42028e7128a7e71940d2c18aa0fd906fa15892f7
[safe/jmp/linux-2.6] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/jiffies.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15 #include <linux/blktrace_api.h>
16 #include "blk-cgroup.h"
17
18 /*
19  * tunables
20  */
21 /* max queue in one round of service */
22 static const int cfq_quantum = 8;
23 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
24 /* maximum backwards seek, in KiB */
25 static const int cfq_back_max = 16 * 1024;
26 /* penalty of a backwards seek */
27 static const int cfq_back_penalty = 2;
28 static const int cfq_slice_sync = HZ / 10;
29 static int cfq_slice_async = HZ / 25;
30 static const int cfq_slice_async_rq = 2;
31 static int cfq_slice_idle = HZ / 125;
32 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
33 static const int cfq_hist_divisor = 4;
34
35 /*
36  * offset from end of service tree
37  */
38 #define CFQ_IDLE_DELAY          (HZ / 5)
39
40 /*
41  * below this threshold, we consider thinktime immediate
42  */
43 #define CFQ_MIN_TT              (2)
44
45 #define CFQ_SLICE_SCALE         (5)
46 #define CFQ_HW_QUEUE_MIN        (5)
47 #define CFQ_SERVICE_SHIFT       12
48
49 #define CFQQ_SEEK_THR           (sector_t)(8 * 100)
50 #define CFQQ_CLOSE_THR          (sector_t)(8 * 1024)
51 #define CFQQ_SECT_THR_NONROT    (sector_t)(2 * 32)
52 #define CFQQ_SEEKY(cfqq)        (hweight32(cfqq->seek_history) > 32/8)
53
54 #define RQ_CIC(rq)              \
55         ((struct cfq_io_context *) (rq)->elevator_private)
56 #define RQ_CFQQ(rq)             (struct cfq_queue *) ((rq)->elevator_private2)
57
58 static struct kmem_cache *cfq_pool;
59 static struct kmem_cache *cfq_ioc_pool;
60
61 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
62 static struct completion *ioc_gone;
63 static DEFINE_SPINLOCK(ioc_gone_lock);
64
65 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
66 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
67 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
68
69 #define sample_valid(samples)   ((samples) > 80)
70 #define rb_entry_cfqg(node)     rb_entry((node), struct cfq_group, rb_node)
71
72 /*
73  * Most of our rbtree usage is for sorting with min extraction, so
74  * if we cache the leftmost node we don't have to walk down the tree
75  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
76  * move this into the elevator for the rq sorting as well.
77  */
78 struct cfq_rb_root {
79         struct rb_root rb;
80         struct rb_node *left;
81         unsigned count;
82         unsigned total_weight;
83         u64 min_vdisktime;
84         struct rb_node *active;
85 };
86 #define CFQ_RB_ROOT     (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
87                         .count = 0, .min_vdisktime = 0, }
88
89 /*
90  * Per process-grouping structure
91  */
92 struct cfq_queue {
93         /* reference count */
94         atomic_t ref;
95         /* various state flags, see below */
96         unsigned int flags;
97         /* parent cfq_data */
98         struct cfq_data *cfqd;
99         /* service_tree member */
100         struct rb_node rb_node;
101         /* service_tree key */
102         unsigned long rb_key;
103         /* prio tree member */
104         struct rb_node p_node;
105         /* prio tree root we belong to, if any */
106         struct rb_root *p_root;
107         /* sorted list of pending requests */
108         struct rb_root sort_list;
109         /* if fifo isn't expired, next request to serve */
110         struct request *next_rq;
111         /* requests queued in sort_list */
112         int queued[2];
113         /* currently allocated requests */
114         int allocated[2];
115         /* fifo list of requests in sort_list */
116         struct list_head fifo;
117
118         /* time when queue got scheduled in to dispatch first request. */
119         unsigned long dispatch_start;
120         unsigned int allocated_slice;
121         unsigned int slice_dispatch;
122         /* time when first request from queue completed and slice started. */
123         unsigned long slice_start;
124         unsigned long slice_end;
125         long slice_resid;
126
127         /* pending metadata requests */
128         int meta_pending;
129         /* number of requests that are on the dispatch list or inside driver */
130         int dispatched;
131
132         /* io prio of this group */
133         unsigned short ioprio, org_ioprio;
134         unsigned short ioprio_class, org_ioprio_class;
135
136         pid_t pid;
137
138         u32 seek_history;
139         sector_t last_request_pos;
140
141         struct cfq_rb_root *service_tree;
142         struct cfq_queue *new_cfqq;
143         struct cfq_group *cfqg;
144         struct cfq_group *orig_cfqg;
145 };
146
147 /*
148  * First index in the service_trees.
149  * IDLE is handled separately, so it has negative index
150  */
151 enum wl_prio_t {
152         BE_WORKLOAD = 0,
153         RT_WORKLOAD = 1,
154         IDLE_WORKLOAD = 2,
155 };
156
157 /*
158  * Second index in the service_trees.
159  */
160 enum wl_type_t {
161         ASYNC_WORKLOAD = 0,
162         SYNC_NOIDLE_WORKLOAD = 1,
163         SYNC_WORKLOAD = 2
164 };
165
166 /* This is per cgroup per device grouping structure */
167 struct cfq_group {
168         /* group service_tree member */
169         struct rb_node rb_node;
170
171         /* group service_tree key */
172         u64 vdisktime;
173         unsigned int weight;
174         bool on_st;
175
176         /* number of cfqq currently on this group */
177         int nr_cfqq;
178
179         /* Per group busy queus average. Useful for workload slice calc. */
180         unsigned int busy_queues_avg[2];
181         /*
182          * rr lists of queues with requests, onle rr for each priority class.
183          * Counts are embedded in the cfq_rb_root
184          */
185         struct cfq_rb_root service_trees[2][3];
186         struct cfq_rb_root service_tree_idle;
187
188         unsigned long saved_workload_slice;
189         enum wl_type_t saved_workload;
190         enum wl_prio_t saved_serving_prio;
191         struct blkio_group blkg;
192 #ifdef CONFIG_CFQ_GROUP_IOSCHED
193         struct hlist_node cfqd_node;
194         atomic_t ref;
195 #endif
196 };
197
198 /*
199  * Per block device queue structure
200  */
201 struct cfq_data {
202         struct request_queue *queue;
203         /* Root service tree for cfq_groups */
204         struct cfq_rb_root grp_service_tree;
205         struct cfq_group root_group;
206
207         /*
208          * The priority currently being served
209          */
210         enum wl_prio_t serving_prio;
211         enum wl_type_t serving_type;
212         unsigned long workload_expires;
213         struct cfq_group *serving_group;
214         bool noidle_tree_requires_idle;
215
216         /*
217          * Each priority tree is sorted by next_request position.  These
218          * trees are used when determining if two or more queues are
219          * interleaving requests (see cfq_close_cooperator).
220          */
221         struct rb_root prio_trees[CFQ_PRIO_LISTS];
222
223         unsigned int busy_queues;
224
225         int rq_in_driver;
226         int rq_in_flight[2];
227
228         /*
229          * queue-depth detection
230          */
231         int rq_queued;
232         int hw_tag;
233         /*
234          * hw_tag can be
235          * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
236          *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
237          *  0 => no NCQ
238          */
239         int hw_tag_est_depth;
240         unsigned int hw_tag_samples;
241
242         /*
243          * idle window management
244          */
245         struct timer_list idle_slice_timer;
246         struct work_struct unplug_work;
247
248         struct cfq_queue *active_queue;
249         struct cfq_io_context *active_cic;
250
251         /*
252          * async queue for each priority case
253          */
254         struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
255         struct cfq_queue *async_idle_cfqq;
256
257         sector_t last_position;
258
259         /*
260          * tunables, see top of file
261          */
262         unsigned int cfq_quantum;
263         unsigned int cfq_fifo_expire[2];
264         unsigned int cfq_back_penalty;
265         unsigned int cfq_back_max;
266         unsigned int cfq_slice[2];
267         unsigned int cfq_slice_async_rq;
268         unsigned int cfq_slice_idle;
269         unsigned int cfq_latency;
270         unsigned int cfq_group_isolation;
271
272         struct list_head cic_list;
273
274         /*
275          * Fallback dummy cfqq for extreme OOM conditions
276          */
277         struct cfq_queue oom_cfqq;
278
279         unsigned long last_delayed_sync;
280
281         /* List of cfq groups being managed on this device*/
282         struct hlist_head cfqg_list;
283         struct rcu_head rcu;
284 };
285
286 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
287
288 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
289                                             enum wl_prio_t prio,
290                                             enum wl_type_t type)
291 {
292         if (!cfqg)
293                 return NULL;
294
295         if (prio == IDLE_WORKLOAD)
296                 return &cfqg->service_tree_idle;
297
298         return &cfqg->service_trees[prio][type];
299 }
300
301 enum cfqq_state_flags {
302         CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
303         CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
304         CFQ_CFQQ_FLAG_must_dispatch,    /* must be allowed a dispatch */
305         CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
306         CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
307         CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
308         CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
309         CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
310         CFQ_CFQQ_FLAG_sync,             /* synchronous queue */
311         CFQ_CFQQ_FLAG_coop,             /* cfqq is shared */
312         CFQ_CFQQ_FLAG_split_coop,       /* shared cfqq will be splitted */
313         CFQ_CFQQ_FLAG_deep,             /* sync cfqq experienced large depth */
314         CFQ_CFQQ_FLAG_wait_busy,        /* Waiting for next request */
315 };
316
317 #define CFQ_CFQQ_FNS(name)                                              \
318 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
319 {                                                                       \
320         (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);                   \
321 }                                                                       \
322 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
323 {                                                                       \
324         (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                  \
325 }                                                                       \
326 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
327 {                                                                       \
328         return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;      \
329 }
330
331 CFQ_CFQQ_FNS(on_rr);
332 CFQ_CFQQ_FNS(wait_request);
333 CFQ_CFQQ_FNS(must_dispatch);
334 CFQ_CFQQ_FNS(must_alloc_slice);
335 CFQ_CFQQ_FNS(fifo_expire);
336 CFQ_CFQQ_FNS(idle_window);
337 CFQ_CFQQ_FNS(prio_changed);
338 CFQ_CFQQ_FNS(slice_new);
339 CFQ_CFQQ_FNS(sync);
340 CFQ_CFQQ_FNS(coop);
341 CFQ_CFQQ_FNS(split_coop);
342 CFQ_CFQQ_FNS(deep);
343 CFQ_CFQQ_FNS(wait_busy);
344 #undef CFQ_CFQQ_FNS
345
346 #ifdef CONFIG_DEBUG_CFQ_IOSCHED
347 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
348         blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
349                         cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
350                         blkg_path(&(cfqq)->cfqg->blkg), ##args);
351
352 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)                          \
353         blk_add_trace_msg((cfqd)->queue, "%s " fmt,                     \
354                                 blkg_path(&(cfqg)->blkg), ##args);      \
355
356 #else
357 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
358         blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
359 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)          do {} while (0);
360 #endif
361 #define cfq_log(cfqd, fmt, args...)     \
362         blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
363
364 /* Traverses through cfq group service trees */
365 #define for_each_cfqg_st(cfqg, i, j, st) \
366         for (i = 0; i <= IDLE_WORKLOAD; i++) \
367                 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
368                         : &cfqg->service_tree_idle; \
369                         (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
370                         (i == IDLE_WORKLOAD && j == 0); \
371                         j++, st = i < IDLE_WORKLOAD ? \
372                         &cfqg->service_trees[i][j]: NULL) \
373
374
375 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
376 {
377         if (cfq_class_idle(cfqq))
378                 return IDLE_WORKLOAD;
379         if (cfq_class_rt(cfqq))
380                 return RT_WORKLOAD;
381         return BE_WORKLOAD;
382 }
383
384
385 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
386 {
387         if (!cfq_cfqq_sync(cfqq))
388                 return ASYNC_WORKLOAD;
389         if (!cfq_cfqq_idle_window(cfqq))
390                 return SYNC_NOIDLE_WORKLOAD;
391         return SYNC_WORKLOAD;
392 }
393
394 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
395                                         struct cfq_data *cfqd,
396                                         struct cfq_group *cfqg)
397 {
398         if (wl == IDLE_WORKLOAD)
399                 return cfqg->service_tree_idle.count;
400
401         return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
402                 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
403                 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
404 }
405
406 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
407                                         struct cfq_group *cfqg)
408 {
409         return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
410                 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
411 }
412
413 static void cfq_dispatch_insert(struct request_queue *, struct request *);
414 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
415                                        struct io_context *, gfp_t);
416 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
417                                                 struct io_context *);
418
419 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
420                                             bool is_sync)
421 {
422         return cic->cfqq[is_sync];
423 }
424
425 static inline void cic_set_cfqq(struct cfq_io_context *cic,
426                                 struct cfq_queue *cfqq, bool is_sync)
427 {
428         cic->cfqq[is_sync] = cfqq;
429 }
430
431 /*
432  * We regard a request as SYNC, if it's either a read or has the SYNC bit
433  * set (in which case it could also be direct WRITE).
434  */
435 static inline bool cfq_bio_sync(struct bio *bio)
436 {
437         return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
438 }
439
440 /*
441  * scheduler run of queue, if there are requests pending and no one in the
442  * driver that will restart queueing
443  */
444 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
445 {
446         if (cfqd->busy_queues) {
447                 cfq_log(cfqd, "schedule dispatch");
448                 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
449         }
450 }
451
452 static int cfq_queue_empty(struct request_queue *q)
453 {
454         struct cfq_data *cfqd = q->elevator->elevator_data;
455
456         return !cfqd->rq_queued;
457 }
458
459 /*
460  * Scale schedule slice based on io priority. Use the sync time slice only
461  * if a queue is marked sync and has sync io queued. A sync queue with async
462  * io only, should not get full sync slice length.
463  */
464 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
465                                  unsigned short prio)
466 {
467         const int base_slice = cfqd->cfq_slice[sync];
468
469         WARN_ON(prio >= IOPRIO_BE_NR);
470
471         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
472 }
473
474 static inline int
475 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
476 {
477         return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
478 }
479
480 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
481 {
482         u64 d = delta << CFQ_SERVICE_SHIFT;
483
484         d = d * BLKIO_WEIGHT_DEFAULT;
485         do_div(d, cfqg->weight);
486         return d;
487 }
488
489 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
490 {
491         s64 delta = (s64)(vdisktime - min_vdisktime);
492         if (delta > 0)
493                 min_vdisktime = vdisktime;
494
495         return min_vdisktime;
496 }
497
498 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
499 {
500         s64 delta = (s64)(vdisktime - min_vdisktime);
501         if (delta < 0)
502                 min_vdisktime = vdisktime;
503
504         return min_vdisktime;
505 }
506
507 static void update_min_vdisktime(struct cfq_rb_root *st)
508 {
509         u64 vdisktime = st->min_vdisktime;
510         struct cfq_group *cfqg;
511
512         if (st->active) {
513                 cfqg = rb_entry_cfqg(st->active);
514                 vdisktime = cfqg->vdisktime;
515         }
516
517         if (st->left) {
518                 cfqg = rb_entry_cfqg(st->left);
519                 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
520         }
521
522         st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
523 }
524
525 /*
526  * get averaged number of queues of RT/BE priority.
