cfq-iosched: remove dead_key from cfq_io_context
[safe/jmp/linux-2.6] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include "blk-cgroup.h"
18
19 /*
20  * tunables
21  */
22 /* max queue in one round of service */
23 static const int cfq_quantum = 8;
24 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
25 /* maximum backwards seek, in KiB */
26 static const int cfq_back_max = 16 * 1024;
27 /* penalty of a backwards seek */
28 static const int cfq_back_penalty = 2;
29 static const int cfq_slice_sync = HZ / 10;
30 static int cfq_slice_async = HZ / 25;
31 static const int cfq_slice_async_rq = 2;
32 static int cfq_slice_idle = HZ / 125;
33 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
34 static const int cfq_hist_divisor = 4;
35
36 /*
37  * offset from end of service tree
38  */
39 #define CFQ_IDLE_DELAY          (HZ / 5)
40
41 /*
42  * below this threshold, we consider thinktime immediate
43  */
44 #define CFQ_MIN_TT              (2)
45
46 #define CFQ_SLICE_SCALE         (5)
47 #define CFQ_HW_QUEUE_MIN        (5)
48 #define CFQ_SERVICE_SHIFT       12
49
50 #define CFQQ_SEEK_THR           (sector_t)(8 * 100)
51 #define CFQQ_CLOSE_THR          (sector_t)(8 * 1024)
52 #define CFQQ_SECT_THR_NONROT    (sector_t)(2 * 32)
53 #define CFQQ_SEEKY(cfqq)        (hweight32(cfqq->seek_history) > 32/8)
54
55 #define RQ_CIC(rq)              \
56         ((struct cfq_io_context *) (rq)->elevator_private)
57 #define RQ_CFQQ(rq)             (struct cfq_queue *) ((rq)->elevator_private2)
58 #define RQ_CFQG(rq)             (struct cfq_group *) ((rq)->elevator_private3)
59
60 static struct kmem_cache *cfq_pool;
61 static struct kmem_cache *cfq_ioc_pool;
62
63 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
64 static struct completion *ioc_gone;
65 static DEFINE_SPINLOCK(ioc_gone_lock);
66
67 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
68 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
69 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
70
71 #define sample_valid(samples)   ((samples) > 80)
72 #define rb_entry_cfqg(node)     rb_entry((node), struct cfq_group, rb_node)
73
74 /*
75  * Most of our rbtree usage is for sorting with min extraction, so
76  * if we cache the leftmost node we don't have to walk down the tree
77  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
78  * move this into the elevator for the rq sorting as well.
79  */
80 struct cfq_rb_root {
81         struct rb_root rb;
82         struct rb_node *left;
83         unsigned count;
84         unsigned total_weight;
85         u64 min_vdisktime;
86         struct rb_node *active;
87 };
88 #define CFQ_RB_ROOT     (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
89                         .count = 0, .min_vdisktime = 0, }
90
91 /*
92  * Per process-grouping structure
93  */
94 struct cfq_queue {
95         /* reference count */
96         atomic_t ref;
97         /* various state flags, see below */
98         unsigned int flags;
99         /* parent cfq_data */
100         struct cfq_data *cfqd;
101         /* service_tree member */
102         struct rb_node rb_node;
103         /* service_tree key */
104         unsigned long rb_key;
105         /* prio tree member */
106         struct rb_node p_node;
107         /* prio tree root we belong to, if any */
108         struct rb_root *p_root;
109         /* sorted list of pending requests */
110         struct rb_root sort_list;
111         /* if fifo isn't expired, next request to serve */
112         struct request *next_rq;
113         /* requests queued in sort_list */
114         int queued[2];
115         /* currently allocated requests */
116         int allocated[2];
117         /* fifo list of requests in sort_list */
118         struct list_head fifo;
119
120         /* time when queue got scheduled in to dispatch first request. */
121         unsigned long dispatch_start;
122         unsigned int allocated_slice;
123         unsigned int slice_dispatch;
124         /* time when first request from queue completed and slice started. */
125         unsigned long slice_start;
126         unsigned long slice_end;
127         long slice_resid;
128
129         /* pending metadata requests */
130         int meta_pending;
131         /* number of requests that are on the dispatch list or inside driver */
132         int dispatched;
133
134         /* io prio of this group */
135         unsigned short ioprio, org_ioprio;
136         unsigned short ioprio_class, org_ioprio_class;
137
138         pid_t pid;
139
140         u32 seek_history;
141         sector_t last_request_pos;
142
143         struct cfq_rb_root *service_tree;
144         struct cfq_queue *new_cfqq;
145         struct cfq_group *cfqg;
146         struct cfq_group *orig_cfqg;
147 };
148
149 /*
150  * First index in the service_trees.
151  * IDLE is handled separately, so it has negative index
152  */
153 enum wl_prio_t {
154         BE_WORKLOAD = 0,
155         RT_WORKLOAD = 1,
156         IDLE_WORKLOAD = 2,
157 };
158
159 /*
160  * Second index in the service_trees.
161  */
162 enum wl_type_t {
163         ASYNC_WORKLOAD = 0,
164         SYNC_NOIDLE_WORKLOAD = 1,
165         SYNC_WORKLOAD = 2
166 };
167
168 /* This is per cgroup per device grouping structure */
169 struct cfq_group {
170         /* group service_tree member */
171         struct rb_node rb_node;
172
173         /* group service_tree key */
174         u64 vdisktime;
175         unsigned int weight;
176         bool on_st;
177
178         /* number of cfqq currently on this group */
179         int nr_cfqq;
180
181         /* Per group busy queus average. Useful for workload slice calc. */
182         unsigned int busy_queues_avg[2];
183         /*
184          * rr lists of queues with requests, onle rr for each priority class.
185          * Counts are embedded in the cfq_rb_root
186          */
187         struct cfq_rb_root service_trees[2][3];
188         struct cfq_rb_root service_tree_idle;
189
190         unsigned long saved_workload_slice;
191         enum wl_type_t saved_workload;
192         enum wl_prio_t saved_serving_prio;
193         struct blkio_group blkg;
194 #ifdef CONFIG_CFQ_GROUP_IOSCHED
195         struct hlist_node cfqd_node;
196         atomic_t ref;
197 #endif
198 };
199
200 /*
201  * Per block device queue structure
202  */
203 struct cfq_data {
204         struct request_queue *queue;
205         /* Root service tree for cfq_groups */
206         struct cfq_rb_root grp_service_tree;
207         struct cfq_group root_group;
208
209         /*
210          * The priority currently being served
211          */
212         enum wl_prio_t serving_prio;
213         enum wl_type_t serving_type;
214         unsigned long workload_expires;
215         struct cfq_group *serving_group;
216         bool noidle_tree_requires_idle;
217
218         /*
219          * Each priority tree is sorted by next_request position.  These
220          * trees are used when determining if two or more queues are
221          * interleaving requests (see cfq_close_cooperator).
222          */
223         struct rb_root prio_trees[CFQ_PRIO_LISTS];
224
225         unsigned int busy_queues;
226
227         int rq_in_driver;
228         int rq_in_flight[2];
229
230         /*
231          * queue-depth detection
232          */
233         int rq_queued;
234         int hw_tag;
235         /*
236          * hw_tag can be
237          * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
238          *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
239          *  0 => no NCQ
240          */
241         int hw_tag_est_depth;
242         unsigned int hw_tag_samples;
243
244         /*
245          * idle window management
246          */
247         struct timer_list idle_slice_timer;
248         struct work_struct unplug_work;
249
250         struct cfq_queue *active_queue;
251         struct cfq_io_context *active_cic;
252
253         /*
254          * async queue for each priority case
255          */
256         struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
257         struct cfq_queue *async_idle_cfqq;
258
259         sector_t last_position;
260
261         /*
262          * tunables, see top of file
263          */
264         unsigned int cfq_quantum;
265         unsigned int cfq_fifo_expire[2];
266         unsigned int cfq_back_penalty;
267         unsigned int cfq_back_max;
268         unsigned int cfq_slice[2];
269         unsigned int cfq_slice_async_rq;
270         unsigned int cfq_slice_idle;
271         unsigned int cfq_latency;
272         unsigned int cfq_group_isolation;
273
274         struct list_head cic_list;
275
276         /*
277          * Fallback dummy cfqq for extreme OOM conditions
278          */
279         struct cfq_queue oom_cfqq;
280
281         unsigned long last_delayed_sync;
282
283         /* List of cfq groups being managed on this device*/
284         struct hlist_head cfqg_list;
285         struct rcu_head rcu;
286 };
287
288 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
289
290 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
291                                             enum wl_prio_t prio,
292                                             enum wl_type_t type)
293 {
294         if (!cfqg)
295                 return NULL;
296
297         if (prio == IDLE_WORKLOAD)
298                 return &cfqg->service_tree_idle;
299
300         return &cfqg->service_trees[prio][type];
301 }
302
303 enum cfqq_state_flags {
304         CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
305         CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
306         CFQ_CFQQ_FLAG_must_dispatch,    /* must be allowed a dispatch */
307         CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
308         CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
309         CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
310         CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
311         CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
312         CFQ_CFQQ_FLAG_sync,             /* synchronous queue */
313         CFQ_CFQQ_FLAG_coop,             /* cfqq is shared */
314         CFQ_CFQQ_FLAG_split_coop,       /* shared cfqq will be splitted */
315         CFQ_CFQQ_FLAG_deep,             /* sync cfqq experienced large depth */
316         CFQ_CFQQ_FLAG_wait_busy,        /* Waiting for next request */
317 };
318
319 #define CFQ_CFQQ_FNS(name)                                              \
320 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
321 {                                                                       \
322         (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);                   \
323 }                                                                       \
324 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
325 {                                                                       \
326         (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                  \
327 }                                                                       \
328 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
329 {                                                                       \
330         return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;      \
331 }
332
333 CFQ_CFQQ_FNS(on_rr);
334 CFQ_CFQQ_FNS(wait_request);
335 CFQ_CFQQ_FNS(must_dispatch);
336 CFQ_CFQQ_FNS(must_alloc_slice);
337 CFQ_CFQQ_FNS(fifo_expire);
338 CFQ_CFQQ_FNS(idle_window);
339 CFQ_CFQQ_FNS(prio_changed);
340 CFQ_CFQQ_FNS(slice_new);
341 CFQ_CFQQ_FNS(sync);
342 CFQ_CFQQ_FNS(coop);
343 CFQ_CFQQ_FNS(split_coop);
344 CFQ_CFQQ_FNS(deep);
345 CFQ_CFQQ_FNS(wait_busy);
346 #undef CFQ_CFQQ_FNS
347
348 #ifdef CONFIG_CFQ_GROUP_IOSCHED
349 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
350         blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
351                         cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
352                         blkg_path(&(cfqq)->cfqg->blkg), ##args);
353
354 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)                          \
355         blk_add_trace_msg((cfqd)->queue, "%s " fmt,                     \
356                                 blkg_path(&(cfqg)->blkg), ##args);      \
357
358 #else
359 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
360         blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
361 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)          do {} while (0);
362 #endif
363 #define cfq_log(cfqd, fmt, args...)     \
364         blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
365
366 /* Traverses through cfq group service trees */
367 #define for_each_cfqg_st(cfqg, i, j, st) \
368         for (i = 0; i <= IDLE_WORKLOAD; i++) \
369                 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
370                         : &cfqg->service_tree_idle; \
371                         (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
372                         (i == IDLE_WORKLOAD && j == 0); \
373                         j++, st = i < IDLE_WORKLOAD ? \
374                         &cfqg->service_trees[i][j]: NULL) \
375
376
377 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
378 {
379         if (cfq_class_idle(cfqq))
380                 return IDLE_WORKLOAD;
381         if (cfq_class_rt(cfqq))
382                 return RT_WORKLOAD;
383         return BE_WORKLOAD;
384 }
385
386
387 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
388 {
389         if (!cfq_cfqq_sync(cfqq))
390                 return ASYNC_WORKLOAD;
391         if (!cfq_cfqq_idle_window(cfqq))
392                 return SYNC_NOIDLE_WORKLOAD;
393         return SYNC_WORKLOAD;
394 }
395
396 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
397                                         struct cfq_data *cfqd,
398                                         struct cfq_group *cfqg)
399 {
400         if (wl == IDLE_WORKLOAD)
401                 return cfqg->service_tree_idle.count;
402
403         return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
404                 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
405                 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
406 }
407
408 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
409                                         struct cfq_group *cfqg)
410 {
411         return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
412                 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
413 }
414
415 static void cfq_dispatch_insert(struct request_queue *, struct request *);
416 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
417                                        struct io_context *, gfp_t);
418 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
419                                                 struct io_context *);
420
421 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
422                                             bool is_sync)
423 {
424         return cic->cfqq[is_sync];
425 }
426
427 static inline void cic_set_cfqq(struct cfq_io_context *cic,
428                                 struct cfq_queue *cfqq, bool is_sync)
429 {
430         cic->cfqq[is_sync] = cfqq;
431 }
432
433 #define CIC_DEAD_KEY    1ul
434
435 static inline void *cfqd_dead_key(struct cfq_data *cfqd)
436 {
437         return (void *)((unsigned long) cfqd | CIC_DEAD_KEY);
438 }
439
440 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
441 {
442         struct cfq_data *cfqd = cic->key;
443
444         if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
445                 return NULL;
446
447         return cfqd;
448 }
449
450 /*
451  * We regard a request as SYNC, if it's either a read or has the SYNC bit
452  * set (in which case it could also be direct WRITE).
453  */
454 static inline bool cfq_bio_sync(struct bio *bio)
455 {
456         return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
457 }
458
459 /*
460  * scheduler run of queue, if there are requests pending and no one in the
461  * driver that will restart queueing
462  */
463 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
464 {
465         if (cfqd->busy_queues) {
466                 cfq_log(cfqd, "schedule dispatch");
467                 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
468         }
469 }
470
471 static int cfq_queue_empty(struct request_queue *q)
472 {
473         struct cfq_data *cfqd = q->elevator->elevator_data;
474
475         return !cfqd->rq_queued;
476 }
477
478 /*
479  * Scale schedule slice based on io priority. Use the sync time slice only
480  * if a queue is marked sync and has sync io queued. A sync queue with async
481  * io only, should not get full sync slice length.
