blkio: Wait for cfq queue to get backlogged if group is empty
[safe/jmp/linux-2.6] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/jiffies.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15 #include <linux/blktrace_api.h>
16 #include "blk-cgroup.h"
17
18 /*
19  * tunables
20  */
21 /* max queue in one round of service */
22 static const int cfq_quantum = 4;
23 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
24 /* maximum backwards seek, in KiB */
25 static const int cfq_back_max = 16 * 1024;
26 /* penalty of a backwards seek */
27 static const int cfq_back_penalty = 2;
28 static const int cfq_slice_sync = HZ / 10;
29 static int cfq_slice_async = HZ / 25;
30 static const int cfq_slice_async_rq = 2;
31 static int cfq_slice_idle = HZ / 125;
32 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
33 static const int cfq_hist_divisor = 4;
34
35 /*
36  * offset from end of service tree
37  */
38 #define CFQ_IDLE_DELAY          (HZ / 5)
39
40 /*
41  * below this threshold, we consider thinktime immediate
42  */
43 #define CFQ_MIN_TT              (2)
44
45 /*
46  * Allow merged cfqqs to perform this amount of seeky I/O before
47  * deciding to break the queues up again.
48  */
49 #define CFQQ_COOP_TOUT          (HZ)
50
51 #define CFQ_SLICE_SCALE         (5)
52 #define CFQ_HW_QUEUE_MIN        (5)
53 #define CFQ_SERVICE_SHIFT       12
54
55 #define RQ_CIC(rq)              \
56         ((struct cfq_io_context *) (rq)->elevator_private)
57 #define RQ_CFQQ(rq)             (struct cfq_queue *) ((rq)->elevator_private2)
58
59 static struct kmem_cache *cfq_pool;
60 static struct kmem_cache *cfq_ioc_pool;
61
62 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
63 static struct completion *ioc_gone;
64 static DEFINE_SPINLOCK(ioc_gone_lock);
65
66 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
67 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
68 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
69
70 #define sample_valid(samples)   ((samples) > 80)
71 #define rb_entry_cfqg(node)     rb_entry((node), struct cfq_group, rb_node)
72
73 /*
74  * Most of our rbtree usage is for sorting with min extraction, so
75  * if we cache the leftmost node we don't have to walk down the tree
76  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
77  * move this into the elevator for the rq sorting as well.
78  */
79 struct cfq_rb_root {
80         struct rb_root rb;
81         struct rb_node *left;
82         unsigned count;
83         u64 min_vdisktime;
84         struct rb_node *active;
85         unsigned total_weight;
86 };
87 #define CFQ_RB_ROOT     (struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
88
89 /*
90  * Per process-grouping structure
91  */
92 struct cfq_queue {
93         /* reference count */
94         atomic_t ref;
95         /* various state flags, see below */
96         unsigned int flags;
97         /* parent cfq_data */
98         struct cfq_data *cfqd;
99         /* service_tree member */
100         struct rb_node rb_node;
101         /* service_tree key */
102         unsigned long rb_key;
103         /* prio tree member */
104         struct rb_node p_node;
105         /* prio tree root we belong to, if any */
106         struct rb_root *p_root;
107         /* sorted list of pending requests */
108         struct rb_root sort_list;
109         /* if fifo isn't expired, next request to serve */
110         struct request *next_rq;
111         /* requests queued in sort_list */
112         int queued[2];
113         /* currently allocated requests */
114         int allocated[2];
115         /* fifo list of requests in sort_list */
116         struct list_head fifo;
117
118         /* time when queue got scheduled in to dispatch first request. */
119         unsigned long dispatch_start;
120         unsigned int allocated_slice;
121         /* time when first request from queue completed and slice started. */
122         unsigned long slice_start;
123         unsigned long slice_end;
124         long slice_resid;
125         unsigned int slice_dispatch;
126
127         /* pending metadata requests */
128         int meta_pending;
129         /* number of requests that are on the dispatch list or inside driver */
130         int dispatched;
131
132         /* io prio of this group */
133         unsigned short ioprio, org_ioprio;
134         unsigned short ioprio_class, org_ioprio_class;
135
136         unsigned int seek_samples;
137         u64 seek_total;
138         sector_t seek_mean;
139         sector_t last_request_pos;
140         unsigned long seeky_start;
141
142         pid_t pid;
143
144         struct cfq_rb_root *service_tree;
145         struct cfq_queue *new_cfqq;
146         struct cfq_group *cfqg;
147         /* Sectors dispatched in current dispatch round */
148         unsigned long nr_sectors;
149 };
150
151 /*
152  * First index in the service_trees.
153  * IDLE is handled separately, so it has negative index
154  */
155 enum wl_prio_t {
156         BE_WORKLOAD = 0,
157         RT_WORKLOAD = 1,
158         IDLE_WORKLOAD = 2,
159 };
160
161 /*
162  * Second index in the service_trees.
163  */
164 enum wl_type_t {
165         ASYNC_WORKLOAD = 0,
166         SYNC_NOIDLE_WORKLOAD = 1,
167         SYNC_WORKLOAD = 2
168 };
169
170 /* This is per cgroup per device grouping structure */
171 struct cfq_group {
172         /* group service_tree member */
173         struct rb_node rb_node;
174
175         /* group service_tree key */
176         u64 vdisktime;
177         unsigned int weight;
178         bool on_st;
179
180         /* number of cfqq currently on this group */
181         int nr_cfqq;
182
183         /* Per group busy queus average. Useful for workload slice calc. */
184         unsigned int busy_queues_avg[2];
185         /*
186          * rr lists of queues with requests, onle rr for each priority class.
187          * Counts are embedded in the cfq_rb_root
188          */
189         struct cfq_rb_root service_trees[2][3];
190         struct cfq_rb_root service_tree_idle;
191
192         unsigned long saved_workload_slice;
193         enum wl_type_t saved_workload;
194         enum wl_prio_t saved_serving_prio;
195         struct blkio_group blkg;
196 #ifdef CONFIG_CFQ_GROUP_IOSCHED
197         struct hlist_node cfqd_node;
198         atomic_t ref;
199 #endif
200 };
201
202 /*
203  * Per block device queue structure
204  */
205 struct cfq_data {
206         struct request_queue *queue;
207         /* Root service tree for cfq_groups */
208         struct cfq_rb_root grp_service_tree;
209         struct cfq_group root_group;
210         /* Number of active cfq groups on group service tree */
211         int nr_groups;
212
213         /*
214          * The priority currently being served
215          */
216         enum wl_prio_t serving_prio;
217         enum wl_type_t serving_type;
218         unsigned long workload_expires;
219         struct cfq_group *serving_group;
220         bool noidle_tree_requires_idle;
221
222         /*
223          * Each priority tree is sorted by next_request position.  These
224          * trees are used when determining if two or more queues are
225          * interleaving requests (see cfq_close_cooperator).
226          */
227         struct rb_root prio_trees[CFQ_PRIO_LISTS];
228
229         unsigned int busy_queues;
230
231         int rq_in_driver[2];
232         int sync_flight;
233
234         /*
235          * queue-depth detection
236          */
237         int rq_queued;
238         int hw_tag;
239         /*
240          * hw_tag can be
241          * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
242          *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
243          *  0 => no NCQ
244          */
245         int hw_tag_est_depth;
246         unsigned int hw_tag_samples;
247
248         /*
249          * idle window management
250          */
251         struct timer_list idle_slice_timer;
252         struct work_struct unplug_work;
253
254         struct cfq_queue *active_queue;
255         struct cfq_io_context *active_cic;
256
257         /*
258          * async queue for each priority case
259          */
260         struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
261         struct cfq_queue *async_idle_cfqq;
262
263         sector_t last_position;
264
265         /*
266          * tunables, see top of file
267          */
268         unsigned int cfq_quantum;
269         unsigned int cfq_fifo_expire[2];
270         unsigned int cfq_back_penalty;
271         unsigned int cfq_back_max;
272         unsigned int cfq_slice[2];
273         unsigned int cfq_slice_async_rq;
274         unsigned int cfq_slice_idle;
275         unsigned int cfq_latency;
276
277         struct list_head cic_list;
278
279         /*
280          * Fallback dummy cfqq for extreme OOM conditions
281          */
282         struct cfq_queue oom_cfqq;
283
284         unsigned long last_end_sync_rq;
285
286         /* List of cfq groups being managed on this device*/
287         struct hlist_head cfqg_list;
288 };
289
290 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
291
292 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
293                                             enum wl_prio_t prio,
294                                             enum wl_type_t type,
295                                             struct cfq_data *cfqd)
296 {
297         if (!cfqg)
298                 return NULL;
299
300         if (prio == IDLE_WORKLOAD)
301                 return &cfqg->service_tree_idle;
302
303         return &cfqg->service_trees[prio][type];
304 }
305
306 enum cfqq_state_flags {
307         CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
308         CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
309         CFQ_CFQQ_FLAG_must_dispatch,    /* must be allowed a dispatch */
310         CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
311         CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
312         CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
313         CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
314         CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
315         CFQ_CFQQ_FLAG_sync,             /* synchronous queue */
316         CFQ_CFQQ_FLAG_coop,             /* cfqq is shared */
317         CFQ_CFQQ_FLAG_deep,             /* sync cfqq experienced large depth */
318         CFQ_CFQQ_FLAG_wait_busy,        /* Waiting for next request */
319         CFQ_CFQQ_FLAG_wait_busy_done,   /* Got new request. Expire the queue */
320 };
321
322 #define CFQ_CFQQ_FNS(name)                                              \
323 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
324 {                                                                       \
325         (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);                   \
326 }                                                                       \
327 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
328 {                                                                       \
329         (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                  \
330 }                                                                       \
331 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
332 {                                                                       \
333         return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;      \
334 }
335
336 CFQ_CFQQ_FNS(on_rr);
337 CFQ_CFQQ_FNS(wait_request);
338 CFQ_CFQQ_FNS(must_dispatch);
339 CFQ_CFQQ_FNS(must_alloc_slice);
340 CFQ_CFQQ_FNS(fifo_expire);
341 CFQ_CFQQ_FNS(idle_window);
342 CFQ_CFQQ_FNS(prio_changed);
343 CFQ_CFQQ_FNS(slice_new);
344 CFQ_CFQQ_FNS(sync);
345 CFQ_CFQQ_FNS(coop);
346 CFQ_CFQQ_FNS(deep);
347 CFQ_CFQQ_FNS(wait_busy);
348 CFQ_CFQQ_FNS(wait_busy_done);
349 #undef CFQ_CFQQ_FNS
350
351 #ifdef CONFIG_DEBUG_CFQ_IOSCHED
352 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
353         blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
354                         cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
355                         blkg_path(&(cfqq)->cfqg->blkg), ##args);
356
357 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)                          \
358         blk_add_trace_msg((cfqd)->queue, "%s " fmt,                     \
359                                 blkg_path(&(cfqg)->blkg), ##args);      \
360
361 #else
362 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
363         blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
364 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)          do {} while (0);
365 #endif
366 #define cfq_log(cfqd, fmt, args...)     \
367         blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
368
369 /* Traverses through cfq group service trees */
370 #define for_each_cfqg_st(cfqg, i, j, st) \
371         for (i = 0; i <= IDLE_WORKLOAD; i++) \
372                 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
373                         : &cfqg->service_tree_idle; \
374                         (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
375                         (i == IDLE_WORKLOAD && j == 0); \
376                         j++, st = i < IDLE_WORKLOAD ? \
377                         &cfqg->service_trees[i][j]: NULL) \
378
379
380 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
381 {
382         if (cfq_class_idle(cfqq))
383                 return IDLE_WORKLOAD;
384         if (cfq_class_rt(cfqq))
385                 return RT_WORKLOAD;
386         return BE_WORKLOAD;
387 }
388
389
390 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
391 {
392         if (!cfq_cfqq_sync(cfqq))
393                 return ASYNC_WORKLOAD;
394         if (!cfq_cfqq_idle_window(cfqq))
395                 return SYNC_NOIDLE_WORKLOAD;
396         return SYNC_WORKLOAD;
397 }
398
399 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
400                                         struct cfq_data *cfqd,
401                                         struct cfq_group *cfqg)
402 {
403         if (wl == IDLE_WORKLOAD)
404                 return cfqg->service_tree_idle.count;
405
406         return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
407                 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
408                 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
409 }
410
411 static void cfq_dispatch_insert(struct request_queue *, struct request *);
412 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
413                                        struct io_context *, gfp_t);
414 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
415                                                 struct io_context *);
416
417 static inline int rq_in_driver(struct cfq_data *cfqd)
418 {
419         return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
420 }
421
422 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
423                                             bool is_sync)
424 {
425         return cic->cfqq[is_sync];
426 }
427
428 static inline void cic_set_cfqq(struct cfq_io_context *cic,
429                                 struct cfq_queue *cfqq, bool is_sync)
430 {
431         cic->cfqq[is_sync] = cfqq;
432 }
433
434 /*
435  * We regard a request as SYNC, if it's either a read or has the SYNC bit
436  * set (in which case it could also be direct WRITE).
437  */
438 static inline bool cfq_bio_sync(struct bio *bio)
439 {
440         return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
441 }
442
443 /*
444  * scheduler run of queue, if there are requests pending and no one in the
445  * driver that will restart queueing
446  */
447 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
448 {
449         if (cfqd->busy_queues) {
450                 cfq_log(cfqd, "schedule dispatch");
451                 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
452         }
453 }
454
455 static int cfq_queue_empty(struct request_queue *q)
456 {
457         struct cfq_data *cfqd = q->elevator->elevator_data;
458
459         return !cfqd->rq_queued;
460 }
461
462 /*
463  * Scale schedule slice based on io priority. Use the sync time slice only
464  * if a queue is marked sync and has sync io queued. A sync queue with async
465  * io only, should not get full sync slice length.
