x86/paravirt: add register-saving thunks to reduce caller register pressure
[safe/jmp/linux-2.6] / arch / x86 / xen / enlighten.c
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/preempt.h>
18 #include <linux/hardirq.h>
19 #include <linux/percpu.h>
20 #include <linux/delay.h>
21 #include <linux/start_kernel.h>
22 #include <linux/sched.h>
23 #include <linux/bootmem.h>
24 #include <linux/module.h>
25 #include <linux/mm.h>
26 #include <linux/page-flags.h>
27 #include <linux/highmem.h>
28 #include <linux/console.h>
29
30 #include <xen/interface/xen.h>
31 #include <xen/interface/version.h>
32 #include <xen/interface/physdev.h>
33 #include <xen/interface/vcpu.h>
34 #include <xen/features.h>
35 #include <xen/page.h>
36 #include <xen/hvc-console.h>
37
38 #include <asm/paravirt.h>
39 #include <asm/apic.h>
40 #include <asm/page.h>
41 #include <asm/xen/hypercall.h>
42 #include <asm/xen/hypervisor.h>
43 #include <asm/fixmap.h>
44 #include <asm/processor.h>
45 #include <asm/msr-index.h>
46 #include <asm/setup.h>
47 #include <asm/desc.h>
48 #include <asm/pgtable.h>
49 #include <asm/tlbflush.h>
50 #include <asm/reboot.h>
51
52 #include "xen-ops.h"
53 #include "mmu.h"
54 #include "multicalls.h"
55
56 EXPORT_SYMBOL_GPL(hypercall_page);
57
58 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
59 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
60
61 enum xen_domain_type xen_domain_type = XEN_NATIVE;
62 EXPORT_SYMBOL_GPL(xen_domain_type);
63
64 struct start_info *xen_start_info;
65 EXPORT_SYMBOL_GPL(xen_start_info);
66
67 struct shared_info xen_dummy_shared_info;
68
69 /*
70  * Point at some empty memory to start with. We map the real shared_info
71  * page as soon as fixmap is up and running.
72  */
73 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
74
75 /*
76  * Flag to determine whether vcpu info placement is available on all
77  * VCPUs.  We assume it is to start with, and then set it to zero on
78  * the first failure.  This is because it can succeed on some VCPUs
79  * and not others, since it can involve hypervisor memory allocation,
80  * or because the guest failed to guarantee all the appropriate
81  * constraints on all VCPUs (ie buffer can't cross a page boundary).
82  *
83  * Note that any particular CPU may be using a placed vcpu structure,
84  * but we can only optimise if the all are.
85  *
86  * 0: not available, 1: available
87  */
88 static int have_vcpu_info_placement =
89 #ifdef CONFIG_X86_32
90         1
91 #else
92         0
93 #endif
94         ;
95
96
97 static void xen_vcpu_setup(int cpu)
98 {
99         struct vcpu_register_vcpu_info info;
100         int err;
101         struct vcpu_info *vcpup;
102
103         BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
104         per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
105
106         if (!have_vcpu_info_placement)
107                 return;         /* already tested, not available */
108
109         vcpup = &per_cpu(xen_vcpu_info, cpu);
110
111         info.mfn = virt_to_mfn(vcpup);
112         info.offset = offset_in_page(vcpup);
113
114         printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
115                cpu, vcpup, info.mfn, info.offset);
116
117         /* Check to see if the hypervisor will put the vcpu_info
118            structure where we want it, which allows direct access via
119            a percpu-variable. */
120         err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
121
122         if (err) {
123                 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
124                 have_vcpu_info_placement = 0;
125         } else {
126                 /* This cpu is using the registered vcpu info, even if
127                    later ones fail to. */
128                 per_cpu(xen_vcpu, cpu) = vcpup;
129
130                 printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
131                        cpu, vcpup);
132         }
133 }
134
135 /*
136  * On restore, set the vcpu placement up again.
137  * If it fails, then we're in a bad state, since
138  * we can't back out from using it...