527  * average is updated, with a formula that gives more weight to higher numbers,
528  * to quickly follows sudden increases and decrease slowly
529  */
530
531 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
532                                         struct cfq_group *cfqg, bool rt)
533 {
534         unsigned min_q, max_q;
535         unsigned mult  = cfq_hist_divisor - 1;
536         unsigned round = cfq_hist_divisor / 2;
537         unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
538
539         min_q = min(cfqg->busy_queues_avg[rt], busy);
540         max_q = max(cfqg->busy_queues_avg[rt], busy);
541         cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
542                 cfq_hist_divisor;
543         return cfqg->busy_queues_avg[rt];
544 }
545
546 static inline unsigned
547 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
548 {
549         struct cfq_rb_root *st = &cfqd->grp_service_tree;
550
551         return cfq_target_latency * cfqg->weight / st->total_weight;
552 }
553
554 static inline void
555 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
556 {
557         unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
558         if (cfqd->cfq_latency) {
559                 /*
560                  * interested queues (we consider only the ones with the same
561                  * priority class in the cfq group)
562                  */
563                 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
564                                                 cfq_class_rt(cfqq));
565                 unsigned sync_slice = cfqd->cfq_slice[1];
566                 unsigned expect_latency = sync_slice * iq;
567                 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
568
569                 if (expect_latency > group_slice) {
570                         unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
571                         /* scale low_slice according to IO priority
572                          * and sync vs async */
573                         unsigned low_slice =
574                                 min(slice, base_low_slice * slice / sync_slice);
575                         /* the adapted slice value is scaled to fit all iqs
576                          * into the target latency */
577                         slice = max(slice * group_slice / expect_latency,
578                                     low_slice);
579                 }
580         }
581         cfqq->slice_start = jiffies;
582         cfqq->slice_end = jiffies + slice;
583         cfqq->allocated_slice = slice;
584         cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
585 }
586
587 /*
588  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
589  * isn't valid until the first request from the dispatch is activated
590  * and the slice time set.
591  */
592 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
593 {
594         if (cfq_cfqq_slice_new(cfqq))
595                 return 0;
596         if (time_before(jiffies, cfqq->slice_end))
597                 return 0;
598
599         return 1;
600 }
601
602 /*
603  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
604  * We choose the request that is closest to the head right now. Distance
605  * behind the head is penalized and only allowed to a certain extent.
606  */
607 static struct request *
608 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
609 {
610         sector_t s1, s2, d1 = 0, d2 = 0;
611         unsigned long back_max;
612 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
613 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
614         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
615
616         if (rq1 == NULL || rq1 == rq2)
617                 return rq2;
618         if (rq2 == NULL)
619                 return rq1;
620
621         if (rq_is_sync(rq1) && !rq_is_sync(rq2))
622                 return rq1;
623         else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
624                 return rq2;
625         if (rq_is_meta(rq1) && !rq_is_meta(rq2))
626                 return rq1;
627         else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
628                 return rq2;
629
630         s1 = blk_rq_pos(rq1);
631         s2 = blk_rq_pos(rq2);
632
633         /*
634          * by definition, 1KiB is 2 sectors
635          */
636         back_max = cfqd->cfq_back_max * 2;
637
638         /*
639          * Strict one way elevator _except_ in the case where we allow
640          * short backward seeks which are biased as twice the cost of a
641          * similar forward seek.
642          */
643         if (s1 >= last)
644                 d1 = s1 - last;
645         else if (s1 + back_max >= last)
646                 d1 = (last - s1) * cfqd->cfq_back_penalty;
647         else
648                 wrap |= CFQ_RQ1_WRAP;
649
650         if (s2 >= last)
651                 d2 = s2 - last;
652         else if (s2 + back_max >= last)
653                 d2 = (last - s2) * cfqd->cfq_back_penalty;
654         else
655                 wrap |= CFQ_RQ2_WRAP;
656
657         /* Found required data */
658
659         /*
660          * By doing switch() on the bit mask "wrap" we avoid having to
661          * check two variables for all permutations: --> faster!
662          */
663         switch (wrap) {
664         case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
665                 if (d1 < d2)
666                         return rq1;
667                 else if (d2 < d1)
668                         return rq2;
669                 else {
670                         if (s1 >= s2)
671                                 return rq1;
672                         else
673                                 return rq2;
674                 }
675
676         case CFQ_RQ2_WRAP:
677                 return rq1;
678         case CFQ_RQ1_WRAP:
679                 return rq2;
680         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
681         default:
682                 /*
683                  * Since both rqs are wrapped,
684                  * start with the one that's further behind head
685                  * (--> only *one* back seek required),
686                  * since back seek takes more time than forward.
687                  */
688                 if (s1 <= s2)
689                         return rq1;
690                 else
691                         return rq2;
692         }
693 }
694
695 /*
696  * The below is leftmost cache rbtree addon
697  */
698 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
699 {
700         /* Service tree is empty */
701         if (!root->count)
702                 return NULL;
703
704         if (!root->left)
705                 root->left = rb_first(&root->rb);
706
707         if (root->left)
708                 return rb_entry(root->left, struct cfq_queue, rb_node);
709
710         return NULL;
711 }
712
713 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
714 {
715         if (!root->left)
716                 root->left = rb_first(&root->rb);
717
718         if (root->left)
719                 return rb_entry_cfqg(root->left);
720
721         return NULL;
722 }
723
724 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
725 {
726         rb_erase(n, root);
727         RB_CLEAR_NODE(n);
728 }
729
730 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
731 {
732         if (root->left == n)
733                 root->left = NULL;
734         rb_erase_init(n, &root->rb);
735         --root->count;
736 }
737
738 /*
739  * would be nice to take fifo expire time into account as well
740  */
741 static struct request *
742 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
743                   struct request *last)
744 {
745         struct rb_node *rbnext = rb_next(&last->rb_node);
746         struct rb_node *rbprev = rb_prev(&last->rb_node);
747         struct request *next = NULL, *prev = NULL;
748
749         BUG_ON(RB_EMPTY_NODE(&last->rb_node));
750
751         if (rbprev)
752                 prev = rb_entry_rq(rbprev);
753
754         if (rbnext)
755                 next = rb_entry_rq(rbnext);
756         else {
757                 rbnext = rb_first(&cfqq->sort_list);
758                 if (rbnext && rbnext != &last->rb_node)
759                         next = rb_entry_rq(rbnext);
760         }
761
762         return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
763 }
764
765 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
766                                       struct cfq_queue *cfqq)
767 {
768         /*
769          * just an approximation, should be ok.
770          */
771         return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
772                        cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
773 }
774
775 static inline s64
776 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
777 {
778         return cfqg->vdisktime - st->min_vdisktime;
779 }
780
781 static void
782 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
783 {
784         struct rb_node **node = &st->rb.rb_node;
785         struct rb_node *parent = NULL;
786         struct cfq_group *__cfqg;
787         s64 key = cfqg_key(st, cfqg);
788         int left = 1;
789
790         while (*node != NULL) {
791                 parent = *node;
792                 __cfqg = rb_entry_cfqg(parent);
793
794                 if (key < cfqg_key(st, __cfqg))
795                         node = &parent->rb_left;
796                 else {
797                         node = &parent->rb_right;
798                         left = 0;
799                 }
800         }
801
802         if (left)
803                 st->left = &cfqg->rb_node;
804
805         rb_link_node(&cfqg->rb_node, parent, node);
806         rb_insert_color(&cfqg->rb_node, &st->rb);
807 }
808
809 static void
810 cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
811 {
812         struct cfq_rb_root *st = &cfqd->grp_service_tree;
813         struct cfq_group *__cfqg;
814         struct rb_node *n;
815
816         cfqg->nr_cfqq++;
817         if (cfqg->on_st)
818                 return;
819
820         /*
821          * Currently put the group at the end. Later implement something
822          * so that groups get lesser vtime based on their weights, so that
823          * if group does not loose all if it was not continously backlogged.
824          */
825         n = rb_last(&st->rb);
826         if (n) {
827                 __cfqg = rb_entry_cfqg(n);
828                 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
829         } else
830                 cfqg->vdisktime = st->min_vdisktime;
831
832         __cfq_group_service_tree_add(st, cfqg);
833         cfqg->on_st = true;
834         st->total_weight += cfqg->weight;
835 }
836
837 static void
838 cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
839 {
840         struct cfq_rb_root *st = &cfqd->grp_service_tree;
841
842         if (st->active == &cfqg->rb_node)
843                 st->active = NULL;
844
845         BUG_ON(cfqg->nr_cfqq < 1);
846         cfqg->nr_cfqq--;
847
848         /* If there are other cfq queues under this group, don't delete it */
849         if (cfqg->nr_cfqq)
850                 return;
851
852         cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
853         cfqg->on_st = false;
854         st->total_weight -= cfqg->weight;
855         if (!RB_EMPTY_NODE(&cfqg->rb_node))
856                 cfq_rb_erase(&cfqg->rb_node, st);
857         cfqg->saved_workload_slice = 0;
858         blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
859 }
860
861 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
862 {
863         unsigned int slice_used;
864
865         /*
866          * Queue got expired before even a single request completed or
867          * got expired immediately after first request completion.
868          */
869         if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
870                 /*
871                  * Also charge the seek time incurred to the group, otherwise
872                  * if there are mutiple queues in the group, each can dispatch
873                  * a single request on seeky media and cause lots of seek time
874                  * and group will never know it.
875                  */
876                 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
877                                         1);
878         } else {
879                 slice_used = jiffies - cfqq->slice_start;
880                 if (slice_used > cfqq->allocated_slice)
881                         slice_used = cfqq->allocated_slice;
882         }
883
884         cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u", slice_used);
885         return slice_used;
886 }
887
888 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
889                                 struct cfq_queue *cfqq)
890 {
891         struct cfq_rb_root *st = &cfqd->grp_service_tree;
892         unsigned int used_sl, charge_sl;
893         int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
894                         - cfqg->service_tree_idle.count;
895
896         BUG_ON(nr_sync < 0);
897         used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
898
899         if (!cfq_cfqq_sync(cfqq) && !nr_sync)
900                 charge_sl = cfqq->allocated_slice;
901
902         /* Can't update vdisktime while group is on service tree */
903         cfq_rb_erase(&cfqg->rb_node, st);
904         cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
905         __cfq_group_service_tree_add(st, cfqg);
906
907         /* This group is being expired. Save the context */
908         if (time_after(cfqd->workload_expires, jiffies)) {
909                 cfqg->saved_workload_slice = cfqd->workload_expires
910                                                 - jiffies;
911                 cfqg->saved_workload = cfqd->serving_type;
912                 cfqg->saved_serving_prio = cfqd->serving_prio;
913         } else
914                 cfqg->saved_workload_slice = 0;
915
916         cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
917                                         st->min_vdisktime);
918         blkiocg_update_timeslice_used(&cfqg->blkg, used_sl);
919 }
920
921 #ifdef CONFIG_CFQ_GROUP_IOSCHED
922 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
923 {
924         if (blkg)
925                 return container_of(blkg, struct cfq_group, blkg);
926         return NULL;
927 }
928
929 void
930 cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
931 {
932         cfqg_of_blkg(blkg)->weight = weight;
933 }
934
935 static struct cfq_group *
936 cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
937 {
938         struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
939         struct cfq_group *cfqg = NULL;
940         void *key = cfqd;
941         int i, j;
942         struct cfq_rb_root *st;
943         struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
944         unsigned int major, minor;
945
946         cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
947         if (cfqg || !create)
948                 goto done;
949
950         cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
951         if (!cfqg)
952                 goto done;
953
954         cfqg->weight = blkcg->weight;
955         for_each_cfqg_st(cfqg, i, j, st)
956                 *st = CFQ_RB_ROOT;
957         RB_CLEAR_NODE(&cfqg->rb_node);
958
959         /*
960          * Take the initial reference that will be released on destroy
961          * This can be thought of a joint reference by cgroup and
962          * elevator which will be dropped by either elevator exit
963          * or cgroup deletion path depending on who is exiting first.
964          */
965         atomic_set(&cfqg->ref, 1);
966
967         /* Add group onto cgroup list */
968         sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
969         blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
970                                         MKDEV(major, minor));
971
972         /* Add group on cfqd list */
973         hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
974
975 done:
976         return cfqg;
977 }
978
979 /*
980  * Search for the cfq group current task belongs to. If create = 1, then also
981  * create the cfq group if it does not exist. request_queue lock must be held.
982  */
983 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
984 {
985         struct cgroup *cgroup;
986         struct cfq_group *cfqg = NULL;
987
988         rcu_read_lock();
989         cgroup = task_cgroup(current, blkio_subsys_id);
990         cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
991         if (!cfqg && create)
992                 cfqg = &cfqd->root_group;
993         rcu_read_unlock();
994         return cfqg;
995 }
996
997 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
998 {
999         /* Currently, all async queues are mapped to root group */
1000         if (!cfq_cfqq_sync(cfqq))
1001                 cfqg = &cfqq->cfqd->root_group;
1002
1003         cfqq->cfqg = cfqg;
1004         /* cfqq reference on cfqg */
1005         atomic_inc(&cfqq->cfqg->ref);
1006 }
1007
1008 static void cfq_put_cfqg(struct cfq_group *cfqg)
1009 {
1010         struct cfq_rb_root *st;
1011         int i, j;
1012
1013         BUG_ON(atomic_read(&cfqg->ref) <= 0);
1014         if (!atomic_dec_and_test(&cfqg->ref))
1015                 return;
1016         for_each_cfqg_st(cfqg, i, j, st)
1017                 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1018         kfree(cfqg);
1019 }
1020
1021 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1022 {
1023         /* Something wrong if we are trying to remove same group twice */
1024         BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1025
1026         hlist_del_init(&cfqg->cfqd_node);
1027
1028         /*
1029          * Put the reference taken at the time of creation so that when all
1030          * queues are gone, group can be destroyed.