482  */
483 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
484                                  unsigned short prio)
485 {
486         const int base_slice = cfqd->cfq_slice[sync];
487
488         WARN_ON(prio >= IOPRIO_BE_NR);
489
490         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
491 }
492
493 static inline int
494 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
495 {
496         return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
497 }
498
499 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
500 {
501         u64 d = delta << CFQ_SERVICE_SHIFT;
502
503         d = d * BLKIO_WEIGHT_DEFAULT;
504         do_div(d, cfqg->weight);
505         return d;
506 }
507
508 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
509 {
510         s64 delta = (s64)(vdisktime - min_vdisktime);
511         if (delta > 0)
512                 min_vdisktime = vdisktime;
513
514         return min_vdisktime;
515 }
516
517 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
518 {
519         s64 delta = (s64)(vdisktime - min_vdisktime);
520         if (delta < 0)
521                 min_vdisktime = vdisktime;
522
523         return min_vdisktime;
524 }
525
526 static void update_min_vdisktime(struct cfq_rb_root *st)
527 {
528         u64 vdisktime = st->min_vdisktime;
529         struct cfq_group *cfqg;
530
531         if (st->active) {
532                 cfqg = rb_entry_cfqg(st->active);
533                 vdisktime = cfqg->vdisktime;
534         }
535
536         if (st->left) {
537                 cfqg = rb_entry_cfqg(st->left);
538                 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
539         }
540
541         st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
542 }
543
544 /*
545  * get averaged number of queues of RT/BE priority.
546  * average is updated, with a formula that gives more weight to higher numbers,
547  * to quickly follows sudden increases and decrease slowly
548  */
549
550 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
551                                         struct cfq_group *cfqg, bool rt)
552 {
553         unsigned min_q, max_q;
554         unsigned mult  = cfq_hist_divisor - 1;
555         unsigned round = cfq_hist_divisor / 2;
556         unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
557
558         min_q = min(cfqg->busy_queues_avg[rt], busy);
559         max_q = max(cfqg->busy_queues_avg[rt], busy);
560         cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
561                 cfq_hist_divisor;
562         return cfqg->busy_queues_avg[rt];
563 }
564
565 static inline unsigned
566 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
567 {
568         struct cfq_rb_root *st = &cfqd->grp_service_tree;
569
570         return cfq_target_latency * cfqg->weight / st->total_weight;
571 }
572
573 static inline void
574 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
575 {
576         unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
577         if (cfqd->cfq_latency) {
578                 /*
579                  * interested queues (we consider only the ones with the same
580                  * priority class in the cfq group)
581                  */
582                 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
583                                                 cfq_class_rt(cfqq));
584                 unsigned sync_slice = cfqd->cfq_slice[1];
585                 unsigned expect_latency = sync_slice * iq;
586                 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
587
588                 if (expect_latency > group_slice) {
589                         unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
590                         /* scale low_slice according to IO priority
591                          * and sync vs async */
592                         unsigned low_slice =
593                                 min(slice, base_low_slice * slice / sync_slice);
594                         /* the adapted slice value is scaled to fit all iqs
595                          * into the target latency */
596                         slice = max(slice * group_slice / expect_latency,
597                                     low_slice);
598                 }
599         }
600         cfqq->slice_start = jiffies;
601         cfqq->slice_end = jiffies + slice;
602         cfqq->allocated_slice = slice;
603         cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
604 }
605
606 /*
607  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
608  * isn't valid until the first request from the dispatch is activated
609  * and the slice time set.
610  */
611 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
612 {
613         if (cfq_cfqq_slice_new(cfqq))
614                 return 0;
615         if (time_before(jiffies, cfqq->slice_end))
616                 return 0;
617
618         return 1;
619 }
620
621 /*
622  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
623  * We choose the request that is closest to the head right now. Distance
624  * behind the head is penalized and only allowed to a certain extent.
625  */
626 static struct request *
627 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
628 {
629         sector_t s1, s2, d1 = 0, d2 = 0;
630         unsigned long back_max;
631 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
632 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
633         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
634
635         if (rq1 == NULL || rq1 == rq2)
636                 return rq2;
637         if (rq2 == NULL)
638                 return rq1;
639
640         if (rq_is_sync(rq1) && !rq_is_sync(rq2))
641                 return rq1;
642         else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
643                 return rq2;
644         if (rq_is_meta(rq1) && !rq_is_meta(rq2))
645                 return rq1;
646         else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
647                 return rq2;
648
649         s1 = blk_rq_pos(rq1);
650         s2 = blk_rq_pos(rq2);
651
652         /*
653          * by definition, 1KiB is 2 sectors
654          */
655         back_max = cfqd->cfq_back_max * 2;
656
657         /*
658          * Strict one way elevator _except_ in the case where we allow
659          * short backward seeks which are biased as twice the cost of a
660          * similar forward seek.
661          */
662         if (s1 >= last)
663                 d1 = s1 - last;
664         else if (s1 + back_max >= last)
665                 d1 = (last - s1) * cfqd->cfq_back_penalty;
666         else
667                 wrap |= CFQ_RQ1_WRAP;
668
669         if (s2 >= last)
670                 d2 = s2 - last;
671         else if (s2 + back_max >= last)
672                 d2 = (last - s2) * cfqd->cfq_back_penalty;
673         else
674                 wrap |= CFQ_RQ2_WRAP;
675
676         /* Found required data */
677
678         /*
679          * By doing switch() on the bit mask "wrap" we avoid having to
680          * check two variables for all permutations: --> faster!
681          */
682         switch (wrap) {
683         case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
684                 if (d1 < d2)
685                         return rq1;
686                 else if (d2 < d1)
687                         return rq2;
688                 else {
689                         if (s1 >= s2)
690                                 return rq1;
691                         else
692                                 return rq2;
693                 }
694
695         case CFQ_RQ2_WRAP:
696                 return rq1;
697         case CFQ_RQ1_WRAP:
698                 return rq2;
699         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
700         default:
701                 /*
702                  * Since both rqs are wrapped,
703                  * start with the one that's further behind head
704                  * (--> only *one* back seek required),
705                  * since back seek takes more time than forward.
706                  */
707                 if (s1 <= s2)
708                         return rq1;
709                 else
710                         return rq2;
711         }
712 }
713
714 /*
715  * The below is leftmost cache rbtree addon
716  */
717 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
718 {
719         /* Service tree is empty */
720         if (!root->count)
721                 return NULL;
722
723         if (!root->left)
724                 root->left = rb_first(&root->rb);
725
726         if (root->left)
727                 return rb_entry(root->left, struct cfq_queue, rb_node);
728
729         return NULL;
730 }
731
732 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
733 {
734         if (!root->left)
735                 root->left = rb_first(&root->rb);
736
737         if (root->left)
738                 return rb_entry_cfqg(root->left);
739
740         return NULL;
741 }
742
743 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
744 {
745         rb_erase(n, root);
746         RB_CLEAR_NODE(n);
747 }
748
749 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
750 {
751         if (root->left == n)
752                 root->left = NULL;
753         rb_erase_init(n, &root->rb);
754         --root->count;
755 }
756
757 /*
758  * would be nice to take fifo expire time into account as well
759  */
760 static struct request *
761 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
762                   struct request *last)
763 {
764         struct rb_node *rbnext = rb_next(&last->rb_node);
765         struct rb_node *rbprev = rb_prev(&last->rb_node);
766         struct request *next = NULL, *prev = NULL;
767
768         BUG_ON(RB_EMPTY_NODE(&last->rb_node));
769
770         if (rbprev)
771                 prev = rb_entry_rq(rbprev);
772
773         if (rbnext)
774                 next = rb_entry_rq(rbnext);
775         else {
776                 rbnext = rb_first(&cfqq->sort_list);
777                 if (rbnext && rbnext != &last->rb_node)
778                         next = rb_entry_rq(rbnext);
779         }
780
781         return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
782 }
783
784 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
785                                       struct cfq_queue *cfqq)
786 {
787         /*
788          * just an approximation, should be ok.
789          */
790         return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
791                        cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
792 }
793
794 static inline s64
795 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
796 {
797         return cfqg->vdisktime - st->min_vdisktime;
798 }
799
800 static void
801 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
802 {
803         struct rb_node **node = &st->rb.rb_node;
804         struct rb_node *parent = NULL;
805         struct cfq_group *__cfqg;
806         s64 key = cfqg_key(st, cfqg);
807         int left = 1;
808
809         while (*node != NULL) {
810                 parent = *node;
811                 __cfqg = rb_entry_cfqg(parent);
812
813                 if (key < cfqg_key(st, __cfqg))
814                         node = &parent->rb_left;
815                 else {
816                         node = &parent->rb_right;
817                         left = 0;
818                 }
819         }
820
821         if (left)
822                 st->left = &cfqg->rb_node;
823
824         rb_link_node(&cfqg->rb_node, parent, node);
825         rb_insert_color(&cfqg->rb_node, &st->rb);
826 }
827
828 static void
829 cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
830 {
831         struct cfq_rb_root *st = &cfqd->grp_service_tree;
832         struct cfq_group *__cfqg;
833         struct rb_node *n;
834
835         cfqg->nr_cfqq++;
836         if (cfqg->on_st)
837                 return;
838
839         /*
840          * Currently put the group at the end. Later implement something
841          * so that groups get lesser vtime based on their weights, so that
842          * if group does not loose all if it was not continously backlogged.
843          */
844         n = rb_last(&st->rb);
845         if (n) {
846                 __cfqg = rb_entry_cfqg(n);
847                 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
848         } else
849                 cfqg->vdisktime = st->min_vdisktime;
850
851         __cfq_group_service_tree_add(st, cfqg);
852         cfqg->on_st = true;
853         st->total_weight += cfqg->weight;
854 }
855
856 static void
857 cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
858 {
859         struct cfq_rb_root *st = &cfqd->grp_service_tree;
860
861         if (st->active == &cfqg->rb_node)
862                 st->active = NULL;
863
864         BUG_ON(cfqg->nr_cfqq < 1);
865         cfqg->nr_cfqq--;
866
867         /* If there are other cfq queues under this group, don't delete it */
868         if (cfqg->nr_cfqq)
869                 return;
870
871         cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
872         cfqg->on_st = false;
873         st->total_weight -= cfqg->weight;
874         if (!RB_EMPTY_NODE(&cfqg->rb_node))
875                 cfq_rb_erase(&cfqg->rb_node, st);
876         cfqg->saved_workload_slice = 0;
877         blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
878 }
879
880 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
881 {
882         unsigned int slice_used;
883
884         /*
885          * Queue got expired before even a single request completed or
886          * got expired immediately after first request completion.
887          */
888         if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
889                 /*
890                  * Also charge the seek time incurred to the group, otherwise
891                  * if there are mutiple queues in the group, each can dispatch
892                  * a single request on seeky media and cause lots of seek time
893                  * and group will never know it.
894                  */
895                 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
896                                         1);
897         } else {
898                 slice_used = jiffies - cfqq->slice_start;
899                 if (slice_used > cfqq->allocated_slice)
900                         slice_used = cfqq->allocated_slice;
901         }
902
903         cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u", slice_used);
904         return slice_used;
905 }
906
907 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
908                                 struct cfq_queue *cfqq)
909 {
910         struct cfq_rb_root *st = &cfqd->grp_service_tree;
911         unsigned int used_sl, charge_sl;
912         int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
913                         - cfqg->service_tree_idle.count;
914
915         BUG_ON(nr_sync < 0);
916         used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
917
918         if (!cfq_cfqq_sync(cfqq) && !nr_sync)
919                 charge_sl = cfqq->allocated_slice;
920
921         /* Can't update vdisktime while group is on service tree */
922         cfq_rb_erase(&cfqg->rb_node, st);
923         cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
924         __cfq_group_service_tree_add(st, cfqg);
925
926         /* This group is being expired. Save the context */
927         if (time_after(cfqd->workload_expires, jiffies)) {
928                 cfqg->saved_workload_slice = cfqd->workload_expires
929                                                 - jiffies;
930                 cfqg->saved_workload = cfqd->serving_type;
931                 cfqg->saved_serving_prio = cfqd->serving_prio;
932         } else
933                 cfqg->saved_workload_slice = 0;
934
935         cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
936                                         st->min_vdisktime);
937         blkiocg_update_timeslice_used(&cfqg->blkg, used_sl);
938         blkiocg_set_start_empty_time(&cfqg->blkg);
939 }
940
941 #ifdef CONFIG_CFQ_GROUP_IOSCHED
942 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
943 {
944         if (blkg)
945                 return container_of(blkg, struct cfq_group, blkg);
946         return NULL;
947 }
948
949 void
950 cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
951 {
952         cfqg_of_blkg(blkg)->weight = weight;
953 }
954
955 static struct cfq_group *
956 cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
957 {
958         struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
959         struct cfq_group *cfqg = NULL;
960         void *key = cfqd;
961         int i, j;
962         struct cfq_rb_root *st;
963         struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
964         unsigned int major, minor;
965
966         cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
967         if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
968                 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
969                 cfqg->blkg.dev = MKDEV(major, minor);
970                 goto done;
971         }
972         if (cfqg || !create)
973                 goto done;
974
975         cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
976         if (!cfqg)
977                 goto done;
978
979         for_each_cfqg_st(cfqg, i, j, st)
980                 *st = CFQ_RB_ROOT;
981         RB_CLEAR_NODE(&cfqg->rb_node);
982
983         /*
984          * Take the initial reference that will be released on destroy
985          * This can be thought of a joint reference by cgroup and
986          * elevator which will be dropped by either elevator exit
987          * or cgroup deletion path depending on who is exiting first.
988          */
989         atomic_set(&cfqg->ref, 1);
990
991         /* Add group onto cgroup list */
992         sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
993         blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
994                                         MKDEV(major, minor));
995         cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
996
997         /* Add group on cfqd list */
998         hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
999
1000 done:
1001         return cfqg;
1002 }
1003
1004 /*
1005  * Search for the cfq group current task belongs to. If create = 1, then also
1006  * create the cfq group if it does not exist. request_queue lock must be held.
1007  */
1008 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1009 {
1010         struct cgroup *cgroup;
1011         struct cfq_group *cfqg = NULL;
1012
1013         rcu_read_lock();
1014         cgroup = task_cgroup(current, blkio_subsys_id);
1015         cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
1016         if (!cfqg && create)
1017                 cfqg = &cfqd->root_group;
1018         rcu_read_unlock();
1019         return cfqg;
1020 }
1021
1022 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1023 {
1024         atomic_inc(&cfqg->ref);
1025         return cfqg;
1026 }
1027
1028 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1029 {
1030         /* Currently, all async queues are mapped to root group */
1031         if (!cfq_cfqq_sync(cfqq))
1032                 cfqg = &cfqq->cfqd->root_group;
1033
1034         cfqq->cfqg = cfqg;
1035         /* cfqq reference on cfqg */
1036         atomic_inc(&cfqq->cfqg->ref);
1037 }
1038
1039 static void cfq_put_cfqg(struct cfq_group *cfqg)
1040 {
1041         struct cfq_rb_root *st;
1042         int i, j;
1043
1044         BUG_ON(atomic_read(&cfqg->ref) <= 0);
1045         if (!atomic_dec_and_test(&cfqg->ref))
1046                 return;
1047         for_each_cfqg_st(cfqg, i, j, st)
1048                 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1049         kfree(cfqg);
1050 }
1051
1052 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1053 {
1054         /* Something wrong if we are trying to remove same group twice */
1055         BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1056
1057         hlist_del_init(&cfqg->cfqd_node);
1058
1059         /*
1060          * Put the reference taken at the time of creation so that when all
1061          * queues are gone, group can be destroyed.
