2091         cfq_mark_cfqq_slice_new(cfqq);
2092 }
2093
2094 /*
2095  * Called when a new fs request (rq) is added (to cfqq). Check if there's
2096  * something we should do about it
2097  */
2098 static void
2099 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2100                 struct request *rq)
2101 {
2102         struct cfq_io_context *cic = RQ_CIC(rq);
2103
2104         cfqd->rq_queued++;
2105         if (rq_is_meta(rq))
2106                 cfqq->meta_pending++;
2107
2108         cfq_update_io_thinktime(cfqd, cic);
2109         cfq_update_io_seektime(cfqd, cfqq, rq);
2110         cfq_update_idle_window(cfqd, cfqq, cic);
2111
2112         cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
2113
2114         if (cfqq == cfqd->active_queue) {
2115                 /*
2116                  * Remember that we saw a request from this process, but
2117                  * don't start queuing just yet. Otherwise we risk seeing lots
2118                  * of tiny requests, because we disrupt the normal plugging
2119                  * and merging. If the request is already larger than a single
2120                  * page, let it rip immediately. For that case we assume that
2121                  * merging is already done. Ditto for a busy system that
2122                  * has other work pending, don't risk delaying until the
2123                  * idle timer unplug to continue working.
2124                  */
2125                 if (cfq_cfqq_wait_request(cfqq)) {
2126                         if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2127                             cfqd->busy_queues > 1) {
2128                                 del_timer(&cfqd->idle_slice_timer);
2129                         __blk_run_queue(cfqd->queue);
2130                         }
2131                         cfq_mark_cfqq_must_dispatch(cfqq);
2132                 }
2133         } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
2134                 /*
2135                  * not the active queue - expire current slice if it is
2136                  * idle and has expired it's mean thinktime or this new queue
2137                  * has some old slice time left and is of higher priority or
2138                  * this new queue is RT and the current one is BE
2139                  */
2140                 cfq_preempt_queue(cfqd, cfqq);
2141                 __blk_run_queue(cfqd->queue);
2142         }
2143 }
2144
2145 static void cfq_insert_request(struct request_queue *q, struct request *rq)
2146 {
2147         struct cfq_data *cfqd = q->elevator->elevator_data;
2148         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2149
2150         cfq_log_cfqq(cfqd, cfqq, "insert_request");
2151         cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
2152
2153         cfq_add_rq_rb(rq);
2154
2155         rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
2156         list_add_tail(&rq->queuelist, &cfqq->fifo);
2157
2158         cfq_rq_enqueued(cfqd, cfqq, rq);
2159 }
2160
2161 /*
2162  * Update hw_tag based on peak queue depth over 50 samples under
2163  * sufficient load.
2164  */
2165 static void cfq_update_hw_tag(struct cfq_data *cfqd)
2166 {
2167         if (rq_in_driver(cfqd) > cfqd->rq_in_driver_peak)
2168                 cfqd->rq_in_driver_peak = rq_in_driver(cfqd);
2169
2170         if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
2171             rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
2172                 return;
2173
2174         if (cfqd->hw_tag_samples++ < 50)
2175                 return;
2176
2177         if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
2178                 cfqd->hw_tag = 1;
2179         else
2180                 cfqd->hw_tag = 0;
2181
2182         cfqd->hw_tag_samples = 0;
2183         cfqd->rq_in_driver_peak = 0;
2184 }
2185
2186 static void cfq_completed_request(struct request_queue *q, struct request *rq)
2187 {
2188         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2189         struct cfq_data *cfqd = cfqq->cfqd;
2190         const int sync = rq_is_sync(rq);
2191         unsigned long now;
2192
2193         now = jiffies;
2194         cfq_log_cfqq(cfqd, cfqq, "complete");
2195
2196         cfq_update_hw_tag(cfqd);
2197
2198         WARN_ON(!cfqd->rq_in_driver[sync]);
2199         WARN_ON(!cfqq->dispatched);
2200         cfqd->rq_in_driver[sync]--;
2201         cfqq->dispatched--;
2202
2203         if (cfq_cfqq_sync(cfqq))
2204                 cfqd->sync_flight--;
2205
2206         if (sync) {
2207                 RQ_CIC(rq)->last_end_request = now;
2208                 cfqd->last_end_sync_rq = now;
2209         }
2210
2211         /*
2212          * If this is the active queue, check if it needs to be expired,
2213          * or if we want to idle in case it has no pending requests.