1031          */
1032         cfq_put_cfqg(cfqg);
1033 }
1034
1035 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1036 {
1037         struct hlist_node *pos, *n;
1038         struct cfq_group *cfqg;
1039
1040         hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1041                 /*
1042                  * If cgroup removal path got to blk_group first and removed
1043                  * it from cgroup list, then it will take care of destroying
1044                  * cfqg also.
1045                  */
1046                 if (!blkiocg_del_blkio_group(&cfqg->blkg))
1047                         cfq_destroy_cfqg(cfqd, cfqg);
1048         }
1049 }
1050
1051 /*
1052  * Blk cgroup controller notification saying that blkio_group object is being
1053  * delinked as associated cgroup object is going away. That also means that
1054  * no new IO will come in this group. So get rid of this group as soon as
1055  * any pending IO in the group is finished.
1056  *
1057  * This function is called under rcu_read_lock(). key is the rcu protected
1058  * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1059  * read lock.
1060  *
1061  * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1062  * it should not be NULL as even if elevator was exiting, cgroup deltion
1063  * path got to it first.
1064  */
1065 void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1066 {
1067         unsigned long  flags;
1068         struct cfq_data *cfqd = key;
1069
1070         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1071         cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1072         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1073 }
1074
1075 #else /* GROUP_IOSCHED */
1076 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1077 {
1078         return &cfqd->root_group;
1079 }
1080 static inline void
1081 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1082         cfqq->cfqg = cfqg;
1083 }
1084
1085 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1086 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1087
1088 #endif /* GROUP_IOSCHED */
1089
1090 /*
1091  * The cfqd->service_trees holds all pending cfq_queue's that have
1092  * requests waiting to be processed. It is sorted in the order that
1093  * we will service the queues.
1094  */
1095 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1096                                  bool add_front)
1097 {
1098         struct rb_node **p, *parent;
1099         struct cfq_queue *__cfqq;
1100         unsigned long rb_key;
1101         struct cfq_rb_root *service_tree;
1102         int left;
1103         int new_cfqq = 1;
1104         int group_changed = 0;
1105
1106 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1107         if (!cfqd->cfq_group_isolation
1108             && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1109             && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1110                 /* Move this cfq to root group */
1111                 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1112                 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1113                         cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1114                 cfqq->orig_cfqg = cfqq->cfqg;
1115                 cfqq->cfqg = &cfqd->root_group;
1116                 atomic_inc(&cfqd->root_group.ref);
1117                 group_changed = 1;
1118         } else if (!cfqd->cfq_group_isolation
1119                    && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1120                 /* cfqq is sequential now needs to go to its original group */
1121                 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1122                 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1123                         cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1124                 cfq_put_cfqg(cfqq->cfqg);
1125                 cfqq->cfqg = cfqq->orig_cfqg;
1126                 cfqq->orig_cfqg = NULL;
1127                 group_changed = 1;
1128                 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1129         }
1130 #endif
1131
1132         service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1133                                                 cfqq_type(cfqq));
1134         if (cfq_class_idle(cfqq)) {
1135                 rb_key = CFQ_IDLE_DELAY;
1136                 parent = rb_last(&service_tree->rb);
1137                 if (parent && parent != &cfqq->rb_node) {
1138                         __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1139                         rb_key += __cfqq->rb_key;
1140                 } else
1141                         rb_key += jiffies;
1142         } else if (!add_front) {
1143                 /*
1144                  * Get our rb key offset. Subtract any residual slice
1145                  * value carried from last service. A negative resid
1146                  * count indicates slice overrun, and this should position
1147                  * the next service time further away in the tree.
1148                  */
1149                 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1150                 rb_key -= cfqq->slice_resid;
1151                 cfqq->slice_resid = 0;
1152         } else {
1153                 rb_key = -HZ;
1154                 __cfqq = cfq_rb_first(service_tree);
1155                 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1156         }
1157
1158         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1159                 new_cfqq = 0;
1160                 /*
1161                  * same position, nothing more to do
1162                  */
1163                 if (rb_key == cfqq->rb_key &&
1164                     cfqq->service_tree == service_tree)
1165                         return;
1166
1167                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1168                 cfqq->service_tree = NULL;
1169         }
1170
1171         left = 1;
1172         parent = NULL;
1173         cfqq->service_tree = service_tree;
1174         p = &service_tree->rb.rb_node;
1175         while (*p) {
1176                 struct rb_node **n;
1177
1178                 parent = *p;
1179                 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1180
1181                 /*
1182                  * sort by key, that represents service time.
1183                  */
1184                 if (time_before(rb_key, __cfqq->rb_key))
1185                         n = &(*p)->rb_left;
1186                 else {
1187                         n = &(*p)->rb_right;
1188                         left = 0;
1189                 }
1190
1191                 p = n;
1192         }
1193
1194         if (left)
1195                 service_tree->left = &cfqq->rb_node;
1196
1197         cfqq->rb_key = rb_key;
1198         rb_link_node(&cfqq->rb_node, parent, p);
1199         rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1200         service_tree->count++;
1201         if ((add_front || !new_cfqq) && !group_changed)
1202                 return;
1203         cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1204 }
1205
1206 static struct cfq_queue *
1207 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1208                      sector_t sector, struct rb_node **ret_parent,
1209                      struct rb_node ***rb_link)
1210 {
1211         struct rb_node **p, *parent;
1212         struct cfq_queue *cfqq = NULL;
1213
1214         parent = NULL;
1215         p = &root->rb_node;
1216         while (*p) {
1217                 struct rb_node **n;
1218
1219                 parent = *p;
1220                 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1221
1222                 /*
1223                  * Sort strictly based on sector.  Smallest to the left,
1224                  * largest to the right.
1225                  */
1226                 if (sector > blk_rq_pos(cfqq->next_rq))
1227                         n = &(*p)->rb_right;
1228                 else if (sector < blk_rq_pos(cfqq->next_rq))
1229                         n = &(*p)->rb_left;
1230                 else
1231                         break;
1232                 p = n;
1233                 cfqq = NULL;
1234         }
1235
1236         *ret_parent = parent;
1237         if (rb_link)
1238                 *rb_link = p;
1239         return cfqq;
1240 }
1241
1242 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1243 {
1244         struct rb_node **p, *parent;
1245         struct cfq_queue *__cfqq;
1246
1247         if (cfqq->p_root) {
1248                 rb_erase(&cfqq->p_node, cfqq->p_root);
1249                 cfqq->p_root = NULL;
1250         }
1251
1252         if (cfq_class_idle(cfqq))
1253                 return;
1254         if (!cfqq->next_rq)
1255                 return;
1256
1257         cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1258         __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1259                                       blk_rq_pos(cfqq->next_rq), &parent, &p);
1260         if (!__cfqq) {
1261                 rb_link_node(&cfqq->p_node, parent, p);
1262                 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1263         } else
1264                 cfqq->p_root = NULL;
1265 }
1266
1267 /*
1268  * Update cfqq's position in the service tree.
1269  */
1270 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1271 {
1272         /*
1273          * Resorting requires the cfqq to be on the RR list already.
1274          */
1275         if (cfq_cfqq_on_rr(cfqq)) {
1276                 cfq_service_tree_add(cfqd, cfqq, 0);
1277                 cfq_prio_tree_add(cfqd, cfqq);
1278         }
1279 }
1280
1281 /*
1282  * add to busy list of queues for service, trying to be fair in ordering
1283  * the pending list according to last request service
1284  */
1285 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1286 {
1287         cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1288         BUG_ON(cfq_cfqq_on_rr(cfqq));
1289         cfq_mark_cfqq_on_rr(cfqq);
1290         cfqd->busy_queues++;
1291
1292         cfq_resort_rr_list(cfqd, cfqq);
1293 }
1294
1295 /*
1296  * Called when the cfqq no longer has requests pending, remove it from
1297  * the service tree.
1298  */
1299 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1300 {
1301         cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1302         BUG_ON(!cfq_cfqq_on_rr(cfqq));
1303         cfq_clear_cfqq_on_rr(cfqq);
1304
1305         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1306                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1307                 cfqq->service_tree = NULL;
1308         }
1309         if (cfqq->p_root) {
1310                 rb_erase(&cfqq->p_node, cfqq->p_root);
1311                 cfqq->p_root = NULL;
1312         }
1313
1314         cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1315         BUG_ON(!cfqd->busy_queues);
1316         cfqd->busy_queues--;
1317 }
1318
1319 /*
1320  * rb tree support functions
1321  */
1322 static void cfq_del_rq_rb(struct request *rq)
1323 {
1324         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1325         const int sync = rq_is_sync(rq);
1326
1327         BUG_ON(!cfqq->queued[sync]);
1328         cfqq->queued[sync]--;
1329
1330         elv_rb_del(&cfqq->sort_list, rq);
1331
1332         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1333                 /*
1334                  * Queue will be deleted from service tree when we actually
1335                  * expire it later. Right now just remove it from prio tree
1336                  * as it is empty.
1337                  */
1338                 if (cfqq->p_root) {
1339                         rb_erase(&cfqq->p_node, cfqq->p_root);
1340                         cfqq->p_root = NULL;
1341                 }
1342         }
1343 }
1344
1345 static void cfq_add_rq_rb(struct request *rq)
1346 {
1347         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1348         struct cfq_data *cfqd = cfqq->cfqd;
1349         struct request *__alias, *prev;
1350
1351         cfqq->queued[rq_is_sync(rq)]++;
1352
1353         /*
1354          * looks a little odd, but the first insert might return an alias.
1355          * if that happens, put the alias on the dispatch list
1356          */
1357         while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1358                 cfq_dispatch_insert(cfqd->queue, __alias);
1359
1360         if (!cfq_cfqq_on_rr(cfqq))
1361                 cfq_add_cfqq_rr(cfqd, cfqq);
1362
1363         /*
1364          * check if this request is a better next-serve candidate
1365          */
1366         prev = cfqq->next_rq;
1367         cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1368
1369         /*
1370          * adjust priority tree position, if ->next_rq changes
1371          */
1372         if (prev != cfqq->next_rq)
1373                 cfq_prio_tree_add(cfqd, cfqq);
1374
1375         BUG_ON(!cfqq->next_rq);
1376 }
1377
1378 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1379 {
1380         elv_rb_del(&cfqq->sort_list, rq);
1381         cfqq->queued[rq_is_sync(rq)]--;
1382         cfq_add_rq_rb(rq);
1383 }
1384
1385 static struct request *
1386 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1387 {
1388         struct task_struct *tsk = current;
1389         struct cfq_io_context *cic;
1390         struct cfq_queue *cfqq;
1391
1392         cic = cfq_cic_lookup(cfqd, tsk->io_context);
1393         if (!cic)
1394                 return NULL;
1395
1396         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1397         if (cfqq) {
1398                 sector_t sector = bio->bi_sector + bio_sectors(bio);
1399
1400                 return elv_rb_find(&cfqq->sort_list, sector);
1401         }
1402
1403         return NULL;
1404 }
1405
1406 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1407 {
1408         struct cfq_data *cfqd = q->elevator->elevator_data;
1409
1410         cfqd->rq_in_driver++;
1411         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1412                                                 cfqd->rq_in_driver);
1413
1414         cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1415 }
1416
1417 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1418 {
1419         struct cfq_data *cfqd = q->elevator->elevator_data;
1420
1421         WARN_ON(!cfqd->rq_in_driver);
1422         cfqd->rq_in_driver--;
1423         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1424                                                 cfqd->rq_in_driver);
1425 }
1426
1427 static void cfq_remove_request(struct request *rq)
1428 {
1429         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1430
1431         if (cfqq->next_rq == rq)
1432                 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1433
1434         list_del_init(&rq->queuelist);
1435         cfq_del_rq_rb(rq);
1436
1437         cfqq->cfqd->rq_queued--;
1438         if (rq_is_meta(rq)) {
1439                 WARN_ON(!cfqq->meta_pending);
1440                 cfqq->meta_pending--;
1441         }
1442 }
1443
1444 static int cfq_merge(struct request_queue *q, struct request **req,
1445                      struct bio *bio)
1446 {
1447         struct cfq_data *cfqd = q->elevator->elevator_data;
1448         struct request *__rq;
1449
1450         __rq = cfq_find_rq_fmerge(cfqd, bio);
1451         if (__rq && elv_rq_merge_ok(__rq, bio)) {
1452                 *req = __rq;
1453                 return ELEVATOR_FRONT_MERGE;
1454         }
1455
1456         return ELEVATOR_NO_MERGE;
1457 }
1458
1459 static void cfq_merged_request(struct request_queue *q, struct request *req,
1460                                int type)
1461 {
1462         if (type == ELEVATOR_FRONT_MERGE) {
1463                 struct cfq_queue *cfqq = RQ_CFQQ(req);
1464
1465                 cfq_reposition_rq_rb(cfqq, req);
1466         }
1467 }
1468
1469 static void
1470 cfq_merged_requests(struct request_queue *q, struct request *rq,
1471                     struct request *next)
1472 {
1473         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1474         /*
1475          * reposition in fifo if next is older than rq
1476          */
1477         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1478             time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1479                 list_move(&rq->queuelist, &next->queuelist);
1480                 rq_set_fifo_time(rq, rq_fifo_time(next));
1481         }
1482
1483         if (cfqq->next_rq == next)
1484                 cfqq->next_rq = rq;
1485         cfq_remove_request(next);
1486 }
1487
1488 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1489                            struct bio *bio)
1490 {
1491         struct cfq_data *cfqd = q->elevator->elevator_data;
1492         struct cfq_io_context *cic;
1493         struct cfq_queue *cfqq;
1494
1495         /*
1496          * Disallow merge of a sync bio into an async request.
1497          */
1498         if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1499                 return false;
1500
1501         /*
1502          * Lookup the cfqq that this bio will be queued with. Allow
1503          * merge only if rq is queued there.
1504          */
1505         cic = cfq_cic_lookup(cfqd, current->io_context);
1506         if (!cic)
1507                 return false;
1508
1509         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1510         return cfqq == RQ_CFQQ(rq);
1511 }
1512
1513 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1514                                    struct cfq_queue *cfqq)
1515 {
1516         if (cfqq) {
1517                 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1518                                 cfqd->serving_prio, cfqd->serving_type);
1519                 cfqq->slice_start = 0;
1520                 cfqq->dispatch_start = jiffies;
1521                 cfqq->allocated_slice = 0;
1522                 cfqq->slice_end = 0;
1523                 cfqq->slice_dispatch = 0;
1524
1525                 cfq_clear_cfqq_wait_request(cfqq);
1526                 cfq_clear_cfqq_must_dispatch(cfqq);
1527                 cfq_clear_cfqq_must_alloc_slice(cfqq);
1528                 cfq_clear_cfqq_fifo_expire(cfqq);
1529                 cfq_mark_cfqq_slice_new(cfqq);
1530
1531                 del_timer(&cfqd->idle_slice_timer);
1532         }
1533
1534         cfqd->active_queue = cfqq;
1535 }
1536
1537 /*
1538  * current cfqq expired its slice (or was too idle), select new one
1539  */
1540 static void
1541 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1542                     bool timed_out)
1543 {
1544         cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1545
1546         if (cfq_cfqq_wait_request(cfqq))
1547                 del_timer(&cfqd->idle_slice_timer);
1548
1549         cfq_clear_cfqq_wait_request(cfqq);
1550         cfq_clear_cfqq_wait_busy(cfqq);
1551
1552         /*
1553          * If this cfqq is shared between multiple processes, check to
1554          * make sure that those processes are still issuing I/Os within
1555          * the mean seek distance.  If not, it may be time to break the
1556          * queues apart again.