139  */
140 void xen_vcpu_restore(void)
141 {
142         if (have_vcpu_info_placement) {
143                 int cpu;
144
145                 for_each_online_cpu(cpu) {
146                         bool other_cpu = (cpu != smp_processor_id());
147
148                         if (other_cpu &&
149                             HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
150                                 BUG();
151
152                         xen_vcpu_setup(cpu);
153
154                         if (other_cpu &&
155                             HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
156                                 BUG();
157                 }
158
159                 BUG_ON(!have_vcpu_info_placement);
160         }
161 }
162
163 static void __init xen_banner(void)
164 {
165         unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
166         struct xen_extraversion extra;
167         HYPERVISOR_xen_version(XENVER_extraversion, &extra);
168
169         printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
170                pv_info.name);
171         printk(KERN_INFO "Xen version: %d.%d%s%s\n",
172                version >> 16, version & 0xffff, extra.extraversion,
173                xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
174 }
175
176 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
177                       unsigned int *cx, unsigned int *dx)
178 {
179         unsigned maskedx = ~0;
180
181         /*
182          * Mask out inconvenient features, to try and disable as many
183          * unsupported kernel subsystems as possible.
184          */
185         if (*ax == 1)
186                 maskedx = ~((1 << X86_FEATURE_APIC) |  /* disable APIC */
187                             (1 << X86_FEATURE_ACPI) |  /* disable ACPI */
188                             (1 << X86_FEATURE_MCE)  |  /* disable MCE */
189                             (1 << X86_FEATURE_MCA)  |  /* disable MCA */
190                             (1 << X86_FEATURE_ACC));   /* thermal monitoring */
191
192         asm(XEN_EMULATE_PREFIX "cpuid"
193                 : "=a" (*ax),
194                   "=b" (*bx),
195                   "=c" (*cx),
196                   "=d" (*dx)
197                 : "0" (*ax), "2" (*cx));
198         *dx &= maskedx;
199 }
200
201 static void xen_set_debugreg(int reg, unsigned long val)
202 {
203         HYPERVISOR_set_debugreg(reg, val);
204 }
205
206 static unsigned long xen_get_debugreg(int reg)
207 {
208         return HYPERVISOR_get_debugreg(reg);
209 }
210
211 void xen_leave_lazy(void)
212 {
213         paravirt_leave_lazy(paravirt_get_lazy_mode());
214         xen_mc_flush();
215 }
216
217 static unsigned long xen_store_tr(void)
218 {
219         return 0;
220 }
221
222 /*
223  * Set the page permissions for a particular virtual address.  If the
224  * address is a vmalloc mapping (or other non-linear mapping), then
225  * find the linear mapping of the page and also set its protections to
226  * match.
227  */
228 static void set_aliased_prot(void *v, pgprot_t prot)
229 {
230         int level;
231         pte_t *ptep;
232         pte_t pte;
233         unsigned long pfn;
234         struct page *page;
235
236         ptep = lookup_address((unsigned long)v, &level);
237         BUG_ON(ptep == NULL);
238
239         pfn = pte_pfn(*ptep);
240         page = pfn_to_page(pfn);
241
242         pte = pfn_pte(pfn, prot);
243
244         if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
245                 BUG();
246
247         if (!PageHighMem(page)) {
248                 void *av = __va(PFN_PHYS(pfn));
249
250                 if (av != v)
251                         if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
252                                 BUG();
253         } else
254                 kmap_flush_unused();
255 }
256
257 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
258 {
259         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
260         int i;
261
262         for(i = 0; i < entries; i += entries_per_page)
263                 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
264 }
265
266 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
267 {
268         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
269         int i;
270
271         for(i = 0; i < entries; i += entries_per_page)
272                 set_aliased_prot(ldt + i, PAGE_KERNEL);
273 }
274
275 static void xen_set_ldt(const void *addr, unsigned entries)
276 {
277         struct mmuext_op *op;
278         struct multicall_space mcs = xen_mc_entry(sizeof(*op));
279
280         op = mcs.args;
281         op->cmd = MMUEXT_SET_LDT;
282         op->arg1.linear_addr = (unsigned long)addr;
283         op->arg2.nr_ents = entries;
284
285         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
286
287         xen_mc_issue(PARAVIRT_LAZY_CPU);
288 }
289
290 static void xen_load_gdt(const struct desc_ptr *dtr)
291 {
292         unsigned long *frames;
293         unsigned long va = dtr->address;
294         unsigned int size = dtr->size + 1;
295         unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
296         int f;
297         struct multicall_space mcs;
298
299         /* A GDT can be up to 64k in size, which corresponds to 8192
300            8-byte entries, or 16 4k pages.. */
301
302         BUG_ON(size > 65536);
303         BUG_ON(va & ~PAGE_MASK);
304
305         mcs = xen_mc_entry(sizeof(*frames) * pages);
306         frames = mcs.args;
307
308         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
309                 frames[f] = virt_to_mfn(va);
310                 make_lowmem_page_readonly((void *)va);
311         }
312
313         MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct));
314
315         xen_mc_issue(PARAVIRT_LAZY_CPU);
316 }
317
318 static void load_TLS_descriptor(struct thread_struct *t,
319                                 unsigned int cpu, unsigned int i)
320 {
321         struct desc_struct *gdt = get_cpu_gdt_table(cpu);
322         xmaddr_t maddr = virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
323         struct multicall_space mc = __xen_mc_entry(0);
324
325         MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
326 }
327
328 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
329 {
330         /*
331          * XXX sleazy hack: If we're being called in a lazy-cpu zone,
332          * it means we're in a context switch, and %gs has just been
333          * saved.  This means we can zero it out to prevent faults on
334          * exit from the hypervisor if the next process has no %gs.