2214          */
2215         if (cfqd->active_queue == cfqq) {
2216                 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2217
2218                 if (cfq_cfqq_slice_new(cfqq)) {
2219                         cfq_set_prio_slice(cfqd, cfqq);
2220                         cfq_clear_cfqq_slice_new(cfqq);
2221                 }
2222                 /*
2223                  * If there are no requests waiting in this queue, and
2224                  * there are other queues ready to issue requests, AND
2225                  * those other queues are issuing requests within our
2226                  * mean seek distance, give them a chance to run instead
2227                  * of idling.
2228                  */
2229                 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
2230                         cfq_slice_expired(cfqd, 1);
2231                 else if (cfqq_empty && !cfq_close_cooperator(cfqd, cfqq, 1) &&
2232                          sync && !rq_noidle(rq))
2233                         cfq_arm_slice_timer(cfqd);
2234         }
2235
2236         if (!rq_in_driver(cfqd))
2237                 cfq_schedule_dispatch(cfqd);
2238 }
2239
2240 /*
2241  * we temporarily boost lower priority queues if they are holding fs exclusive
2242  * resources. they are boosted to normal prio (CLASS_BE/4)
2243  */
2244 static void cfq_prio_boost(struct cfq_queue *cfqq)
2245 {
2246         if (has_fs_excl()) {
2247                 /*
2248                  * boost idle prio on transactions that would lock out other
2249                  * users of the filesystem
2250                  */
2251                 if (cfq_class_idle(cfqq))
2252                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
2253                 if (cfqq->ioprio > IOPRIO_NORM)
2254                         cfqq->ioprio = IOPRIO_NORM;
2255         } else {
2256                 /*
2257                  * check if we need to unboost the queue
2258                  */
2259                 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
2260                         cfqq->ioprio_class = cfqq->org_ioprio_class;
2261                 if (cfqq->ioprio != cfqq->org_ioprio)
2262                         cfqq->ioprio = cfqq->org_ioprio;
2263         }
2264 }
2265
2266 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
2267 {
2268         if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
2269                 cfq_mark_cfqq_must_alloc_slice(cfqq);
2270                 return ELV_MQUEUE_MUST;
2271         }
2272
2273         return ELV_MQUEUE_MAY;
2274 }
2275
2276 static int cfq_may_queue(struct request_queue *q, int rw)
2277 {
2278         struct cfq_data *cfqd = q->elevator->elevator_data;
2279         struct task_struct *tsk = current;
2280         struct cfq_io_context *cic;
2281         struct cfq_queue *cfqq;
2282
2283         /*
2284          * don't force setup of a queue from here, as a call to may_queue
2285          * does not necessarily imply that a request actually will be queued.
2286          * so just lookup a possibly existing queue, or return 'may queue'
2287          * if that fails
2288          */
2289         cic = cfq_cic_lookup(cfqd, tsk->io_context);
2290         if (!cic)
2291                 return ELV_MQUEUE_MAY;
2292
2293         cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
2294         if (cfqq) {
2295                 cfq_init_prio_data(cfqq, cic->ioc);
2296                 cfq_prio_boost(cfqq);
2297
2298                 return __cfq_may_queue(cfqq);
2299         }
2300
2301         return ELV_MQUEUE_MAY;
2302 }
2303
2304 /*
2305  * queue lock held here
2306  */
2307 static void cfq_put_request(struct request *rq)
2308 {
2309         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2310
2311         if (cfqq) {
2312                 const int rw = rq_data_dir(rq);
2313
2314                 BUG_ON(!cfqq->allocated[rw]);
2315                 cfqq->allocated[rw]--;
2316
2317                 put_io_context(RQ_CIC(rq)->ioc);
2318
2319                 rq->elevator_private = NULL;
2320                 rq->elevator_private2 = NULL;
2321
2322                 cfq_put_queue(cfqq);
2323         }
2324 }
2325
2326 /*
2327  * Allocate cfq data structures associated with this request.