1557          */
1558         if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1559                 cfq_mark_cfqq_split_coop(cfqq);
1560
1561         /*
1562          * store what was left of this slice, if the queue idled/timed out
1563          */
1564         if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1565                 cfqq->slice_resid = cfqq->slice_end - jiffies;
1566                 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1567         }
1568
1569         cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1570
1571         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1572                 cfq_del_cfqq_rr(cfqd, cfqq);
1573
1574         cfq_resort_rr_list(cfqd, cfqq);
1575
1576         if (cfqq == cfqd->active_queue)
1577                 cfqd->active_queue = NULL;
1578
1579         if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1580                 cfqd->grp_service_tree.active = NULL;
1581
1582         if (cfqd->active_cic) {
1583                 put_io_context(cfqd->active_cic->ioc);
1584                 cfqd->active_cic = NULL;
1585         }
1586 }
1587
1588 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1589 {
1590         struct cfq_queue *cfqq = cfqd->active_queue;
1591
1592         if (cfqq)
1593                 __cfq_slice_expired(cfqd, cfqq, timed_out);
1594 }
1595
1596 /*
1597  * Get next queue for service. Unless we have a queue preemption,
1598  * we'll simply select the first cfqq in the service tree.
1599  */
1600 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1601 {
1602         struct cfq_rb_root *service_tree =
1603                 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1604                                         cfqd->serving_type);
1605
1606         if (!cfqd->rq_queued)
1607                 return NULL;
1608
1609         /* There is nothing to dispatch */
1610         if (!service_tree)
1611                 return NULL;
1612         if (RB_EMPTY_ROOT(&service_tree->rb))
1613                 return NULL;
1614         return cfq_rb_first(service_tree);
1615 }
1616
1617 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1618 {
1619         struct cfq_group *cfqg;
1620         struct cfq_queue *cfqq;
1621         int i, j;
1622         struct cfq_rb_root *st;
1623
1624         if (!cfqd->rq_queued)
1625                 return NULL;
1626
1627         cfqg = cfq_get_next_cfqg(cfqd);
1628         if (!cfqg)
1629                 return NULL;
1630
1631         for_each_cfqg_st(cfqg, i, j, st)
1632                 if ((cfqq = cfq_rb_first(st)) != NULL)
1633                         return cfqq;
1634         return NULL;
1635 }
1636
1637 /*
1638  * Get and set a new active queue for service.
1639  */
1640 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1641                                               struct cfq_queue *cfqq)
1642 {
1643         if (!cfqq)
1644                 cfqq = cfq_get_next_queue(cfqd);
1645
1646         __cfq_set_active_queue(cfqd, cfqq);
1647         return cfqq;
1648 }
1649
1650 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1651                                           struct request *rq)
1652 {
1653         if (blk_rq_pos(rq) >= cfqd->last_position)
1654                 return blk_rq_pos(rq) - cfqd->last_position;
1655         else
1656                 return cfqd->last_position - blk_rq_pos(rq);
1657 }
1658
1659 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1660                                struct request *rq)
1661 {
1662         return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1663 }
1664
1665 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1666                                     struct cfq_queue *cur_cfqq)
1667 {
1668         struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1669         struct rb_node *parent, *node;
1670         struct cfq_queue *__cfqq;
1671         sector_t sector = cfqd->last_position;
1672
1673         if (RB_EMPTY_ROOT(root))
1674                 return NULL;
1675
1676         /*
1677          * First, if we find a request starting at the end of the last
1678          * request, choose it.
1679          */
1680         __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1681         if (__cfqq)
1682                 return __cfqq;
1683
1684         /*
1685          * If the exact sector wasn't found, the parent of the NULL leaf
1686          * will contain the closest sector.
1687          */
1688         __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1689         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1690                 return __cfqq;
1691
1692         if (blk_rq_pos(__cfqq->next_rq) < sector)
1693                 node = rb_next(&__cfqq->p_node);
1694         else
1695                 node = rb_prev(&__cfqq->p_node);
1696         if (!node)
1697                 return NULL;
1698
1699         __cfqq = rb_entry(node, struct cfq_queue, p_node);
1700         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1701                 return __cfqq;
1702
1703         return NULL;
1704 }
1705
1706 /*
1707  * cfqd - obvious
1708  * cur_cfqq - passed in so that we don't decide that the current queue is
1709  *            closely cooperating with itself.
1710  *
1711  * So, basically we're assuming that that cur_cfqq has dispatched at least
1712  * one request, and that cfqd->last_position reflects a position on the disk
1713  * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1714  * assumption.
1715  */
1716 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1717                                               struct cfq_queue *cur_cfqq)
1718 {
1719         struct cfq_queue *cfqq;
1720
1721         if (cfq_class_idle(cur_cfqq))
1722                 return NULL;
1723         if (!cfq_cfqq_sync(cur_cfqq))
1724                 return NULL;
1725         if (CFQQ_SEEKY(cur_cfqq))
1726                 return NULL;
1727
1728         /*
1729          * Don't search priority tree if it's the only queue in the group.
1730          */
1731         if (cur_cfqq->cfqg->nr_cfqq == 1)
1732                 return NULL;
1733
1734         /*
1735          * We should notice if some of the queues are cooperating, eg
1736          * working closely on the same area of the disk. In that case,
1737          * we can group them together and don't waste time idling.
1738          */
1739         cfqq = cfqq_close(cfqd, cur_cfqq);
1740         if (!cfqq)
1741                 return NULL;
1742
1743         /* If new queue belongs to different cfq_group, don't choose it */
1744         if (cur_cfqq->cfqg != cfqq->cfqg)
1745                 return NULL;
1746
1747         /*
1748          * It only makes sense to merge sync queues.
1749          */
1750         if (!cfq_cfqq_sync(cfqq))
1751                 return NULL;
1752         if (CFQQ_SEEKY(cfqq))
1753                 return NULL;
1754
1755         /*
1756          * Do not merge queues of different priority classes
1757          */
1758         if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1759                 return NULL;
1760
1761         return cfqq;
1762 }
1763
1764 /*
1765  * Determine whether we should enforce idle window for this queue.
1766  */
1767
1768 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1769 {
1770         enum wl_prio_t prio = cfqq_prio(cfqq);
1771         struct cfq_rb_root *service_tree = cfqq->service_tree;
1772
1773         BUG_ON(!service_tree);
1774         BUG_ON(!service_tree->count);
1775
1776         /* We never do for idle class queues. */
1777         if (prio == IDLE_WORKLOAD)
1778                 return false;
1779
1780         /* We do for queues that were marked with idle window flag. */
1781         if (cfq_cfqq_idle_window(cfqq) &&
1782            !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1783                 return true;
1784
1785         /*
1786          * Otherwise, we do only if they are the last ones
1787          * in their service tree.
1788          */
1789         if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
1790                 return 1;
1791         cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1792                         service_tree->count);
1793         return 0;
1794 }
1795
1796 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1797 {
1798         struct cfq_queue *cfqq = cfqd->active_queue;
1799         struct cfq_io_context *cic;
1800         unsigned long sl;
1801
1802         /*
1803          * SSD device without seek penalty, disable idling. But only do so
1804          * for devices that support queuing, otherwise we still have a problem
1805          * with sync vs async workloads.
1806          */
1807         if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1808                 return;
1809
1810         WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1811         WARN_ON(cfq_cfqq_slice_new(cfqq));
1812
1813         /*
1814          * idle is disabled, either manually or by past process history
1815          */
1816         if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
1817                 return;
1818
1819         /*
1820          * still active requests from this queue, don't idle
1821          */
1822         if (cfqq->dispatched)
1823                 return;
1824
1825         /*
1826          * task has exited, don't wait
1827          */
1828         cic = cfqd->active_cic;
1829         if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1830                 return;
1831
1832         /*
1833          * If our average think time is larger than the remaining time
1834          * slice, then don't idle. This avoids overrunning the allotted
1835          * time slice.
1836          */
1837         if (sample_valid(cic->ttime_samples) &&
1838             (cfqq->slice_end - jiffies < cic->ttime_mean)) {
1839                 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
1840                                 cic->ttime_mean);
1841                 return;
1842         }
1843
1844         cfq_mark_cfqq_wait_request(cfqq);
1845
1846         sl = cfqd->cfq_slice_idle;
1847
1848         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1849         cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1850 }
1851
1852 /*
1853  * Move request from internal lists to the request queue dispatch list.
1854  */
1855 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1856 {
1857         struct cfq_data *cfqd = q->elevator->elevator_data;
1858         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1859
1860         cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1861
1862         cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1863         cfq_remove_request(rq);
1864         cfqq->dispatched++;
1865         elv_dispatch_sort(q, rq);
1866
1867         cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
1868         blkiocg_update_request_dispatch_stats(&cfqq->cfqg->blkg, rq);
1869 }
1870
1871 /*
1872  * return expired entry, or NULL to just start from scratch in rbtree
1873  */
1874 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1875 {
1876         struct request *rq = NULL;
1877
1878         if (cfq_cfqq_fifo_expire(cfqq))
1879                 return NULL;
1880
1881         cfq_mark_cfqq_fifo_expire(cfqq);
1882
1883         if (list_empty(&cfqq->fifo))
1884                 return NULL;
1885
1886         rq = rq_entry_fifo(cfqq->fifo.next);
1887         if (time_before(jiffies, rq_fifo_time(rq)))
1888                 rq = NULL;
1889
1890         cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1891         return rq;
1892 }
1893
1894 static inline int
1895 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1896 {
1897         const int base_rq = cfqd->cfq_slice_async_rq;
1898
1899         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1900
1901         return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1902 }
1903
1904 /*
1905  * Must be called with the queue_lock held.
1906  */
1907 static int cfqq_process_refs(struct cfq_queue *cfqq)
1908 {
1909         int process_refs, io_refs;
1910
1911         io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1912         process_refs = atomic_read(&cfqq->ref) - io_refs;
1913         BUG_ON(process_refs < 0);
1914         return process_refs;
1915 }
1916
1917 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1918 {
1919         int process_refs, new_process_refs;
1920         struct cfq_queue *__cfqq;
1921
1922         /* Avoid a circular list and skip interim queue merges */
1923         while ((__cfqq = new_cfqq->new_cfqq)) {
1924                 if (__cfqq == cfqq)
1925                         return;
1926                 new_cfqq = __cfqq;
1927         }
1928
1929         process_refs = cfqq_process_refs(cfqq);
1930         /*
1931          * If the process for the cfqq has gone away, there is no
1932          * sense in merging the queues.
1933          */
1934         if (process_refs == 0)
1935                 return;
1936
1937         /*
1938          * Merge in the direction of the lesser amount of work.
1939          */
1940         new_process_refs = cfqq_process_refs(new_cfqq);
1941         if (new_process_refs >= process_refs) {
1942                 cfqq->new_cfqq = new_cfqq;
1943                 atomic_add(process_refs, &new_cfqq->ref);
1944         } else {
1945                 new_cfqq->new_cfqq = cfqq;
1946                 atomic_add(new_process_refs, &cfqq->ref);
1947         }
1948 }
1949
1950 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1951                                 struct cfq_group *cfqg, enum wl_prio_t prio)
1952 {
1953         struct cfq_queue *queue;
1954         int i;
1955         bool key_valid = false;
1956         unsigned long lowest_key = 0;
1957         enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1958
1959         for (i = 0; i <= SYNC_WORKLOAD; ++i) {
1960                 /* select the one with lowest rb_key */
1961                 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
1962                 if (queue &&
1963                     (!key_valid || time_before(queue->rb_key, lowest_key))) {
1964                         lowest_key = queue->rb_key;
1965                         cur_best = i;
1966                         key_valid = true;
1967                 }
1968         }
1969
1970         return cur_best;
1971 }
1972
1973 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
1974 {
1975         unsigned slice;
1976         unsigned count;
1977         struct cfq_rb_root *st;
1978         unsigned group_slice;
1979
1980         if (!cfqg) {
1981                 cfqd->serving_prio = IDLE_WORKLOAD;
1982                 cfqd->workload_expires = jiffies + 1;
1983                 return;
1984         }
1985
1986         /* Choose next priority. RT > BE > IDLE */
1987         if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
1988                 cfqd->serving_prio = RT_WORKLOAD;
1989         else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
1990                 cfqd->serving_prio = BE_WORKLOAD;
1991         else {
1992                 cfqd->serving_prio = IDLE_WORKLOAD;
1993                 cfqd->workload_expires = jiffies + 1;
1994                 return;
1995         }
1996
1997         /*
1998          * For RT and BE, we have to choose also the type
1999          * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2000          * expiration time
2001          */
2002         st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2003         count = st->count;
2004
2005         /*
2006          * check workload expiration, and that we still have other queues ready
2007          */
2008         if (count && !time_after(jiffies, cfqd->workload_expires))
2009                 return;
2010
2011         /* otherwise select new workload type */
2012         cfqd->serving_type =
2013                 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2014         st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2015         count = st->count;
2016
2017         /*
2018          * the workload slice is computed as a fraction of target latency
2019          * proportional to the number of queues in that workload, over
2020          * all the queues in the same priority class
2021          */
2022         group_slice = cfq_group_slice(cfqd, cfqg);
2023
2024         slice = group_slice * count /
2025                 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2026                       cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2027
2028         if (cfqd->serving_type == ASYNC_WORKLOAD) {
2029                 unsigned int tmp;
2030
2031                 /*
2032                  * Async queues are currently system wide. Just taking
2033                  * proportion of queues with-in same group will lead to higher
2034                  * async ratio system wide as generally root group is going
2035                  * to have higher weight. A more accurate thing would be to
2036                  * calculate system wide asnc/sync ratio.