466  */
467 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
468                                  unsigned short prio)
469 {
470         const int base_slice = cfqd->cfq_slice[sync];
471
472         WARN_ON(prio >= IOPRIO_BE_NR);
473
474         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
475 }
476
477 static inline int
478 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
479 {
480         return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
481 }
482
483 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
484 {
485         u64 d = delta << CFQ_SERVICE_SHIFT;
486
487         d = d * BLKIO_WEIGHT_DEFAULT;
488         do_div(d, cfqg->weight);
489         return d;
490 }
491
492 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
493 {
494         s64 delta = (s64)(vdisktime - min_vdisktime);
495         if (delta > 0)
496                 min_vdisktime = vdisktime;
497
498         return min_vdisktime;
499 }
500
501 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
502 {
503         s64 delta = (s64)(vdisktime - min_vdisktime);
504         if (delta < 0)
505                 min_vdisktime = vdisktime;
506
507         return min_vdisktime;
508 }
509
510 static void update_min_vdisktime(struct cfq_rb_root *st)
511 {
512         u64 vdisktime = st->min_vdisktime;
513         struct cfq_group *cfqg;
514
515         if (st->active) {
516                 cfqg = rb_entry_cfqg(st->active);
517                 vdisktime = cfqg->vdisktime;
518         }
519
520         if (st->left) {
521                 cfqg = rb_entry_cfqg(st->left);
522                 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
523         }
524
525         st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
526 }
527
528 /*
529  * get averaged number of queues of RT/BE priority.
530  * average is updated, with a formula that gives more weight to higher numbers,
531  * to quickly follows sudden increases and decrease slowly
532  */
533
534 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
535                                         struct cfq_group *cfqg, bool rt)
536 {
537         unsigned min_q, max_q;
538         unsigned mult  = cfq_hist_divisor - 1;
539         unsigned round = cfq_hist_divisor / 2;
540         unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
541
542         min_q = min(cfqg->busy_queues_avg[rt], busy);
543         max_q = max(cfqg->busy_queues_avg[rt], busy);
544         cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
545                 cfq_hist_divisor;
546         return cfqg->busy_queues_avg[rt];
547 }
548
549 static inline unsigned
550 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
551 {
552         struct cfq_rb_root *st = &cfqd->grp_service_tree;
553
554         return cfq_target_latency * cfqg->weight / st->total_weight;
555 }
556
557 static inline void
558 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
559 {
560         unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
561         if (cfqd->cfq_latency) {
562                 /*
563                  * interested queues (we consider only the ones with the same
564                  * priority class in the cfq group)
565                  */
566                 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
567                                                 cfq_class_rt(cfqq));
568                 unsigned sync_slice = cfqd->cfq_slice[1];
569                 unsigned expect_latency = sync_slice * iq;
570                 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
571
572                 if (expect_latency > group_slice) {
573                         unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
574                         /* scale low_slice according to IO priority
575                          * and sync vs async */
576                         unsigned low_slice =
577                                 min(slice, base_low_slice * slice / sync_slice);
578                         /* the adapted slice value is scaled to fit all iqs
579                          * into the target latency */
580                         slice = max(slice * group_slice / expect_latency,
581                                     low_slice);
582                 }
583         }
584         cfqq->slice_start = jiffies;
585         cfqq->slice_end = jiffies + slice;
586         cfqq->allocated_slice = slice;
587         cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
588 }
589
590 /*
591  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
592  * isn't valid until the first request from the dispatch is activated
593  * and the slice time set.
594  */
595 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
596 {
597         if (cfq_cfqq_slice_new(cfqq))
598                 return 0;
599         if (time_before(jiffies, cfqq->slice_end))
600                 return 0;
601
602         return 1;
603 }
604
605 /*
606  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
607  * We choose the request that is closest to the head right now. Distance
608  * behind the head is penalized and only allowed to a certain extent.
609  */
610 static struct request *
611 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
612 {
613         sector_t s1, s2, d1 = 0, d2 = 0;
614         unsigned long back_max;
615 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
616 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
617         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
618
619         if (rq1 == NULL || rq1 == rq2)
620                 return rq2;
621         if (rq2 == NULL)
622                 return rq1;
623
624         if (rq_is_sync(rq1) && !rq_is_sync(rq2))
625                 return rq1;
626         else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
627                 return rq2;
628         if (rq_is_meta(rq1) && !rq_is_meta(rq2))
629                 return rq1;
630         else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
631                 return rq2;
632
633         s1 = blk_rq_pos(rq1);
634         s2 = blk_rq_pos(rq2);
635
636         /*
637          * by definition, 1KiB is 2 sectors
638          */
639         back_max = cfqd->cfq_back_max * 2;
640
641         /*
642          * Strict one way elevator _except_ in the case where we allow
643          * short backward seeks which are biased as twice the cost of a
644          * similar forward seek.
645          */
646         if (s1 >= last)
647                 d1 = s1 - last;
648         else if (s1 + back_max >= last)
649                 d1 = (last - s1) * cfqd->cfq_back_penalty;
650         else
651                 wrap |= CFQ_RQ1_WRAP;
652
653         if (s2 >= last)
654                 d2 = s2 - last;
655         else if (s2 + back_max >= last)
656                 d2 = (last - s2) * cfqd->cfq_back_penalty;
657         else
658                 wrap |= CFQ_RQ2_WRAP;
659
660         /* Found required data */
661
662         /*
663          * By doing switch() on the bit mask "wrap" we avoid having to
664          * check two variables for all permutations: --> faster!
665          */
666         switch (wrap) {
667         case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
668                 if (d1 < d2)
669                         return rq1;
670                 else if (d2 < d1)
671                         return rq2;
672                 else {
673                         if (s1 >= s2)
674                                 return rq1;
675                         else
676                                 return rq2;
677                 }
678
679         case CFQ_RQ2_WRAP:
680                 return rq1;
681         case CFQ_RQ1_WRAP:
682                 return rq2;
683         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
684         default:
685                 /*
686                  * Since both rqs are wrapped,
687                  * start with the one that's further behind head
688                  * (--> only *one* back seek required),
689                  * since back seek takes more time than forward.
690                  */
691                 if (s1 <= s2)
692                         return rq1;
693                 else
694                         return rq2;
695         }
696 }
697
698 /*
699  * The below is leftmost cache rbtree addon
700  */
701 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
702 {
703         /* Service tree is empty */
704         if (!root->count)
705                 return NULL;
706
707         if (!root->left)
708                 root->left = rb_first(&root->rb);
709
710         if (root->left)
711                 return rb_entry(root->left, struct cfq_queue, rb_node);
712
713         return NULL;
714 }
715
716 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
717 {
718         if (!root->left)
719                 root->left = rb_first(&root->rb);
720
721         if (root->left)
722                 return rb_entry_cfqg(root->left);
723
724         return NULL;
725 }
726
727 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
728 {
729         rb_erase(n, root);
730         RB_CLEAR_NODE(n);
731 }
732
733 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
734 {
735         if (root->left == n)
736                 root->left = NULL;
737         rb_erase_init(n, &root->rb);
738         --root->count;
739 }
740
741 /*
742  * would be nice to take fifo expire time into account as well
743  */
744 static struct request *
745 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
746                   struct request *last)
747 {
748         struct rb_node *rbnext = rb_next(&last->rb_node);
749         struct rb_node *rbprev = rb_prev(&last->rb_node);
750         struct request *next = NULL, *prev = NULL;
751
752         BUG_ON(RB_EMPTY_NODE(&last->rb_node));
753
754         if (rbprev)
755                 prev = rb_entry_rq(rbprev);
756
757         if (rbnext)
758                 next = rb_entry_rq(rbnext);
759         else {
760                 rbnext = rb_first(&cfqq->sort_list);
761                 if (rbnext && rbnext != &last->rb_node)
762                         next = rb_entry_rq(rbnext);
763         }
764
765         return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
766 }
767
768 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
769                                       struct cfq_queue *cfqq)
770 {
771         /*
772          * just an approximation, should be ok.
773          */
774         return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
775                        cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
776 }
777
778 static inline s64
779 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
780 {
781         return cfqg->vdisktime - st->min_vdisktime;
782 }
783
784 static void
785 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
786 {
787         struct rb_node **node = &st->rb.rb_node;
788         struct rb_node *parent = NULL;
789         struct cfq_group *__cfqg;
790         s64 key = cfqg_key(st, cfqg);
791         int left = 1;
792
793         while (*node != NULL) {
794                 parent = *node;
795                 __cfqg = rb_entry_cfqg(parent);
796
797                 if (key < cfqg_key(st, __cfqg))
798                         node = &parent->rb_left;
799                 else {
800                         node = &parent->rb_right;
801                         left = 0;
802                 }
803         }
804
805         if (left)
806                 st->left = &cfqg->rb_node;
807
808         rb_link_node(&cfqg->rb_node, parent, node);
809         rb_insert_color(&cfqg->rb_node, &st->rb);
810 }
811
812 static void
813 cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
814 {
815         struct cfq_rb_root *st = &cfqd->grp_service_tree;
816         struct cfq_group *__cfqg;
817         struct rb_node *n;
818
819         cfqg->nr_cfqq++;
820         if (cfqg->on_st)
821                 return;
822
823         /*
824          * Currently put the group at the end. Later implement something
825          * so that groups get lesser vtime based on their weights, so that
826          * if group does not loose all if it was not continously backlogged.
827          */
828         n = rb_last(&st->rb);
829         if (n) {
830                 __cfqg = rb_entry_cfqg(n);
831                 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
832         } else
833                 cfqg->vdisktime = st->min_vdisktime;
834
835         __cfq_group_service_tree_add(st, cfqg);
836         cfqg->on_st = true;
837         cfqd->nr_groups++;
838         st->total_weight += cfqg->weight;
839 }
840
841 static void
842 cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
843 {
844         struct cfq_rb_root *st = &cfqd->grp_service_tree;
845
846         if (st->active == &cfqg->rb_node)
847                 st->active = NULL;
848
849         BUG_ON(cfqg->nr_cfqq < 1);
850         cfqg->nr_cfqq--;
851
852         /* If there are other cfq queues under this group, don't delete it */
853         if (cfqg->nr_cfqq)
854                 return;
855
856         cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
857         cfqg->on_st = false;
858         cfqd->nr_groups--;
859         st->total_weight -= cfqg->weight;
860         if (!RB_EMPTY_NODE(&cfqg->rb_node))
861                 cfq_rb_erase(&cfqg->rb_node, st);
862         cfqg->saved_workload_slice = 0;
863         blkiocg_update_blkio_group_dequeue_stats(&cfqg->blkg, 1);
864 }
865
866 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
867 {
868         unsigned int slice_used;
869
870         /*
871          * Queue got expired before even a single request completed or
872          * got expired immediately after first request completion.
873          */
874         if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
875                 /*
876                  * Also charge the seek time incurred to the group, otherwise
877                  * if there are mutiple queues in the group, each can dispatch
878                  * a single request on seeky media and cause lots of seek time
879                  * and group will never know it.
880                  */
881                 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
882                                         1);
883         } else {
884                 slice_used = jiffies - cfqq->slice_start;
885                 if (slice_used > cfqq->allocated_slice)
886                         slice_used = cfqq->allocated_slice;
887         }
888
889         cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u sect=%lu", slice_used,
890                                 cfqq->nr_sectors);
891         return slice_used;
892 }
893
894 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
895                                 struct cfq_queue *cfqq)
896 {
897         struct cfq_rb_root *st = &cfqd->grp_service_tree;
898         unsigned int used_sl;
899
900         used_sl = cfq_cfqq_slice_usage(cfqq);
901
902         /* Can't update vdisktime while group is on service tree */
903         cfq_rb_erase(&cfqg->rb_node, st);
904         cfqg->vdisktime += cfq_scale_slice(used_sl, cfqg);
905         __cfq_group_service_tree_add(st, cfqg);
906
907         /* This group is being expired. Save the context */
908         if (time_after(cfqd->workload_expires, jiffies)) {
909                 cfqg->saved_workload_slice = cfqd->workload_expires
910                                                 - jiffies;
911                 cfqg->saved_workload = cfqd->serving_type;
912                 cfqg->saved_serving_prio = cfqd->serving_prio;
913         } else
914                 cfqg->saved_workload_slice = 0;
915
916         cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
917                                         st->min_vdisktime);
918         blkiocg_update_blkio_group_stats(&cfqg->blkg, used_sl,
919                                                 cfqq->nr_sectors);
920 }
921
922 #ifdef CONFIG_CFQ_GROUP_IOSCHED
923 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
924 {
925         if (blkg)
926                 return container_of(blkg, struct cfq_group, blkg);
927         return NULL;
928 }
929
930 void
931 cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
932 {
933         cfqg_of_blkg(blkg)->weight = weight;
934 }
935
936 static struct cfq_group *
937 cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
938 {
939         struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
940         struct cfq_group *cfqg = NULL;
941         void *key = cfqd;
942         int i, j;
943         struct cfq_rb_root *st;
944         struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
945         unsigned int major, minor;
946
947         /* Do we need to take this reference */
948         if (!css_tryget(&blkcg->css))
949                 return NULL;;
950
951         cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
952         if (cfqg || !create)
953                 goto done;
954
955         cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
956         if (!cfqg)
957                 goto done;
958
959         cfqg->weight = blkcg->weight;
960         for_each_cfqg_st(cfqg, i, j, st)
961                 *st = CFQ_RB_ROOT;
962         RB_CLEAR_NODE(&cfqg->rb_node);
963
964         /*
965          * Take the initial reference that will be released on destroy
966          * This can be thought of a joint reference by cgroup and
967          * elevator which will be dropped by either elevator exit
968          * or cgroup deletion path depending on who is exiting first.
969          */
970         atomic_set(&cfqg->ref, 1);
971
972         /* Add group onto cgroup list */
973         sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
974         blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
975                                         MKDEV(major, minor));
976
977         /* Add group on cfqd list */
978         hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
979
980 done:
981         css_put(&blkcg->css);
982         return cfqg;
983 }
984
985 /*
986  * Search for the cfq group current task belongs to. If create = 1, then also
987  * create the cfq group if it does not exist. request_queue lock must be held.
988  */
989 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
990 {
991         struct cgroup *cgroup;
992         struct cfq_group *cfqg = NULL;
993
994         rcu_read_lock();
995         cgroup = task_cgroup(current, blkio_subsys_id);
996         cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
997         if (!cfqg && create)
998                 cfqg = &cfqd->root_group;
999         rcu_read_unlock();
1000         return cfqg;
1001 }
1002
1003 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1004 {
1005         /* Currently, all async queues are mapped to root group */
1006         if (!cfq_cfqq_sync(cfqq))
1007                 cfqg = &cfqq->cfqd->root_group;
1008
1009         cfqq->cfqg = cfqg;
1010         /* cfqq reference on cfqg */
1011         atomic_inc(&cfqq->cfqg->ref);
1012 }
1013
1014 static void cfq_put_cfqg(struct cfq_group *cfqg)
1015 {
1016         struct cfq_rb_root *st;
1017         int i, j;
1018
1019         BUG_ON(atomic_read(&cfqg->ref) <= 0);
1020         if (!atomic_dec_and_test(&cfqg->ref))
1021                 return;
1022         for_each_cfqg_st(cfqg, i, j, st)
1023                 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1024         kfree(cfqg);
1025 }
1026
1027 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1028 {
1029         /* Something wrong if we are trying to remove same group twice */
1030         BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1031
1032         hlist_del_init(&cfqg->cfqd_node);
1033
1034         /*
1035          * Put the reference taken at the time of creation so that when all
1036          * queues are gone, group can be destroyed.