1062          */
1063         cfq_put_cfqg(cfqg);
1064 }
1065
1066 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1067 {
1068         struct hlist_node *pos, *n;
1069         struct cfq_group *cfqg;
1070
1071         hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1072                 /*
1073                  * If cgroup removal path got to blk_group first and removed
1074                  * it from cgroup list, then it will take care of destroying
1075                  * cfqg also.
1076                  */
1077                 if (!blkiocg_del_blkio_group(&cfqg->blkg))
1078                         cfq_destroy_cfqg(cfqd, cfqg);
1079         }
1080 }
1081
1082 /*
1083  * Blk cgroup controller notification saying that blkio_group object is being
1084  * delinked as associated cgroup object is going away. That also means that
1085  * no new IO will come in this group. So get rid of this group as soon as
1086  * any pending IO in the group is finished.
1087  *
1088  * This function is called under rcu_read_lock(). key is the rcu protected
1089  * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1090  * read lock.
1091  *
1092  * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1093  * it should not be NULL as even if elevator was exiting, cgroup deltion
1094  * path got to it first.
1095  */
1096 void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1097 {
1098         unsigned long  flags;
1099         struct cfq_data *cfqd = key;
1100
1101         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1102         cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1103         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1104 }
1105
1106 #else /* GROUP_IOSCHED */
1107 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1108 {
1109         return &cfqd->root_group;
1110 }
1111
1112 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1113 {
1114         return cfqg;
1115 }
1116
1117 static inline void
1118 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1119         cfqq->cfqg = cfqg;
1120 }
1121
1122 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1123 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1124
1125 #endif /* GROUP_IOSCHED */
1126
1127 /*
1128  * The cfqd->service_trees holds all pending cfq_queue's that have
1129  * requests waiting to be processed. It is sorted in the order that
1130  * we will service the queues.
1131  */
1132 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1133                                  bool add_front)
1134 {
1135         struct rb_node **p, *parent;
1136         struct cfq_queue *__cfqq;
1137         unsigned long rb_key;
1138         struct cfq_rb_root *service_tree;
1139         int left;
1140         int new_cfqq = 1;
1141         int group_changed = 0;
1142
1143 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1144         if (!cfqd->cfq_group_isolation
1145             && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1146             && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1147                 /* Move this cfq to root group */
1148                 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1149                 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1150                         cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1151                 cfqq->orig_cfqg = cfqq->cfqg;
1152                 cfqq->cfqg = &cfqd->root_group;
1153                 atomic_inc(&cfqd->root_group.ref);
1154                 group_changed = 1;
1155         } else if (!cfqd->cfq_group_isolation
1156                    && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1157                 /* cfqq is sequential now needs to go to its original group */
1158                 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1159                 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1160                         cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1161                 cfq_put_cfqg(cfqq->cfqg);
1162                 cfqq->cfqg = cfqq->orig_cfqg;
1163                 cfqq->orig_cfqg = NULL;
1164                 group_changed = 1;
1165                 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1166         }
1167 #endif
1168
1169         service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1170                                                 cfqq_type(cfqq));
1171         if (cfq_class_idle(cfqq)) {
1172                 rb_key = CFQ_IDLE_DELAY;
1173                 parent = rb_last(&service_tree->rb);
1174                 if (parent && parent != &cfqq->rb_node) {
1175                         __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1176                         rb_key += __cfqq->rb_key;
1177                 } else
1178                         rb_key += jiffies;
1179         } else if (!add_front) {
1180                 /*
1181                  * Get our rb key offset. Subtract any residual slice
1182                  * value carried from last service. A negative resid
1183                  * count indicates slice overrun, and this should position
1184                  * the next service time further away in the tree.
1185                  */
1186                 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1187                 rb_key -= cfqq->slice_resid;
1188                 cfqq->slice_resid = 0;
1189         } else {
1190                 rb_key = -HZ;
1191                 __cfqq = cfq_rb_first(service_tree);
1192                 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1193         }
1194
1195         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1196                 new_cfqq = 0;
1197                 /*
1198                  * same position, nothing more to do
1199                  */
1200                 if (rb_key == cfqq->rb_key &&
1201                     cfqq->service_tree == service_tree)
1202                         return;
1203
1204                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1205                 cfqq->service_tree = NULL;
1206         }
1207
1208         left = 1;
1209         parent = NULL;
1210         cfqq->service_tree = service_tree;
1211         p = &service_tree->rb.rb_node;
1212         while (*p) {
1213                 struct rb_node **n;
1214
1215                 parent = *p;
1216                 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1217
1218                 /*
1219                  * sort by key, that represents service time.
1220                  */
1221                 if (time_before(rb_key, __cfqq->rb_key))
1222                         n = &(*p)->rb_left;
1223                 else {
1224                         n = &(*p)->rb_right;
1225                         left = 0;
1226                 }
1227
1228                 p = n;
1229         }
1230
1231         if (left)
1232                 service_tree->left = &cfqq->rb_node;
1233
1234         cfqq->rb_key = rb_key;
1235         rb_link_node(&cfqq->rb_node, parent, p);
1236         rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1237         service_tree->count++;
1238         if ((add_front || !new_cfqq) && !group_changed)
1239                 return;
1240         cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1241 }
1242
1243 static struct cfq_queue *
1244 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1245                      sector_t sector, struct rb_node **ret_parent,
1246                      struct rb_node ***rb_link)
1247 {
1248         struct rb_node **p, *parent;
1249         struct cfq_queue *cfqq = NULL;
1250
1251         parent = NULL;
1252         p = &root->rb_node;
1253         while (*p) {
1254                 struct rb_node **n;
1255
1256                 parent = *p;
1257                 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1258
1259                 /*
1260                  * Sort strictly based on sector.  Smallest to the left,
1261                  * largest to the right.
1262                  */
1263                 if (sector > blk_rq_pos(cfqq->next_rq))
1264                         n = &(*p)->rb_right;
1265                 else if (sector < blk_rq_pos(cfqq->next_rq))
1266                         n = &(*p)->rb_left;
1267                 else
1268                         break;
1269                 p = n;
1270                 cfqq = NULL;
1271         }
1272
1273         *ret_parent = parent;
1274         if (rb_link)
1275                 *rb_link = p;
1276         return cfqq;
1277 }
1278
1279 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1280 {
1281         struct rb_node **p, *parent;
1282         struct cfq_queue *__cfqq;
1283
1284         if (cfqq->p_root) {
1285                 rb_erase(&cfqq->p_node, cfqq->p_root);
1286                 cfqq->p_root = NULL;
1287         }
1288
1289         if (cfq_class_idle(cfqq))
1290                 return;
1291         if (!cfqq->next_rq)
1292                 return;
1293
1294         cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1295         __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1296                                       blk_rq_pos(cfqq->next_rq), &parent, &p);
1297         if (!__cfqq) {
1298                 rb_link_node(&cfqq->p_node, parent, p);
1299                 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1300         } else
1301                 cfqq->p_root = NULL;
1302 }
1303
1304 /*
1305  * Update cfqq's position in the service tree.
1306  */
1307 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1308 {
1309         /*
1310          * Resorting requires the cfqq to be on the RR list already.
1311          */
1312         if (cfq_cfqq_on_rr(cfqq)) {
1313                 cfq_service_tree_add(cfqd, cfqq, 0);
1314                 cfq_prio_tree_add(cfqd, cfqq);
1315         }
1316 }
1317
1318 /*
1319  * add to busy list of queues for service, trying to be fair in ordering
1320  * the pending list according to last request service
1321  */
1322 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1323 {
1324         cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1325         BUG_ON(cfq_cfqq_on_rr(cfqq));
1326         cfq_mark_cfqq_on_rr(cfqq);
1327         cfqd->busy_queues++;
1328
1329         cfq_resort_rr_list(cfqd, cfqq);
1330 }
1331
1332 /*
1333  * Called when the cfqq no longer has requests pending, remove it from
1334  * the service tree.
1335  */
1336 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1337 {
1338         cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1339         BUG_ON(!cfq_cfqq_on_rr(cfqq));
1340         cfq_clear_cfqq_on_rr(cfqq);
1341
1342         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1343                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1344                 cfqq->service_tree = NULL;
1345         }
1346         if (cfqq->p_root) {
1347                 rb_erase(&cfqq->p_node, cfqq->p_root);
1348                 cfqq->p_root = NULL;
1349         }
1350
1351         cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1352         BUG_ON(!cfqd->busy_queues);
1353         cfqd->busy_queues--;
1354 }
1355
1356 /*
1357  * rb tree support functions
1358  */
1359 static void cfq_del_rq_rb(struct request *rq)
1360 {
1361         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1362         const int sync = rq_is_sync(rq);
1363
1364         BUG_ON(!cfqq->queued[sync]);
1365         cfqq->queued[sync]--;
1366
1367         elv_rb_del(&cfqq->sort_list, rq);
1368
1369         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1370                 /*
1371                  * Queue will be deleted from service tree when we actually
1372                  * expire it later. Right now just remove it from prio tree
1373                  * as it is empty.
1374                  */
1375                 if (cfqq->p_root) {
1376                         rb_erase(&cfqq->p_node, cfqq->p_root);
1377                         cfqq->p_root = NULL;
1378                 }
1379         }
1380 }
1381
1382 static void cfq_add_rq_rb(struct request *rq)
1383 {
1384         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1385         struct cfq_data *cfqd = cfqq->cfqd;
1386         struct request *__alias, *prev;
1387
1388         cfqq->queued[rq_is_sync(rq)]++;
1389
1390         /*
1391          * looks a little odd, but the first insert might return an alias.
1392          * if that happens, put the alias on the dispatch list
1393          */
1394         while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1395                 cfq_dispatch_insert(cfqd->queue, __alias);
1396
1397         if (!cfq_cfqq_on_rr(cfqq))
1398                 cfq_add_cfqq_rr(cfqd, cfqq);
1399
1400         /*
1401          * check if this request is a better next-serve candidate
1402          */
1403         prev = cfqq->next_rq;
1404         cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1405
1406         /*
1407          * adjust priority tree position, if ->next_rq changes
1408          */
1409         if (prev != cfqq->next_rq)
1410                 cfq_prio_tree_add(cfqd, cfqq);
1411
1412         BUG_ON(!cfqq->next_rq);
1413 }
1414
1415 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1416 {
1417         elv_rb_del(&cfqq->sort_list, rq);
1418         cfqq->queued[rq_is_sync(rq)]--;
1419         blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg, rq_data_dir(rq),
1420                                                 rq_is_sync(rq));
1421         cfq_add_rq_rb(rq);
1422         blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
1423                         &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1424                         rq_is_sync(rq));
1425 }
1426
1427 static struct request *
1428 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1429 {
1430         struct task_struct *tsk = current;
1431         struct cfq_io_context *cic;
1432         struct cfq_queue *cfqq;
1433
1434         cic = cfq_cic_lookup(cfqd, tsk->io_context);
1435         if (!cic)
1436                 return NULL;
1437
1438         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1439         if (cfqq) {
1440                 sector_t sector = bio->bi_sector + bio_sectors(bio);
1441
1442                 return elv_rb_find(&cfqq->sort_list, sector);
1443         }
1444
1445         return NULL;
1446 }
1447
1448 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1449 {
1450         struct cfq_data *cfqd = q->elevator->elevator_data;
1451
1452         cfqd->rq_in_driver++;
1453         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1454                                                 cfqd->rq_in_driver);
1455
1456         cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1457 }
1458
1459 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1460 {
1461         struct cfq_data *cfqd = q->elevator->elevator_data;
1462
1463         WARN_ON(!cfqd->rq_in_driver);
1464         cfqd->rq_in_driver--;
1465         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1466                                                 cfqd->rq_in_driver);
1467 }
1468
1469 static void cfq_remove_request(struct request *rq)
1470 {
1471         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1472
1473         if (cfqq->next_rq == rq)
1474                 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1475
1476         list_del_init(&rq->queuelist);
1477         cfq_del_rq_rb(rq);
1478
1479         cfqq->cfqd->rq_queued--;
1480         blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg, rq_data_dir(rq),
1481                                                 rq_is_sync(rq));
1482         if (rq_is_meta(rq)) {
1483                 WARN_ON(!cfqq->meta_pending);
1484                 cfqq->meta_pending--;
1485         }
1486 }
1487
1488 static int cfq_merge(struct request_queue *q, struct request **req,
1489                      struct bio *bio)
1490 {
1491         struct cfq_data *cfqd = q->elevator->elevator_data;
1492         struct request *__rq;
1493
1494         __rq = cfq_find_rq_fmerge(cfqd, bio);
1495         if (__rq && elv_rq_merge_ok(__rq, bio)) {
1496                 *req = __rq;
1497                 return ELEVATOR_FRONT_MERGE;
1498         }
1499
1500         return ELEVATOR_NO_MERGE;
1501 }
1502
1503 static void cfq_merged_request(struct request_queue *q, struct request *req,
1504                                int type)
1505 {
1506         if (type == ELEVATOR_FRONT_MERGE) {
1507                 struct cfq_queue *cfqq = RQ_CFQQ(req);
1508
1509                 cfq_reposition_rq_rb(cfqq, req);
1510         }
1511 }
1512
1513 static void cfq_bio_merged(struct request_queue *q, struct request *req,
1514                                 struct bio *bio)
1515 {
1516         blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg, bio_data_dir(bio),
1517                                         cfq_bio_sync(bio));
1518 }
1519
1520 static void
1521 cfq_merged_requests(struct request_queue *q, struct request *rq,
1522                     struct request *next)
1523 {
1524         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1525         /*
1526          * reposition in fifo if next is older than rq
1527          */
1528         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1529             time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1530                 list_move(&rq->queuelist, &next->queuelist);
1531                 rq_set_fifo_time(rq, rq_fifo_time(next));
1532         }
1533
1534         if (cfqq->next_rq == next)
1535                 cfqq->next_rq = rq;
1536         cfq_remove_request(next);
1537         blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg, rq_data_dir(next),
1538                                         rq_is_sync(next));
1539 }
1540
1541 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1542                            struct bio *bio)
1543 {
1544         struct cfq_data *cfqd = q->elevator->elevator_data;
1545         struct cfq_io_context *cic;
1546         struct cfq_queue *cfqq;
1547
1548         /*
1549          * Disallow merge of a sync bio into an async request.
1550          */
1551         if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1552                 return false;
1553
1554         /*
1555          * Lookup the cfqq that this bio will be queued with. Allow
1556          * merge only if rq is queued there.