2037                  */
2038                 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2039                 tmp = tmp/cfqd->busy_queues;
2040                 slice = min_t(unsigned, slice, tmp);
2041
2042                 /* async workload slice is scaled down according to
2043                  * the sync/async slice ratio. */
2044                 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2045         } else
2046                 /* sync workload slice is at least 2 * cfq_slice_idle */
2047                 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2048
2049         slice = max_t(unsigned, slice, CFQ_MIN_TT);
2050         cfq_log(cfqd, "workload slice:%d", slice);
2051         cfqd->workload_expires = jiffies + slice;
2052         cfqd->noidle_tree_requires_idle = false;
2053 }
2054
2055 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2056 {
2057         struct cfq_rb_root *st = &cfqd->grp_service_tree;
2058         struct cfq_group *cfqg;
2059
2060         if (RB_EMPTY_ROOT(&st->rb))
2061                 return NULL;
2062         cfqg = cfq_rb_first_group(st);
2063         st->active = &cfqg->rb_node;
2064         update_min_vdisktime(st);
2065         return cfqg;
2066 }
2067
2068 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2069 {
2070         struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2071
2072         cfqd->serving_group = cfqg;
2073
2074         /* Restore the workload type data */
2075         if (cfqg->saved_workload_slice) {
2076                 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2077                 cfqd->serving_type = cfqg->saved_workload;
2078                 cfqd->serving_prio = cfqg->saved_serving_prio;
2079         } else
2080                 cfqd->workload_expires = jiffies - 1;
2081
2082         choose_service_tree(cfqd, cfqg);
2083 }
2084
2085 /*
2086  * Select a queue for service. If we have a current active queue,
2087  * check whether to continue servicing it, or retrieve and set a new one.
2088  */
2089 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2090 {
2091         struct cfq_queue *cfqq, *new_cfqq = NULL;
2092
2093         cfqq = cfqd->active_queue;
2094         if (!cfqq)
2095                 goto new_queue;
2096
2097         if (!cfqd->rq_queued)
2098                 return NULL;
2099
2100         /*
2101          * We were waiting for group to get backlogged. Expire the queue
2102          */
2103         if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2104                 goto expire;
2105
2106         /*
2107          * The active queue has run out of time, expire it and select new.
2108          */
2109         if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2110                 /*
2111                  * If slice had not expired at the completion of last request
2112                  * we might not have turned on wait_busy flag. Don't expire
2113                  * the queue yet. Allow the group to get backlogged.
2114                  *
2115                  * The very fact that we have used the slice, that means we
2116                  * have been idling all along on this queue and it should be
2117                  * ok to wait for this request to complete.
2118                  */
2119                 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2120                     && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2121                         cfqq = NULL;
2122                         goto keep_queue;
2123                 } else
2124                         goto expire;
2125         }
2126
2127         /*
2128          * The active queue has requests and isn't expired, allow it to
2129          * dispatch.
2130          */
2131         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2132                 goto keep_queue;
2133
2134         /*
2135          * If another queue has a request waiting within our mean seek
2136          * distance, let it run.  The expire code will check for close
2137          * cooperators and put the close queue at the front of the service
2138          * tree.  If possible, merge the expiring queue with the new cfqq.
2139          */
2140         new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2141         if (new_cfqq) {
2142                 if (!cfqq->new_cfqq)
2143                         cfq_setup_merge(cfqq, new_cfqq);
2144                 goto expire;
2145         }
2146
2147         /*
2148          * No requests pending. If the active queue still has requests in
2149          * flight or is idling for a new request, allow either of these
2150          * conditions to happen (or time out) before selecting a new queue.
2151          */
2152         if (timer_pending(&cfqd->idle_slice_timer) ||
2153             (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
2154                 cfqq = NULL;
2155                 goto keep_queue;
2156         }
2157
2158 expire:
2159         cfq_slice_expired(cfqd, 0);
2160 new_queue:
2161         /*
2162          * Current queue expired. Check if we have to switch to a new
2163          * service tree
2164          */
2165         if (!new_cfqq)
2166                 cfq_choose_cfqg(cfqd);
2167
2168         cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2169 keep_queue:
2170         return cfqq;
2171 }
2172
2173 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2174 {
2175         int dispatched = 0;
2176
2177         while (cfqq->next_rq) {
2178                 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2179                 dispatched++;
2180         }
2181
2182         BUG_ON(!list_empty(&cfqq->fifo));
2183
2184         /* By default cfqq is not expired if it is empty. Do it explicitly */
2185         __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2186         return dispatched;
2187 }
2188
2189 /*
2190  * Drain our current requests. Used for barriers and when switching
2191  * io schedulers on-the-fly.
2192  */
2193 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2194 {
2195         struct cfq_queue *cfqq;
2196         int dispatched = 0;
2197
2198         while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
2199                 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2200
2201         cfq_slice_expired(cfqd, 0);
2202         BUG_ON(cfqd->busy_queues);
2203
2204         cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2205         return dispatched;
2206 }
2207
2208 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2209         struct cfq_queue *cfqq)
2210 {
2211         /* the queue hasn't finished any request, can't estimate */
2212         if (cfq_cfqq_slice_new(cfqq))
2213                 return 1;
2214         if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2215                 cfqq->slice_end))
2216                 return 1;
2217
2218         return 0;
2219 }
2220
2221 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2222 {
2223         unsigned int max_dispatch;
2224
2225         /*
2226          * Drain async requests before we start sync IO
2227          */
2228         if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2229                 return false;
2230
2231         /*
2232          * If this is an async queue and we have sync IO in flight, let it wait
2233          */
2234         if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2235                 return false;
2236
2237         max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2238         if (cfq_class_idle(cfqq))
2239                 max_dispatch = 1;
2240
2241         /*
2242          * Does this cfqq already have too much IO in flight?
2243          */
2244         if (cfqq->dispatched >= max_dispatch) {
2245                 /*
2246                  * idle queue must always only have a single IO in flight
2247                  */
2248                 if (cfq_class_idle(cfqq))
2249                         return false;
2250
2251                 /*
2252                  * We have other queues, don't allow more IO from this one
2253                  */
2254                 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
2255                         return false;
2256
2257                 /*
2258                  * Sole queue user, no limit
2259                  */
2260                 if (cfqd->busy_queues == 1)
2261                         max_dispatch = -1;
2262                 else
2263                         /*
2264                          * Normally we start throttling cfqq when cfq_quantum/2
2265                          * requests have been dispatched. But we can drive
2266                          * deeper queue depths at the beginning of slice
2267                          * subjected to upper limit of cfq_quantum.
2268                          * */
2269                         max_dispatch = cfqd->cfq_quantum;
2270         }
2271
2272         /*
2273          * Async queues must wait a bit before being allowed dispatch.
2274          * We also ramp up the dispatch depth gradually for async IO,
2275          * based on the last sync IO we serviced
2276          */
2277         if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2278                 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2279                 unsigned int depth;
2280
2281                 depth = last_sync / cfqd->cfq_slice[1];
2282                 if (!depth && !cfqq->dispatched)
2283                         depth = 1;
2284                 if (depth < max_dispatch)
2285                         max_dispatch = depth;
2286         }
2287
2288         /*
2289          * If we're below the current max, allow a dispatch
2290          */
2291         return cfqq->dispatched < max_dispatch;
2292 }
2293
2294 /*
2295  * Dispatch a request from cfqq, moving them to the request queue
2296  * dispatch list.
2297  */
2298 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2299 {
2300         struct request *rq;
2301
2302         BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2303
2304         if (!cfq_may_dispatch(cfqd, cfqq))
2305                 return false;
2306
2307         /*
2308          * follow expired path, else get first next available
2309          */
2310         rq = cfq_check_fifo(cfqq);
2311         if (!rq)
2312                 rq = cfqq->next_rq;
2313
2314         /*
2315          * insert request into driver dispatch list
2316          */
2317         cfq_dispatch_insert(cfqd->queue, rq);
2318
2319         if (!cfqd->active_cic) {
2320                 struct cfq_io_context *cic = RQ_CIC(rq);
2321
2322                 atomic_long_inc(&cic->ioc->refcount);
2323                 cfqd->active_cic = cic;
2324         }
2325
2326         return true;
2327 }
2328
2329 /*
2330  * Find the cfqq that we need to service and move a request from that to the
2331  * dispatch list
2332  */
2333 static int cfq_dispatch_requests(struct request_queue *q, int force)
2334 {
2335         struct cfq_data *cfqd = q->elevator->elevator_data;
2336         struct cfq_queue *cfqq;
2337
2338         if (!cfqd->busy_queues)
2339                 return 0;
2340
2341         if (unlikely(force))
2342                 return cfq_forced_dispatch(cfqd);
2343
2344         cfqq = cfq_select_queue(cfqd);
2345         if (!cfqq)
2346                 return 0;
2347
2348         /*
2349          * Dispatch a request from this cfqq, if it is allowed
2350          */
2351         if (!cfq_dispatch_request(cfqd, cfqq))
2352                 return 0;
2353
2354         cfqq->slice_dispatch++;
2355         cfq_clear_cfqq_must_dispatch(cfqq);
2356
2357         /*
2358          * expire an async queue immediately if it has used up its slice. idle
2359          * queue always expire after 1 dispatch round.
2360          */
2361         if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2362             cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2363             cfq_class_idle(cfqq))) {
2364                 cfqq->slice_end = jiffies + 1;
2365                 cfq_slice_expired(cfqd, 0);
2366         }
2367
2368         cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2369         return 1;
2370 }
2371
2372 /*
2373  * task holds one reference to the queue, dropped when task exits. each rq
2374  * in-flight on this queue also holds a reference, dropped when rq is freed.
2375  *
2376  * Each cfq queue took a reference on the parent group. Drop it now.
2377  * queue lock must be held here.
2378  */
2379 static void cfq_put_queue(struct cfq_queue *cfqq)
2380 {
2381         struct cfq_data *cfqd = cfqq->cfqd;
2382         struct cfq_group *cfqg, *orig_cfqg;
2383
2384         BUG_ON(atomic_read(&cfqq->ref) <= 0);
2385
2386         if (!atomic_dec_and_test(&cfqq->ref))
2387                 return;
2388
2389         cfq_log_cfqq(cfqd, cfqq, "put_queue");
2390         BUG_ON(rb_first(&cfqq->sort_list));
2391         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2392         cfqg = cfqq->cfqg;
2393         orig_cfqg = cfqq->orig_cfqg;
2394
2395         if (unlikely(cfqd->active_queue == cfqq)) {
2396                 __cfq_slice_expired(cfqd, cfqq, 0);
2397                 cfq_schedule_dispatch(cfqd);
2398         }
2399
2400         BUG_ON(cfq_cfqq_on_rr(cfqq));
2401         kmem_cache_free(cfq_pool, cfqq);
2402         cfq_put_cfqg(cfqg);
2403         if (orig_cfqg)
2404                 cfq_put_cfqg(orig_cfqg);
2405 }
2406
2407 /*
2408  * Must always be called with the rcu_read_lock() held
2409  */
2410 static void
2411 __call_for_each_cic(struct io_context *ioc,
2412                     void (*func)(struct io_context *, struct cfq_io_context *))
2413 {
2414         struct cfq_io_context *cic;
2415         struct hlist_node *n;
2416
2417         hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2418                 func(ioc, cic);
2419 }
2420
2421 /*
2422  * Call func for each cic attached to this ioc.
2423  */
2424 static void
2425 call_for_each_cic(struct io_context *ioc,
2426                   void (*func)(struct io_context *, struct cfq_io_context *))
2427 {
2428         rcu_read_lock();
2429         __call_for_each_cic(ioc, func);
2430         rcu_read_unlock();
2431 }
2432
2433 static void cfq_cic_free_rcu(struct rcu_head *head)
2434 {
2435         struct cfq_io_context *cic;
2436
2437         cic = container_of(head, struct cfq_io_context, rcu_head);
2438
2439         kmem_cache_free(cfq_ioc_pool, cic);
2440         elv_ioc_count_dec(cfq_ioc_count);
2441
2442         if (ioc_gone) {
2443                 /*
2444                  * CFQ scheduler is exiting, grab exit lock and check
2445                  * the pending io context count. If it hits zero,
2446                  * complete ioc_gone and set it back to NULL
2447                  */
2448                 spin_lock(&ioc_gone_lock);
2449                 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2450                         complete(ioc_gone);
2451                         ioc_gone = NULL;
2452                 }
2453                 spin_unlock(&ioc_gone_lock);
2454         }
2455 }
2456
2457 static void cfq_cic_free(struct cfq_io_context *cic)
2458 {
2459         call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2460 }
2461
2462 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2463 {
2464         unsigned long flags;
2465
2466         BUG_ON(!cic->dead_key);
2467
2468         spin_lock_irqsave(&ioc->lock, flags);
2469         radix_tree_delete(&ioc->radix_root, cic->dead_key);
2470         hlist_del_rcu(&cic->cic_list);
2471         spin_unlock_irqrestore(&ioc->lock, flags);
2472
2473         cfq_cic_free(cic);
2474 }
2475
2476 /*
2477  * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2478  * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2479  * and ->trim() which is called with the task lock held
2480  */
2481 static void cfq_free_io_context(struct io_context *ioc)
2482 {
2483         /*
2484          * ioc->refcount is zero here, or we are called from elv_unregister(),
2485          * so no more cic's are allowed to be linked into this ioc.  So it
2486          * should be ok to iterate over the known list, we will see all cic's
2487          * since no new ones are added.
2488          */
2489         __call_for_each_cic(ioc, cic_free_func);
2490 }
2491
2492 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2493 {
2494         struct cfq_queue *__cfqq, *next;
2495
2496         if (unlikely(cfqq == cfqd->active_queue)) {
2497                 __cfq_slice_expired(cfqd, cfqq, 0);
2498                 cfq_schedule_dispatch(cfqd);
2499         }
2500
2501         /*
2502          * If this queue was scheduled to merge with another queue, be
2503          * sure to drop the reference taken on that queue (and others in
2504          * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
2505          */
2506         __cfqq = cfqq->new_cfqq;
2507         while (__cfqq) {
2508                 if (__cfqq == cfqq) {
2509                         WARN(1, "cfqq->new_cfqq loop detected\n");
2510                         break;
2511                 }
2512                 next = __cfqq->new_cfqq;
2513                 cfq_put_queue(__cfqq);
2514                 __cfqq = next;
2515         }
2516
2517         cfq_put_queue(cfqq);
2518 }
2519
2520 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2521                                          struct cfq_io_context *cic)
2522 {
2523         struct io_context *ioc = cic->ioc;
2524
2525         list_del_init(&cic->queue_list);
2526
2527         /*
2528          * Make sure key == NULL is seen for dead queues
2529          */
2530         smp_wmb();
2531         cic->dead_key = (unsigned long) cic->key;
2532         cic->key = NULL;
2533
2534         if (ioc->ioc_data == cic)
2535                 rcu_assign_pointer(ioc->ioc_data, NULL);
2536
2537         if (cic->cfqq[BLK_RW_ASYNC]) {
2538                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2539                 cic->cfqq[BLK_RW_ASYNC] = NULL;
2540         }
2541
2542         if (cic->cfqq[BLK_RW_SYNC]) {
2543                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2544                 cic->cfqq[BLK_RW_SYNC] = NULL;
2545         }
2546 }
2547
2548 static void cfq_exit_single_io_context(struct io_context *ioc,
2549                                        struct cfq_io_context *cic)
2550 {
2551         struct cfq_data *cfqd = cic->key;
2552
2553         if (cfqd) {
2554                 struct request_queue *q = cfqd->queue;
2555                 unsigned long flags;
2556
2557                 spin_lock_irqsave(q->queue_lock, flags);
2558
2559                 /*
2560                  * Ensure we get a fresh copy of the ->key to prevent
2561                  * race between exiting task and queue
2562                  */
2563                 smp_read_barrier_depends();
2564                 if (cic->key)
2565                         __cfq_exit_single_io_context(cfqd, cic);
2566
2567                 spin_unlock_irqrestore(q->queue_lock, flags);
2568         }
2569 }
2570
2571 /*
2572  * The process that ioc belongs to has exited, we need to clean up
2573  * and put the internal structures we have that belongs to that process.