1037          */
1038         cfq_put_cfqg(cfqg);
1039 }
1040
1041 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1042 {
1043         struct hlist_node *pos, *n;
1044         struct cfq_group *cfqg;
1045
1046         hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1047                 /*
1048                  * If cgroup removal path got to blk_group first and removed
1049                  * it from cgroup list, then it will take care of destroying
1050                  * cfqg also.
1051                  */
1052                 if (!blkiocg_del_blkio_group(&cfqg->blkg))
1053                         cfq_destroy_cfqg(cfqd, cfqg);
1054         }
1055 }
1056
1057 /*
1058  * Blk cgroup controller notification saying that blkio_group object is being
1059  * delinked as associated cgroup object is going away. That also means that
1060  * no new IO will come in this group. So get rid of this group as soon as
1061  * any pending IO in the group is finished.
1062  *
1063  * This function is called under rcu_read_lock(). key is the rcu protected
1064  * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1065  * read lock.
1066  *
1067  * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1068  * it should not be NULL as even if elevator was exiting, cgroup deltion
1069  * path got to it first.
1070  */
1071 void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1072 {
1073         unsigned long  flags;
1074         struct cfq_data *cfqd = key;
1075
1076         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1077         cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1078         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1079 }
1080
1081 #else /* GROUP_IOSCHED */
1082 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1083 {
1084         return &cfqd->root_group;
1085 }
1086 static inline void
1087 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1088         cfqq->cfqg = cfqg;
1089 }
1090
1091 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1092 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1093
1094 #endif /* GROUP_IOSCHED */
1095
1096 /*
1097  * The cfqd->service_trees holds all pending cfq_queue's that have
1098  * requests waiting to be processed. It is sorted in the order that
1099  * we will service the queues.
1100  */
1101 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1102                                  bool add_front)
1103 {
1104         struct rb_node **p, *parent;
1105         struct cfq_queue *__cfqq;
1106         unsigned long rb_key;
1107         struct cfq_rb_root *service_tree;
1108         int left;
1109         int new_cfqq = 1;
1110
1111         service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1112                                                 cfqq_type(cfqq), cfqd);
1113         if (cfq_class_idle(cfqq)) {
1114                 rb_key = CFQ_IDLE_DELAY;
1115                 parent = rb_last(&service_tree->rb);
1116                 if (parent && parent != &cfqq->rb_node) {
1117                         __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1118                         rb_key += __cfqq->rb_key;
1119                 } else
1120                         rb_key += jiffies;
1121         } else if (!add_front) {
1122                 /*
1123                  * Get our rb key offset. Subtract any residual slice
1124                  * value carried from last service. A negative resid
1125                  * count indicates slice overrun, and this should position
1126                  * the next service time further away in the tree.
1127                  */
1128                 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1129                 rb_key -= cfqq->slice_resid;
1130                 cfqq->slice_resid = 0;
1131         } else {
1132                 rb_key = -HZ;
1133                 __cfqq = cfq_rb_first(service_tree);
1134                 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1135         }
1136
1137         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1138                 new_cfqq = 0;
1139                 /*
1140                  * same position, nothing more to do
1141                  */
1142                 if (rb_key == cfqq->rb_key &&
1143                     cfqq->service_tree == service_tree)
1144                         return;
1145
1146                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1147                 cfqq->service_tree = NULL;
1148         }
1149
1150         left = 1;
1151         parent = NULL;
1152         cfqq->service_tree = service_tree;
1153         p = &service_tree->rb.rb_node;
1154         while (*p) {
1155                 struct rb_node **n;
1156
1157                 parent = *p;
1158                 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1159
1160                 /*
1161                  * sort by key, that represents service time.
1162                  */
1163                 if (time_before(rb_key, __cfqq->rb_key))
1164                         n = &(*p)->rb_left;
1165                 else {
1166                         n = &(*p)->rb_right;
1167                         left = 0;
1168                 }
1169
1170                 p = n;
1171         }
1172
1173         if (left)
1174                 service_tree->left = &cfqq->rb_node;
1175
1176         cfqq->rb_key = rb_key;
1177         rb_link_node(&cfqq->rb_node, parent, p);
1178         rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1179         service_tree->count++;
1180         if (add_front || !new_cfqq)
1181                 return;
1182         cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1183 }
1184
1185 static struct cfq_queue *
1186 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1187                      sector_t sector, struct rb_node **ret_parent,
1188                      struct rb_node ***rb_link)
1189 {
1190         struct rb_node **p, *parent;
1191         struct cfq_queue *cfqq = NULL;
1192
1193         parent = NULL;
1194         p = &root->rb_node;
1195         while (*p) {
1196                 struct rb_node **n;
1197
1198                 parent = *p;
1199                 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1200
1201                 /*
1202                  * Sort strictly based on sector.  Smallest to the left,
1203                  * largest to the right.
1204                  */
1205                 if (sector > blk_rq_pos(cfqq->next_rq))
1206                         n = &(*p)->rb_right;
1207                 else if (sector < blk_rq_pos(cfqq->next_rq))
1208                         n = &(*p)->rb_left;
1209                 else
1210                         break;
1211                 p = n;
1212                 cfqq = NULL;
1213         }
1214
1215         *ret_parent = parent;
1216         if (rb_link)
1217                 *rb_link = p;
1218         return cfqq;
1219 }
1220
1221 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1222 {
1223         struct rb_node **p, *parent;
1224         struct cfq_queue *__cfqq;
1225
1226         if (cfqq->p_root) {
1227                 rb_erase(&cfqq->p_node, cfqq->p_root);
1228                 cfqq->p_root = NULL;
1229         }
1230
1231         if (cfq_class_idle(cfqq))
1232                 return;
1233         if (!cfqq->next_rq)
1234                 return;
1235
1236         cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1237         __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1238                                       blk_rq_pos(cfqq->next_rq), &parent, &p);
1239         if (!__cfqq) {
1240                 rb_link_node(&cfqq->p_node, parent, p);
1241                 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1242         } else
1243                 cfqq->p_root = NULL;
1244 }
1245
1246 /*
1247  * Update cfqq's position in the service tree.
1248  */
1249 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1250 {
1251         /*
1252          * Resorting requires the cfqq to be on the RR list already.
1253          */
1254         if (cfq_cfqq_on_rr(cfqq)) {
1255                 cfq_service_tree_add(cfqd, cfqq, 0);
1256                 cfq_prio_tree_add(cfqd, cfqq);
1257         }
1258 }
1259
1260 /*
1261  * add to busy list of queues for service, trying to be fair in ordering
1262  * the pending list according to last request service
1263  */
1264 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1265 {
1266         cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1267         BUG_ON(cfq_cfqq_on_rr(cfqq));
1268         cfq_mark_cfqq_on_rr(cfqq);
1269         cfqd->busy_queues++;
1270
1271         cfq_resort_rr_list(cfqd, cfqq);
1272 }
1273
1274 /*
1275  * Called when the cfqq no longer has requests pending, remove it from
1276  * the service tree.
1277  */
1278 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1279 {
1280         cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1281         BUG_ON(!cfq_cfqq_on_rr(cfqq));
1282         cfq_clear_cfqq_on_rr(cfqq);
1283
1284         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1285                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1286                 cfqq->service_tree = NULL;
1287         }
1288         if (cfqq->p_root) {
1289                 rb_erase(&cfqq->p_node, cfqq->p_root);
1290                 cfqq->p_root = NULL;
1291         }
1292
1293         cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1294         BUG_ON(!cfqd->busy_queues);
1295         cfqd->busy_queues--;
1296 }
1297
1298 /*
1299  * rb tree support functions
1300  */
1301 static void cfq_del_rq_rb(struct request *rq)
1302 {
1303         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1304         const int sync = rq_is_sync(rq);
1305
1306         BUG_ON(!cfqq->queued[sync]);
1307         cfqq->queued[sync]--;
1308
1309         elv_rb_del(&cfqq->sort_list, rq);
1310
1311         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1312                 /*
1313                  * Queue will be deleted from service tree when we actually
1314                  * expire it later. Right now just remove it from prio tree
1315                  * as it is empty.
1316                  */
1317                 if (cfqq->p_root) {
1318                         rb_erase(&cfqq->p_node, cfqq->p_root);
1319                         cfqq->p_root = NULL;
1320                 }
1321         }
1322 }
1323
1324 static void cfq_add_rq_rb(struct request *rq)
1325 {
1326         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1327         struct cfq_data *cfqd = cfqq->cfqd;
1328         struct request *__alias, *prev;
1329
1330         cfqq->queued[rq_is_sync(rq)]++;
1331
1332         /*
1333          * looks a little odd, but the first insert might return an alias.
1334          * if that happens, put the alias on the dispatch list
1335          */
1336         while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1337                 cfq_dispatch_insert(cfqd->queue, __alias);
1338
1339         if (!cfq_cfqq_on_rr(cfqq))
1340                 cfq_add_cfqq_rr(cfqd, cfqq);
1341
1342         /*
1343          * check if this request is a better next-serve candidate
1344          */
1345         prev = cfqq->next_rq;
1346         cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1347
1348         /*
1349          * adjust priority tree position, if ->next_rq changes
1350          */
1351         if (prev != cfqq->next_rq)
1352                 cfq_prio_tree_add(cfqd, cfqq);
1353
1354         BUG_ON(!cfqq->next_rq);
1355 }
1356
1357 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1358 {
1359         elv_rb_del(&cfqq->sort_list, rq);
1360         cfqq->queued[rq_is_sync(rq)]--;
1361         cfq_add_rq_rb(rq);
1362 }
1363
1364 static struct request *
1365 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1366 {
1367         struct task_struct *tsk = current;
1368         struct cfq_io_context *cic;
1369         struct cfq_queue *cfqq;
1370
1371         cic = cfq_cic_lookup(cfqd, tsk->io_context);
1372         if (!cic)
1373                 return NULL;
1374
1375         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1376         if (cfqq) {
1377                 sector_t sector = bio->bi_sector + bio_sectors(bio);
1378
1379                 return elv_rb_find(&cfqq->sort_list, sector);
1380         }
1381
1382         return NULL;
1383 }
1384
1385 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1386 {
1387         struct cfq_data *cfqd = q->elevator->elevator_data;
1388
1389         cfqd->rq_in_driver[rq_is_sync(rq)]++;
1390         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1391                                                 rq_in_driver(cfqd));
1392
1393         cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1394 }
1395
1396 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1397 {
1398         struct cfq_data *cfqd = q->elevator->elevator_data;
1399         const int sync = rq_is_sync(rq);
1400
1401         WARN_ON(!cfqd->rq_in_driver[sync]);
1402         cfqd->rq_in_driver[sync]--;
1403         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1404                                                 rq_in_driver(cfqd));
1405 }
1406
1407 static void cfq_remove_request(struct request *rq)
1408 {
1409         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1410
1411         if (cfqq->next_rq == rq)
1412                 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1413
1414         list_del_init(&rq->queuelist);
1415         cfq_del_rq_rb(rq);
1416
1417         cfqq->cfqd->rq_queued--;
1418         if (rq_is_meta(rq)) {
1419                 WARN_ON(!cfqq->meta_pending);
1420                 cfqq->meta_pending--;
1421         }
1422 }
1423
1424 static int cfq_merge(struct request_queue *q, struct request **req,
1425                      struct bio *bio)
1426 {
1427         struct cfq_data *cfqd = q->elevator->elevator_data;
1428         struct request *__rq;
1429
1430         __rq = cfq_find_rq_fmerge(cfqd, bio);
1431         if (__rq && elv_rq_merge_ok(__rq, bio)) {
1432                 *req = __rq;
1433                 return ELEVATOR_FRONT_MERGE;
1434         }
1435
1436         return ELEVATOR_NO_MERGE;
1437 }
1438
1439 static void cfq_merged_request(struct request_queue *q, struct request *req,
1440                                int type)
1441 {
1442         if (type == ELEVATOR_FRONT_MERGE) {
1443                 struct cfq_queue *cfqq = RQ_CFQQ(req);
1444
1445                 cfq_reposition_rq_rb(cfqq, req);
1446         }
1447 }
1448
1449 static void
1450 cfq_merged_requests(struct request_queue *q, struct request *rq,
1451                     struct request *next)
1452 {
1453         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1454         /*
1455          * reposition in fifo if next is older than rq
1456          */
1457         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1458             time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1459                 list_move(&rq->queuelist, &next->queuelist);
1460                 rq_set_fifo_time(rq, rq_fifo_time(next));
1461         }
1462
1463         if (cfqq->next_rq == next)
1464                 cfqq->next_rq = rq;
1465         cfq_remove_request(next);
1466 }
1467
1468 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1469                            struct bio *bio)
1470 {
1471         struct cfq_data *cfqd = q->elevator->elevator_data;
1472         struct cfq_io_context *cic;
1473         struct cfq_queue *cfqq;
1474
1475         /* Deny merge if bio and rq don't belong to same cfq group */
1476         if ((RQ_CFQQ(rq))->cfqg != cfq_get_cfqg(cfqd, 0))
1477                 return false;
1478         /*
1479          * Disallow merge of a sync bio into an async request.
1480          */
1481         if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1482                 return false;
1483
1484         /*
1485          * Lookup the cfqq that this bio will be queued with. Allow
1486          * merge only if rq is queued there.