2328  */
2329 static int
2330 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
2331 {
2332         struct cfq_data *cfqd = q->elevator->elevator_data;
2333         struct cfq_io_context *cic;
2334         const int rw = rq_data_dir(rq);
2335         const bool is_sync = rq_is_sync(rq);
2336         struct cfq_queue *cfqq;
2337         unsigned long flags;
2338
2339         might_sleep_if(gfp_mask & __GFP_WAIT);
2340
2341         cic = cfq_get_io_context(cfqd, gfp_mask);
2342
2343         spin_lock_irqsave(q->queue_lock, flags);
2344
2345         if (!cic)
2346                 goto queue_fail;
2347
2348         cfqq = cic_to_cfqq(cic, is_sync);
2349         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2350                 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2351                 cic_set_cfqq(cic, cfqq, is_sync);
2352         }
2353
2354         cfqq->allocated[rw]++;
2355         atomic_inc(&cfqq->ref);
2356
2357         spin_unlock_irqrestore(q->queue_lock, flags);
2358
2359         rq->elevator_private = cic;
2360         rq->elevator_private2 = cfqq;
2361         return 0;
2362
2363 queue_fail:
2364         if (cic)
2365                 put_io_context(cic->ioc);
2366
2367         cfq_schedule_dispatch(cfqd);
2368         spin_unlock_irqrestore(q->queue_lock, flags);
2369         cfq_log(cfqd, "set_request fail");
2370         return 1;
2371 }
2372
2373 static void cfq_kick_queue(struct work_struct *work)
2374 {
2375         struct cfq_data *cfqd =
2376                 container_of(work, struct cfq_data, unplug_work);
2377         struct request_queue *q = cfqd->queue;
2378
2379         spin_lock_irq(q->queue_lock);
2380         __blk_run_queue(cfqd->queue);
2381         spin_unlock_irq(q->queue_lock);
2382 }
2383
2384 /*
2385  * Timer running if the active_queue is currently idling inside its time slice
2386  */
2387 static void cfq_idle_slice_timer(unsigned long data)
2388 {
2389         struct cfq_data *cfqd = (struct cfq_data *) data;
2390         struct cfq_queue *cfqq;
2391         unsigned long flags;
2392         int timed_out = 1;
2393
2394         cfq_log(cfqd, "idle timer fired");
2395
2396         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2397
2398         cfqq = cfqd->active_queue;
2399         if (cfqq) {
2400                 timed_out = 0;
2401
2402                 /*
2403                  * We saw a request before the queue expired, let it through
2404                  */
2405                 if (cfq_cfqq_must_dispatch(cfqq))
2406                         goto out_kick;
2407
2408                 /*
2409                  * expired
2410                  */
2411                 if (cfq_slice_used(cfqq))
2412                         goto expire;
2413
2414                 /*
2415                  * only expire and reinvoke request handler, if there are
2416                  * other queues with pending requests
2417                  */
2418                 if (!cfqd->busy_queues)
2419                         goto out_cont;
2420
2421                 /*
2422                  * not expired and it has a request pending, let it dispatch
2423                  */
2424                 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2425                         goto out_kick;
2426         }
2427 expire:
2428         cfq_slice_expired(cfqd, timed_out);
2429 out_kick:
2430         cfq_schedule_dispatch(cfqd);
2431 out_cont:
2432         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2433 }
2434
2435 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2436 {
2437         del_timer_sync(&cfqd->idle_slice_timer);
2438         cancel_work_sync(&cfqd->unplug_work);
2439 }
2440
2441 static void cfq_put_async_queues(struct cfq_data *cfqd)
2442 {
2443         int i;
2444
2445         for (i = 0; i < IOPRIO_BE_NR; i++) {
2446                 if (cfqd->async_cfqq[0][i])
2447                         cfq_put_queue(cfqd->async_cfqq[0][i]);
2448                 if (cfqd->async_cfqq[1][i])
2449                         cfq_put_queue(cfqd->async_cfqq[1][i]);
2450         }
2451
2452         if (cfqd->async_idle_cfqq)
2453                 cfq_put_queue(cfqd->async_idle_cfqq);
2454 }
2455
2456 static void cfq_exit_queue(struct elevator_queue *e)
2457 {
2458         struct cfq_data *cfqd = e->elevator_data;
2459         struct request_queue *q = cfqd->queue;
2460
2461         cfq_shutdown_timer_wq(cfqd);
2462
2463         spin_lock_irq(q->queue_lock);
2464
2465         if (cfqd->active_queue)
2466                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2467
2468         while (!list_empty(&cfqd->cic_list)) {
2469                 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2470                                                         struct cfq_io_context,
2471                                                         queue_list);
2472
2473                 __cfq_exit_single_io_context(cfqd, cic);
2474         }
2475
2476         cfq_put_async_queues(cfqd);
2477
2478         spin_unlock_irq(q->queue_lock);
2479
2480         cfq_shutdown_timer_wq(cfqd);
2481
2482         kfree(cfqd);
2483 }
2484
2485 static void *cfq_init_queue(struct request_queue *q)
2486 {
2487         struct cfq_data *cfqd;
2488         int i;
2489
2490         cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2491         if (!cfqd)
2492                 return NULL;
2493
2494         cfqd->service_tree = CFQ_RB_ROOT;
2495
2496         /*
2497          * Not strictly needed (since RB_ROOT just clears the node and we
2498          * zeroed cfqd on alloc), but better be safe in case someone decides
2499          * to add magic to the rb code
2500          */
2501         for (i = 0; i < CFQ_PRIO_LISTS; i++)
2502                 cfqd->prio_trees[i] = RB_ROOT;
2503
2504         /*
2505          * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
2506          * Grab a permanent reference to it, so that the normal code flow
2507          * will not attempt to free it.