1557          */
1558         cic = cfq_cic_lookup(cfqd, current->io_context);
1559         if (!cic)
1560                 return false;
1561
1562         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1563         return cfqq == RQ_CFQQ(rq);
1564 }
1565
1566 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1567 {
1568         del_timer(&cfqd->idle_slice_timer);
1569         blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
1570 }
1571
1572 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1573                                    struct cfq_queue *cfqq)
1574 {
1575         if (cfqq) {
1576                 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1577                                 cfqd->serving_prio, cfqd->serving_type);
1578                 blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
1579                 cfqq->slice_start = 0;
1580                 cfqq->dispatch_start = jiffies;
1581                 cfqq->allocated_slice = 0;
1582                 cfqq->slice_end = 0;
1583                 cfqq->slice_dispatch = 0;
1584
1585                 cfq_clear_cfqq_wait_request(cfqq);
1586                 cfq_clear_cfqq_must_dispatch(cfqq);
1587                 cfq_clear_cfqq_must_alloc_slice(cfqq);
1588                 cfq_clear_cfqq_fifo_expire(cfqq);
1589                 cfq_mark_cfqq_slice_new(cfqq);
1590
1591                 cfq_del_timer(cfqd, cfqq);
1592         }
1593
1594         cfqd->active_queue = cfqq;
1595 }
1596
1597 /*
1598  * current cfqq expired its slice (or was too idle), select new one
1599  */
1600 static void
1601 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1602                     bool timed_out)
1603 {
1604         cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1605
1606         if (cfq_cfqq_wait_request(cfqq))
1607                 cfq_del_timer(cfqd, cfqq);
1608
1609         cfq_clear_cfqq_wait_request(cfqq);
1610         cfq_clear_cfqq_wait_busy(cfqq);
1611
1612         /*
1613          * If this cfqq is shared between multiple processes, check to
1614          * make sure that those processes are still issuing I/Os within
1615          * the mean seek distance.  If not, it may be time to break the
1616          * queues apart again.
1617          */
1618         if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1619                 cfq_mark_cfqq_split_coop(cfqq);
1620
1621         /*
1622          * store what was left of this slice, if the queue idled/timed out
1623          */
1624         if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1625                 cfqq->slice_resid = cfqq->slice_end - jiffies;
1626                 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1627         }
1628
1629         cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1630
1631         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1632                 cfq_del_cfqq_rr(cfqd, cfqq);
1633
1634         cfq_resort_rr_list(cfqd, cfqq);
1635
1636         if (cfqq == cfqd->active_queue)
1637                 cfqd->active_queue = NULL;
1638
1639         if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1640                 cfqd->grp_service_tree.active = NULL;
1641
1642         if (cfqd->active_cic) {
1643                 put_io_context(cfqd->active_cic->ioc);
1644                 cfqd->active_cic = NULL;
1645         }
1646 }
1647
1648 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1649 {
1650         struct cfq_queue *cfqq = cfqd->active_queue;
1651
1652         if (cfqq)
1653                 __cfq_slice_expired(cfqd, cfqq, timed_out);
1654 }
1655
1656 /*
1657  * Get next queue for service. Unless we have a queue preemption,
1658  * we'll simply select the first cfqq in the service tree.
1659  */
1660 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1661 {
1662         struct cfq_rb_root *service_tree =
1663                 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1664                                         cfqd->serving_type);
1665
1666         if (!cfqd->rq_queued)
1667                 return NULL;
1668
1669         /* There is nothing to dispatch */
1670         if (!service_tree)
1671                 return NULL;
1672         if (RB_EMPTY_ROOT(&service_tree->rb))
1673                 return NULL;
1674         return cfq_rb_first(service_tree);
1675 }
1676
1677 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1678 {
1679         struct cfq_group *cfqg;
1680         struct cfq_queue *cfqq;
1681         int i, j;
1682         struct cfq_rb_root *st;
1683
1684         if (!cfqd->rq_queued)
1685                 return NULL;
1686
1687         cfqg = cfq_get_next_cfqg(cfqd);
1688         if (!cfqg)
1689                 return NULL;
1690
1691         for_each_cfqg_st(cfqg, i, j, st)
1692                 if ((cfqq = cfq_rb_first(st)) != NULL)
1693                         return cfqq;
1694         return NULL;
1695 }
1696
1697 /*
1698  * Get and set a new active queue for service.
1699  */
1700 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1701                                               struct cfq_queue *cfqq)
1702 {
1703         if (!cfqq)
1704                 cfqq = cfq_get_next_queue(cfqd);
1705
1706         __cfq_set_active_queue(cfqd, cfqq);
1707         return cfqq;
1708 }
1709
1710 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1711                                           struct request *rq)
1712 {
1713         if (blk_rq_pos(rq) >= cfqd->last_position)
1714                 return blk_rq_pos(rq) - cfqd->last_position;
1715         else
1716                 return cfqd->last_position - blk_rq_pos(rq);
1717 }
1718
1719 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1720                                struct request *rq)
1721 {
1722         return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1723 }
1724
1725 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1726                                     struct cfq_queue *cur_cfqq)
1727 {
1728         struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1729         struct rb_node *parent, *node;
1730         struct cfq_queue *__cfqq;
1731         sector_t sector = cfqd->last_position;
1732
1733         if (RB_EMPTY_ROOT(root))
1734                 return NULL;
1735
1736         /*
1737          * First, if we find a request starting at the end of the last
1738          * request, choose it.
1739          */
1740         __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1741         if (__cfqq)
1742                 return __cfqq;
1743
1744         /*
1745          * If the exact sector wasn't found, the parent of the NULL leaf
1746          * will contain the closest sector.
1747          */
1748         __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1749         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1750                 return __cfqq;
1751
1752         if (blk_rq_pos(__cfqq->next_rq) < sector)
1753                 node = rb_next(&__cfqq->p_node);
1754         else
1755                 node = rb_prev(&__cfqq->p_node);
1756         if (!node)
1757                 return NULL;
1758
1759         __cfqq = rb_entry(node, struct cfq_queue, p_node);
1760         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1761                 return __cfqq;
1762
1763         return NULL;
1764 }
1765
1766 /*
1767  * cfqd - obvious
1768  * cur_cfqq - passed in so that we don't decide that the current queue is
1769  *            closely cooperating with itself.
1770  *
1771  * So, basically we're assuming that that cur_cfqq has dispatched at least
1772  * one request, and that cfqd->last_position reflects a position on the disk
1773  * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1774  * assumption.
1775  */
1776 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1777                                               struct cfq_queue *cur_cfqq)
1778 {
1779         struct cfq_queue *cfqq;
1780
1781         if (cfq_class_idle(cur_cfqq))
1782                 return NULL;
1783         if (!cfq_cfqq_sync(cur_cfqq))
1784                 return NULL;
1785         if (CFQQ_SEEKY(cur_cfqq))
1786                 return NULL;
1787
1788         /*
1789          * Don't search priority tree if it's the only queue in the group.
1790          */
1791         if (cur_cfqq->cfqg->nr_cfqq == 1)
1792                 return NULL;
1793
1794         /*
1795          * We should notice if some of the queues are cooperating, eg
1796          * working closely on the same area of the disk. In that case,
1797          * we can group them together and don't waste time idling.
1798          */
1799         cfqq = cfqq_close(cfqd, cur_cfqq);
1800         if (!cfqq)
1801                 return NULL;
1802
1803         /* If new queue belongs to different cfq_group, don't choose it */
1804         if (cur_cfqq->cfqg != cfqq->cfqg)
1805                 return NULL;
1806
1807         /*
1808          * It only makes sense to merge sync queues.
1809          */
1810         if (!cfq_cfqq_sync(cfqq))
1811                 return NULL;
1812         if (CFQQ_SEEKY(cfqq))
1813                 return NULL;
1814
1815         /*
1816          * Do not merge queues of different priority classes
1817          */
1818         if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1819                 return NULL;
1820
1821         return cfqq;
1822 }
1823
1824 /*
1825  * Determine whether we should enforce idle window for this queue.
1826  */
1827
1828 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1829 {
1830         enum wl_prio_t prio = cfqq_prio(cfqq);
1831         struct cfq_rb_root *service_tree = cfqq->service_tree;
1832
1833         BUG_ON(!service_tree);
1834         BUG_ON(!service_tree->count);
1835
1836         /* We never do for idle class queues. */
1837         if (prio == IDLE_WORKLOAD)
1838                 return false;
1839
1840         /* We do for queues that were marked with idle window flag. */
1841         if (cfq_cfqq_idle_window(cfqq) &&
1842            !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1843                 return true;
1844
1845         /*
1846          * Otherwise, we do only if they are the last ones
1847          * in their service tree.
1848          */
1849         if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
1850                 return 1;
1851         cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1852                         service_tree->count);
1853         return 0;
1854 }
1855
1856 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1857 {
1858         struct cfq_queue *cfqq = cfqd->active_queue;
1859         struct cfq_io_context *cic;
1860         unsigned long sl;
1861
1862         /*
1863          * SSD device without seek penalty, disable idling. But only do so
1864          * for devices that support queuing, otherwise we still have a problem
1865          * with sync vs async workloads.
1866          */
1867         if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1868                 return;
1869
1870         WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1871         WARN_ON(cfq_cfqq_slice_new(cfqq));
1872
1873         /*
1874          * idle is disabled, either manually or by past process history
1875          */
1876         if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
1877                 return;
1878
1879         /*
1880          * still active requests from this queue, don't idle
1881          */
1882         if (cfqq->dispatched)
1883                 return;
1884
1885         /*
1886          * task has exited, don't wait
1887          */
1888         cic = cfqd->active_cic;
1889         if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1890                 return;
1891
1892         /*
1893          * If our average think time is larger than the remaining time
1894          * slice, then don't idle. This avoids overrunning the allotted
1895          * time slice.
1896          */
1897         if (sample_valid(cic->ttime_samples) &&
1898             (cfqq->slice_end - jiffies < cic->ttime_mean)) {
1899                 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
1900                                 cic->ttime_mean);
1901                 return;
1902         }
1903
1904         cfq_mark_cfqq_wait_request(cfqq);
1905
1906         sl = cfqd->cfq_slice_idle;
1907
1908         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1909         blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
1910         cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1911 }
1912
1913 /*
1914  * Move request from internal lists to the request queue dispatch list.
1915  */
1916 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1917 {
1918         struct cfq_data *cfqd = q->elevator->elevator_data;
1919         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1920
1921         cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1922
1923         cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1924         cfq_remove_request(rq);
1925         cfqq->dispatched++;
1926         elv_dispatch_sort(q, rq);
1927
1928         cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
1929         blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
1930                                         rq_data_dir(rq), rq_is_sync(rq));
1931 }
1932
1933 /*
1934  * return expired entry, or NULL to just start from scratch in rbtree
1935  */
1936 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1937 {
1938         struct request *rq = NULL;
1939
1940         if (cfq_cfqq_fifo_expire(cfqq))
1941                 return NULL;
1942
1943         cfq_mark_cfqq_fifo_expire(cfqq);
1944
1945         if (list_empty(&cfqq->fifo))
1946                 return NULL;
1947
1948         rq = rq_entry_fifo(cfqq->fifo.next);
1949         if (time_before(jiffies, rq_fifo_time(rq)))
1950                 rq = NULL;
1951
1952         cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1953         return rq;
1954 }
1955
1956 static inline int
1957 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1958 {
1959         const int base_rq = cfqd->cfq_slice_async_rq;
1960
1961         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1962
1963         return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1964 }
1965
1966 /*
1967  * Must be called with the queue_lock held.
1968  */
1969 static int cfqq_process_refs(struct cfq_queue *cfqq)
1970 {
1971         int process_refs, io_refs;
1972
1973         io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1974         process_refs = atomic_read(&cfqq->ref) - io_refs;
1975         BUG_ON(process_refs < 0);
1976         return process_refs;
1977 }
1978
1979 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1980 {
1981         int process_refs, new_process_refs;
1982         struct cfq_queue *__cfqq;
1983
1984         /* Avoid a circular list and skip interim queue merges */
1985         while ((__cfqq = new_cfqq->new_cfqq)) {
1986                 if (__cfqq == cfqq)
1987                         return;
1988                 new_cfqq = __cfqq;
1989         }
1990
1991         process_refs = cfqq_process_refs(cfqq);
1992         /*
1993          * If the process for the cfqq has gone away, there is no
1994          * sense in merging the queues.
1995          */
1996         if (process_refs == 0)
1997                 return;
1998
1999         /*
2000          * Merge in the direction of the lesser amount of work.
2001          */
2002         new_process_refs = cfqq_process_refs(new_cfqq);
2003         if (new_process_refs >= process_refs) {
2004                 cfqq->new_cfqq = new_cfqq;
2005                 atomic_add(process_refs, &new_cfqq->ref);
2006         } else {
2007                 new_cfqq->new_cfqq = cfqq;
2008                 atomic_add(new_process_refs, &cfqq->ref);
2009         }
2010 }
2011
2012 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
2013                                 struct cfq_group *cfqg, enum wl_prio_t prio)
2014 {
2015         struct cfq_queue *queue;
2016         int i;
2017         bool key_valid = false;
2018         unsigned long lowest_key = 0;
2019         enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2020
2021         for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2022                 /* select the one with lowest rb_key */
2023                 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
2024                 if (queue &&
2025                     (!key_valid || time_before(queue->rb_key, lowest_key))) {
2026                         lowest_key = queue->rb_key;
2027                         cur_best = i;
2028                         key_valid = true;
2029                 }
2030         }
2031
2032         return cur_best;
2033 }
2034
2035 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2036 {
2037         unsigned slice;
2038         unsigned count;
2039         struct cfq_rb_root *st;
2040         unsigned group_slice;
2041
2042         if (!cfqg) {
2043                 cfqd->serving_prio = IDLE_WORKLOAD;
2044                 cfqd->workload_expires = jiffies + 1;
2045                 return;
2046         }
2047
2048         /* Choose next priority. RT > BE > IDLE */
2049         if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2050                 cfqd->serving_prio = RT_WORKLOAD;
2051         else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2052                 cfqd->serving_prio = BE_WORKLOAD;
2053         else {
2054                 cfqd->serving_prio = IDLE_WORKLOAD;
2055                 cfqd->workload_expires = jiffies + 1;
2056                 return;
2057         }
2058
2059         /*
2060          * For RT and BE, we have to choose also the type
2061          * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2062          * expiration time
2063          */
2064         st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2065         count = st->count;
2066
2067         /*
2068          * check workload expiration, and that we still have other queues ready
2069          */
2070         if (count && !time_after(jiffies, cfqd->workload_expires))
2071                 return;
2072
2073         /* otherwise select new workload type */
2074         cfqd->serving_type =
2075                 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2076         st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2077         count = st->count;
2078
2079         /*
2080          * the workload slice is computed as a fraction of target latency
2081          * proportional to the number of queues in that workload, over
2082          * all the queues in the same priority class
2083          */
2084         group_slice = cfq_group_slice(cfqd, cfqg);
2085
2086         slice = group_slice * count /
2087                 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2088                       cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2089
2090         if (cfqd->serving_type == ASYNC_WORKLOAD) {
2091                 unsigned int tmp;
2092
2093                 /*
2094                  * Async queues are currently system wide. Just taking
2095                  * proportion of queues with-in same group will lead to higher
2096                  * async ratio system wide as generally root group is going
2097                  * to have higher weight. A more accurate thing would be to
2098                  * calculate system wide asnc/sync ratio.