1487          */
1488         cic = cfq_cic_lookup(cfqd, current->io_context);
1489         if (!cic)
1490                 return false;
1491
1492         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1493         return cfqq == RQ_CFQQ(rq);
1494 }
1495
1496 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1497                                    struct cfq_queue *cfqq)
1498 {
1499         if (cfqq) {
1500                 cfq_log_cfqq(cfqd, cfqq, "set_active");
1501                 cfqq->slice_start = 0;
1502                 cfqq->dispatch_start = jiffies;
1503                 cfqq->allocated_slice = 0;
1504                 cfqq->slice_end = 0;
1505                 cfqq->slice_dispatch = 0;
1506                 cfqq->nr_sectors = 0;
1507
1508                 cfq_clear_cfqq_wait_request(cfqq);
1509                 cfq_clear_cfqq_must_dispatch(cfqq);
1510                 cfq_clear_cfqq_must_alloc_slice(cfqq);
1511                 cfq_clear_cfqq_fifo_expire(cfqq);
1512                 cfq_mark_cfqq_slice_new(cfqq);
1513
1514                 del_timer(&cfqd->idle_slice_timer);
1515         }
1516
1517         cfqd->active_queue = cfqq;
1518 }
1519
1520 /*
1521  * current cfqq expired its slice (or was too idle), select new one
1522  */
1523 static void
1524 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1525                     bool timed_out)
1526 {
1527         cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1528
1529         if (cfq_cfqq_wait_request(cfqq))
1530                 del_timer(&cfqd->idle_slice_timer);
1531
1532         cfq_clear_cfqq_wait_request(cfqq);
1533         cfq_clear_cfqq_wait_busy(cfqq);
1534         cfq_clear_cfqq_wait_busy_done(cfqq);
1535
1536         /*
1537          * store what was left of this slice, if the queue idled/timed out
1538          */
1539         if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1540                 cfqq->slice_resid = cfqq->slice_end - jiffies;
1541                 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1542         }
1543
1544         cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1545
1546         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1547                 cfq_del_cfqq_rr(cfqd, cfqq);
1548
1549         cfq_resort_rr_list(cfqd, cfqq);
1550
1551         if (cfqq == cfqd->active_queue)
1552                 cfqd->active_queue = NULL;
1553
1554         if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1555                 cfqd->grp_service_tree.active = NULL;
1556
1557         if (cfqd->active_cic) {
1558                 put_io_context(cfqd->active_cic->ioc);
1559                 cfqd->active_cic = NULL;
1560         }
1561 }
1562
1563 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1564 {
1565         struct cfq_queue *cfqq = cfqd->active_queue;
1566
1567         if (cfqq)
1568                 __cfq_slice_expired(cfqd, cfqq, timed_out);
1569 }
1570
1571 /*
1572  * Get next queue for service. Unless we have a queue preemption,
1573  * we'll simply select the first cfqq in the service tree.
1574  */
1575 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1576 {
1577         struct cfq_rb_root *service_tree =
1578                 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1579                                         cfqd->serving_type, cfqd);
1580
1581         if (!cfqd->rq_queued)
1582                 return NULL;
1583
1584         /* There is nothing to dispatch */
1585         if (!service_tree)
1586                 return NULL;
1587         if (RB_EMPTY_ROOT(&service_tree->rb))
1588                 return NULL;
1589         return cfq_rb_first(service_tree);
1590 }
1591
1592 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1593 {
1594         struct cfq_group *cfqg;
1595         struct cfq_queue *cfqq;
1596         int i, j;
1597         struct cfq_rb_root *st;
1598
1599         if (!cfqd->rq_queued)
1600                 return NULL;
1601
1602         cfqg = cfq_get_next_cfqg(cfqd);
1603         if (!cfqg)
1604                 return NULL;
1605
1606         for_each_cfqg_st(cfqg, i, j, st)
1607                 if ((cfqq = cfq_rb_first(st)) != NULL)
1608                         return cfqq;
1609         return NULL;
1610 }
1611
1612 /*
1613  * Get and set a new active queue for service.
1614  */
1615 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1616                                               struct cfq_queue *cfqq)
1617 {
1618         if (!cfqq)
1619                 cfqq = cfq_get_next_queue(cfqd);
1620
1621         __cfq_set_active_queue(cfqd, cfqq);
1622         return cfqq;
1623 }
1624
1625 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1626                                           struct request *rq)
1627 {
1628         if (blk_rq_pos(rq) >= cfqd->last_position)
1629                 return blk_rq_pos(rq) - cfqd->last_position;
1630         else
1631                 return cfqd->last_position - blk_rq_pos(rq);
1632 }
1633
1634 #define CFQQ_SEEK_THR           8 * 1024
1635 #define CFQQ_SEEKY(cfqq)        ((cfqq)->seek_mean > CFQQ_SEEK_THR)
1636
1637 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1638                                struct request *rq)
1639 {
1640         sector_t sdist = cfqq->seek_mean;
1641
1642         if (!sample_valid(cfqq->seek_samples))
1643                 sdist = CFQQ_SEEK_THR;
1644
1645         return cfq_dist_from_last(cfqd, rq) <= sdist;
1646 }
1647
1648 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1649                                     struct cfq_queue *cur_cfqq)
1650 {
1651         struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1652         struct rb_node *parent, *node;
1653         struct cfq_queue *__cfqq;
1654         sector_t sector = cfqd->last_position;
1655
1656         if (RB_EMPTY_ROOT(root))
1657                 return NULL;
1658
1659         /*
1660          * First, if we find a request starting at the end of the last
1661          * request, choose it.
1662          */
1663         __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1664         if (__cfqq)
1665                 return __cfqq;
1666
1667         /*
1668          * If the exact sector wasn't found, the parent of the NULL leaf
1669          * will contain the closest sector.
1670          */
1671         __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1672         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1673                 return __cfqq;
1674
1675         if (blk_rq_pos(__cfqq->next_rq) < sector)
1676                 node = rb_next(&__cfqq->p_node);
1677         else
1678                 node = rb_prev(&__cfqq->p_node);
1679         if (!node)
1680                 return NULL;
1681
1682         __cfqq = rb_entry(node, struct cfq_queue, p_node);
1683         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1684                 return __cfqq;
1685
1686         return NULL;
1687 }
1688
1689 /*
1690  * cfqd - obvious
1691  * cur_cfqq - passed in so that we don't decide that the current queue is
1692  *            closely cooperating with itself.
1693  *
1694  * So, basically we're assuming that that cur_cfqq has dispatched at least
1695  * one request, and that cfqd->last_position reflects a position on the disk
1696  * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1697  * assumption.
1698  */
1699 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1700                                               struct cfq_queue *cur_cfqq)
1701 {
1702         struct cfq_queue *cfqq;
1703
1704         if (!cfq_cfqq_sync(cur_cfqq))
1705                 return NULL;
1706         if (CFQQ_SEEKY(cur_cfqq))
1707                 return NULL;
1708
1709         /*
1710          * We should notice if some of the queues are cooperating, eg
1711          * working closely on the same area of the disk. In that case,
1712          * we can group them together and don't waste time idling.
1713          */
1714         cfqq = cfqq_close(cfqd, cur_cfqq);
1715         if (!cfqq)
1716                 return NULL;
1717
1718         /* If new queue belongs to different cfq_group, don't choose it */
1719         if (cur_cfqq->cfqg != cfqq->cfqg)
1720                 return NULL;
1721
1722         /*
1723          * It only makes sense to merge sync queues.
1724          */
1725         if (!cfq_cfqq_sync(cfqq))
1726                 return NULL;
1727         if (CFQQ_SEEKY(cfqq))
1728                 return NULL;
1729
1730         /*
1731          * Do not merge queues of different priority classes
1732          */
1733         if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1734                 return NULL;
1735
1736         return cfqq;
1737 }
1738
1739 /*
1740  * Determine whether we should enforce idle window for this queue.
1741  */
1742
1743 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1744 {
1745         enum wl_prio_t prio = cfqq_prio(cfqq);
1746         struct cfq_rb_root *service_tree = cfqq->service_tree;
1747
1748         BUG_ON(!service_tree);
1749         BUG_ON(!service_tree->count);
1750
1751         /* We never do for idle class queues. */
1752         if (prio == IDLE_WORKLOAD)
1753                 return false;
1754
1755         /* We do for queues that were marked with idle window flag. */
1756         if (cfq_cfqq_idle_window(cfqq))
1757                 return true;
1758
1759         /*
1760          * Otherwise, we do only if they are the last ones
1761          * in their service tree.
1762          */
1763         return service_tree->count == 1;
1764 }
1765
1766 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1767 {
1768         struct cfq_queue *cfqq = cfqd->active_queue;
1769         struct cfq_io_context *cic;
1770         unsigned long sl;
1771
1772         /*
1773          * SSD device without seek penalty, disable idling. But only do so
1774          * for devices that support queuing, otherwise we still have a problem
1775          * with sync vs async workloads.
1776          */
1777         if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1778                 return;
1779
1780         WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1781         WARN_ON(cfq_cfqq_slice_new(cfqq));
1782
1783         /*
1784          * idle is disabled, either manually or by past process history
1785          */
1786         if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
1787                 return;
1788
1789         /*
1790          * still active requests from this queue, don't idle
1791          */
1792         if (cfqq->dispatched)
1793                 return;
1794
1795         /*
1796          * task has exited, don't wait
1797          */
1798         cic = cfqd->active_cic;
1799         if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1800                 return;
1801
1802         /*
1803          * If our average think time is larger than the remaining time
1804          * slice, then don't idle. This avoids overrunning the allotted
1805          * time slice.
1806          */
1807         if (sample_valid(cic->ttime_samples) &&
1808             (cfqq->slice_end - jiffies < cic->ttime_mean))
1809                 return;
1810
1811         cfq_mark_cfqq_wait_request(cfqq);
1812
1813         sl = cfqd->cfq_slice_idle;
1814
1815         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1816         cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1817 }
1818
1819 /*
1820  * Move request from internal lists to the request queue dispatch list.
1821  */
1822 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1823 {
1824         struct cfq_data *cfqd = q->elevator->elevator_data;
1825         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1826
1827         cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1828
1829         cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1830         cfq_remove_request(rq);
1831         cfqq->dispatched++;
1832         elv_dispatch_sort(q, rq);
1833
1834         if (cfq_cfqq_sync(cfqq))
1835                 cfqd->sync_flight++;
1836         cfqq->nr_sectors += blk_rq_sectors(rq);
1837 }
1838
1839 /*
1840  * return expired entry, or NULL to just start from scratch in rbtree
1841  */
1842 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1843 {
1844         struct request *rq = NULL;
1845
1846         if (cfq_cfqq_fifo_expire(cfqq))
1847                 return NULL;
1848
1849         cfq_mark_cfqq_fifo_expire(cfqq);
1850
1851         if (list_empty(&cfqq->fifo))
1852                 return NULL;
1853
1854         rq = rq_entry_fifo(cfqq->fifo.next);
1855         if (time_before(jiffies, rq_fifo_time(rq)))
1856                 rq = NULL;
1857
1858         cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1859         return rq;
1860 }
1861
1862 static inline int
1863 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1864 {
1865         const int base_rq = cfqd->cfq_slice_async_rq;
1866
1867         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1868
1869         return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1870 }
1871
1872 /*
1873  * Must be called with the queue_lock held.
1874  */
1875 static int cfqq_process_refs(struct cfq_queue *cfqq)
1876 {
1877         int process_refs, io_refs;
1878
1879         io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1880         process_refs = atomic_read(&cfqq->ref) - io_refs;
1881         BUG_ON(process_refs < 0);
1882         return process_refs;
1883 }
1884
1885 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1886 {
1887         int process_refs, new_process_refs;
1888         struct cfq_queue *__cfqq;
1889
1890         /* Avoid a circular list and skip interim queue merges */
1891         while ((__cfqq = new_cfqq->new_cfqq)) {
1892                 if (__cfqq == cfqq)
1893                         return;
1894                 new_cfqq = __cfqq;
1895         }
1896
1897         process_refs = cfqq_process_refs(cfqq);
1898         /*
1899          * If the process for the cfqq has gone away, there is no
1900          * sense in merging the queues.
1901          */
1902         if (process_refs == 0)
1903                 return;
1904
1905         /*
1906          * Merge in the direction of the lesser amount of work.
1907          */
1908         new_process_refs = cfqq_process_refs(new_cfqq);
1909         if (new_process_refs >= process_refs) {
1910                 cfqq->new_cfqq = new_cfqq;
1911                 atomic_add(process_refs, &new_cfqq->ref);
1912         } else {
1913                 new_cfqq->new_cfqq = cfqq;
1914                 atomic_add(new_process_refs, &cfqq->ref);
1915         }
1916 }
1917
1918 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1919                                 struct cfq_group *cfqg, enum wl_prio_t prio,
1920                                 bool prio_changed)
1921 {
1922         struct cfq_queue *queue;
1923         int i;
1924         bool key_valid = false;
1925         unsigned long lowest_key = 0;
1926         enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1927
1928         if (prio_changed) {
1929                 /*
1930                  * When priorities switched, we prefer starting
1931                  * from SYNC_NOIDLE (first choice), or just SYNC
1932                  * over ASYNC
1933                  */
1934                 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1935                         return cur_best;
1936                 cur_best = SYNC_WORKLOAD;
1937                 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1938                         return cur_best;
1939
1940                 return ASYNC_WORKLOAD;
1941         }
1942
1943         for (i = 0; i < 3; ++i) {
1944                 /* otherwise, select the one with lowest rb_key */
1945                 queue = cfq_rb_first(service_tree_for(cfqg, prio, i, cfqd));
1946                 if (queue &&
1947                     (!key_valid || time_before(queue->rb_key, lowest_key))) {
1948                         lowest_key = queue->rb_key;
1949                         cur_best = i;
1950                         key_valid = true;
1951                 }
1952         }
1953
1954         return cur_best;
1955 }
1956
1957 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
1958 {
1959         enum wl_prio_t previous_prio = cfqd->serving_prio;
1960         bool prio_changed;
1961         unsigned slice;
1962         unsigned count;
1963         struct cfq_rb_root *st;
1964         unsigned group_slice;
1965
1966         if (!cfqg) {
1967                 cfqd->serving_prio = IDLE_WORKLOAD;
1968                 cfqd->workload_expires = jiffies + 1;
1969                 return;
1970         }
1971
1972         /* Choose next priority. RT > BE > IDLE */
1973         if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
1974                 cfqd->serving_prio = RT_WORKLOAD;
1975         else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
1976                 cfqd->serving_prio = BE_WORKLOAD;
1977         else {
1978                 cfqd->serving_prio = IDLE_WORKLOAD;
1979                 cfqd->workload_expires = jiffies + 1;
1980                 return;
1981         }
1982
1983         /*
1984          * For RT and BE, we have to choose also the type
1985          * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
1986          * expiration time
1987          */
1988         prio_changed = (cfqd->serving_prio != previous_prio);
1989         st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
1990                                 cfqd);
1991         count = st->count;
1992
1993         /*
1994          * If priority didn't change, check workload expiration,
1995          * and that we still have other queues ready
1996          */
1997         if (!prio_changed && count &&
1998             !time_after(jiffies, cfqd->workload_expires))
1999                 return;
2000
2001         /* otherwise select new workload type */
2002         cfqd->serving_type =
2003                 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio, prio_changed);
2004         st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
2005                                 cfqd);
2006         count = st->count;
2007
2008         /*
2009          * the workload slice is computed as a fraction of target latency
2010          * proportional to the number of queues in that workload, over
2011          * all the queues in the same priority class
2012          */
2013         group_slice = cfq_group_slice(cfqd, cfqg);
2014
2015         slice = group_slice * count /
2016                 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2017                       cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2018
2019         if (cfqd->serving_type == ASYNC_WORKLOAD)
2020                 /* async workload slice is scaled down according to
2021                  * the sync/async slice ratio. */
2022                 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2023         else
2024                 /* sync workload slice is at least 2 * cfq_slice_idle */
2025                 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2026
2027         slice = max_t(unsigned, slice, CFQ_MIN_TT);
2028         cfqd->workload_expires = jiffies + slice;
2029         cfqd->noidle_tree_requires_idle = false;
2030 }
2031
2032 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2033 {
2034         struct cfq_rb_root *st = &cfqd->grp_service_tree;
2035         struct cfq_group *cfqg;
2036
2037         if (RB_EMPTY_ROOT(&st->rb))
2038                 return NULL;
2039         cfqg = cfq_rb_first_group(st);
2040         st->active = &cfqg->rb_node;
2041         update_min_vdisktime(st);
2042         return cfqg;
2043 }
2044
2045 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2046 {
2047         struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2048
2049         cfqd->serving_group = cfqg;
2050
2051         /* Restore the workload type data */
2052         if (cfqg->saved_workload_slice) {
2053                 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2054                 cfqd->serving_type = cfqg->saved_workload;
2055                 cfqd->serving_prio = cfqg->saved_serving_prio;
2056         }
2057         choose_service_tree(cfqd, cfqg);
2058 }
2059
2060 /*
2061  * Select a queue for service. If we have a current active queue,
2062  * check whether to continue servicing it, or retrieve and set a new one.