2508          */
2509         cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
2510         atomic_inc(&cfqd->oom_cfqq.ref);
2511
2512         INIT_LIST_HEAD(&cfqd->cic_list);
2513
2514         cfqd->queue = q;
2515
2516         init_timer(&cfqd->idle_slice_timer);
2517         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2518         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2519
2520         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2521
2522         cfqd->cfq_quantum = cfq_quantum;
2523         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2524         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2525         cfqd->cfq_back_max = cfq_back_max;
2526         cfqd->cfq_back_penalty = cfq_back_penalty;
2527         cfqd->cfq_slice[0] = cfq_slice_async;
2528         cfqd->cfq_slice[1] = cfq_slice_sync;
2529         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2530         cfqd->cfq_slice_idle = cfq_slice_idle;
2531         cfqd->cfq_latency = 1;
2532         cfqd->hw_tag = 1;
2533         cfqd->last_end_sync_rq = jiffies;
2534         return cfqd;
2535 }
2536
2537 static void cfq_slab_kill(void)
2538 {
2539         /*
2540          * Caller already ensured that pending RCU callbacks are completed,
2541          * so we should have no busy allocations at this point.
2542          */
2543         if (cfq_pool)
2544                 kmem_cache_destroy(cfq_pool);
2545         if (cfq_ioc_pool)
2546                 kmem_cache_destroy(cfq_ioc_pool);
2547 }
2548
2549 static int __init cfq_slab_setup(void)
2550 {
2551         cfq_pool = KMEM_CACHE(cfq_queue, 0);
2552         if (!cfq_pool)
2553                 goto fail;
2554
2555         cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
2556         if (!cfq_ioc_pool)
2557                 goto fail;
2558
2559         return 0;
2560 fail:
2561         cfq_slab_kill();
2562         return -ENOMEM;
2563 }
2564
2565 /*
2566  * sysfs parts below -->
2567  */
2568 static ssize_t
2569 cfq_var_show(unsigned int var, char *page)
2570 {
2571         return sprintf(page, "%d\n", var);
2572 }
2573
2574 static ssize_t
2575 cfq_var_store(unsigned int *var, const char *page, size_t count)
2576 {
2577         char *p = (char *) page;
2578
2579         *var = simple_strtoul(p, &p, 10);
2580         return count;
2581 }
2582
2583 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
2584 static ssize_t __FUNC(struct elevator_queue *e, char *page)             \
2585 {                                                                       \
2586         struct cfq_data *cfqd = e->elevator_data;                       \
2587         unsigned int __data = __VAR;                                    \
2588         if (__CONV)                                                     \
2589                 __data = jiffies_to_msecs(__data);                      \
2590         return cfq_var_show(__data, (page));                            \
2591 }
2592 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2593 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2594 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2595 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2596 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2597 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2598 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2599 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2600 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2601 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
2602 #undef SHOW_FUNCTION
2603
2604 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
2605 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
2606 {                                                                       \
2607         struct cfq_data *cfqd = e->elevator_data;                       \
2608         unsigned int __data;                                            \
2609         int ret = cfq_var_store(&__data, (page), count);                \
2610         if (__data < (MIN))                                             \
2611                 __data = (MIN);                                         \
2612         else if (__data > (MAX))                                        \
2613                 __data = (MAX);                                         \
2614         if (__CONV)                                                     \