2099                  */
2100                 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2101                 tmp = tmp/cfqd->busy_queues;
2102                 slice = min_t(unsigned, slice, tmp);
2103
2104                 /* async workload slice is scaled down according to
2105                  * the sync/async slice ratio. */
2106                 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2107         } else
2108                 /* sync workload slice is at least 2 * cfq_slice_idle */
2109                 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2110
2111         slice = max_t(unsigned, slice, CFQ_MIN_TT);
2112         cfq_log(cfqd, "workload slice:%d", slice);
2113         cfqd->workload_expires = jiffies + slice;
2114         cfqd->noidle_tree_requires_idle = false;
2115 }
2116
2117 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2118 {
2119         struct cfq_rb_root *st = &cfqd->grp_service_tree;
2120         struct cfq_group *cfqg;
2121
2122         if (RB_EMPTY_ROOT(&st->rb))
2123                 return NULL;
2124         cfqg = cfq_rb_first_group(st);
2125         st->active = &cfqg->rb_node;
2126         update_min_vdisktime(st);
2127         return cfqg;
2128 }
2129
2130 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2131 {
2132         struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2133
2134         cfqd->serving_group = cfqg;
2135
2136         /* Restore the workload type data */
2137         if (cfqg->saved_workload_slice) {
2138                 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2139                 cfqd->serving_type = cfqg->saved_workload;
2140                 cfqd->serving_prio = cfqg->saved_serving_prio;
2141         } else
2142                 cfqd->workload_expires = jiffies - 1;
2143
2144         choose_service_tree(cfqd, cfqg);
2145 }
2146
2147 /*
2148  * Select a queue for service. If we have a current active queue,
2149  * check whether to continue servicing it, or retrieve and set a new one.
2150  */
2151 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2152 {
2153         struct cfq_queue *cfqq, *new_cfqq = NULL;
2154
2155         cfqq = cfqd->active_queue;
2156         if (!cfqq)
2157                 goto new_queue;
2158
2159         if (!cfqd->rq_queued)
2160                 return NULL;
2161
2162         /*
2163          * We were waiting for group to get backlogged. Expire the queue
2164          */
2165         if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2166                 goto expire;
2167
2168         /*
2169          * The active queue has run out of time, expire it and select new.
2170          */
2171         if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2172                 /*
2173                  * If slice had not expired at the completion of last request
2174                  * we might not have turned on wait_busy flag. Don't expire
2175                  * the queue yet. Allow the group to get backlogged.
2176                  *
2177                  * The very fact that we have used the slice, that means we
2178                  * have been idling all along on this queue and it should be
2179                  * ok to wait for this request to complete.
2180                  */
2181                 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2182                     && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2183                         cfqq = NULL;
2184                         goto keep_queue;
2185                 } else
2186                         goto expire;
2187         }
2188
2189         /*
2190          * The active queue has requests and isn't expired, allow it to
2191          * dispatch.
2192          */
2193         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2194                 goto keep_queue;
2195
2196         /*
2197          * If another queue has a request waiting within our mean seek
2198          * distance, let it run.  The expire code will check for close
2199          * cooperators and put the close queue at the front of the service
2200          * tree.  If possible, merge the expiring queue with the new cfqq.
2201          */
2202         new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2203         if (new_cfqq) {
2204                 if (!cfqq->new_cfqq)
2205                         cfq_setup_merge(cfqq, new_cfqq);
2206                 goto expire;
2207         }
2208
2209         /*
2210          * No requests pending. If the active queue still has requests in
2211          * flight or is idling for a new request, allow either of these
2212          * conditions to happen (or time out) before selecting a new queue.
2213          */
2214         if (timer_pending(&cfqd->idle_slice_timer) ||
2215             (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
2216                 cfqq = NULL;
2217                 goto keep_queue;
2218         }
2219
2220 expire:
2221         cfq_slice_expired(cfqd, 0);
2222 new_queue:
2223         /*
2224          * Current queue expired. Check if we have to switch to a new
2225          * service tree
2226          */
2227         if (!new_cfqq)
2228                 cfq_choose_cfqg(cfqd);
2229
2230         cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2231 keep_queue:
2232         return cfqq;
2233 }
2234
2235 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2236 {
2237         int dispatched = 0;
2238
2239         while (cfqq->next_rq) {
2240                 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2241                 dispatched++;
2242         }
2243
2244         BUG_ON(!list_empty(&cfqq->fifo));
2245
2246         /* By default cfqq is not expired if it is empty. Do it explicitly */
2247         __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2248         return dispatched;
2249 }
2250
2251 /*
2252  * Drain our current requests. Used for barriers and when switching
2253  * io schedulers on-the-fly.
2254  */
2255 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2256 {
2257         struct cfq_queue *cfqq;
2258         int dispatched = 0;
2259
2260         /* Expire the timeslice of the current active queue first */
2261         cfq_slice_expired(cfqd, 0);
2262         while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2263                 __cfq_set_active_queue(cfqd, cfqq);
2264                 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2265         }
2266
2267         BUG_ON(cfqd->busy_queues);
2268
2269         cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2270         return dispatched;
2271 }
2272
2273 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2274         struct cfq_queue *cfqq)
2275 {
2276         /* the queue hasn't finished any request, can't estimate */
2277         if (cfq_cfqq_slice_new(cfqq))
2278                 return 1;
2279         if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2280                 cfqq->slice_end))
2281                 return 1;
2282
2283         return 0;
2284 }
2285
2286 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2287 {
2288         unsigned int max_dispatch;
2289
2290         /*
2291          * Drain async requests before we start sync IO
2292          */
2293         if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2294                 return false;
2295
2296         /*
2297          * If this is an async queue and we have sync IO in flight, let it wait
2298          */
2299         if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2300                 return false;
2301
2302         max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2303         if (cfq_class_idle(cfqq))
2304                 max_dispatch = 1;
2305
2306         /*
2307          * Does this cfqq already have too much IO in flight?
2308          */
2309         if (cfqq->dispatched >= max_dispatch) {
2310                 /*
2311                  * idle queue must always only have a single IO in flight
2312                  */
2313                 if (cfq_class_idle(cfqq))
2314                         return false;
2315
2316                 /*
2317                  * We have other queues, don't allow more IO from this one
2318                  */
2319                 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
2320                         return false;
2321
2322                 /*
2323                  * Sole queue user, no limit
2324                  */
2325                 if (cfqd->busy_queues == 1)
2326                         max_dispatch = -1;
2327                 else
2328                         /*
2329                          * Normally we start throttling cfqq when cfq_quantum/2
2330                          * requests have been dispatched. But we can drive
2331                          * deeper queue depths at the beginning of slice
2332                          * subjected to upper limit of cfq_quantum.
2333                          * */
2334                         max_dispatch = cfqd->cfq_quantum;
2335         }
2336
2337         /*
2338          * Async queues must wait a bit before being allowed dispatch.
2339          * We also ramp up the dispatch depth gradually for async IO,
2340          * based on the last sync IO we serviced
2341          */
2342         if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2343                 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2344                 unsigned int depth;
2345
2346                 depth = last_sync / cfqd->cfq_slice[1];
2347                 if (!depth && !cfqq->dispatched)
2348                         depth = 1;
2349                 if (depth < max_dispatch)
2350                         max_dispatch = depth;
2351         }
2352
2353         /*
2354          * If we're below the current max, allow a dispatch
2355          */
2356         return cfqq->dispatched < max_dispatch;
2357 }
2358
2359 /*
2360  * Dispatch a request from cfqq, moving them to the request queue
2361  * dispatch list.
2362  */
2363 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2364 {
2365         struct request *rq;
2366
2367         BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2368
2369         if (!cfq_may_dispatch(cfqd, cfqq))
2370                 return false;
2371
2372         /*
2373          * follow expired path, else get first next available
2374          */
2375         rq = cfq_check_fifo(cfqq);
2376         if (!rq)
2377                 rq = cfqq->next_rq;
2378
2379         /*
2380          * insert request into driver dispatch list
2381          */
2382         cfq_dispatch_insert(cfqd->queue, rq);
2383
2384         if (!cfqd->active_cic) {
2385                 struct cfq_io_context *cic = RQ_CIC(rq);
2386
2387                 atomic_long_inc(&cic->ioc->refcount);
2388                 cfqd->active_cic = cic;
2389         }
2390
2391         return true;
2392 }
2393
2394 /*
2395  * Find the cfqq that we need to service and move a request from that to the
2396  * dispatch list
2397  */
2398 static int cfq_dispatch_requests(struct request_queue *q, int force)
2399 {
2400         struct cfq_data *cfqd = q->elevator->elevator_data;
2401         struct cfq_queue *cfqq;
2402
2403         if (!cfqd->busy_queues)
2404                 return 0;
2405
2406         if (unlikely(force))
2407                 return cfq_forced_dispatch(cfqd);
2408
2409         cfqq = cfq_select_queue(cfqd);
2410         if (!cfqq)
2411                 return 0;
2412
2413         /*
2414          * Dispatch a request from this cfqq, if it is allowed
2415          */
2416         if (!cfq_dispatch_request(cfqd, cfqq))
2417                 return 0;
2418
2419         cfqq->slice_dispatch++;
2420         cfq_clear_cfqq_must_dispatch(cfqq);
2421
2422         /*
2423          * expire an async queue immediately if it has used up its slice. idle
2424          * queue always expire after 1 dispatch round.
2425          */
2426         if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2427             cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2428             cfq_class_idle(cfqq))) {
2429                 cfqq->slice_end = jiffies + 1;
2430                 cfq_slice_expired(cfqd, 0);
2431         }
2432
2433         cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2434         return 1;
2435 }
2436
2437 /*
2438  * task holds one reference to the queue, dropped when task exits. each rq
2439  * in-flight on this queue also holds a reference, dropped when rq is freed.
2440  *
2441  * Each cfq queue took a reference on the parent group. Drop it now.
2442  * queue lock must be held here.
2443  */
2444 static void cfq_put_queue(struct cfq_queue *cfqq)
2445 {
2446         struct cfq_data *cfqd = cfqq->cfqd;
2447         struct cfq_group *cfqg, *orig_cfqg;
2448
2449         BUG_ON(atomic_read(&cfqq->ref) <= 0);
2450
2451         if (!atomic_dec_and_test(&cfqq->ref))
2452                 return;
2453
2454         cfq_log_cfqq(cfqd, cfqq, "put_queue");
2455         BUG_ON(rb_first(&cfqq->sort_list));
2456         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2457         cfqg = cfqq->cfqg;
2458         orig_cfqg = cfqq->orig_cfqg;
2459
2460         if (unlikely(cfqd->active_queue == cfqq)) {
2461                 __cfq_slice_expired(cfqd, cfqq, 0);
2462                 cfq_schedule_dispatch(cfqd);
2463         }
2464
2465         BUG_ON(cfq_cfqq_on_rr(cfqq));
2466         kmem_cache_free(cfq_pool, cfqq);
2467         cfq_put_cfqg(cfqg);
2468         if (orig_cfqg)
2469                 cfq_put_cfqg(orig_cfqg);
2470 }
2471
2472 /*
2473  * Must always be called with the rcu_read_lock() held
2474  */
2475 static void
2476 __call_for_each_cic(struct io_context *ioc,
2477                     void (*func)(struct io_context *, struct cfq_io_context *))
2478 {
2479         struct cfq_io_context *cic;
2480         struct hlist_node *n;
2481
2482         hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2483                 func(ioc, cic);
2484 }
2485
2486 /*
2487  * Call func for each cic attached to this ioc.
2488  */
2489 static void
2490 call_for_each_cic(struct io_context *ioc,
2491                   void (*func)(struct io_context *, struct cfq_io_context *))
2492 {
2493         rcu_read_lock();
2494         __call_for_each_cic(ioc, func);
2495         rcu_read_unlock();
2496 }
2497
2498 static void cfq_cic_free_rcu(struct rcu_head *head)
2499 {
2500         struct cfq_io_context *cic;
2501
2502         cic = container_of(head, struct cfq_io_context, rcu_head);
2503
2504         kmem_cache_free(cfq_ioc_pool, cic);
2505         elv_ioc_count_dec(cfq_ioc_count);
2506
2507         if (ioc_gone) {
2508                 /*
2509                  * CFQ scheduler is exiting, grab exit lock and check
2510                  * the pending io context count. If it hits zero,
2511                  * complete ioc_gone and set it back to NULL
2512                  */
2513                 spin_lock(&ioc_gone_lock);
2514                 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2515                         complete(ioc_gone);
2516                         ioc_gone = NULL;
2517                 }
2518                 spin_unlock(&ioc_gone_lock);
2519         }
2520 }
2521
2522 static void cfq_cic_free(struct cfq_io_context *cic)
2523 {
2524         call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2525 }
2526
2527 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2528 {
2529         unsigned long flags;
2530         unsigned long dead_key = (unsigned long) cic->key;
2531
2532         BUG_ON(!(dead_key & CIC_DEAD_KEY));
2533
2534         spin_lock_irqsave(&ioc->lock, flags);
2535         radix_tree_delete(&ioc->radix_root, dead_key & ~CIC_DEAD_KEY);
2536         hlist_del_rcu(&cic->cic_list);
2537         spin_unlock_irqrestore(&ioc->lock, flags);
2538
2539         cfq_cic_free(cic);
2540 }
2541
2542 /*
2543  * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2544  * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2545  * and ->trim() which is called with the task lock held
2546  */
2547 static void cfq_free_io_context(struct io_context *ioc)
2548 {
2549         /*
2550          * ioc->refcount is zero here, or we are called from elv_unregister(),
2551          * so no more cic's are allowed to be linked into this ioc.  So it
2552          * should be ok to iterate over the known list, we will see all cic's
2553          * since no new ones are added.