2063  */
2064 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2065 {
2066         struct cfq_queue *cfqq, *new_cfqq = NULL;
2067
2068         cfqq = cfqd->active_queue;
2069         if (!cfqq)
2070                 goto new_queue;
2071
2072         if (!cfqd->rq_queued)
2073                 return NULL;
2074         /*
2075          * The active queue has run out of time, expire it and select new.
2076          */
2077         if ((cfq_slice_used(cfqq) || cfq_cfqq_wait_busy_done(cfqq))
2078              && !cfq_cfqq_must_dispatch(cfqq))
2079                 goto expire;
2080
2081         /*
2082          * The active queue has requests and isn't expired, allow it to
2083          * dispatch.
2084          */
2085         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2086                 goto keep_queue;
2087
2088         /*
2089          * If another queue has a request waiting within our mean seek
2090          * distance, let it run.  The expire code will check for close
2091          * cooperators and put the close queue at the front of the service
2092          * tree.  If possible, merge the expiring queue with the new cfqq.
2093          */
2094         new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2095         if (new_cfqq) {
2096                 if (!cfqq->new_cfqq)
2097                         cfq_setup_merge(cfqq, new_cfqq);
2098                 goto expire;
2099         }
2100
2101         /*
2102          * No requests pending. If the active queue still has requests in
2103          * flight or is idling for a new request, allow either of these
2104          * conditions to happen (or time out) before selecting a new queue.
2105          */
2106         if (timer_pending(&cfqd->idle_slice_timer) ||
2107             (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
2108                 cfqq = NULL;
2109                 goto keep_queue;
2110         }
2111
2112 expire:
2113         cfq_slice_expired(cfqd, 0);
2114 new_queue:
2115         /*
2116          * Current queue expired. Check if we have to switch to a new
2117          * service tree
2118          */
2119         if (!new_cfqq)
2120                 cfq_choose_cfqg(cfqd);
2121
2122         cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2123 keep_queue:
2124         return cfqq;
2125 }
2126
2127 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2128 {
2129         int dispatched = 0;
2130
2131         while (cfqq->next_rq) {
2132                 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2133                 dispatched++;
2134         }
2135
2136         BUG_ON(!list_empty(&cfqq->fifo));
2137
2138         /* By default cfqq is not expired if it is empty. Do it explicitly */
2139         __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2140         return dispatched;
2141 }
2142
2143 /*
2144  * Drain our current requests. Used for barriers and when switching
2145  * io schedulers on-the-fly.
2146  */
2147 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2148 {
2149         struct cfq_queue *cfqq;
2150         int dispatched = 0;
2151
2152         while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
2153                 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2154
2155         cfq_slice_expired(cfqd, 0);
2156         BUG_ON(cfqd->busy_queues);
2157
2158         cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2159         return dispatched;
2160 }
2161
2162 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2163 {
2164         unsigned int max_dispatch;
2165
2166         /*
2167          * Drain async requests before we start sync IO
2168          */
2169         if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
2170                 return false;
2171
2172         /*
2173          * If this is an async queue and we have sync IO in flight, let it wait
2174          */
2175         if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
2176                 return false;
2177
2178         max_dispatch = cfqd->cfq_quantum;
2179         if (cfq_class_idle(cfqq))
2180                 max_dispatch = 1;
2181
2182         /*
2183          * Does this cfqq already have too much IO in flight?
2184          */
2185         if (cfqq->dispatched >= max_dispatch) {
2186                 /*
2187                  * idle queue must always only have a single IO in flight
2188                  */
2189                 if (cfq_class_idle(cfqq))
2190                         return false;
2191
2192                 /*
2193                  * We have other queues, don't allow more IO from this one
2194                  */
2195                 if (cfqd->busy_queues > 1)
2196                         return false;
2197
2198                 /*
2199                  * Sole queue user, no limit
2200                  */
2201                 max_dispatch = -1;
2202         }
2203
2204         /*
2205          * Async queues must wait a bit before being allowed dispatch.
2206          * We also ramp up the dispatch depth gradually for async IO,
2207          * based on the last sync IO we serviced
2208          */
2209         if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2210                 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
2211                 unsigned int depth;
2212
2213                 depth = last_sync / cfqd->cfq_slice[1];
2214                 if (!depth && !cfqq->dispatched)
2215                         depth = 1;
2216                 if (depth < max_dispatch)
2217                         max_dispatch = depth;
2218         }
2219
2220         /*
2221          * If we're below the current max, allow a dispatch
2222          */
2223         return cfqq->dispatched < max_dispatch;
2224 }
2225
2226 /*
2227  * Dispatch a request from cfqq, moving them to the request queue
2228  * dispatch list.
2229  */
2230 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2231 {
2232         struct request *rq;
2233
2234         BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2235
2236         if (!cfq_may_dispatch(cfqd, cfqq))
2237                 return false;
2238
2239         /*
2240          * follow expired path, else get first next available
2241          */
2242         rq = cfq_check_fifo(cfqq);
2243         if (!rq)
2244                 rq = cfqq->next_rq;
2245
2246         /*
2247          * insert request into driver dispatch list
2248          */
2249         cfq_dispatch_insert(cfqd->queue, rq);
2250
2251         if (!cfqd->active_cic) {
2252                 struct cfq_io_context *cic = RQ_CIC(rq);
2253
2254                 atomic_long_inc(&cic->ioc->refcount);
2255                 cfqd->active_cic = cic;
2256         }
2257
2258         return true;
2259 }
2260
2261 /*
2262  * Find the cfqq that we need to service and move a request from that to the
2263  * dispatch list
2264  */
2265 static int cfq_dispatch_requests(struct request_queue *q, int force)
2266 {
2267         struct cfq_data *cfqd = q->elevator->elevator_data;
2268         struct cfq_queue *cfqq;
2269
2270         if (!cfqd->busy_queues)
2271                 return 0;
2272
2273         if (unlikely(force))
2274                 return cfq_forced_dispatch(cfqd);
2275
2276         cfqq = cfq_select_queue(cfqd);
2277         if (!cfqq)
2278                 return 0;
2279
2280         /*
2281          * Dispatch a request from this cfqq, if it is allowed
2282          */
2283         if (!cfq_dispatch_request(cfqd, cfqq))
2284                 return 0;
2285
2286         cfqq->slice_dispatch++;
2287         cfq_clear_cfqq_must_dispatch(cfqq);
2288
2289         /*
2290          * expire an async queue immediately if it has used up its slice. idle
2291          * queue always expire after 1 dispatch round.
2292          */
2293         if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2294             cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2295             cfq_class_idle(cfqq))) {
2296                 cfqq->slice_end = jiffies + 1;
2297                 cfq_slice_expired(cfqd, 0);
2298         }
2299
2300         cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2301         return 1;
2302 }
2303
2304 /*
2305  * task holds one reference to the queue, dropped when task exits. each rq
2306  * in-flight on this queue also holds a reference, dropped when rq is freed.
2307  *
2308  * Each cfq queue took a reference on the parent group. Drop it now.
2309  * queue lock must be held here.
2310  */
2311 static void cfq_put_queue(struct cfq_queue *cfqq)
2312 {
2313         struct cfq_data *cfqd = cfqq->cfqd;
2314         struct cfq_group *cfqg;
2315
2316         BUG_ON(atomic_read(&cfqq->ref) <= 0);
2317
2318         if (!atomic_dec_and_test(&cfqq->ref))
2319                 return;
2320
2321         cfq_log_cfqq(cfqd, cfqq, "put_queue");
2322         BUG_ON(rb_first(&cfqq->sort_list));
2323         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2324         cfqg = cfqq->cfqg;
2325
2326         if (unlikely(cfqd->active_queue == cfqq)) {
2327                 __cfq_slice_expired(cfqd, cfqq, 0);
2328                 cfq_schedule_dispatch(cfqd);
2329         }
2330
2331         BUG_ON(cfq_cfqq_on_rr(cfqq));
2332         kmem_cache_free(cfq_pool, cfqq);
2333         cfq_put_cfqg(cfqg);
2334 }
2335
2336 /*
2337  * Must always be called with the rcu_read_lock() held
2338  */
2339 static void
2340 __call_for_each_cic(struct io_context *ioc,
2341                     void (*func)(struct io_context *, struct cfq_io_context *))
2342 {
2343         struct cfq_io_context *cic;
2344         struct hlist_node *n;
2345
2346         hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2347                 func(ioc, cic);
2348 }
2349
2350 /*
2351  * Call func for each cic attached to this ioc.
2352  */
2353 static void
2354 call_for_each_cic(struct io_context *ioc,
2355                   void (*func)(struct io_context *, struct cfq_io_context *))
2356 {
2357         rcu_read_lock();
2358         __call_for_each_cic(ioc, func);
2359         rcu_read_unlock();
2360 }
2361
2362 static void cfq_cic_free_rcu(struct rcu_head *head)
2363 {
2364         struct cfq_io_context *cic;
2365
2366         cic = container_of(head, struct cfq_io_context, rcu_head);
2367
2368         kmem_cache_free(cfq_ioc_pool, cic);
2369         elv_ioc_count_dec(cfq_ioc_count);
2370
2371         if (ioc_gone) {
2372                 /*
2373                  * CFQ scheduler is exiting, grab exit lock and check
2374                  * the pending io context count. If it hits zero,
2375                  * complete ioc_gone and set it back to NULL
2376                  */
2377                 spin_lock(&ioc_gone_lock);
2378                 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2379                         complete(ioc_gone);
2380                         ioc_gone = NULL;
2381                 }
2382                 spin_unlock(&ioc_gone_lock);
2383         }
2384 }
2385
2386 static void cfq_cic_free(struct cfq_io_context *cic)
2387 {
2388         call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2389 }
2390
2391 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2392 {
2393         unsigned long flags;
2394
2395         BUG_ON(!cic->dead_key);
2396
2397         spin_lock_irqsave(&ioc->lock, flags);
2398         radix_tree_delete(&ioc->radix_root, cic->dead_key);
2399         hlist_del_rcu(&cic->cic_list);
2400         spin_unlock_irqrestore(&ioc->lock, flags);
2401
2402         cfq_cic_free(cic);
2403 }
2404
2405 /*
2406  * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2407  * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2408  * and ->trim() which is called with the task lock held
2409  */
2410 static void cfq_free_io_context(struct io_context *ioc)
2411 {
2412         /*
2413          * ioc->refcount is zero here, or we are called from elv_unregister(),
2414          * so no more cic's are allowed to be linked into this ioc.  So it
2415          * should be ok to iterate over the known list, we will see all cic's
2416          * since no new ones are added.
2417          */
2418         __call_for_each_cic(ioc, cic_free_func);
2419 }
2420
2421 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2422 {
2423         struct cfq_queue *__cfqq, *next;
2424
2425         if (unlikely(cfqq == cfqd->active_queue)) {
2426                 __cfq_slice_expired(cfqd, cfqq, 0);
2427                 cfq_schedule_dispatch(cfqd);
2428         }
2429
2430         /*
2431          * If this queue was scheduled to merge with another queue, be
2432          * sure to drop the reference taken on that queue (and others in
2433          * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
2434          */
2435         __cfqq = cfqq->new_cfqq;
2436         while (__cfqq) {
2437                 if (__cfqq == cfqq) {
2438                         WARN(1, "cfqq->new_cfqq loop detected\n");
2439                         break;
2440                 }
2441                 next = __cfqq->new_cfqq;
2442                 cfq_put_queue(__cfqq);
2443                 __cfqq = next;
2444         }
2445
2446         cfq_put_queue(cfqq);
2447 }
2448
2449 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2450                                          struct cfq_io_context *cic)
2451 {
2452         struct io_context *ioc = cic->ioc;
2453
2454         list_del_init(&cic->queue_list);
2455
2456         /*
2457          * Make sure key == NULL is seen for dead queues
2458          */
2459         smp_wmb();
2460         cic->dead_key = (unsigned long) cic->key;
2461         cic->key = NULL;
2462
2463         if (ioc->ioc_data == cic)
2464                 rcu_assign_pointer(ioc->ioc_data, NULL);
2465
2466         if (cic->cfqq[BLK_RW_ASYNC]) {
2467                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2468                 cic->cfqq[BLK_RW_ASYNC] = NULL;
2469         }
2470
2471         if (cic->cfqq[BLK_RW_SYNC]) {
2472                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2473                 cic->cfqq[BLK_RW_SYNC] = NULL;
2474         }
2475 }
2476
2477 static void cfq_exit_single_io_context(struct io_context *ioc,
2478                                        struct cfq_io_context *cic)
2479 {
2480         struct cfq_data *cfqd = cic->key;
2481
2482         if (cfqd) {
2483                 struct request_queue *q = cfqd->queue;
2484                 unsigned long flags;
2485
2486                 spin_lock_irqsave(q->queue_lock, flags);
2487
2488                 /*
2489                  * Ensure we get a fresh copy of the ->key to prevent
2490                  * race between exiting task and queue
2491                  */
2492                 smp_read_barrier_depends();
2493                 if (cic->key)
2494                         __cfq_exit_single_io_context(cfqd, cic);
2495
2496                 spin_unlock_irqrestore(q->queue_lock, flags);
2497         }
2498 }
2499
2500 /*
2501  * The process that ioc belongs to has exited, we need to clean up
2502  * and put the internal structures we have that belongs to that process.