2574  */
2575 static void cfq_exit_io_context(struct io_context *ioc)
2576 {
2577         call_for_each_cic(ioc, cfq_exit_single_io_context);
2578 }
2579
2580 static struct cfq_io_context *
2581 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2582 {
2583         struct cfq_io_context *cic;
2584
2585         cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2586                                                         cfqd->queue->node);
2587         if (cic) {
2588                 cic->last_end_request = jiffies;
2589                 INIT_LIST_HEAD(&cic->queue_list);
2590                 INIT_HLIST_NODE(&cic->cic_list);
2591                 cic->dtor = cfq_free_io_context;
2592                 cic->exit = cfq_exit_io_context;
2593                 elv_ioc_count_inc(cfq_ioc_count);
2594         }
2595
2596         return cic;
2597 }
2598
2599 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2600 {
2601         struct task_struct *tsk = current;
2602         int ioprio_class;
2603
2604         if (!cfq_cfqq_prio_changed(cfqq))
2605                 return;
2606
2607         ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2608         switch (ioprio_class) {
2609         default:
2610                 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2611         case IOPRIO_CLASS_NONE:
2612                 /*
2613                  * no prio set, inherit CPU scheduling settings
2614                  */
2615                 cfqq->ioprio = task_nice_ioprio(tsk);
2616                 cfqq->ioprio_class = task_nice_ioclass(tsk);
2617                 break;
2618         case IOPRIO_CLASS_RT:
2619                 cfqq->ioprio = task_ioprio(ioc);
2620                 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2621                 break;
2622         case IOPRIO_CLASS_BE:
2623                 cfqq->ioprio = task_ioprio(ioc);
2624                 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2625                 break;
2626         case IOPRIO_CLASS_IDLE:
2627                 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2628                 cfqq->ioprio = 7;
2629                 cfq_clear_cfqq_idle_window(cfqq);
2630                 break;
2631         }
2632
2633         /*
2634          * keep track of original prio settings in case we have to temporarily
2635          * elevate the priority of this queue
2636          */
2637         cfqq->org_ioprio = cfqq->ioprio;
2638         cfqq->org_ioprio_class = cfqq->ioprio_class;
2639         cfq_clear_cfqq_prio_changed(cfqq);
2640 }
2641
2642 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2643 {
2644         struct cfq_data *cfqd = cic->key;
2645         struct cfq_queue *cfqq;
2646         unsigned long flags;
2647
2648         if (unlikely(!cfqd))
2649                 return;
2650
2651         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2652
2653         cfqq = cic->cfqq[BLK_RW_ASYNC];
2654         if (cfqq) {
2655                 struct cfq_queue *new_cfqq;
2656                 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2657                                                 GFP_ATOMIC);
2658                 if (new_cfqq) {
2659                         cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2660                         cfq_put_queue(cfqq);
2661                 }
2662         }
2663
2664         cfqq = cic->cfqq[BLK_RW_SYNC];
2665         if (cfqq)
2666                 cfq_mark_cfqq_prio_changed(cfqq);
2667
2668         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2669 }
2670
2671 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2672 {
2673         call_for_each_cic(ioc, changed_ioprio);
2674         ioc->ioprio_changed = 0;
2675 }
2676
2677 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2678                           pid_t pid, bool is_sync)
2679 {
2680         RB_CLEAR_NODE(&cfqq->rb_node);
2681         RB_CLEAR_NODE(&cfqq->p_node);
2682         INIT_LIST_HEAD(&cfqq->fifo);
2683
2684         atomic_set(&cfqq->ref, 0);
2685         cfqq->cfqd = cfqd;
2686
2687         cfq_mark_cfqq_prio_changed(cfqq);
2688
2689         if (is_sync) {
2690                 if (!cfq_class_idle(cfqq))
2691                         cfq_mark_cfqq_idle_window(cfqq);
2692                 cfq_mark_cfqq_sync(cfqq);
2693         }
2694         cfqq->pid = pid;
2695 }
2696
2697 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2698 static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2699 {
2700         struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2701         struct cfq_data *cfqd = cic->key;
2702         unsigned long flags;
2703         struct request_queue *q;
2704
2705         if (unlikely(!cfqd))
2706                 return;
2707
2708         q = cfqd->queue;
2709
2710         spin_lock_irqsave(q->queue_lock, flags);
2711
2712         if (sync_cfqq) {
2713                 /*
2714                  * Drop reference to sync queue. A new sync queue will be
2715                  * assigned in new group upon arrival of a fresh request.
2716                  */
2717                 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2718                 cic_set_cfqq(cic, NULL, 1);
2719                 cfq_put_queue(sync_cfqq);
2720         }
2721
2722         spin_unlock_irqrestore(q->queue_lock, flags);
2723 }
2724
2725 static void cfq_ioc_set_cgroup(struct io_context *ioc)
2726 {
2727         call_for_each_cic(ioc, changed_cgroup);
2728         ioc->cgroup_changed = 0;
2729 }
2730 #endif  /* CONFIG_CFQ_GROUP_IOSCHED */
2731
2732 static struct cfq_queue *
2733 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2734                      struct io_context *ioc, gfp_t gfp_mask)
2735 {
2736         struct cfq_queue *cfqq, *new_cfqq = NULL;
2737         struct cfq_io_context *cic;
2738         struct cfq_group *cfqg;
2739
2740 retry:
2741         cfqg = cfq_get_cfqg(cfqd, 1);
2742         cic = cfq_cic_lookup(cfqd, ioc);
2743         /* cic always exists here */
2744         cfqq = cic_to_cfqq(cic, is_sync);
2745
2746         /*
2747          * Always try a new alloc if we fell back to the OOM cfqq
2748          * originally, since it should just be a temporary situation.
2749          */
2750         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2751                 cfqq = NULL;
2752                 if (new_cfqq) {
2753                         cfqq = new_cfqq;
2754                         new_cfqq = NULL;
2755                 } else if (gfp_mask & __GFP_WAIT) {
2756                         spin_unlock_irq(cfqd->queue->queue_lock);
2757                         new_cfqq = kmem_cache_alloc_node(cfq_pool,
2758                                         gfp_mask | __GFP_ZERO,
2759                                         cfqd->queue->node);
2760                         spin_lock_irq(cfqd->queue->queue_lock);
2761                         if (new_cfqq)
2762                                 goto retry;
2763                 } else {
2764                         cfqq = kmem_cache_alloc_node(cfq_pool,
2765                                         gfp_mask | __GFP_ZERO,
2766                                         cfqd->queue->node);
2767                 }
2768
2769                 if (cfqq) {
2770                         cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2771                         cfq_init_prio_data(cfqq, ioc);
2772                         cfq_link_cfqq_cfqg(cfqq, cfqg);
2773                         cfq_log_cfqq(cfqd, cfqq, "alloced");
2774                 } else
2775                         cfqq = &cfqd->oom_cfqq;
2776         }
2777
2778         if (new_cfqq)
2779                 kmem_cache_free(cfq_pool, new_cfqq);
2780
2781         return cfqq;
2782 }
2783
2784 static struct cfq_queue **
2785 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2786 {
2787         switch (ioprio_class) {
2788         case IOPRIO_CLASS_RT:
2789                 return &cfqd->async_cfqq[0][ioprio];
2790         case IOPRIO_CLASS_BE:
2791                 return &cfqd->async_cfqq[1][ioprio];
2792         case IOPRIO_CLASS_IDLE:
2793                 return &cfqd->async_idle_cfqq;
2794         default:
2795                 BUG();
2796         }
2797 }
2798
2799 static struct cfq_queue *
2800 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2801               gfp_t gfp_mask)
2802 {
2803         const int ioprio = task_ioprio(ioc);
2804         const int ioprio_class = task_ioprio_class(ioc);
2805         struct cfq_queue **async_cfqq = NULL;
2806         struct cfq_queue *cfqq = NULL;
2807
2808         if (!is_sync) {
2809                 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2810                 cfqq = *async_cfqq;
2811         }
2812
2813         if (!cfqq)
2814                 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2815
2816         /*
2817          * pin the queue now that it's allocated, scheduler exit will prune it
2818          */
2819         if (!is_sync && !(*async_cfqq)) {
2820                 atomic_inc(&cfqq->ref);
2821                 *async_cfqq = cfqq;
2822         }
2823
2824         atomic_inc(&cfqq->ref);
2825         return cfqq;
2826 }
2827
2828 /*
2829  * We drop cfq io contexts lazily, so we may find a dead one.
2830  */
2831 static void
2832 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2833                   struct cfq_io_context *cic)
2834 {
2835         unsigned long flags;
2836
2837         WARN_ON(!list_empty(&cic->queue_list));
2838
2839         spin_lock_irqsave(&ioc->lock, flags);
2840
2841         BUG_ON(ioc->ioc_data == cic);
2842
2843         radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2844         hlist_del_rcu(&cic->cic_list);
2845         spin_unlock_irqrestore(&ioc->lock, flags);
2846
2847         cfq_cic_free(cic);
2848 }
2849
2850 static struct cfq_io_context *
2851 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2852 {
2853         struct cfq_io_context *cic;
2854         unsigned long flags;
2855         void *k;
2856
2857         if (unlikely(!ioc))
2858                 return NULL;
2859
2860         rcu_read_lock();
2861
2862         /*
2863          * we maintain a last-hit cache, to avoid browsing over the tree
2864          */
2865         cic = rcu_dereference(ioc->ioc_data);
2866         if (cic && cic->key == cfqd) {
2867                 rcu_read_unlock();
2868                 return cic;
2869         }
2870
2871         do {
2872                 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2873                 rcu_read_unlock();
2874                 if (!cic)
2875                         break;
2876                 /* ->key must be copied to avoid race with cfq_exit_queue() */
2877                 k = cic->key;
2878                 if (unlikely(!k)) {
2879                         cfq_drop_dead_cic(cfqd, ioc, cic);
2880                         rcu_read_lock();
2881                         continue;
2882                 }
2883
2884                 spin_lock_irqsave(&ioc->lock, flags);
2885                 rcu_assign_pointer(ioc->ioc_data, cic);
2886                 spin_unlock_irqrestore(&ioc->lock, flags);
2887                 break;
2888         } while (1);
2889
2890         return cic;
2891 }
2892
2893 /*
2894  * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2895  * the process specific cfq io context when entered from the block layer.
2896  * Also adds the cic to a per-cfqd list, used when this queue is removed.
2897  */
2898 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2899                         struct cfq_io_context *cic, gfp_t gfp_mask)
2900 {
2901         unsigned long flags;
2902         int ret;
2903
2904         ret = radix_tree_preload(gfp_mask);
2905         if (!ret) {
2906                 cic->ioc = ioc;
2907                 cic->key = cfqd;
2908
2909                 spin_lock_irqsave(&ioc->lock, flags);
2910                 ret = radix_tree_insert(&ioc->radix_root,
2911                                                 (unsigned long) cfqd, cic);
2912                 if (!ret)
2913                         hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2914                 spin_unlock_irqrestore(&ioc->lock, flags);
2915
2916                 radix_tree_preload_end();
2917
2918                 if (!ret) {
2919                         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2920                         list_add(&cic->queue_list, &cfqd->cic_list);
2921                         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2922                 }
2923         }
2924
2925         if (ret)
2926                 printk(KERN_ERR "cfq: cic link failed!\n");
2927
2928         return ret;
2929 }
2930
2931 /*
2932  * Setup general io context and cfq io context. There can be several cfq
2933  * io contexts per general io context, if this process is doing io to more
2934  * than one device managed by cfq.
2935  */
2936 static struct cfq_io_context *
2937 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2938 {
2939         struct io_context *ioc = NULL;
2940         struct cfq_io_context *cic;
2941
2942         might_sleep_if(gfp_mask & __GFP_WAIT);
2943
2944         ioc = get_io_context(gfp_mask, cfqd->queue->node);
2945         if (!ioc)
2946                 return NULL;
2947
2948         cic = cfq_cic_lookup(cfqd, ioc);
2949         if (cic)
2950                 goto out;
2951
2952         cic = cfq_alloc_io_context(cfqd, gfp_mask);
2953         if (cic == NULL)
2954                 goto err;
2955
2956         if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2957                 goto err_free;
2958
2959 out:
2960         smp_read_barrier_depends();
2961         if (unlikely(ioc->ioprio_changed))
2962                 cfq_ioc_set_ioprio(ioc);
2963
2964 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2965         if (unlikely(ioc->cgroup_changed))
2966                 cfq_ioc_set_cgroup(ioc);
2967 #endif
2968         return cic;
2969 err_free:
2970         cfq_cic_free(cic);
2971 err:
2972         put_io_context(ioc);
2973         return NULL;
2974 }
2975
2976 static void
2977 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
2978 {
2979         unsigned long elapsed = jiffies - cic->last_end_request;
2980         unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2981
2982         cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2983         cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2984         cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2985 }
2986
2987 static void
2988 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2989                        struct request *rq)
2990 {
2991         sector_t sdist = 0;
2992         sector_t n_sec = blk_rq_sectors(rq);
2993         if (cfqq->last_request_pos) {
2994                 if (cfqq->last_request_pos < blk_rq_pos(rq))
2995                         sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2996                 else
2997                         sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2998         }
2999
3000         cfqq->seek_history <<= 1;
3001         if (blk_queue_nonrot(cfqd->queue))
3002                 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3003         else
3004                 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3005 }
3006
3007 /*
3008  * Disable idle window if the process thinks too long or seeks so much that
3009  * it doesn't matter
3010  */
3011 static void
3012 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3013                        struct cfq_io_context *cic)
3014 {
3015         int old_idle, enable_idle;
3016
3017         /*
3018          * Don't idle for async or idle io prio class
3019          */
3020         if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3021                 return;
3022
3023         enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3024
3025         if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3026                 cfq_mark_cfqq_deep(cfqq);
3027
3028         if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3029             (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3030                 enable_idle = 0;
3031         else if (sample_valid(cic->ttime_samples)) {
3032                 if (cic->ttime_mean > cfqd->cfq_slice_idle)
3033                         enable_idle = 0;
3034                 else
3035                         enable_idle = 1;
3036         }
3037
3038         if (old_idle != enable_idle) {
3039                 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3040                 if (enable_idle)
3041                         cfq_mark_cfqq_idle_window(cfqq);
3042                 else
3043                         cfq_clear_cfqq_idle_window(cfqq);
3044         }
3045 }
3046
3047 /*
3048  * Check if new_cfqq should preempt the currently active queue. Return 0 for
3049  * no or if we aren't sure, a 1 will cause a preempt.