2615                 *(__PTR) = msecs_to_jiffies(__data);                    \
2616         else                                                            \
2617                 *(__PTR) = __data;                                      \
2618         return ret;                                                     \
2619 }
2620 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2621 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
2622                 UINT_MAX, 1);
2623 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
2624                 UINT_MAX, 1);
2625 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2626 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
2627                 UINT_MAX, 0);
2628 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2629 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2630 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2631 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
2632                 UINT_MAX, 0);
2633 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
2634 #undef STORE_FUNCTION
2635
2636 #define CFQ_ATTR(name) \
2637         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2638
2639 static struct elv_fs_entry cfq_attrs[] = {
2640         CFQ_ATTR(quantum),
2641         CFQ_ATTR(fifo_expire_sync),
2642         CFQ_ATTR(fifo_expire_async),
2643         CFQ_ATTR(back_seek_max),
2644         CFQ_ATTR(back_seek_penalty),
2645         CFQ_ATTR(slice_sync),
2646         CFQ_ATTR(slice_async),
2647         CFQ_ATTR(slice_async_rq),
2648         CFQ_ATTR(slice_idle),
2649         CFQ_ATTR(low_latency),
2650         __ATTR_NULL
2651 };
2652
2653 static struct elevator_type iosched_cfq = {
2654         .ops = {
2655                 .elevator_merge_fn =            cfq_merge,
2656                 .elevator_merged_fn =           cfq_merged_request,
2657                 .elevator_merge_req_fn =        cfq_merged_requests,
2658                 .elevator_allow_merge_fn =      cfq_allow_merge,
2659                 .elevator_dispatch_fn =         cfq_dispatch_requests,
2660                 .elevator_add_req_fn =          cfq_insert_request,
2661                 .elevator_activate_req_fn =     cfq_activate_request,
2662                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
2663                 .elevator_queue_empty_fn =      cfq_queue_empty,
2664                 .elevator_completed_req_fn =    cfq_completed_request,
2665                 .elevator_former_req_fn =       elv_rb_former_request,
2666                 .elevator_latter_req_fn =       elv_rb_latter_request,
2667                 .elevator_set_req_fn =          cfq_set_request,
2668                 .elevator_put_req_fn =          cfq_put_request,
2669                 .elevator_may_queue_fn =        cfq_may_queue,
2670                 .elevator_init_fn =             cfq_init_queue,
2671                 .elevator_exit_fn =             cfq_exit_queue,
2672                 .trim =                         cfq_free_io_context,
2673         },
2674         .elevator_attrs =       cfq_attrs,
2675         .elevator_name =        "cfq",
2676         .elevator_owner =       THIS_MODULE,
2677 };
2678
2679 static int __init cfq_init(void)
2680 {
2681         /*
2682          * could be 0 on HZ < 1000 setups
2683          */
2684         if (!cfq_slice_async)
2685                 cfq_slice_async = 1;
2686         if (!cfq_slice_idle)
2687                 cfq_slice_idle = 1;
2688
2689         if (cfq_slab_setup())
2690                 return -ENOMEM;
2691
2692         elv_register(&iosched_cfq);
2693
2694         return 0;
2695 }
2696
2697 static void __exit cfq_exit(void)
2698 {
2699         DECLARE_COMPLETION_ONSTACK(all_gone);
2700         elv_unregister(&iosched_cfq);
2701         ioc_gone = &all_gone;
2702         /* ioc_gone's update must be visible before reading ioc_count */
2703         smp_wmb();
2704
2705         /*
2706          * this also protects us from entering cfq_slab_kill() with
2707          * pending RCU callbacks
2708          */
2709         if (elv_ioc_count_read(cfq_ioc_count))
2710                 wait_for_completion(&all_gone);
2711         cfq_slab_kill();
2712 }
2713
2714 module_init(cfq_init);
2715 module_exit(cfq_exit);
2716
2717 MODULE_AUTHOR("Jens Axboe");
2718 MODULE_LICENSE("GPL");
2719 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");