2503  */
2504 static void cfq_exit_io_context(struct io_context *ioc)
2505 {
2506         call_for_each_cic(ioc, cfq_exit_single_io_context);
2507 }
2508
2509 static struct cfq_io_context *
2510 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2511 {
2512         struct cfq_io_context *cic;
2513
2514         cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2515                                                         cfqd->queue->node);
2516         if (cic) {
2517                 cic->last_end_request = jiffies;
2518                 INIT_LIST_HEAD(&cic->queue_list);
2519                 INIT_HLIST_NODE(&cic->cic_list);
2520                 cic->dtor = cfq_free_io_context;
2521                 cic->exit = cfq_exit_io_context;
2522                 elv_ioc_count_inc(cfq_ioc_count);
2523         }
2524
2525         return cic;
2526 }
2527
2528 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2529 {
2530         struct task_struct *tsk = current;
2531         int ioprio_class;
2532
2533         if (!cfq_cfqq_prio_changed(cfqq))
2534                 return;
2535
2536         ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2537         switch (ioprio_class) {
2538         default:
2539                 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2540         case IOPRIO_CLASS_NONE:
2541                 /*
2542                  * no prio set, inherit CPU scheduling settings
2543                  */
2544                 cfqq->ioprio = task_nice_ioprio(tsk);
2545                 cfqq->ioprio_class = task_nice_ioclass(tsk);
2546                 break;
2547         case IOPRIO_CLASS_RT:
2548                 cfqq->ioprio = task_ioprio(ioc);
2549                 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2550                 break;
2551         case IOPRIO_CLASS_BE:
2552                 cfqq->ioprio = task_ioprio(ioc);
2553                 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2554                 break;
2555         case IOPRIO_CLASS_IDLE:
2556                 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2557                 cfqq->ioprio = 7;
2558                 cfq_clear_cfqq_idle_window(cfqq);
2559                 break;
2560         }
2561
2562         /*
2563          * keep track of original prio settings in case we have to temporarily
2564          * elevate the priority of this queue
2565          */
2566         cfqq->org_ioprio = cfqq->ioprio;
2567         cfqq->org_ioprio_class = cfqq->ioprio_class;
2568         cfq_clear_cfqq_prio_changed(cfqq);
2569 }
2570
2571 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2572 {
2573         struct cfq_data *cfqd = cic->key;
2574         struct cfq_queue *cfqq;
2575         unsigned long flags;
2576
2577         if (unlikely(!cfqd))
2578                 return;
2579
2580         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2581
2582         cfqq = cic->cfqq[BLK_RW_ASYNC];
2583         if (cfqq) {
2584                 struct cfq_queue *new_cfqq;
2585                 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2586                                                 GFP_ATOMIC);
2587                 if (new_cfqq) {
2588                         cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2589                         cfq_put_queue(cfqq);
2590                 }
2591         }
2592
2593         cfqq = cic->cfqq[BLK_RW_SYNC];
2594         if (cfqq)
2595                 cfq_mark_cfqq_prio_changed(cfqq);
2596
2597         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2598 }
2599
2600 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2601 {
2602         call_for_each_cic(ioc, changed_ioprio);
2603         ioc->ioprio_changed = 0;
2604 }
2605
2606 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2607                           pid_t pid, bool is_sync)
2608 {
2609         RB_CLEAR_NODE(&cfqq->rb_node);
2610         RB_CLEAR_NODE(&cfqq->p_node);
2611         INIT_LIST_HEAD(&cfqq->fifo);
2612
2613         atomic_set(&cfqq->ref, 0);
2614         cfqq->cfqd = cfqd;
2615
2616         cfq_mark_cfqq_prio_changed(cfqq);
2617
2618         if (is_sync) {
2619                 if (!cfq_class_idle(cfqq))
2620                         cfq_mark_cfqq_idle_window(cfqq);
2621                 cfq_mark_cfqq_sync(cfqq);
2622         }
2623         cfqq->pid = pid;
2624 }
2625
2626 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2627 static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2628 {
2629         struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2630         struct cfq_data *cfqd = cic->key;
2631         unsigned long flags;
2632         struct request_queue *q;
2633
2634         if (unlikely(!cfqd))
2635                 return;
2636
2637         q = cfqd->queue;
2638
2639         spin_lock_irqsave(q->queue_lock, flags);
2640
2641         if (sync_cfqq) {
2642                 /*
2643                  * Drop reference to sync queue. A new sync queue will be
2644                  * assigned in new group upon arrival of a fresh request.
2645                  */
2646                 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2647                 cic_set_cfqq(cic, NULL, 1);
2648                 cfq_put_queue(sync_cfqq);
2649         }
2650
2651         spin_unlock_irqrestore(q->queue_lock, flags);
2652 }
2653
2654 static void cfq_ioc_set_cgroup(struct io_context *ioc)
2655 {
2656         call_for_each_cic(ioc, changed_cgroup);
2657         ioc->cgroup_changed = 0;
2658 }
2659 #endif  /* CONFIG_CFQ_GROUP_IOSCHED */
2660
2661 static struct cfq_queue *
2662 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2663                      struct io_context *ioc, gfp_t gfp_mask)
2664 {
2665         struct cfq_queue *cfqq, *new_cfqq = NULL;
2666         struct cfq_io_context *cic;
2667         struct cfq_group *cfqg;
2668
2669 retry:
2670         cfqg = cfq_get_cfqg(cfqd, 1);
2671         cic = cfq_cic_lookup(cfqd, ioc);
2672         /* cic always exists here */
2673         cfqq = cic_to_cfqq(cic, is_sync);
2674
2675         /*
2676          * Always try a new alloc if we fell back to the OOM cfqq
2677          * originally, since it should just be a temporary situation.
2678          */
2679         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2680                 cfqq = NULL;
2681                 if (new_cfqq) {
2682                         cfqq = new_cfqq;
2683                         new_cfqq = NULL;
2684                 } else if (gfp_mask & __GFP_WAIT) {
2685                         spin_unlock_irq(cfqd->queue->queue_lock);
2686                         new_cfqq = kmem_cache_alloc_node(cfq_pool,
2687                                         gfp_mask | __GFP_ZERO,
2688                                         cfqd->queue->node);
2689                         spin_lock_irq(cfqd->queue->queue_lock);
2690                         if (new_cfqq)
2691                                 goto retry;
2692                 } else {
2693                         cfqq = kmem_cache_alloc_node(cfq_pool,
2694                                         gfp_mask | __GFP_ZERO,
2695                                         cfqd->queue->node);
2696                 }
2697
2698                 if (cfqq) {
2699                         cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2700                         cfq_init_prio_data(cfqq, ioc);
2701                         cfq_link_cfqq_cfqg(cfqq, cfqg);
2702                         cfq_log_cfqq(cfqd, cfqq, "alloced");
2703                 } else
2704                         cfqq = &cfqd->oom_cfqq;
2705         }
2706
2707         if (new_cfqq)
2708                 kmem_cache_free(cfq_pool, new_cfqq);
2709
2710         return cfqq;
2711 }
2712
2713 static struct cfq_queue **
2714 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2715 {
2716         switch (ioprio_class) {
2717         case IOPRIO_CLASS_RT:
2718                 return &cfqd->async_cfqq[0][ioprio];
2719         case IOPRIO_CLASS_BE:
2720                 return &cfqd->async_cfqq[1][ioprio];
2721         case IOPRIO_CLASS_IDLE:
2722                 return &cfqd->async_idle_cfqq;
2723         default:
2724                 BUG();
2725         }
2726 }
2727
2728 static struct cfq_queue *
2729 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2730               gfp_t gfp_mask)
2731 {
2732         const int ioprio = task_ioprio(ioc);
2733         const int ioprio_class = task_ioprio_class(ioc);
2734         struct cfq_queue **async_cfqq = NULL;
2735         struct cfq_queue *cfqq = NULL;
2736
2737         if (!is_sync) {
2738                 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2739                 cfqq = *async_cfqq;
2740         }
2741
2742         if (!cfqq)
2743                 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2744
2745         /*
2746          * pin the queue now that it's allocated, scheduler exit will prune it
2747          */
2748         if (!is_sync && !(*async_cfqq)) {
2749                 atomic_inc(&cfqq->ref);
2750                 *async_cfqq = cfqq;
2751         }
2752
2753         atomic_inc(&cfqq->ref);
2754         return cfqq;
2755 }
2756
2757 /*
2758  * We drop cfq io contexts lazily, so we may find a dead one.
2759  */
2760 static void
2761 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2762                   struct cfq_io_context *cic)
2763 {
2764         unsigned long flags;
2765
2766         WARN_ON(!list_empty(&cic->queue_list));
2767
2768         spin_lock_irqsave(&ioc->lock, flags);
2769
2770         BUG_ON(ioc->ioc_data == cic);
2771
2772         radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2773         hlist_del_rcu(&cic->cic_list);
2774         spin_unlock_irqrestore(&ioc->lock, flags);
2775
2776         cfq_cic_free(cic);
2777 }
2778
2779 static struct cfq_io_context *
2780 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2781 {
2782         struct cfq_io_context *cic;
2783         unsigned long flags;
2784         void *k;
2785
2786         if (unlikely(!ioc))
2787                 return NULL;
2788
2789         rcu_read_lock();
2790
2791         /*
2792          * we maintain a last-hit cache, to avoid browsing over the tree
2793          */
2794         cic = rcu_dereference(ioc->ioc_data);
2795         if (cic && cic->key == cfqd) {
2796                 rcu_read_unlock();
2797                 return cic;
2798         }
2799
2800         do {
2801                 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2802                 rcu_read_unlock();
2803                 if (!cic)
2804                         break;
2805                 /* ->key must be copied to avoid race with cfq_exit_queue() */
2806                 k = cic->key;
2807                 if (unlikely(!k)) {
2808                         cfq_drop_dead_cic(cfqd, ioc, cic);
2809                         rcu_read_lock();
2810                         continue;
2811                 }
2812
2813                 spin_lock_irqsave(&ioc->lock, flags);
2814                 rcu_assign_pointer(ioc->ioc_data, cic);
2815                 spin_unlock_irqrestore(&ioc->lock, flags);
2816                 break;
2817         } while (1);
2818
2819         return cic;
2820 }
2821
2822 /*
2823  * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2824  * the process specific cfq io context when entered from the block layer.
2825  * Also adds the cic to a per-cfqd list, used when this queue is removed.
2826  */
2827 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2828                         struct cfq_io_context *cic, gfp_t gfp_mask)
2829 {
2830         unsigned long flags;
2831         int ret;
2832
2833         ret = radix_tree_preload(gfp_mask);
2834         if (!ret) {
2835                 cic->ioc = ioc;
2836                 cic->key = cfqd;
2837
2838                 spin_lock_irqsave(&ioc->lock, flags);
2839                 ret = radix_tree_insert(&ioc->radix_root,
2840                                                 (unsigned long) cfqd, cic);
2841                 if (!ret)
2842                         hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2843                 spin_unlock_irqrestore(&ioc->lock, flags);
2844
2845                 radix_tree_preload_end();
2846
2847                 if (!ret) {
2848                         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2849                         list_add(&cic->queue_list, &cfqd->cic_list);
2850                         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2851                 }
2852         }
2853
2854         if (ret)
2855                 printk(KERN_ERR "cfq: cic link failed!\n");
2856
2857         return ret;
2858 }
2859
2860 /*
2861  * Setup general io context and cfq io context. There can be several cfq
2862  * io contexts per general io context, if this process is doing io to more
2863  * than one device managed by cfq.
2864  */
2865 static struct cfq_io_context *
2866 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2867 {
2868         struct io_context *ioc = NULL;
2869         struct cfq_io_context *cic;
2870
2871         might_sleep_if(gfp_mask & __GFP_WAIT);
2872
2873         ioc = get_io_context(gfp_mask, cfqd->queue->node);
2874         if (!ioc)
2875                 return NULL;
2876
2877         cic = cfq_cic_lookup(cfqd, ioc);
2878         if (cic)
2879                 goto out;
2880
2881         cic = cfq_alloc_io_context(cfqd, gfp_mask);
2882         if (cic == NULL)
2883                 goto err;
2884
2885         if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2886                 goto err_free;
2887
2888 out:
2889         smp_read_barrier_depends();
2890         if (unlikely(ioc->ioprio_changed))
2891                 cfq_ioc_set_ioprio(ioc);
2892
2893 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2894         if (unlikely(ioc->cgroup_changed))
2895                 cfq_ioc_set_cgroup(ioc);
2896 #endif
2897         return cic;
2898 err_free:
2899         cfq_cic_free(cic);
2900 err:
2901         put_io_context(ioc);
2902         return NULL;
2903 }
2904
2905 static void
2906 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
2907 {
2908         unsigned long elapsed = jiffies - cic->last_end_request;
2909         unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2910
2911         cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2912         cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2913         cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2914 }
2915
2916 static void
2917 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2918                        struct request *rq)
2919 {
2920         sector_t sdist;
2921         u64 total;
2922
2923         if (!cfqq->last_request_pos)
2924                 sdist = 0;
2925         else if (cfqq->last_request_pos < blk_rq_pos(rq))
2926                 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2927         else
2928                 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2929
2930         /*
2931          * Don't allow the seek distance to get too large from the
2932          * odd fragment, pagein, etc
2933          */
2934         if (cfqq->seek_samples <= 60) /* second&third seek */
2935                 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
2936         else
2937                 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
2938
2939         cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
2940         cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
2941         total = cfqq->seek_total + (cfqq->seek_samples/2);
2942         do_div(total, cfqq->seek_samples);
2943         cfqq->seek_mean = (sector_t)total;
2944
2945         /*
2946          * If this cfqq is shared between multiple processes, check to
2947          * make sure that those processes are still issuing I/Os within
2948          * the mean seek distance.  If not, it may be time to break the
2949          * queues apart again.