3050  */
3051 static bool
3052 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3053                    struct request *rq)
3054 {
3055         struct cfq_queue *cfqq;
3056
3057         cfqq = cfqd->active_queue;
3058         if (!cfqq)
3059                 return false;
3060
3061         if (cfq_class_idle(new_cfqq))
3062                 return false;
3063
3064         if (cfq_class_idle(cfqq))
3065                 return true;
3066
3067         /*
3068          * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3069          */
3070         if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3071                 return false;
3072
3073         /*
3074          * if the new request is sync, but the currently running queue is
3075          * not, let the sync request have priority.
3076          */
3077         if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3078                 return true;
3079
3080         if (new_cfqq->cfqg != cfqq->cfqg)
3081                 return false;
3082
3083         if (cfq_slice_used(cfqq))
3084                 return true;
3085
3086         /* Allow preemption only if we are idling on sync-noidle tree */
3087         if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3088             cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3089             new_cfqq->service_tree->count == 2 &&
3090             RB_EMPTY_ROOT(&cfqq->sort_list))
3091                 return true;
3092
3093         /*
3094          * So both queues are sync. Let the new request get disk time if
3095          * it's a metadata request and the current queue is doing regular IO.
3096          */
3097         if (rq_is_meta(rq) && !cfqq->meta_pending)
3098                 return true;
3099
3100         /*
3101          * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3102          */
3103         if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3104                 return true;
3105
3106         if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3107                 return false;
3108
3109         /*
3110          * if this request is as-good as one we would expect from the
3111          * current cfqq, let it preempt
3112          */
3113         if (cfq_rq_close(cfqd, cfqq, rq))
3114                 return true;
3115
3116         return false;
3117 }
3118
3119 /*
3120  * cfqq preempts the active queue. if we allowed preempt with no slice left,
3121  * let it have half of its nominal slice.
3122  */
3123 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3124 {
3125         cfq_log_cfqq(cfqd, cfqq, "preempt");
3126         cfq_slice_expired(cfqd, 1);
3127
3128         /*
3129          * Put the new queue at the front of the of the current list,
3130          * so we know that it will be selected next.
3131          */
3132         BUG_ON(!cfq_cfqq_on_rr(cfqq));
3133
3134         cfq_service_tree_add(cfqd, cfqq, 1);
3135
3136         cfqq->slice_end = 0;
3137         cfq_mark_cfqq_slice_new(cfqq);
3138 }
3139
3140 /*
3141  * Called when a new fs request (rq) is added (to cfqq). Check if there's
3142  * something we should do about it
3143  */
3144 static void
3145 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3146                 struct request *rq)
3147 {
3148         struct cfq_io_context *cic = RQ_CIC(rq);
3149
3150         cfqd->rq_queued++;
3151         if (rq_is_meta(rq))
3152                 cfqq->meta_pending++;
3153
3154         cfq_update_io_thinktime(cfqd, cic);
3155         cfq_update_io_seektime(cfqd, cfqq, rq);
3156         cfq_update_idle_window(cfqd, cfqq, cic);
3157
3158         cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3159
3160         if (cfqq == cfqd->active_queue) {
3161                 /*
3162                  * Remember that we saw a request from this process, but
3163                  * don't start queuing just yet. Otherwise we risk seeing lots
3164                  * of tiny requests, because we disrupt the normal plugging
3165                  * and merging. If the request is already larger than a single
3166                  * page, let it rip immediately. For that case we assume that
3167                  * merging is already done. Ditto for a busy system that
3168                  * has other work pending, don't risk delaying until the
3169                  * idle timer unplug to continue working.
3170                  */
3171                 if (cfq_cfqq_wait_request(cfqq)) {
3172                         if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3173                             cfqd->busy_queues > 1) {
3174                                 del_timer(&cfqd->idle_slice_timer);
3175                                 cfq_clear_cfqq_wait_request(cfqq);
3176                                 __blk_run_queue(cfqd->queue);
3177                         } else
3178                                 cfq_mark_cfqq_must_dispatch(cfqq);
3179                 }
3180         } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3181                 /*
3182                  * not the active queue - expire current slice if it is
3183                  * idle and has expired it's mean thinktime or this new queue
3184                  * has some old slice time left and is of higher priority or
3185                  * this new queue is RT and the current one is BE
3186                  */
3187                 cfq_preempt_queue(cfqd, cfqq);
3188                 __blk_run_queue(cfqd->queue);
3189         }
3190 }
3191
3192 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3193 {
3194         struct cfq_data *cfqd = q->elevator->elevator_data;
3195         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3196
3197         cfq_log_cfqq(cfqd, cfqq, "insert_request");
3198         cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3199
3200         rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3201         list_add_tail(&rq->queuelist, &cfqq->fifo);
3202         cfq_add_rq_rb(rq);
3203
3204         cfq_rq_enqueued(cfqd, cfqq, rq);
3205 }
3206
3207 /*
3208  * Update hw_tag based on peak queue depth over 50 samples under
3209  * sufficient load.
3210  */
3211 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3212 {
3213         struct cfq_queue *cfqq = cfqd->active_queue;
3214
3215         if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3216                 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3217
3218         if (cfqd->hw_tag == 1)
3219                 return;
3220
3221         if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3222             cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3223                 return;
3224
3225         /*
3226          * If active queue hasn't enough requests and can idle, cfq might not
3227          * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3228          * case
3229          */
3230         if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3231             cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3232             CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3233                 return;
3234
3235         if (cfqd->hw_tag_samples++ < 50)
3236                 return;
3237
3238         if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3239                 cfqd->hw_tag = 1;
3240         else
3241                 cfqd->hw_tag = 0;
3242 }
3243
3244 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3245 {
3246         struct cfq_io_context *cic = cfqd->active_cic;
3247
3248         /* If there are other queues in the group, don't wait */
3249         if (cfqq->cfqg->nr_cfqq > 1)
3250                 return false;
3251
3252         if (cfq_slice_used(cfqq))
3253                 return true;
3254
3255         /* if slice left is less than think time, wait busy */
3256         if (cic && sample_valid(cic->ttime_samples)
3257             && (cfqq->slice_end - jiffies < cic->ttime_mean))
3258                 return true;
3259
3260         /*
3261          * If think times is less than a jiffy than ttime_mean=0 and above
3262          * will not be true. It might happen that slice has not expired yet
3263          * but will expire soon (4-5 ns) during select_queue(). To cover the
3264          * case where think time is less than a jiffy, mark the queue wait
3265          * busy if only 1 jiffy is left in the slice.
3266          */
3267         if (cfqq->slice_end - jiffies == 1)
3268                 return true;
3269
3270         return false;
3271 }
3272
3273 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3274 {
3275         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3276         struct cfq_data *cfqd = cfqq->cfqd;
3277         const int sync = rq_is_sync(rq);
3278         unsigned long now;
3279
3280         now = jiffies;
3281         cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
3282
3283         cfq_update_hw_tag(cfqd);
3284
3285         WARN_ON(!cfqd->rq_in_driver);
3286         WARN_ON(!cfqq->dispatched);
3287         cfqd->rq_in_driver--;
3288         cfqq->dispatched--;
3289         blkiocg_update_request_completion_stats(&cfqq->cfqg->blkg, rq);
3290
3291         cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3292
3293         if (sync) {
3294                 RQ_CIC(rq)->last_end_request = now;
3295                 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3296                         cfqd->last_delayed_sync = now;
3297         }
3298
3299         /*
3300          * If this is the active queue, check if it needs to be expired,
3301          * or if we want to idle in case it has no pending requests.
3302          */
3303         if (cfqd->active_queue == cfqq) {
3304                 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3305
3306                 if (cfq_cfqq_slice_new(cfqq)) {
3307                         cfq_set_prio_slice(cfqd, cfqq);
3308                         cfq_clear_cfqq_slice_new(cfqq);
3309                 }
3310
3311                 /*
3312                  * Should we wait for next request to come in before we expire
3313                  * the queue.
3314                  */
3315                 if (cfq_should_wait_busy(cfqd, cfqq)) {
3316                         cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
3317                         cfq_mark_cfqq_wait_busy(cfqq);
3318                         cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3319                 }
3320
3321                 /*
3322                  * Idling is not enabled on:
3323                  * - expired queues
3324                  * - idle-priority queues
3325                  * - async queues
3326                  * - queues with still some requests queued
3327                  * - when there is a close cooperator
3328                  */
3329                 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3330                         cfq_slice_expired(cfqd, 1);
3331                 else if (sync && cfqq_empty &&
3332                          !cfq_close_cooperator(cfqd, cfqq)) {
3333                         cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3334                         /*
3335                          * Idling is enabled for SYNC_WORKLOAD.
3336                          * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3337                          * only if we processed at least one !rq_noidle request
3338                          */
3339                         if (cfqd->serving_type == SYNC_WORKLOAD
3340                             || cfqd->noidle_tree_requires_idle
3341                             || cfqq->cfqg->nr_cfqq == 1)
3342                                 cfq_arm_slice_timer(cfqd);
3343                 }
3344         }
3345
3346         if (!cfqd->rq_in_driver)
3347                 cfq_schedule_dispatch(cfqd);
3348 }
3349
3350 /*
3351  * we temporarily boost lower priority queues if they are holding fs exclusive
3352  * resources. they are boosted to normal prio (CLASS_BE/4)
3353  */
3354 static void cfq_prio_boost(struct cfq_queue *cfqq)
3355 {
3356         if (has_fs_excl()) {
3357                 /*
3358                  * boost idle prio on transactions that would lock out other
3359                  * users of the filesystem
3360                  */
3361                 if (cfq_class_idle(cfqq))
3362                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
3363                 if (cfqq->ioprio > IOPRIO_NORM)
3364                         cfqq->ioprio = IOPRIO_NORM;
3365         } else {
3366                 /*
3367                  * unboost the queue (if needed)
3368                  */
3369                 cfqq->ioprio_class = cfqq->org_ioprio_class;
3370                 cfqq->ioprio = cfqq->org_ioprio;
3371         }
3372 }
3373
3374 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3375 {
3376         if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3377                 cfq_mark_cfqq_must_alloc_slice(cfqq);
3378                 return ELV_MQUEUE_MUST;
3379         }
3380
3381         return ELV_MQUEUE_MAY;
3382 }
3383
3384 static int cfq_may_queue(struct request_queue *q, int rw)
3385 {
3386         struct cfq_data *cfqd = q->elevator->elevator_data;
3387         struct task_struct *tsk = current;
3388         struct cfq_io_context *cic;
3389         struct cfq_queue *cfqq;
3390
3391         /*
3392          * don't force setup of a queue from here, as a call to may_queue
3393          * does not necessarily imply that a request actually will be queued.
3394          * so just lookup a possibly existing queue, or return 'may queue'
3395          * if that fails
3396          */
3397         cic = cfq_cic_lookup(cfqd, tsk->io_context);
3398         if (!cic)
3399                 return ELV_MQUEUE_MAY;
3400
3401         cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3402         if (cfqq) {
3403                 cfq_init_prio_data(cfqq, cic->ioc);
3404                 cfq_prio_boost(cfqq);
3405
3406                 return __cfq_may_queue(cfqq);
3407         }
3408
3409         return ELV_MQUEUE_MAY;
3410 }
3411
3412 /*
3413  * queue lock held here
3414  */
3415 static void cfq_put_request(struct request *rq)
3416 {
3417         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3418
3419         if (cfqq) {
3420                 const int rw = rq_data_dir(rq);
3421
3422                 BUG_ON(!cfqq->allocated[rw]);
3423                 cfqq->allocated[rw]--;
3424
3425                 put_io_context(RQ_CIC(rq)->ioc);
3426
3427                 rq->elevator_private = NULL;
3428                 rq->elevator_private2 = NULL;
3429
3430                 cfq_put_queue(cfqq);
3431         }
3432 }
3433
3434 static struct cfq_queue *
3435 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3436                 struct cfq_queue *cfqq)
3437 {
3438         cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3439         cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3440         cfq_mark_cfqq_coop(cfqq->new_cfqq);
3441         cfq_put_queue(cfqq);
3442         return cic_to_cfqq(cic, 1);
3443 }
3444
3445 /*
3446  * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3447  * was the last process referring to said cfqq.
3448  */
3449 static struct cfq_queue *
3450 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3451 {
3452         if (cfqq_process_refs(cfqq) == 1) {
3453                 cfqq->pid = current->pid;
3454                 cfq_clear_cfqq_coop(cfqq);
3455                 cfq_clear_cfqq_split_coop(cfqq);
3456                 return cfqq;
3457         }
3458
3459         cic_set_cfqq(cic, NULL, 1);
3460         cfq_put_queue(cfqq);
3461         return NULL;
3462 }
3463 /*
3464  * Allocate cfq data structures associated with this request.
3465  */
3466 static int
3467 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3468 {
3469         struct cfq_data *cfqd = q->elevator->elevator_data;
3470         struct cfq_io_context *cic;
3471         const int rw = rq_data_dir(rq);
3472         const bool is_sync = rq_is_sync(rq);
3473         struct cfq_queue *cfqq;
3474         unsigned long flags;
3475
3476         might_sleep_if(gfp_mask & __GFP_WAIT);
3477
3478         cic = cfq_get_io_context(cfqd, gfp_mask);
3479
3480         spin_lock_irqsave(q->queue_lock, flags);
3481
3482         if (!cic)
3483                 goto queue_fail;
3484
3485 new_queue:
3486         cfqq = cic_to_cfqq(cic, is_sync);
3487         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3488                 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3489                 cic_set_cfqq(cic, cfqq, is_sync);
3490         } else {
3491                 /*
3492                  * If the queue was seeky for too long, break it apart.