335          * Either way, it has been saved, and the new value will get
336          * loaded properly.  This will go away as soon as Xen has been
337          * modified to not save/restore %gs for normal hypercalls.
338          *
339          * On x86_64, this hack is not used for %gs, because gs points
340          * to KERNEL_GS_BASE (and uses it for PDA references), so we
341          * must not zero %gs on x86_64
342          *
343          * For x86_64, we need to zero %fs, otherwise we may get an
344          * exception between the new %fs descriptor being loaded and
345          * %fs being effectively cleared at __switch_to().
346          */
347         if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
348 #ifdef CONFIG_X86_32
349                 loadsegment(gs, 0);
350 #else
351                 loadsegment(fs, 0);
352 #endif
353         }
354
355         xen_mc_batch();
356
357         load_TLS_descriptor(t, cpu, 0);
358         load_TLS_descriptor(t, cpu, 1);
359         load_TLS_descriptor(t, cpu, 2);
360
361         xen_mc_issue(PARAVIRT_LAZY_CPU);
362 }
363
364 #ifdef CONFIG_X86_64
365 static void xen_load_gs_index(unsigned int idx)
366 {
367         if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
368                 BUG();
369 }
370 #endif
371
372 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
373                                 const void *ptr)
374 {
375         xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
376         u64 entry = *(u64 *)ptr;
377
378         preempt_disable();
379
380         xen_mc_flush();
381         if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
382                 BUG();
383
384         preempt_enable();
385 }
386
387 static int cvt_gate_to_trap(int vector, const gate_desc *val,
388                             struct trap_info *info)
389 {
390         if (val->type != 0xf && val->type != 0xe)
391                 return 0;
392
393         info->vector = vector;
394         info->address = gate_offset(*val);
395         info->cs = gate_segment(*val);
396         info->flags = val->dpl;
397         /* interrupt gates clear IF */
398         if (val->type == 0xe)
399                 info->flags |= 4;
400
401         return 1;
402 }
403
404 /* Locations of each CPU's IDT */
405 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
406
407 /* Set an IDT entry.  If the entry is part of the current IDT, then
408    also update Xen. */
409 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
410 {
411         unsigned long p = (unsigned long)&dt[entrynum];
412         unsigned long start, end;
413
414         preempt_disable();
415
416         start = __get_cpu_var(idt_desc).address;
417         end = start + __get_cpu_var(idt_desc).size + 1;
418
419         xen_mc_flush();
420
421         native_write_idt_entry(dt, entrynum, g);
422
423         if (p >= start && (p + 8) <= end) {
424                 struct trap_info info[2];
425
426                 info[1].address = 0;
427
428                 if (cvt_gate_to_trap(entrynum, g, &info[0]))
429                         if (HYPERVISOR_set_trap_table(info))
430                                 BUG();
431         }
432
433         preempt_enable();
434 }
435
436 static void xen_convert_trap_info(const struct desc_ptr *desc,
437                                   struct trap_info *traps)
438 {
439         unsigned in, out, count;
440
441         count = (desc->size+1) / sizeof(gate_desc);
442         BUG_ON(count > 256);
443
444         for (in = out = 0; in < count; in++) {
445                 gate_desc *entry = (gate_desc*)(desc->address) + in;
446
447                 if (cvt_gate_to_trap(in, entry, &traps[out]))
448                         out++;
449         }
450         traps[out].address = 0;
451 }
452
453 void xen_copy_trap_info(struct trap_info *traps)
454 {
455         const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
456
457         xen_convert_trap_info(desc, traps);
458 }
459
460 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
461    hold a spinlock to protect the static traps[] array (static because
462    it avoids allocation, and saves stack space). */