2950          */
2951         if (cfq_cfqq_coop(cfqq)) {
2952                 if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
2953                         cfqq->seeky_start = jiffies;
2954                 else if (!CFQQ_SEEKY(cfqq))
2955                         cfqq->seeky_start = 0;
2956         }
2957 }
2958
2959 /*
2960  * Disable idle window if the process thinks too long or seeks so much that
2961  * it doesn't matter
2962  */
2963 static void
2964 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2965                        struct cfq_io_context *cic)
2966 {
2967         int old_idle, enable_idle;
2968
2969         /*
2970          * Don't idle for async or idle io prio class
2971          */
2972         if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
2973                 return;
2974
2975         enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
2976
2977         if (cfqq->queued[0] + cfqq->queued[1] >= 4)
2978                 cfq_mark_cfqq_deep(cfqq);
2979
2980         if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
2981             (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
2982              && CFQQ_SEEKY(cfqq)))
2983                 enable_idle = 0;
2984         else if (sample_valid(cic->ttime_samples)) {
2985                 if (cic->ttime_mean > cfqd->cfq_slice_idle)
2986                         enable_idle = 0;
2987                 else
2988                         enable_idle = 1;
2989         }
2990
2991         if (old_idle != enable_idle) {
2992                 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
2993                 if (enable_idle)
2994                         cfq_mark_cfqq_idle_window(cfqq);
2995                 else
2996                         cfq_clear_cfqq_idle_window(cfqq);
2997         }
2998 }
2999
3000 /*
3001  * Check if new_cfqq should preempt the currently active queue. Return 0 for
3002  * no or if we aren't sure, a 1 will cause a preempt.
3003  */
3004 static bool
3005 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3006                    struct request *rq)
3007 {
3008         struct cfq_queue *cfqq;
3009
3010         cfqq = cfqd->active_queue;
3011         if (!cfqq)
3012                 return false;
3013
3014         if (cfq_class_idle(new_cfqq))
3015                 return false;
3016
3017         if (cfq_class_idle(cfqq))
3018                 return true;
3019
3020         /*
3021          * if the new request is sync, but the currently running queue is
3022          * not, let the sync request have priority.
3023          */
3024         if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3025                 return true;
3026
3027         if (new_cfqq->cfqg != cfqq->cfqg)
3028                 return false;
3029
3030         if (cfq_slice_used(cfqq))
3031                 return true;
3032
3033         /* Allow preemption only if we are idling on sync-noidle tree */
3034         if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3035             cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3036             new_cfqq->service_tree->count == 2 &&
3037             RB_EMPTY_ROOT(&cfqq->sort_list))
3038                 return true;
3039
3040         /*
3041          * So both queues are sync. Let the new request get disk time if
3042          * it's a metadata request and the current queue is doing regular IO.
3043          */
3044         if (rq_is_meta(rq) && !cfqq->meta_pending)
3045                 return true;
3046
3047         /*
3048          * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3049          */
3050         if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3051                 return true;
3052
3053         if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3054                 return false;
3055
3056         /*
3057          * if this request is as-good as one we would expect from the
3058          * current cfqq, let it preempt
3059          */
3060         if (cfq_rq_close(cfqd, cfqq, rq))
3061                 return true;
3062
3063         return false;
3064 }
3065
3066 /*
3067  * cfqq preempts the active queue. if we allowed preempt with no slice left,
3068  * let it have half of its nominal slice.
3069  */
3070 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3071 {
3072         cfq_log_cfqq(cfqd, cfqq, "preempt");
3073         cfq_slice_expired(cfqd, 1);
3074
3075         /*
3076          * Put the new queue at the front of the of the current list,
3077          * so we know that it will be selected next.
3078          */
3079         BUG_ON(!cfq_cfqq_on_rr(cfqq));
3080
3081         cfq_service_tree_add(cfqd, cfqq, 1);
3082
3083         cfqq->slice_end = 0;
3084         cfq_mark_cfqq_slice_new(cfqq);
3085 }
3086
3087 /*
3088  * Called when a new fs request (rq) is added (to cfqq). Check if there's
3089  * something we should do about it
3090  */
3091 static void
3092 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3093                 struct request *rq)
3094 {
3095         struct cfq_io_context *cic = RQ_CIC(rq);
3096
3097         cfqd->rq_queued++;
3098         if (rq_is_meta(rq))
3099                 cfqq->meta_pending++;
3100
3101         cfq_update_io_thinktime(cfqd, cic);
3102         cfq_update_io_seektime(cfqd, cfqq, rq);
3103         cfq_update_idle_window(cfqd, cfqq, cic);
3104
3105         cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3106
3107         if (cfqq == cfqd->active_queue) {
3108                 if (cfq_cfqq_wait_busy(cfqq)) {
3109                         cfq_clear_cfqq_wait_busy(cfqq);
3110                         cfq_mark_cfqq_wait_busy_done(cfqq);
3111                 }
3112                 /*
3113                  * Remember that we saw a request from this process, but
3114                  * don't start queuing just yet. Otherwise we risk seeing lots
3115                  * of tiny requests, because we disrupt the normal plugging
3116                  * and merging. If the request is already larger than a single
3117                  * page, let it rip immediately. For that case we assume that
3118                  * merging is already done. Ditto for a busy system that
3119                  * has other work pending, don't risk delaying until the
3120                  * idle timer unplug to continue working.
3121                  */
3122                 if (cfq_cfqq_wait_request(cfqq)) {
3123                         if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3124                             cfqd->busy_queues > 1) {
3125                                 del_timer(&cfqd->idle_slice_timer);
3126                                 __blk_run_queue(cfqd->queue);
3127                         } else
3128                                 cfq_mark_cfqq_must_dispatch(cfqq);
3129                 }
3130         } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3131                 /*
3132                  * not the active queue - expire current slice if it is
3133                  * idle and has expired it's mean thinktime or this new queue
3134                  * has some old slice time left and is of higher priority or
3135                  * this new queue is RT and the current one is BE
3136                  */
3137                 cfq_preempt_queue(cfqd, cfqq);
3138                 __blk_run_queue(cfqd->queue);
3139         }
3140 }
3141
3142 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3143 {
3144         struct cfq_data *cfqd = q->elevator->elevator_data;
3145         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3146
3147         cfq_log_cfqq(cfqd, cfqq, "insert_request");
3148         cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3149
3150         rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3151         list_add_tail(&rq->queuelist, &cfqq->fifo);
3152         cfq_add_rq_rb(rq);
3153
3154         cfq_rq_enqueued(cfqd, cfqq, rq);
3155 }
3156
3157 /*
3158  * Update hw_tag based on peak queue depth over 50 samples under
3159  * sufficient load.
3160  */
3161 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3162 {
3163         struct cfq_queue *cfqq = cfqd->active_queue;
3164
3165         if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
3166                 cfqd->hw_tag_est_depth = rq_in_driver(cfqd);
3167
3168         if (cfqd->hw_tag == 1)
3169                 return;
3170
3171         if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3172             rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
3173                 return;
3174
3175         /*
3176          * If active queue hasn't enough requests and can idle, cfq might not
3177          * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3178          * case
3179          */
3180         if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3181             cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3182             CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
3183                 return;
3184
3185         if (cfqd->hw_tag_samples++ < 50)
3186                 return;
3187
3188         if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3189                 cfqd->hw_tag = 1;
3190         else
3191                 cfqd->hw_tag = 0;
3192 }
3193
3194 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3195 {
3196         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3197         struct cfq_data *cfqd = cfqq->cfqd;
3198         const int sync = rq_is_sync(rq);
3199         unsigned long now;
3200
3201         now = jiffies;
3202         cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
3203
3204         cfq_update_hw_tag(cfqd);
3205
3206         WARN_ON(!cfqd->rq_in_driver[sync]);
3207         WARN_ON(!cfqq->dispatched);
3208         cfqd->rq_in_driver[sync]--;
3209         cfqq->dispatched--;
3210
3211         if (cfq_cfqq_sync(cfqq))
3212                 cfqd->sync_flight--;
3213
3214         if (sync) {
3215                 RQ_CIC(rq)->last_end_request = now;
3216                 cfqd->last_end_sync_rq = now;
3217         }
3218
3219         /*
3220          * If this is the active queue, check if it needs to be expired,
3221          * or if we want to idle in case it has no pending requests.
3222          */
3223         if (cfqd->active_queue == cfqq) {
3224                 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3225
3226                 if (cfq_cfqq_slice_new(cfqq)) {
3227                         cfq_set_prio_slice(cfqd, cfqq);
3228                         cfq_clear_cfqq_slice_new(cfqq);
3229                 }
3230
3231                 /*
3232                  * If this queue consumed its slice and this is last queue
3233                  * in the group, wait for next request before we expire
3234                  * the queue
3235                  */
3236                 if (cfq_slice_used(cfqq) && cfqq->cfqg->nr_cfqq == 1) {
3237                         cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
3238                         cfq_mark_cfqq_wait_busy(cfqq);
3239                 }
3240
3241                 /*
3242                  * Idling is not enabled on:
3243                  * - expired queues
3244                  * - idle-priority queues
3245                  * - async queues
3246                  * - queues with still some requests queued
3247                  * - when there is a close cooperator
3248                  */
3249                 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3250                         cfq_slice_expired(cfqd, 1);
3251                 else if (sync && cfqq_empty &&
3252                          !cfq_close_cooperator(cfqd, cfqq)) {
3253                         cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3254                         /*
3255                          * Idling is enabled for SYNC_WORKLOAD.
3256                          * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3257                          * only if we processed at least one !rq_noidle request
3258                          */
3259                         if (cfqd->serving_type == SYNC_WORKLOAD
3260                             || cfqd->noidle_tree_requires_idle)
3261                                 cfq_arm_slice_timer(cfqd);
3262                 }
3263         }
3264
3265         if (!rq_in_driver(cfqd))
3266                 cfq_schedule_dispatch(cfqd);
3267 }
3268
3269 /*
3270  * we temporarily boost lower priority queues if they are holding fs exclusive
3271  * resources. they are boosted to normal prio (CLASS_BE/4)
3272  */
3273 static void cfq_prio_boost(struct cfq_queue *cfqq)
3274 {
3275         if (has_fs_excl()) {
3276                 /*
3277                  * boost idle prio on transactions that would lock out other
3278                  * users of the filesystem
3279                  */
3280                 if (cfq_class_idle(cfqq))
3281                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
3282                 if (cfqq->ioprio > IOPRIO_NORM)
3283                         cfqq->ioprio = IOPRIO_NORM;
3284         } else {
3285                 /*
3286                  * unboost the queue (if needed)
3287                  */
3288                 cfqq->ioprio_class = cfqq->org_ioprio_class;
3289                 cfqq->ioprio = cfqq->org_ioprio;
3290         }
3291 }
3292
3293 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3294 {
3295         if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3296                 cfq_mark_cfqq_must_alloc_slice(cfqq);
3297                 return ELV_MQUEUE_MUST;
3298         }
3299
3300         return ELV_MQUEUE_MAY;
3301 }
3302
3303 static int cfq_may_queue(struct request_queue *q, int rw)
3304 {
3305         struct cfq_data *cfqd = q->elevator->elevator_data;
3306         struct task_struct *tsk = current;
3307         struct cfq_io_context *cic;
3308         struct cfq_queue *cfqq;
3309
3310         /*
3311          * don't force setup of a queue from here, as a call to may_queue
3312          * does not necessarily imply that a request actually will be queued.
3313          * so just lookup a possibly existing queue, or return 'may queue'
3314          * if that fails
3315          */
3316         cic = cfq_cic_lookup(cfqd, tsk->io_context);
3317         if (!cic)
3318                 return ELV_MQUEUE_MAY;
3319
3320         cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3321         if (cfqq) {
3322                 cfq_init_prio_data(cfqq, cic->ioc);
3323                 cfq_prio_boost(cfqq);
3324
3325                 return __cfq_may_queue(cfqq);
3326         }
3327
3328         return ELV_MQUEUE_MAY;
3329 }
3330
3331 /*
3332  * queue lock held here
3333  */
3334 static void cfq_put_request(struct request *rq)
3335 {
3336         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3337
3338         if (cfqq) {
3339                 const int rw = rq_data_dir(rq);
3340
3341                 BUG_ON(!cfqq->allocated[rw]);
3342                 cfqq->allocated[rw]--;
3343
3344                 put_io_context(RQ_CIC(rq)->ioc);
3345
3346                 rq->elevator_private = NULL;
3347                 rq->elevator_private2 = NULL;
3348
3349                 cfq_put_queue(cfqq);
3350         }
3351 }
3352
3353 static struct cfq_queue *
3354 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3355                 struct cfq_queue *cfqq)
3356 {
3357         cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3358         cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3359         cfq_mark_cfqq_coop(cfqq->new_cfqq);
3360         cfq_put_queue(cfqq);
3361         return cic_to_cfqq(cic, 1);
3362 }
3363
3364 static int should_split_cfqq(struct cfq_queue *cfqq)
3365 {
3366         if (cfqq->seeky_start &&
3367             time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
3368                 return 1;
3369         return 0;
3370 }
3371
3372 /*
3373  * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3374  * was the last process referring to said cfqq.
3375  */
3376 static struct cfq_queue *
3377 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3378 {
3379         if (cfqq_process_refs(cfqq) == 1) {
3380                 cfqq->seeky_start = 0;
3381                 cfqq->pid = current->pid;
3382                 cfq_clear_cfqq_coop(cfqq);
3383                 return cfqq;
3384         }
3385
3386         cic_set_cfqq(cic, NULL, 1);
3387         cfq_put_queue(cfqq);
3388         return NULL;
3389 }
3390 /*
3391  * Allocate cfq data structures associated with this request.