2554          */
2555         __call_for_each_cic(ioc, cic_free_func);
2556 }
2557
2558 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2559 {
2560         struct cfq_queue *__cfqq, *next;
2561
2562         if (unlikely(cfqq == cfqd->active_queue)) {
2563                 __cfq_slice_expired(cfqd, cfqq, 0);
2564                 cfq_schedule_dispatch(cfqd);
2565         }
2566
2567         /*
2568          * If this queue was scheduled to merge with another queue, be
2569          * sure to drop the reference taken on that queue (and others in
2570          * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
2571          */
2572         __cfqq = cfqq->new_cfqq;
2573         while (__cfqq) {
2574                 if (__cfqq == cfqq) {
2575                         WARN(1, "cfqq->new_cfqq loop detected\n");
2576                         break;
2577                 }
2578                 next = __cfqq->new_cfqq;
2579                 cfq_put_queue(__cfqq);
2580                 __cfqq = next;
2581         }
2582
2583         cfq_put_queue(cfqq);
2584 }
2585
2586 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2587                                          struct cfq_io_context *cic)
2588 {
2589         struct io_context *ioc = cic->ioc;
2590
2591         list_del_init(&cic->queue_list);
2592
2593         /*
2594          * Make sure dead mark is seen for dead queues
2595          */
2596         smp_wmb();
2597         cic->key = cfqd_dead_key(cfqd);
2598
2599         if (ioc->ioc_data == cic)
2600                 rcu_assign_pointer(ioc->ioc_data, NULL);
2601
2602         if (cic->cfqq[BLK_RW_ASYNC]) {
2603                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2604                 cic->cfqq[BLK_RW_ASYNC] = NULL;
2605         }
2606
2607         if (cic->cfqq[BLK_RW_SYNC]) {
2608                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2609                 cic->cfqq[BLK_RW_SYNC] = NULL;
2610         }
2611 }
2612
2613 static void cfq_exit_single_io_context(struct io_context *ioc,
2614                                        struct cfq_io_context *cic)
2615 {
2616         struct cfq_data *cfqd = cic_to_cfqd(cic);
2617
2618         if (cfqd) {
2619                 struct request_queue *q = cfqd->queue;
2620                 unsigned long flags;
2621
2622                 spin_lock_irqsave(q->queue_lock, flags);
2623
2624                 /*
2625                  * Ensure we get a fresh copy of the ->key to prevent
2626                  * race between exiting task and queue
2627                  */
2628                 smp_read_barrier_depends();
2629                 if (cic->key == cfqd)
2630                         __cfq_exit_single_io_context(cfqd, cic);
2631
2632                 spin_unlock_irqrestore(q->queue_lock, flags);
2633         }
2634 }
2635
2636 /*
2637  * The process that ioc belongs to has exited, we need to clean up
2638  * and put the internal structures we have that belongs to that process.
2639  */
2640 static void cfq_exit_io_context(struct io_context *ioc)
2641 {
2642         call_for_each_cic(ioc, cfq_exit_single_io_context);
2643 }
2644
2645 static struct cfq_io_context *
2646 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2647 {
2648         struct cfq_io_context *cic;
2649
2650         cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2651                                                         cfqd->queue->node);
2652         if (cic) {
2653                 cic->last_end_request = jiffies;
2654                 INIT_LIST_HEAD(&cic->queue_list);
2655                 INIT_HLIST_NODE(&cic->cic_list);
2656                 cic->dtor = cfq_free_io_context;
2657                 cic->exit = cfq_exit_io_context;
2658                 elv_ioc_count_inc(cfq_ioc_count);
2659         }
2660
2661         return cic;
2662 }
2663
2664 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2665 {
2666         struct task_struct *tsk = current;
2667         int ioprio_class;
2668
2669         if (!cfq_cfqq_prio_changed(cfqq))
2670                 return;
2671
2672         ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2673         switch (ioprio_class) {
2674         default:
2675                 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2676         case IOPRIO_CLASS_NONE:
2677                 /*
2678                  * no prio set, inherit CPU scheduling settings
2679                  */
2680                 cfqq->ioprio = task_nice_ioprio(tsk);
2681                 cfqq->ioprio_class = task_nice_ioclass(tsk);
2682                 break;
2683         case IOPRIO_CLASS_RT:
2684                 cfqq->ioprio = task_ioprio(ioc);
2685                 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2686                 break;
2687         case IOPRIO_CLASS_BE:
2688                 cfqq->ioprio = task_ioprio(ioc);
2689                 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2690                 break;
2691         case IOPRIO_CLASS_IDLE:
2692                 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2693                 cfqq->ioprio = 7;
2694                 cfq_clear_cfqq_idle_window(cfqq);
2695                 break;
2696         }
2697
2698         /*
2699          * keep track of original prio settings in case we have to temporarily
2700          * elevate the priority of this queue
2701          */
2702         cfqq->org_ioprio = cfqq->ioprio;
2703         cfqq->org_ioprio_class = cfqq->ioprio_class;
2704         cfq_clear_cfqq_prio_changed(cfqq);
2705 }
2706
2707 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2708 {
2709         struct cfq_data *cfqd = cic_to_cfqd(cic);
2710         struct cfq_queue *cfqq;
2711         unsigned long flags;
2712
2713         if (unlikely(!cfqd))
2714                 return;
2715
2716         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2717
2718         cfqq = cic->cfqq[BLK_RW_ASYNC];
2719         if (cfqq) {
2720                 struct cfq_queue *new_cfqq;
2721                 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2722                                                 GFP_ATOMIC);
2723                 if (new_cfqq) {
2724                         cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2725                         cfq_put_queue(cfqq);
2726                 }
2727         }
2728
2729         cfqq = cic->cfqq[BLK_RW_SYNC];
2730         if (cfqq)
2731                 cfq_mark_cfqq_prio_changed(cfqq);
2732
2733         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2734 }
2735
2736 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2737 {
2738         call_for_each_cic(ioc, changed_ioprio);
2739         ioc->ioprio_changed = 0;
2740 }
2741
2742 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2743                           pid_t pid, bool is_sync)
2744 {
2745         RB_CLEAR_NODE(&cfqq->rb_node);
2746         RB_CLEAR_NODE(&cfqq->p_node);
2747         INIT_LIST_HEAD(&cfqq->fifo);
2748
2749         atomic_set(&cfqq->ref, 0);
2750         cfqq->cfqd = cfqd;
2751
2752         cfq_mark_cfqq_prio_changed(cfqq);
2753
2754         if (is_sync) {
2755                 if (!cfq_class_idle(cfqq))
2756                         cfq_mark_cfqq_idle_window(cfqq);
2757                 cfq_mark_cfqq_sync(cfqq);
2758         }
2759         cfqq->pid = pid;
2760 }
2761
2762 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2763 static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2764 {
2765         struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2766         struct cfq_data *cfqd = cic_to_cfqd(cic);
2767         unsigned long flags;
2768         struct request_queue *q;
2769
2770         if (unlikely(!cfqd))
2771                 return;
2772
2773         q = cfqd->queue;
2774
2775         spin_lock_irqsave(q->queue_lock, flags);
2776
2777         if (sync_cfqq) {
2778                 /*
2779                  * Drop reference to sync queue. A new sync queue will be
2780                  * assigned in new group upon arrival of a fresh request.
2781                  */
2782                 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2783                 cic_set_cfqq(cic, NULL, 1);
2784                 cfq_put_queue(sync_cfqq);
2785         }
2786
2787         spin_unlock_irqrestore(q->queue_lock, flags);
2788 }
2789
2790 static void cfq_ioc_set_cgroup(struct io_context *ioc)
2791 {
2792         call_for_each_cic(ioc, changed_cgroup);
2793         ioc->cgroup_changed = 0;
2794 }
2795 #endif  /* CONFIG_CFQ_GROUP_IOSCHED */
2796
2797 static struct cfq_queue *
2798 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2799                      struct io_context *ioc, gfp_t gfp_mask)
2800 {
2801         struct cfq_queue *cfqq, *new_cfqq = NULL;
2802         struct cfq_io_context *cic;
2803         struct cfq_group *cfqg;
2804
2805 retry:
2806         cfqg = cfq_get_cfqg(cfqd, 1);
2807         cic = cfq_cic_lookup(cfqd, ioc);
2808         /* cic always exists here */
2809         cfqq = cic_to_cfqq(cic, is_sync);
2810
2811         /*
2812          * Always try a new alloc if we fell back to the OOM cfqq
2813          * originally, since it should just be a temporary situation.
2814          */
2815         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2816                 cfqq = NULL;
2817                 if (new_cfqq) {
2818                         cfqq = new_cfqq;
2819                         new_cfqq = NULL;
2820                 } else if (gfp_mask & __GFP_WAIT) {
2821                         spin_unlock_irq(cfqd->queue->queue_lock);
2822                         new_cfqq = kmem_cache_alloc_node(cfq_pool,
2823                                         gfp_mask | __GFP_ZERO,
2824                                         cfqd->queue->node);
2825                         spin_lock_irq(cfqd->queue->queue_lock);
2826                         if (new_cfqq)
2827                                 goto retry;
2828                 } else {
2829                         cfqq = kmem_cache_alloc_node(cfq_pool,
2830                                         gfp_mask | __GFP_ZERO,
2831                                         cfqd->queue->node);
2832                 }
2833
2834                 if (cfqq) {
2835                         cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2836                         cfq_init_prio_data(cfqq, ioc);
2837                         cfq_link_cfqq_cfqg(cfqq, cfqg);
2838                         cfq_log_cfqq(cfqd, cfqq, "alloced");
2839                 } else
2840                         cfqq = &cfqd->oom_cfqq;
2841         }
2842
2843         if (new_cfqq)
2844                 kmem_cache_free(cfq_pool, new_cfqq);
2845
2846         return cfqq;
2847 }
2848
2849 static struct cfq_queue **
2850 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2851 {
2852         switch (ioprio_class) {
2853         case IOPRIO_CLASS_RT:
2854                 return &cfqd->async_cfqq[0][ioprio];
2855         case IOPRIO_CLASS_BE:
2856                 return &cfqd->async_cfqq[1][ioprio];
2857         case IOPRIO_CLASS_IDLE:
2858                 return &cfqd->async_idle_cfqq;
2859         default:
2860                 BUG();
2861         }
2862 }
2863
2864 static struct cfq_queue *
2865 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2866               gfp_t gfp_mask)
2867 {
2868         const int ioprio = task_ioprio(ioc);
2869         const int ioprio_class = task_ioprio_class(ioc);
2870         struct cfq_queue **async_cfqq = NULL;
2871         struct cfq_queue *cfqq = NULL;
2872
2873         if (!is_sync) {
2874                 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2875                 cfqq = *async_cfqq;
2876         }
2877
2878         if (!cfqq)
2879                 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2880
2881         /*
2882          * pin the queue now that it's allocated, scheduler exit will prune it
2883          */
2884         if (!is_sync && !(*async_cfqq)) {
2885                 atomic_inc(&cfqq->ref);
2886                 *async_cfqq = cfqq;
2887         }
2888
2889         atomic_inc(&cfqq->ref);
2890         return cfqq;
2891 }
2892
2893 /*
2894  * We drop cfq io contexts lazily, so we may find a dead one.
2895  */
2896 static void
2897 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2898                   struct cfq_io_context *cic)
2899 {
2900         unsigned long flags;
2901
2902         WARN_ON(!list_empty(&cic->queue_list));
2903         BUG_ON(cic->key != cfqd_dead_key(cfqd));
2904
2905         spin_lock_irqsave(&ioc->lock, flags);
2906
2907         BUG_ON(ioc->ioc_data == cic);
2908
2909         radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2910         hlist_del_rcu(&cic->cic_list);
2911         spin_unlock_irqrestore(&ioc->lock, flags);
2912
2913         cfq_cic_free(cic);
2914 }
2915
2916 static struct cfq_io_context *
2917 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2918 {
2919         struct cfq_io_context *cic;
2920         unsigned long flags;
2921
2922         if (unlikely(!ioc))
2923                 return NULL;
2924
2925         rcu_read_lock();
2926
2927         /*
2928          * we maintain a last-hit cache, to avoid browsing over the tree
2929          */
2930         cic = rcu_dereference(ioc->ioc_data);
2931         if (cic && cic->key == cfqd) {
2932                 rcu_read_unlock();
2933                 return cic;
2934         }
2935
2936         do {
2937                 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2938                 rcu_read_unlock();
2939                 if (!cic)
2940                         break;
2941                 if (unlikely(cic->key != cfqd)) {
2942                         cfq_drop_dead_cic(cfqd, ioc, cic);
2943                         rcu_read_lock();
2944                         continue;
2945                 }
2946
2947                 spin_lock_irqsave(&ioc->lock, flags);
2948                 rcu_assign_pointer(ioc->ioc_data, cic);
2949                 spin_unlock_irqrestore(&ioc->lock, flags);
2950                 break;
2951         } while (1);
2952
2953         return cic;
2954 }
2955
2956 /*
2957  * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2958  * the process specific cfq io context when entered from the block layer.
2959  * Also adds the cic to a per-cfqd list, used when this queue is removed.
2960  */
2961 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2962                         struct cfq_io_context *cic, gfp_t gfp_mask)
2963 {
2964         unsigned long flags;
2965         int ret;
2966
2967         ret = radix_tree_preload(gfp_mask);
2968         if (!ret) {
2969                 cic->ioc = ioc;
2970                 cic->key = cfqd;
2971
2972                 spin_lock_irqsave(&ioc->lock, flags);
2973                 ret = radix_tree_insert(&ioc->radix_root,
2974                                                 (unsigned long) cfqd, cic);
2975                 if (!ret)
2976                         hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2977                 spin_unlock_irqrestore(&ioc->lock, flags);
2978
2979                 radix_tree_preload_end();
2980
2981                 if (!ret) {
2982                         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2983                         list_add(&cic->queue_list, &cfqd->cic_list);
2984                         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2985                 }
2986         }
2987
2988         if (ret)
2989                 printk(KERN_ERR "cfq: cic link failed!\n");
2990
2991         return ret;
2992 }
2993
2994 /*
2995  * Setup general io context and cfq io context. There can be several cfq
2996  * io contexts per general io context, if this process is doing io to more
2997  * than one device managed by cfq.
2998  */
2999 static struct cfq_io_context *
3000 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
3001 {
3002         struct io_context *ioc = NULL;
3003         struct cfq_io_context *cic;
3004
3005         might_sleep_if(gfp_mask & __GFP_WAIT);
3006
3007         ioc = get_io_context(gfp_mask, cfqd->queue->node);
3008         if (!ioc)
3009                 return NULL;
3010
3011         cic = cfq_cic_lookup(cfqd, ioc);
3012         if (cic)
3013                 goto out;
3014
3015         cic = cfq_alloc_io_context(cfqd, gfp_mask);
3016         if (cic == NULL)
3017                 goto err;
3018
3019         if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
3020                 goto err_free;
3021
3022 out:
3023         smp_read_barrier_depends();
3024         if (unlikely(ioc->ioprio_changed))
3025                 cfq_ioc_set_ioprio(ioc);
3026
3027 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3028         if (unlikely(ioc->cgroup_changed))
3029                 cfq_ioc_set_cgroup(ioc);
3030 #endif
3031         return cic;
3032 err_free:
3033         cfq_cic_free(cic);
3034 err:
3035         put_io_context(ioc);
3036         return NULL;
3037 }
3038
3039 static void
3040 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
3041 {
3042         unsigned long elapsed = jiffies - cic->last_end_request;
3043         unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
3044
3045         cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
3046         cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
3047         cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
3048 }
3049
3050 static void
3051 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3052                        struct request *rq)
3053 {
3054         sector_t sdist = 0;
3055         sector_t n_sec = blk_rq_sectors(rq);
3056         if (cfqq->last_request_pos) {
3057                 if (cfqq->last_request_pos < blk_rq_pos(rq))
3058                         sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3059                 else
3060                         sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3061         }
3062
3063         cfqq->seek_history <<= 1;
3064         if (blk_queue_nonrot(cfqd->queue))
3065                 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3066         else
3067                 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3068 }
3069
3070 /*
3071  * Disable idle window if the process thinks too long or seeks so much that
3072  * it doesn't matter
3073  */
3074 static void
3075 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3076                        struct cfq_io_context *cic)
3077 {
3078         int old_idle, enable_idle;
3079
3080         /*
3081          * Don't idle for async or idle io prio class
3082          */
3083         if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3084                 return;
3085
3086         enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3087
3088         if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3089                 cfq_mark_cfqq_deep(cfqq);
3090
3091         if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3092             (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3093                 enable_idle = 0;
3094         else if (sample_valid(cic->ttime_samples)) {
3095                 if (cic->ttime_mean > cfqd->cfq_slice_idle)
3096                         enable_idle = 0;
3097                 else
3098                         enable_idle = 1;
3099         }
3100
3101         if (old_idle != enable_idle) {
3102                 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3103                 if (enable_idle)
3104                         cfq_mark_cfqq_idle_window(cfqq);
3105                 else
3106                         cfq_clear_cfqq_idle_window(cfqq);
3107         }
3108 }
3109
3110 /*
3111  * Check if new_cfqq should preempt the currently active queue. Return 0 for
3112  * no or if we aren't sure, a 1 will cause a preempt.