3493                  */
3494                 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3495                         cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3496                         cfqq = split_cfqq(cic, cfqq);
3497                         if (!cfqq)
3498                                 goto new_queue;
3499                 }
3500
3501                 /*
3502                  * Check to see if this queue is scheduled to merge with
3503                  * another, closely cooperating queue.  The merging of
3504                  * queues happens here as it must be done in process context.
3505                  * The reference on new_cfqq was taken in merge_cfqqs.
3506                  */
3507                 if (cfqq->new_cfqq)
3508                         cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3509         }
3510
3511         cfqq->allocated[rw]++;
3512         atomic_inc(&cfqq->ref);
3513
3514         spin_unlock_irqrestore(q->queue_lock, flags);
3515
3516         rq->elevator_private = cic;
3517         rq->elevator_private2 = cfqq;
3518         return 0;
3519
3520 queue_fail:
3521         if (cic)
3522                 put_io_context(cic->ioc);
3523
3524         cfq_schedule_dispatch(cfqd);
3525         spin_unlock_irqrestore(q->queue_lock, flags);
3526         cfq_log(cfqd, "set_request fail");
3527         return 1;
3528 }
3529
3530 static void cfq_kick_queue(struct work_struct *work)
3531 {
3532         struct cfq_data *cfqd =
3533                 container_of(work, struct cfq_data, unplug_work);
3534         struct request_queue *q = cfqd->queue;
3535
3536         spin_lock_irq(q->queue_lock);
3537         __blk_run_queue(cfqd->queue);
3538         spin_unlock_irq(q->queue_lock);
3539 }
3540
3541 /*
3542  * Timer running if the active_queue is currently idling inside its time slice
3543  */
3544 static void cfq_idle_slice_timer(unsigned long data)
3545 {
3546         struct cfq_data *cfqd = (struct cfq_data *) data;
3547         struct cfq_queue *cfqq;
3548         unsigned long flags;
3549         int timed_out = 1;
3550
3551         cfq_log(cfqd, "idle timer fired");
3552
3553         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3554
3555         cfqq = cfqd->active_queue;
3556         if (cfqq) {
3557                 timed_out = 0;
3558
3559                 /*
3560                  * We saw a request before the queue expired, let it through
3561                  */
3562                 if (cfq_cfqq_must_dispatch(cfqq))
3563                         goto out_kick;
3564
3565                 /*
3566                  * expired
3567                  */
3568                 if (cfq_slice_used(cfqq))
3569                         goto expire;
3570
3571                 /*
3572                  * only expire and reinvoke request handler, if there are
3573                  * other queues with pending requests
3574                  */
3575                 if (!cfqd->busy_queues)
3576                         goto out_cont;
3577
3578                 /*
3579                  * not expired and it has a request pending, let it dispatch
3580                  */
3581                 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3582                         goto out_kick;
3583
3584                 /*
3585                  * Queue depth flag is reset only when the idle didn't succeed
3586                  */
3587                 cfq_clear_cfqq_deep(cfqq);
3588         }
3589 expire:
3590         cfq_slice_expired(cfqd, timed_out);
3591 out_kick:
3592         cfq_schedule_dispatch(cfqd);
3593 out_cont:
3594         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3595 }
3596
3597 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3598 {
3599         del_timer_sync(&cfqd->idle_slice_timer);
3600         cancel_work_sync(&cfqd->unplug_work);
3601 }
3602
3603 static void cfq_put_async_queues(struct cfq_data *cfqd)
3604 {
3605         int i;
3606
3607         for (i = 0; i < IOPRIO_BE_NR; i++) {
3608                 if (cfqd->async_cfqq[0][i])
3609                         cfq_put_queue(cfqd->async_cfqq[0][i]);
3610                 if (cfqd->async_cfqq[1][i])
3611                         cfq_put_queue(cfqd->async_cfqq[1][i]);
3612         }
3613
3614         if (cfqd->async_idle_cfqq)
3615                 cfq_put_queue(cfqd->async_idle_cfqq);
3616 }
3617
3618 static void cfq_cfqd_free(struct rcu_head *head)
3619 {
3620         kfree(container_of(head, struct cfq_data, rcu));
3621 }
3622
3623 static void cfq_exit_queue(struct elevator_queue *e)
3624 {
3625         struct cfq_data *cfqd = e->elevator_data;
3626         struct request_queue *q = cfqd->queue;
3627
3628         cfq_shutdown_timer_wq(cfqd);
3629
3630         spin_lock_irq(q->queue_lock);
3631
3632         if (cfqd->active_queue)
3633                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3634
3635         while (!list_empty(&cfqd->cic_list)) {
3636                 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3637                                                         struct cfq_io_context,
3638                                                         queue_list);
3639
3640                 __cfq_exit_single_io_context(cfqd, cic);
3641         }
3642
3643         cfq_put_async_queues(cfqd);
3644         cfq_release_cfq_groups(cfqd);
3645         blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3646
3647         spin_unlock_irq(q->queue_lock);
3648
3649         cfq_shutdown_timer_wq(cfqd);
3650
3651         /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3652         call_rcu(&cfqd->rcu, cfq_cfqd_free);
3653 }
3654
3655 static void *cfq_init_queue(struct request_queue *q)
3656 {
3657         struct cfq_data *cfqd;
3658         int i, j;
3659         struct cfq_group *cfqg;
3660         struct cfq_rb_root *st;
3661
3662         cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3663         if (!cfqd)
3664                 return NULL;
3665
3666         /* Init root service tree */
3667         cfqd->grp_service_tree = CFQ_RB_ROOT;
3668
3669         /* Init root group */
3670         cfqg = &cfqd->root_group;
3671         for_each_cfqg_st(cfqg, i, j, st)
3672                 *st = CFQ_RB_ROOT;
3673         RB_CLEAR_NODE(&cfqg->rb_node);
3674
3675         /* Give preference to root group over other groups */
3676         cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3677
3678 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3679         /*
3680          * Take a reference to root group which we never drop. This is just
3681          * to make sure that cfq_put_cfqg() does not try to kfree root group
3682          */
3683         atomic_set(&cfqg->ref, 1);
3684         blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
3685                                         0);
3686 #endif
3687         /*
3688          * Not strictly needed (since RB_ROOT just clears the node and we
3689          * zeroed cfqd on alloc), but better be safe in case someone decides
3690          * to add magic to the rb code
3691          */
3692         for (i = 0; i < CFQ_PRIO_LISTS; i++)
3693                 cfqd->prio_trees[i] = RB_ROOT;
3694
3695         /*
3696          * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3697          * Grab a permanent reference to it, so that the normal code flow
3698          * will not attempt to free it.
3699          */
3700         cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3701         atomic_inc(&cfqd->oom_cfqq.ref);
3702         cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3703
3704         INIT_LIST_HEAD(&cfqd->cic_list);
3705
3706         cfqd->queue = q;
3707
3708         init_timer(&cfqd->idle_slice_timer);
3709         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3710         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3711
3712         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3713
3714         cfqd->cfq_quantum = cfq_quantum;
3715         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3716         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3717         cfqd->cfq_back_max = cfq_back_max;
3718         cfqd->cfq_back_penalty = cfq_back_penalty;
3719         cfqd->cfq_slice[0] = cfq_slice_async;
3720         cfqd->cfq_slice[1] = cfq_slice_sync;
3721         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3722         cfqd->cfq_slice_idle = cfq_slice_idle;
3723         cfqd->cfq_latency = 1;
3724         cfqd->cfq_group_isolation = 0;
3725         cfqd->hw_tag = -1;
3726         /*
3727          * we optimistically start assuming sync ops weren't delayed in last
3728          * second, in order to have larger depth for async operations.
3729          */
3730         cfqd->last_delayed_sync = jiffies - HZ;
3731         INIT_RCU_HEAD(&cfqd->rcu);
3732         return cfqd;
3733 }
3734
3735 static void cfq_slab_kill(void)
3736 {
3737         /*
3738          * Caller already ensured that pending RCU callbacks are completed,
3739          * so we should have no busy allocations at this point.
3740          */
3741         if (cfq_pool)
3742                 kmem_cache_destroy(cfq_pool);
3743         if (cfq_ioc_pool)
3744                 kmem_cache_destroy(cfq_ioc_pool);
3745 }
3746
3747 static int __init cfq_slab_setup(void)
3748 {
3749         cfq_pool = KMEM_CACHE(cfq_queue, 0);
3750         if (!cfq_pool)
3751                 goto fail;
3752
3753         cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3754         if (!cfq_ioc_pool)
3755                 goto fail;
3756
3757         return 0;
3758 fail:
3759         cfq_slab_kill();
3760         return -ENOMEM;
3761 }
3762
3763 /*
3764  * sysfs parts below -->
3765  */
3766 static ssize_t
3767 cfq_var_show(unsigned int var, char *page)
3768 {
3769         return sprintf(page, "%d\n", var);
3770 }
3771
3772 static ssize_t
3773 cfq_var_store(unsigned int *var, const char *page, size_t count)
3774 {
3775         char *p = (char *) page;
3776
3777         *var = simple_strtoul(p, &p, 10);
3778         return count;
3779 }
3780
3781 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
3782 static ssize_t __FUNC(struct elevator_queue *e, char *page)             \
3783 {                                                                       \
3784         struct cfq_data *cfqd = e->elevator_data;                       \
3785         unsigned int __data = __VAR;                                    \
3786         if (__CONV)                                                     \
3787                 __data = jiffies_to_msecs(__data);                      \
3788         return cfq_var_show(__data, (page));                            \
3789 }
3790 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3791 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3792 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3793 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3794 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3795 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3796 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3797 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3798 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3799 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3800 SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
3801 #undef SHOW_FUNCTION
3802
3803 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
3804 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3805 {                                                                       \
3806         struct cfq_data *cfqd = e->elevator_data;                       \
3807         unsigned int __data;                                            \
3808         int ret = cfq_var_store(&__data, (page), count);                \
3809         if (__data < (MIN))                                             \
3810                 __data = (MIN);                                         \
3811         else if (__data > (MAX))                                        \
3812                 __data = (MAX);                                         \
3813         if (__CONV)                                                     \
3814                 *(__PTR) = msecs_to_jiffies(__data);                    \
3815         else                                                            \
3816                 *(__PTR) = __data;                                      \
3817         return ret;                                                     \
3818 }
3819 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3820 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3821                 UINT_MAX, 1);
3822 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3823                 UINT_MAX, 1);
3824 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3825 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3826                 UINT_MAX, 0);
3827 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3828 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3829 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3830 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3831                 UINT_MAX, 0);
3832 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3833 STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
3834 #undef STORE_FUNCTION
3835
3836 #define CFQ_ATTR(name) \
3837         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3838
3839 static struct elv_fs_entry cfq_attrs[] = {
3840         CFQ_ATTR(quantum),
3841         CFQ_ATTR(fifo_expire_sync),
3842         CFQ_ATTR(fifo_expire_async),
3843         CFQ_ATTR(back_seek_max),
3844         CFQ_ATTR(back_seek_penalty),
3845         CFQ_ATTR(slice_sync),
3846         CFQ_ATTR(slice_async),
3847         CFQ_ATTR(slice_async_rq),
3848         CFQ_ATTR(slice_idle),
3849         CFQ_ATTR(low_latency),
3850         CFQ_ATTR(group_isolation),
3851         __ATTR_NULL
3852 };
3853
3854 static struct elevator_type iosched_cfq = {
3855         .ops = {
3856                 .elevator_merge_fn =            cfq_merge,
3857                 .elevator_merged_fn =           cfq_merged_request,
3858                 .elevator_merge_req_fn =        cfq_merged_requests,
3859                 .elevator_allow_merge_fn =      cfq_allow_merge,
3860                 .elevator_dispatch_fn =         cfq_dispatch_requests,
3861                 .elevator_add_req_fn =          cfq_insert_request,
3862                 .elevator_activate_req_fn =     cfq_activate_request,
3863                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
3864                 .elevator_queue_empty_fn =      cfq_queue_empty,
3865                 .elevator_completed_req_fn =    cfq_completed_request,
3866                 .elevator_former_req_fn =       elv_rb_former_request,
3867                 .elevator_latter_req_fn =       elv_rb_latter_request,
3868                 .elevator_set_req_fn =          cfq_set_request,
3869                 .elevator_put_req_fn =          cfq_put_request,
3870                 .elevator_may_queue_fn =        cfq_may_queue,
3871                 .elevator_init_fn =             cfq_init_queue,
3872                 .elevator_exit_fn =             cfq_exit_queue,
3873                 .trim =                         cfq_free_io_context,
3874         },
3875         .elevator_attrs =       cfq_attrs,
3876         .elevator_name =        "cfq",
3877         .elevator_owner =       THIS_MODULE,
3878 };
3879
3880 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3881 static struct blkio_policy_type blkio_policy_cfq = {
3882         .ops = {
3883                 .blkio_unlink_group_fn =        cfq_unlink_blkio_group,
3884                 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
3885         },
3886 };
3887 #else
3888 static struct blkio_policy_type blkio_policy_cfq;
3889 #endif
3890
3891 static int __init cfq_init(void)
3892 {
3893         /*
3894          * could be 0 on HZ < 1000 setups
3895          */
3896         if (!cfq_slice_async)
3897                 cfq_slice_async = 1;
3898         if (!cfq_slice_idle)
3899                 cfq_slice_idle = 1;
3900
3901         if (cfq_slab_setup())
3902                 return -ENOMEM;
3903
3904         elv_register(&iosched_cfq);
3905         blkio_policy_register(&blkio_policy_cfq);
3906
3907         return 0;
3908 }
3909
3910 static void __exit cfq_exit(void)
3911 {
3912         DECLARE_COMPLETION_ONSTACK(all_gone);
3913         blkio_policy_unregister(&blkio_policy_cfq);
3914         elv_unregister(&iosched_cfq);
3915         ioc_gone = &all_gone;
3916         /* ioc_gone's update must be visible before reading ioc_count */
3917         smp_wmb();
3918
3919         /*
3920          * this also protects us from entering cfq_slab_kill() with
3921          * pending RCU callbacks
3922          */
3923         if (elv_ioc_count_read(cfq_ioc_count))
3924                 wait_for_completion(&all_gone);
3925         cfq_slab_kill();
3926 }
3927
3928 module_init(cfq_init);
3929 module_exit(cfq_exit);
3930
3931 MODULE_AUTHOR("Jens Axboe");
3932 MODULE_LICENSE("GPL");
3933 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");