3392  */
3393 static int
3394 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3395 {
3396         struct cfq_data *cfqd = q->elevator->elevator_data;
3397         struct cfq_io_context *cic;
3398         const int rw = rq_data_dir(rq);
3399         const bool is_sync = rq_is_sync(rq);
3400         struct cfq_queue *cfqq;
3401         unsigned long flags;
3402
3403         might_sleep_if(gfp_mask & __GFP_WAIT);
3404
3405         cic = cfq_get_io_context(cfqd, gfp_mask);
3406
3407         spin_lock_irqsave(q->queue_lock, flags);
3408
3409         if (!cic)
3410                 goto queue_fail;
3411
3412 new_queue:
3413         cfqq = cic_to_cfqq(cic, is_sync);
3414         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3415                 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3416                 cic_set_cfqq(cic, cfqq, is_sync);
3417         } else {
3418                 /*
3419                  * If the queue was seeky for too long, break it apart.
3420                  */
3421                 if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
3422                         cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3423                         cfqq = split_cfqq(cic, cfqq);
3424                         if (!cfqq)
3425                                 goto new_queue;
3426                 }
3427
3428                 /*
3429                  * Check to see if this queue is scheduled to merge with
3430                  * another, closely cooperating queue.  The merging of
3431                  * queues happens here as it must be done in process context.
3432                  * The reference on new_cfqq was taken in merge_cfqqs.
3433                  */
3434                 if (cfqq->new_cfqq)
3435                         cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3436         }
3437
3438         cfqq->allocated[rw]++;
3439         atomic_inc(&cfqq->ref);
3440
3441         spin_unlock_irqrestore(q->queue_lock, flags);
3442
3443         rq->elevator_private = cic;
3444         rq->elevator_private2 = cfqq;
3445         return 0;
3446
3447 queue_fail:
3448         if (cic)
3449                 put_io_context(cic->ioc);
3450
3451         cfq_schedule_dispatch(cfqd);
3452         spin_unlock_irqrestore(q->queue_lock, flags);
3453         cfq_log(cfqd, "set_request fail");
3454         return 1;
3455 }
3456
3457 static void cfq_kick_queue(struct work_struct *work)
3458 {
3459         struct cfq_data *cfqd =
3460                 container_of(work, struct cfq_data, unplug_work);
3461         struct request_queue *q = cfqd->queue;
3462
3463         spin_lock_irq(q->queue_lock);
3464         __blk_run_queue(cfqd->queue);
3465         spin_unlock_irq(q->queue_lock);
3466 }
3467
3468 /*
3469  * Timer running if the active_queue is currently idling inside its time slice
3470  */
3471 static void cfq_idle_slice_timer(unsigned long data)
3472 {
3473         struct cfq_data *cfqd = (struct cfq_data *) data;
3474         struct cfq_queue *cfqq;
3475         unsigned long flags;
3476         int timed_out = 1;
3477
3478         cfq_log(cfqd, "idle timer fired");
3479
3480         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3481
3482         cfqq = cfqd->active_queue;
3483         if (cfqq) {
3484                 timed_out = 0;
3485
3486                 /*
3487                  * We saw a request before the queue expired, let it through
3488                  */
3489                 if (cfq_cfqq_must_dispatch(cfqq))
3490                         goto out_kick;
3491
3492                 /*
3493                  * expired
3494                  */
3495                 if (cfq_slice_used(cfqq))
3496                         goto expire;
3497
3498                 /*
3499                  * only expire and reinvoke request handler, if there are
3500                  * other queues with pending requests
3501                  */
3502                 if (!cfqd->busy_queues)
3503                         goto out_cont;
3504
3505                 /*
3506                  * not expired and it has a request pending, let it dispatch
3507                  */
3508                 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3509                         goto out_kick;
3510
3511                 /*
3512                  * Queue depth flag is reset only when the idle didn't succeed
3513                  */
3514                 cfq_clear_cfqq_deep(cfqq);
3515         }
3516 expire:
3517         cfq_slice_expired(cfqd, timed_out);
3518 out_kick:
3519         cfq_schedule_dispatch(cfqd);
3520 out_cont:
3521         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3522 }
3523
3524 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3525 {
3526         del_timer_sync(&cfqd->idle_slice_timer);
3527         cancel_work_sync(&cfqd->unplug_work);
3528 }
3529
3530 static void cfq_put_async_queues(struct cfq_data *cfqd)
3531 {
3532         int i;
3533
3534         for (i = 0; i < IOPRIO_BE_NR; i++) {
3535                 if (cfqd->async_cfqq[0][i])
3536                         cfq_put_queue(cfqd->async_cfqq[0][i]);
3537                 if (cfqd->async_cfqq[1][i])
3538                         cfq_put_queue(cfqd->async_cfqq[1][i]);
3539         }
3540
3541         if (cfqd->async_idle_cfqq)
3542                 cfq_put_queue(cfqd->async_idle_cfqq);
3543 }
3544
3545 static void cfq_exit_queue(struct elevator_queue *e)
3546 {
3547         struct cfq_data *cfqd = e->elevator_data;
3548         struct request_queue *q = cfqd->queue;
3549
3550         cfq_shutdown_timer_wq(cfqd);
3551
3552         spin_lock_irq(q->queue_lock);
3553
3554         if (cfqd->active_queue)
3555                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3556
3557         while (!list_empty(&cfqd->cic_list)) {
3558                 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3559                                                         struct cfq_io_context,
3560                                                         queue_list);
3561
3562                 __cfq_exit_single_io_context(cfqd, cic);
3563         }
3564
3565         cfq_put_async_queues(cfqd);
3566         cfq_release_cfq_groups(cfqd);
3567         blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3568
3569         spin_unlock_irq(q->queue_lock);
3570
3571         cfq_shutdown_timer_wq(cfqd);
3572
3573         /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3574         synchronize_rcu();
3575         kfree(cfqd);
3576 }
3577
3578 static void *cfq_init_queue(struct request_queue *q)
3579 {
3580         struct cfq_data *cfqd;
3581         int i, j;
3582         struct cfq_group *cfqg;
3583         struct cfq_rb_root *st;
3584
3585         cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3586         if (!cfqd)
3587                 return NULL;
3588
3589         /* Init root service tree */
3590         cfqd->grp_service_tree = CFQ_RB_ROOT;
3591
3592         /* Init root group */
3593         cfqg = &cfqd->root_group;
3594         for_each_cfqg_st(cfqg, i, j, st)
3595                 *st = CFQ_RB_ROOT;
3596         RB_CLEAR_NODE(&cfqg->rb_node);
3597
3598         /* Give preference to root group over other groups */
3599         cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3600
3601 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3602         /*
3603          * Take a reference to root group which we never drop. This is just
3604          * to make sure that cfq_put_cfqg() does not try to kfree root group
3605          */
3606         atomic_set(&cfqg->ref, 1);
3607         blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
3608                                         0);
3609 #endif
3610         /*
3611          * Not strictly needed (since RB_ROOT just clears the node and we
3612          * zeroed cfqd on alloc), but better be safe in case someone decides
3613          * to add magic to the rb code
3614          */
3615         for (i = 0; i < CFQ_PRIO_LISTS; i++)
3616                 cfqd->prio_trees[i] = RB_ROOT;
3617
3618         /*
3619          * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3620          * Grab a permanent reference to it, so that the normal code flow
3621          * will not attempt to free it.
3622          */
3623         cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3624         atomic_inc(&cfqd->oom_cfqq.ref);
3625         cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3626
3627         INIT_LIST_HEAD(&cfqd->cic_list);
3628
3629         cfqd->queue = q;
3630
3631         init_timer(&cfqd->idle_slice_timer);
3632         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3633         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3634
3635         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3636
3637         cfqd->cfq_quantum = cfq_quantum;
3638         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3639         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3640         cfqd->cfq_back_max = cfq_back_max;
3641         cfqd->cfq_back_penalty = cfq_back_penalty;
3642         cfqd->cfq_slice[0] = cfq_slice_async;
3643         cfqd->cfq_slice[1] = cfq_slice_sync;
3644         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3645         cfqd->cfq_slice_idle = cfq_slice_idle;
3646         cfqd->cfq_latency = 1;
3647         cfqd->hw_tag = -1;
3648         cfqd->last_end_sync_rq = jiffies;
3649         return cfqd;
3650 }
3651
3652 static void cfq_slab_kill(void)
3653 {
3654         /*
3655          * Caller already ensured that pending RCU callbacks are completed,
3656          * so we should have no busy allocations at this point.
3657          */
3658         if (cfq_pool)
3659                 kmem_cache_destroy(cfq_pool);
3660         if (cfq_ioc_pool)
3661                 kmem_cache_destroy(cfq_ioc_pool);
3662 }
3663
3664 static int __init cfq_slab_setup(void)
3665 {
3666         cfq_pool = KMEM_CACHE(cfq_queue, 0);
3667         if (!cfq_pool)
3668                 goto fail;
3669
3670         cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3671         if (!cfq_ioc_pool)
3672                 goto fail;
3673
3674         return 0;
3675 fail:
3676         cfq_slab_kill();
3677         return -ENOMEM;
3678 }
3679
3680 /*
3681  * sysfs parts below -->
3682  */
3683 static ssize_t
3684 cfq_var_show(unsigned int var, char *page)
3685 {
3686         return sprintf(page, "%d\n", var);
3687 }
3688
3689 static ssize_t
3690 cfq_var_store(unsigned int *var, const char *page, size_t count)
3691 {
3692         char *p = (char *) page;
3693
3694         *var = simple_strtoul(p, &p, 10);
3695         return count;
3696 }
3697
3698 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
3699 static ssize_t __FUNC(struct elevator_queue *e, char *page)             \
3700 {                                                                       \
3701         struct cfq_data *cfqd = e->elevator_data;                       \
3702         unsigned int __data = __VAR;                                    \
3703         if (__CONV)                                                     \
3704                 __data = jiffies_to_msecs(__data);                      \
3705         return cfq_var_show(__data, (page));                            \
3706 }
3707 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3708 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3709 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3710 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3711 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3712 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3713 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3714 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3715 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3716 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3717 #undef SHOW_FUNCTION
3718
3719 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
3720 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3721 {                                                                       \
3722         struct cfq_data *cfqd = e->elevator_data;                       \
3723         unsigned int __data;                                            \
3724         int ret = cfq_var_store(&__data, (page), count);                \
3725         if (__data < (MIN))                                             \
3726                 __data = (MIN);                                         \
3727         else if (__data > (MAX))                                        \
3728                 __data = (MAX);                                         \
3729         if (__CONV)                                                     \
3730                 *(__PTR) = msecs_to_jiffies(__data);                    \
3731         else                                                            \
3732                 *(__PTR) = __data;                                      \
3733         return ret;                                                     \
3734 }
3735 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3736 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3737                 UINT_MAX, 1);
3738 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3739                 UINT_MAX, 1);
3740 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3741 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3742                 UINT_MAX, 0);
3743 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3744 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3745 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3746 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3747                 UINT_MAX, 0);
3748 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3749 #undef STORE_FUNCTION
3750
3751 #define CFQ_ATTR(name) \
3752         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3753
3754 static struct elv_fs_entry cfq_attrs[] = {
3755         CFQ_ATTR(quantum),
3756         CFQ_ATTR(fifo_expire_sync),
3757         CFQ_ATTR(fifo_expire_async),
3758         CFQ_ATTR(back_seek_max),
3759         CFQ_ATTR(back_seek_penalty),
3760         CFQ_ATTR(slice_sync),
3761         CFQ_ATTR(slice_async),
3762         CFQ_ATTR(slice_async_rq),
3763         CFQ_ATTR(slice_idle),
3764         CFQ_ATTR(low_latency),
3765         __ATTR_NULL
3766 };
3767
3768 static struct elevator_type iosched_cfq = {
3769         .ops = {
3770                 .elevator_merge_fn =            cfq_merge,
3771                 .elevator_merged_fn =           cfq_merged_request,
3772                 .elevator_merge_req_fn =        cfq_merged_requests,
3773                 .elevator_allow_merge_fn =      cfq_allow_merge,
3774                 .elevator_dispatch_fn =         cfq_dispatch_requests,
3775                 .elevator_add_req_fn =          cfq_insert_request,
3776                 .elevator_activate_req_fn =     cfq_activate_request,
3777                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
3778                 .elevator_queue_empty_fn =      cfq_queue_empty,
3779                 .elevator_completed_req_fn =    cfq_completed_request,
3780                 .elevator_former_req_fn =       elv_rb_former_request,
3781                 .elevator_latter_req_fn =       elv_rb_latter_request,
3782                 .elevator_set_req_fn =          cfq_set_request,
3783                 .elevator_put_req_fn =          cfq_put_request,
3784                 .elevator_may_queue_fn =        cfq_may_queue,
3785                 .elevator_init_fn =             cfq_init_queue,
3786                 .elevator_exit_fn =             cfq_exit_queue,
3787                 .trim =                         cfq_free_io_context,
3788         },
3789         .elevator_attrs =       cfq_attrs,
3790         .elevator_name =        "cfq",
3791         .elevator_owner =       THIS_MODULE,
3792 };
3793
3794 static int __init cfq_init(void)
3795 {
3796         /*
3797          * could be 0 on HZ < 1000 setups
3798          */
3799         if (!cfq_slice_async)
3800                 cfq_slice_async = 1;
3801         if (!cfq_slice_idle)
3802                 cfq_slice_idle = 1;
3803
3804         if (cfq_slab_setup())
3805                 return -ENOMEM;
3806
3807         elv_register(&iosched_cfq);
3808
3809         return 0;
3810 }
3811
3812 static void __exit cfq_exit(void)
3813 {
3814         DECLARE_COMPLETION_ONSTACK(all_gone);
3815         elv_unregister(&iosched_cfq);
3816         ioc_gone = &all_gone;
3817         /* ioc_gone's update must be visible before reading ioc_count */
3818         smp_wmb();
3819
3820         /*
3821          * this also protects us from entering cfq_slab_kill() with
3822          * pending RCU callbacks
3823          */
3824         if (elv_ioc_count_read(cfq_ioc_count))
3825                 wait_for_completion(&all_gone);
3826         cfq_slab_kill();
3827 }
3828
3829 module_init(cfq_init);
3830 module_exit(cfq_exit);
3831
3832 MODULE_AUTHOR("Jens Axboe");
3833 MODULE_LICENSE("GPL");
3834 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");