3113  */
3114 static bool
3115 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3116                    struct request *rq)
3117 {
3118         struct cfq_queue *cfqq;
3119
3120         cfqq = cfqd->active_queue;
3121         if (!cfqq)
3122                 return false;
3123
3124         if (cfq_class_idle(new_cfqq))
3125                 return false;
3126
3127         if (cfq_class_idle(cfqq))
3128                 return true;
3129
3130         /*
3131          * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3132          */
3133         if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3134                 return false;
3135
3136         /*
3137          * if the new request is sync, but the currently running queue is
3138          * not, let the sync request have priority.
3139          */
3140         if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3141                 return true;
3142
3143         if (new_cfqq->cfqg != cfqq->cfqg)
3144                 return false;
3145
3146         if (cfq_slice_used(cfqq))
3147                 return true;
3148
3149         /* Allow preemption only if we are idling on sync-noidle tree */
3150         if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3151             cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3152             new_cfqq->service_tree->count == 2 &&
3153             RB_EMPTY_ROOT(&cfqq->sort_list))
3154                 return true;
3155
3156         /*
3157          * So both queues are sync. Let the new request get disk time if
3158          * it's a metadata request and the current queue is doing regular IO.
3159          */
3160         if (rq_is_meta(rq) && !cfqq->meta_pending)
3161                 return true;
3162
3163         /*
3164          * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3165          */
3166         if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3167                 return true;
3168
3169         if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3170                 return false;
3171
3172         /*
3173          * if this request is as-good as one we would expect from the
3174          * current cfqq, let it preempt
3175          */
3176         if (cfq_rq_close(cfqd, cfqq, rq))
3177                 return true;
3178
3179         return false;
3180 }
3181
3182 /*
3183  * cfqq preempts the active queue. if we allowed preempt with no slice left,
3184  * let it have half of its nominal slice.
3185  */
3186 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3187 {
3188         cfq_log_cfqq(cfqd, cfqq, "preempt");
3189         cfq_slice_expired(cfqd, 1);
3190
3191         /*
3192          * Put the new queue at the front of the of the current list,
3193          * so we know that it will be selected next.
3194          */
3195         BUG_ON(!cfq_cfqq_on_rr(cfqq));
3196
3197         cfq_service_tree_add(cfqd, cfqq, 1);
3198
3199         cfqq->slice_end = 0;
3200         cfq_mark_cfqq_slice_new(cfqq);
3201 }
3202
3203 /*
3204  * Called when a new fs request (rq) is added (to cfqq). Check if there's
3205  * something we should do about it
3206  */
3207 static void
3208 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3209                 struct request *rq)
3210 {
3211         struct cfq_io_context *cic = RQ_CIC(rq);
3212
3213         cfqd->rq_queued++;
3214         if (rq_is_meta(rq))
3215                 cfqq->meta_pending++;
3216
3217         cfq_update_io_thinktime(cfqd, cic);
3218         cfq_update_io_seektime(cfqd, cfqq, rq);
3219         cfq_update_idle_window(cfqd, cfqq, cic);
3220
3221         cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3222
3223         if (cfqq == cfqd->active_queue) {
3224                 /*
3225                  * Remember that we saw a request from this process, but
3226                  * don't start queuing just yet. Otherwise we risk seeing lots
3227                  * of tiny requests, because we disrupt the normal plugging
3228                  * and merging. If the request is already larger than a single
3229                  * page, let it rip immediately. For that case we assume that
3230                  * merging is already done. Ditto for a busy system that
3231                  * has other work pending, don't risk delaying until the
3232                  * idle timer unplug to continue working.
3233                  */
3234                 if (cfq_cfqq_wait_request(cfqq)) {
3235                         if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3236                             cfqd->busy_queues > 1) {
3237                                 cfq_del_timer(cfqd, cfqq);
3238                                 cfq_clear_cfqq_wait_request(cfqq);
3239                                 __blk_run_queue(cfqd->queue);
3240                         } else {
3241                                 blkiocg_update_idle_time_stats(
3242                                                 &cfqq->cfqg->blkg);
3243                                 cfq_mark_cfqq_must_dispatch(cfqq);
3244                         }
3245                 }
3246         } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3247                 /*
3248                  * not the active queue - expire current slice if it is
3249                  * idle and has expired it's mean thinktime or this new queue
3250                  * has some old slice time left and is of higher priority or
3251                  * this new queue is RT and the current one is BE
3252                  */
3253                 cfq_preempt_queue(cfqd, cfqq);
3254                 __blk_run_queue(cfqd->queue);
3255         }
3256 }
3257
3258 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3259 {
3260         struct cfq_data *cfqd = q->elevator->elevator_data;
3261         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3262
3263         cfq_log_cfqq(cfqd, cfqq, "insert_request");
3264         cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3265
3266         rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3267         list_add_tail(&rq->queuelist, &cfqq->fifo);
3268         cfq_add_rq_rb(rq);
3269         blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
3270                         &cfqd->serving_group->blkg, rq_data_dir(rq),
3271                         rq_is_sync(rq));
3272         cfq_rq_enqueued(cfqd, cfqq, rq);
3273 }
3274
3275 /*
3276  * Update hw_tag based on peak queue depth over 50 samples under
3277  * sufficient load.
3278  */
3279 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3280 {
3281         struct cfq_queue *cfqq = cfqd->active_queue;
3282
3283         if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3284                 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3285
3286         if (cfqd->hw_tag == 1)
3287                 return;
3288
3289         if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3290             cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3291                 return;
3292
3293         /*
3294          * If active queue hasn't enough requests and can idle, cfq might not
3295          * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3296          * case
3297          */
3298         if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3299             cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3300             CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3301                 return;
3302
3303         if (cfqd->hw_tag_samples++ < 50)
3304                 return;
3305
3306         if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3307                 cfqd->hw_tag = 1;
3308         else
3309                 cfqd->hw_tag = 0;
3310 }
3311
3312 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3313 {
3314         struct cfq_io_context *cic = cfqd->active_cic;
3315
3316         /* If there are other queues in the group, don't wait */
3317         if (cfqq->cfqg->nr_cfqq > 1)
3318                 return false;
3319
3320         if (cfq_slice_used(cfqq))
3321                 return true;
3322
3323         /* if slice left is less than think time, wait busy */
3324         if (cic && sample_valid(cic->ttime_samples)
3325             && (cfqq->slice_end - jiffies < cic->ttime_mean))
3326                 return true;
3327
3328         /*
3329          * If think times is less than a jiffy than ttime_mean=0 and above
3330          * will not be true. It might happen that slice has not expired yet
3331          * but will expire soon (4-5 ns) during select_queue(). To cover the
3332          * case where think time is less than a jiffy, mark the queue wait
3333          * busy if only 1 jiffy is left in the slice.
3334          */
3335         if (cfqq->slice_end - jiffies == 1)
3336                 return true;
3337
3338         return false;
3339 }
3340
3341 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3342 {
3343         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3344         struct cfq_data *cfqd = cfqq->cfqd;
3345         const int sync = rq_is_sync(rq);
3346         unsigned long now;
3347
3348         now = jiffies;
3349         cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
3350
3351         cfq_update_hw_tag(cfqd);
3352
3353         WARN_ON(!cfqd->rq_in_driver);
3354         WARN_ON(!cfqq->dispatched);
3355         cfqd->rq_in_driver--;
3356         cfqq->dispatched--;
3357         blkiocg_update_completion_stats(&cfqq->cfqg->blkg, rq_start_time_ns(rq),
3358                         rq_io_start_time_ns(rq), rq_data_dir(rq),
3359                         rq_is_sync(rq));
3360
3361         cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3362
3363         if (sync) {
3364                 RQ_CIC(rq)->last_end_request = now;
3365                 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3366                         cfqd->last_delayed_sync = now;
3367         }
3368
3369         /*
3370          * If this is the active queue, check if it needs to be expired,
3371          * or if we want to idle in case it has no pending requests.
3372          */
3373         if (cfqd->active_queue == cfqq) {
3374                 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3375
3376                 if (cfq_cfqq_slice_new(cfqq)) {
3377                         cfq_set_prio_slice(cfqd, cfqq);
3378                         cfq_clear_cfqq_slice_new(cfqq);
3379                 }
3380
3381                 /*
3382                  * Should we wait for next request to come in before we expire
3383                  * the queue.
3384                  */
3385                 if (cfq_should_wait_busy(cfqd, cfqq)) {
3386                         cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
3387                         cfq_mark_cfqq_wait_busy(cfqq);
3388                         cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3389                 }
3390
3391                 /*
3392                  * Idling is not enabled on:
3393                  * - expired queues
3394                  * - idle-priority queues
3395                  * - async queues
3396                  * - queues with still some requests queued
3397                  * - when there is a close cooperator
3398                  */
3399                 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3400                         cfq_slice_expired(cfqd, 1);
3401                 else if (sync && cfqq_empty &&
3402                          !cfq_close_cooperator(cfqd, cfqq)) {
3403                         cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3404                         /*
3405                          * Idling is enabled for SYNC_WORKLOAD.
3406                          * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3407                          * only if we processed at least one !rq_noidle request
3408                          */
3409                         if (cfqd->serving_type == SYNC_WORKLOAD
3410                             || cfqd->noidle_tree_requires_idle
3411                             || cfqq->cfqg->nr_cfqq == 1)
3412                                 cfq_arm_slice_timer(cfqd);
3413                 }
3414         }
3415
3416         if (!cfqd->rq_in_driver)
3417                 cfq_schedule_dispatch(cfqd);
3418 }
3419
3420 /*
3421  * we temporarily boost lower priority queues if they are holding fs exclusive
3422  * resources. they are boosted to normal prio (CLASS_BE/4)
3423  */
3424 static void cfq_prio_boost(struct cfq_queue *cfqq)
3425 {
3426         if (has_fs_excl()) {
3427                 /*
3428                  * boost idle prio on transactions that would lock out other
3429                  * users of the filesystem
3430                  */
3431                 if (cfq_class_idle(cfqq))
3432                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
3433                 if (cfqq->ioprio > IOPRIO_NORM)
3434                         cfqq->ioprio = IOPRIO_NORM;
3435         } else {
3436                 /*
3437                  * unboost the queue (if needed)
3438                  */
3439                 cfqq->ioprio_class = cfqq->org_ioprio_class;
3440                 cfqq->ioprio = cfqq->org_ioprio;
3441         }
3442 }
3443
3444 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3445 {
3446         if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3447                 cfq_mark_cfqq_must_alloc_slice(cfqq);
3448                 return ELV_MQUEUE_MUST;
3449         }
3450
3451         return ELV_MQUEUE_MAY;
3452 }
3453
3454 static int cfq_may_queue(struct request_queue *q, int rw)
3455 {
3456         struct cfq_data *cfqd = q->elevator->elevator_data;
3457         struct task_struct *tsk = current;
3458         struct cfq_io_context *cic;
3459         struct cfq_queue *cfqq;
3460
3461         /*
3462          * don't force setup of a queue from here, as a call to may_queue
3463          * does not necessarily imply that a request actually will be queued.
3464          * so just lookup a possibly existing queue, or return 'may queue'
3465          * if that fails
3466          */
3467         cic = cfq_cic_lookup(cfqd, tsk->io_context);
3468         if (!cic)
3469                 return ELV_MQUEUE_MAY;
3470
3471         cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3472         if (cfqq) {
3473                 cfq_init_prio_data(cfqq, cic->ioc);
3474                 cfq_prio_boost(cfqq);
3475
3476                 return __cfq_may_queue(cfqq);
3477         }
3478
3479         return ELV_MQUEUE_MAY;
3480 }
3481
3482 /*
3483  * queue lock held here
3484  */
3485 static void cfq_put_request(struct request *rq)
3486 {
3487         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3488
3489         if (cfqq) {
3490                 const int rw = rq_data_dir(rq);
3491
3492                 BUG_ON(!cfqq->allocated[rw]);
3493                 cfqq->allocated[rw]--;
3494
3495                 put_io_context(RQ_CIC(rq)->ioc);
3496
3497                 rq->elevator_private = NULL;
3498                 rq->elevator_private2 = NULL;
3499
3500                 /* Put down rq reference on cfqg */
3501                 cfq_put_cfqg(RQ_CFQG(rq));
3502                 rq->elevator_private3 = NULL;
3503
3504                 cfq_put_queue(cfqq);
3505         }
3506 }
3507
3508 static struct cfq_queue *
3509 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3510                 struct cfq_queue *cfqq)
3511 {
3512         cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3513         cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3514         cfq_mark_cfqq_coop(cfqq->new_cfqq);
3515         cfq_put_queue(cfqq);
3516         return cic_to_cfqq(cic, 1);
3517 }
3518
3519 /*
3520  * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3521  * was the last process referring to said cfqq.
3522  */
3523 static struct cfq_queue *
3524 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3525 {
3526         if (cfqq_process_refs(cfqq) == 1) {
3527                 cfqq->pid = current->pid;
3528                 cfq_clear_cfqq_coop(cfqq);
3529                 cfq_clear_cfqq_split_coop(cfqq);
3530                 return cfqq;
3531         }
3532
3533         cic_set_cfqq(cic, NULL, 1);
3534         cfq_put_queue(cfqq);
3535         return NULL;
3536 }
3537 /*
3538  * Allocate cfq data structures associated with this request.
3539  */
3540 static int
3541 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3542 {
3543         struct cfq_data *cfqd = q->elevator->elevator_data;
3544         struct cfq_io_context *cic;
3545         const int rw = rq_data_dir(rq);
3546         const bool is_sync = rq_is_sync(rq);
3547         struct cfq_queue *cfqq;
3548         unsigned long flags;
3549
3550         might_sleep_if(gfp_mask & __GFP_WAIT);
3551
3552         cic = cfq_get_io_context(cfqd, gfp_mask);
3553
3554         spin_lock_irqsave(q->queue_lock, flags);
3555
3556         if (!cic)
3557                 goto queue_fail;
3558
3559 new_queue:
3560         cfqq = cic_to_cfqq(cic, is_sync);
3561         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3562                 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3563                 cic_set_cfqq(cic, cfqq, is_sync);
3564         } else {
3565                 /*
3566                  * If the queue was seeky for too long, break it apart.
3567                  */
3568                 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3569                         cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3570                         cfqq = split_cfqq(cic, cfqq);
3571                         if (!cfqq)
3572                                 goto new_queue;
3573                 }
3574
3575                 /*
3576                  * Check to see if this queue is scheduled to merge with
3577                  * another, closely cooperating queue.  The merging of
3578                  * queues happens here as it must be done in process context.
3579                  * The reference on new_cfqq was taken in merge_cfqqs.
3580                  */
3581                 if (cfqq->new_cfqq)
3582                         cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3583         }
3584
3585         cfqq->allocated[rw]++;
3586         atomic_inc(&cfqq->ref);
3587
3588         spin_unlock_irqrestore(q->queue_lock, flags);
3589
3590         rq->elevator_private = cic;
3591         rq->elevator_private2 = cfqq;
3592         rq->elevator_private3 = cfq_ref_get_cfqg(cfqq->cfqg);
3593         return 0;
3594
3595 queue_fail:
3596         if (cic)
3597                 put_io_context(cic->ioc);
3598
3599         cfq_schedule_dispatch(cfqd);
3600         spin_unlock_irqrestore(q->queue_lock, flags);
3601         cfq_log(cfqd, "set_request fail");
3602         return 1;
3603 }
3604
3605 static void cfq_kick_queue(struct work_struct *work)
3606 {
3607         struct cfq_data *cfqd =
3608                 container_of(work, struct cfq_data, unplug_work);
3609         struct request_queue *q = cfqd->queue;
3610
3611         spin_lock_irq(q->queue_lock);
3612         __blk_run_queue(cfqd->queue);
3613         spin_unlock_irq(q->queue_lock);
3614 }
3615
3616 /*
3617  * Timer running if the active_queue is currently idling inside its time slice
3618  */
3619 static void cfq_idle_slice_timer(unsigned long data)
3620 {
3621         struct cfq_data *cfqd = (struct cfq_data *) data;
3622         struct cfq_queue *cfqq;
3623         unsigned long flags;
3624         int timed_out = 1;
3625
3626         cfq_log(cfqd, "idle timer fired");
3627
3628         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3629
3630         cfqq = cfqd->active_queue;
3631         if (cfqq) {
3632                 timed_out = 0;
3633
3634                 /*
3635                  * We saw a request before the queue expired, let it through
3636                  */
3637                 if (cfq_cfqq_must_dispatch(cfqq))
3638                         goto out_kick;
3639
3640                 /*
3641                  * expired
3642                  */
3643                 if (cfq_slice_used(cfqq))
3644                         goto expire;
3645
3646                 /*
3647                  * only expire and reinvoke request handler, if there are
3648                  * other queues with pending requests
3649                  */
3650                 if (!cfqd->busy_queues)
3651                         goto out_cont;
3652
3653                 /*
3654                  * not expired and it has a request pending, let it dispatch
3655                  */
3656                 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3657                         goto out_kick;
3658
3659                 /*
3660                  * Queue depth flag is reset only when the idle didn't succeed
3661                  */
3662                 cfq_clear_cfqq_deep(cfqq);
3663         }
3664 expire:
3665         cfq_slice_expired(cfqd, timed_out);
3666 out_kick:
3667         cfq_schedule_dispatch(cfqd);
3668 out_cont:
3669         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3670 }
3671
3672 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3673 {
3674         del_timer_sync(&cfqd->idle_slice_timer);
3675         cancel_work_sync(&cfqd->unplug_work);
3676 }
3677
3678 static void cfq_put_async_queues(struct cfq_data *cfqd)
3679 {
3680         int i;
3681
3682         for (i = 0; i < IOPRIO_BE_NR; i++) {
3683                 if (cfqd->async_cfqq[0][i])
3684                         cfq_put_queue(cfqd->async_cfqq[0][i]);
3685                 if (cfqd->async_cfqq[1][i])
3686                         cfq_put_queue(cfqd->async_cfqq[1][i]);
3687         }
3688
3689         if (cfqd->async_idle_cfqq)
3690                 cfq_put_queue(cfqd->async_idle_cfqq);
3691 }
3692
3693 static void cfq_cfqd_free(struct rcu_head *head)
3694 {
3695         kfree(container_of(head, struct cfq_data, rcu));
3696 }
3697
3698 static void cfq_exit_queue(struct elevator_queue *e)
3699 {
3700         struct cfq_data *cfqd = e->elevator_data;
3701         struct request_queue *q = cfqd->queue;
3702
3703         cfq_shutdown_timer_wq(cfqd);
3704
3705         spin_lock_irq(q->queue_lock);
3706
3707         if (cfqd->active_queue)
3708                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3709
3710         while (!list_empty(&cfqd->cic_list)) {
3711                 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3712                                                         struct cfq_io_context,
3713                                                         queue_list);
3714
3715                 __cfq_exit_single_io_context(cfqd, cic);
3716         }
3717
3718         cfq_put_async_queues(cfqd);
3719         cfq_release_cfq_groups(cfqd);
3720         blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3721
3722         spin_unlock_irq(q->queue_lock);
3723
3724         cfq_shutdown_timer_wq(cfqd);
3725
3726         /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3727         call_rcu(&cfqd->rcu, cfq_cfqd_free);
3728 }
3729
3730 static void *cfq_init_queue(struct request_queue *q)
3731 {
3732         struct cfq_data *cfqd;
3733         int i, j;
3734         struct cfq_group *cfqg;
3735         struct cfq_rb_root *st;
3736
3737         cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3738         if (!cfqd)
3739                 return NULL;
3740
3741         /* Init root service tree */
3742         cfqd->grp_service_tree = CFQ_RB_ROOT;
3743
3744         /* Init root group */
3745         cfqg = &cfqd->root_group;
3746         for_each_cfqg_st(cfqg, i, j, st)
3747                 *st = CFQ_RB_ROOT;
3748         RB_CLEAR_NODE(&cfqg->rb_node);
3749
3750         /* Give preference to root group over other groups */
3751         cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3752
3753 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3754         /*
3755          * Take a reference to root group which we never drop. This is just
3756          * to make sure that cfq_put_cfqg() does not try to kfree root group
3757          */
3758         atomic_set(&cfqg->ref, 1);
3759         rcu_read_lock();
3760         blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
3761                                         0);
3762         rcu_read_unlock();
3763 #endif
3764         /*
3765          * Not strictly needed (since RB_ROOT just clears the node and we
3766          * zeroed cfqd on alloc), but better be safe in case someone decides
3767          * to add magic to the rb code
3768          */
3769         for (i = 0; i < CFQ_PRIO_LISTS; i++)
3770                 cfqd->prio_trees[i] = RB_ROOT;
3771
3772         /*
3773          * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3774          * Grab a permanent reference to it, so that the normal code flow
3775          * will not attempt to free it.
3776          */
3777         cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3778         atomic_inc(&cfqd->oom_cfqq.ref);
3779         cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3780
3781         INIT_LIST_HEAD(&cfqd->cic_list);
3782
3783         cfqd->queue = q;
3784
3785         init_timer(&cfqd->idle_slice_timer);
3786         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3787         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3788
3789         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3790
3791         cfqd->cfq_quantum = cfq_quantum;
3792         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3793         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3794         cfqd->cfq_back_max = cfq_back_max;
3795         cfqd->cfq_back_penalty = cfq_back_penalty;
3796         cfqd->cfq_slice[0] = cfq_slice_async;
3797         cfqd->cfq_slice[1] = cfq_slice_sync;
3798         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3799         cfqd->cfq_slice_idle = cfq_slice_idle;
3800         cfqd->cfq_latency = 1;
3801         cfqd->cfq_group_isolation = 0;
3802         cfqd->hw_tag = -1;
3803         /*
3804          * we optimistically start assuming sync ops weren't delayed in last
3805          * second, in order to have larger depth for async operations.
3806          */
3807         cfqd->last_delayed_sync = jiffies - HZ;
3808         return cfqd;
3809 }
3810
3811 static void cfq_slab_kill(void)
3812 {
3813         /*
3814          * Caller already ensured that pending RCU callbacks are completed,
3815          * so we should have no busy allocations at this point.
3816          */
3817         if (cfq_pool)
3818                 kmem_cache_destroy(cfq_pool);
3819         if (cfq_ioc_pool)
3820                 kmem_cache_destroy(cfq_ioc_pool);
3821 }
3822
3823 static int __init cfq_slab_setup(void)
3824 {
3825         cfq_pool = KMEM_CACHE(cfq_queue, 0);
3826         if (!cfq_pool)
3827                 goto fail;
3828
3829         cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3830         if (!cfq_ioc_pool)
3831                 goto fail;
3832
3833         return 0;
3834 fail:
3835         cfq_slab_kill();
3836         return -ENOMEM;
3837 }
3838
3839 /*
3840  * sysfs parts below -->
3841  */
3842 static ssize_t
3843 cfq_var_show(unsigned int var, char *page)
3844 {
3845         return sprintf(page, "%d\n", var);
3846 }
3847
3848 static ssize_t
3849 cfq_var_store(unsigned int *var, const char *page, size_t count)
3850 {
3851         char *p = (char *) page;
3852
3853         *var = simple_strtoul(p, &p, 10);
3854         return count;
3855 }
3856
3857 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
3858 static ssize_t __FUNC(struct elevator_queue *e, char *page)             \
3859 {                                                                       \
3860         struct cfq_data *cfqd = e->elevator_data;                       \
3861         unsigned int __data = __VAR;                                    \
3862         if (__CONV)                                                     \
3863                 __data = jiffies_to_msecs(__data);                      \
3864         return cfq_var_show(__data, (page));                            \
3865 }
3866 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3867 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3868 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3869 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3870 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3871 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3872 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3873 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3874 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3875 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3876 SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
3877 #undef SHOW_FUNCTION
3878
3879 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
3880 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3881 {                                                                       \
3882         struct cfq_data *cfqd = e->elevator_data;                       \
3883         unsigned int __data;                                            \
3884         int ret = cfq_var_store(&__data, (page), count);                \
3885         if (__data < (MIN))                                             \
3886                 __data = (MIN);                                         \
3887         else if (__data > (MAX))                                        \
3888                 __data = (MAX);                                         \
3889         if (__CONV)                                                     \
3890                 *(__PTR) = msecs_to_jiffies(__data);                    \
3891         else                                                            \
3892                 *(__PTR) = __data;                                      \
3893         return ret;                                                     \
3894 }
3895 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3896 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3897                 UINT_MAX, 1);
3898 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3899                 UINT_MAX, 1);
3900 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3901 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3902                 UINT_MAX, 0);
3903 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3904 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3905 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3906 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3907                 UINT_MAX, 0);
3908 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3909 STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
3910 #undef STORE_FUNCTION
3911
3912 #define CFQ_ATTR(name) \
3913         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3914
3915 static struct elv_fs_entry cfq_attrs[] = {
3916         CFQ_ATTR(quantum),
3917         CFQ_ATTR(fifo_expire_sync),
3918         CFQ_ATTR(fifo_expire_async),
3919         CFQ_ATTR(back_seek_max),
3920         CFQ_ATTR(back_seek_penalty),
3921         CFQ_ATTR(slice_sync),
3922         CFQ_ATTR(slice_async),
3923         CFQ_ATTR(slice_async_rq),
3924         CFQ_ATTR(slice_idle),
3925         CFQ_ATTR(low_latency),
3926         CFQ_ATTR(group_isolation),
3927         __ATTR_NULL
3928 };
3929
3930 static struct elevator_type iosched_cfq = {
3931         .ops = {
3932                 .elevator_merge_fn =            cfq_merge,
3933                 .elevator_merged_fn =           cfq_merged_request,
3934                 .elevator_merge_req_fn =        cfq_merged_requests,
3935                 .elevator_allow_merge_fn =      cfq_allow_merge,
3936                 .elevator_bio_merged_fn =       cfq_bio_merged,
3937                 .elevator_dispatch_fn =         cfq_dispatch_requests,
3938                 .elevator_add_req_fn =          cfq_insert_request,
3939                 .elevator_activate_req_fn =     cfq_activate_request,
3940                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
3941                 .elevator_queue_empty_fn =      cfq_queue_empty,
3942                 .elevator_completed_req_fn =    cfq_completed_request,
3943                 .elevator_former_req_fn =       elv_rb_former_request,
3944                 .elevator_latter_req_fn =       elv_rb_latter_request,
3945                 .elevator_set_req_fn =          cfq_set_request,
3946                 .elevator_put_req_fn =          cfq_put_request,
3947                 .elevator_may_queue_fn =        cfq_may_queue,
3948                 .elevator_init_fn =             cfq_init_queue,
3949                 .elevator_exit_fn =             cfq_exit_queue,
3950                 .trim =                         cfq_free_io_context,
3951         },
3952         .elevator_attrs =       cfq_attrs,
3953         .elevator_name =        "cfq",
3954         .elevator_owner =       THIS_MODULE,
3955 };
3956
3957 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3958 static struct blkio_policy_type blkio_policy_cfq = {
3959         .ops = {
3960                 .blkio_unlink_group_fn =        cfq_unlink_blkio_group,
3961                 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
3962         },
3963 };
3964 #else
3965 static struct blkio_policy_type blkio_policy_cfq;
3966 #endif
3967
3968 static int __init cfq_init(void)
3969 {
3970         /*
3971          * could be 0 on HZ < 1000 setups
3972          */
3973         if (!cfq_slice_async)
3974                 cfq_slice_async = 1;
3975         if (!cfq_slice_idle)
3976                 cfq_slice_idle = 1;
3977
3978         if (cfq_slab_setup())
3979                 return -ENOMEM;
3980
3981         elv_register(&iosched_cfq);
3982         blkio_policy_register(&blkio_policy_cfq);
3983
3984         return 0;
3985 }
3986
3987 static void __exit cfq_exit(void)
3988 {
3989         DECLARE_COMPLETION_ONSTACK(all_gone);
3990         blkio_policy_unregister(&blkio_policy_cfq);
3991         elv_unregister(&iosched_cfq);
3992         ioc_gone = &all_gone;
3993         /* ioc_gone's update must be visible before reading ioc_count */
3994         smp_wmb();
3995
3996         /*
3997          * this also protects us from entering cfq_slab_kill() with
3998          * pending RCU callbacks
3999          */
4000         if (elv_ioc_count_read(cfq_ioc_count))
4001                 wait_for_completion(&all_gone);
4002         cfq_slab_kill();
4003 }
4004
4005 module_init(cfq_init);
4006 module_exit(cfq_exit);
4007
4008 MODULE_AUTHOR("Jens Axboe");
4009 MODULE_LICENSE("GPL");
4010 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");