463 static void xen_load_idt(const struct desc_ptr *desc)
464 {
465         static DEFINE_SPINLOCK(lock);
466         static struct trap_info traps[257];
467
468         spin_lock(&lock);
469
470         __get_cpu_var(idt_desc) = *desc;
471
472         xen_convert_trap_info(desc, traps);
473
474         xen_mc_flush();
475         if (HYPERVISOR_set_trap_table(traps))
476                 BUG();
477
478         spin_unlock(&lock);
479 }
480
481 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
482    they're handled differently. */
483 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
484                                 const void *desc, int type)
485 {
486         preempt_disable();
487
488         switch (type) {
489         case DESC_LDT:
490         case DESC_TSS:
491                 /* ignore */
492                 break;
493
494         default: {
495                 xmaddr_t maddr = virt_to_machine(&dt[entry]);
496
497                 xen_mc_flush();
498                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
499                         BUG();
500         }
501
502         }
503
504         preempt_enable();
505 }
506
507 static void xen_load_sp0(struct tss_struct *tss,
508                          struct thread_struct *thread)
509 {
510         struct multicall_space mcs = xen_mc_entry(0);
511         MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
512         xen_mc_issue(PARAVIRT_LAZY_CPU);
513 }
514
515 static void xen_set_iopl_mask(unsigned mask)
516 {
517         struct physdev_set_iopl set_iopl;
518
519         /* Force the change at ring 0. */
520         set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
521         HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
522 }
523
524 static void xen_io_delay(void)
525 {
526 }
527
528 #ifdef CONFIG_X86_LOCAL_APIC
529 static u32 xen_apic_read(u32 reg)
530 {
531         return 0;
532 }
533
534 static void xen_apic_write(u32 reg, u32 val)
535 {
536         /* Warn to see if there's any stray references */
537         WARN_ON(1);
538 }
539
540 static u64 xen_apic_icr_read(void)
541 {
542         return 0;
543 }
544
545 static void xen_apic_icr_write(u32 low, u32 id)
546 {
547         /* Warn to see if there's any stray references */
548         WARN_ON(1);
549 }
550
551 static void xen_apic_wait_icr_idle(void)
552 {
553         return;
554 }
555
556 static u32 xen_safe_apic_wait_icr_idle(void)
557 {
558         return 0;
559 }
560
561 static struct apic_ops xen_basic_apic_ops = {
562         .read = xen_apic_read,
563         .write = xen_apic_write,
564         .icr_read = xen_apic_icr_read,
565         .icr_write = xen_apic_icr_write,
566         .wait_icr_idle = xen_apic_wait_icr_idle,
567         .safe_wait_icr_idle = xen_safe_apic_wait_icr_idle,
568 };
569
570 #endif
571
572
573 static void xen_clts(void)
574 {
575         struct multicall_space mcs;
576
577         mcs = xen_mc_entry(0);
578
579         MULTI_fpu_taskswitch(mcs.mc, 0);
580
581         xen_mc_issue(PARAVIRT_LAZY_CPU);
582 }
583
584 static void xen_write_cr0(unsigned long cr0)
585 {
586         struct multicall_space mcs;
587
588         /* Only pay attention to cr0.TS; everything else is
589            ignored. */
590         mcs = xen_mc_entry(0);
591
592         MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
593
594         xen_mc_issue(PARAVIRT_LAZY_CPU);
595 }
596
597 static void xen_write_cr4(unsigned long cr4)
598 {
599         cr4 &= ~X86_CR4_PGE;
600         cr4 &= ~X86_CR4_PSE;
601
602         native_write_cr4(cr4);
603 }
604
605 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
606 {
607         int ret;
608
609         ret = 0;
610
611         switch (msr) {
612 #ifdef CONFIG_X86_64
613                 unsigned which;
614                 u64 base;
615
616         case MSR_FS_BASE:               which = SEGBASE_FS; goto set;
617         case MSR_KERNEL_GS_BASE:        which = SEGBASE_GS_USER; goto set;
618         case MSR_GS_BASE:               which = SEGBASE_GS_KERNEL; goto set;
619
620         set:
621                 base = ((u64)high << 32) | low;
622                 if (HYPERVISOR_set_segment_base(which, base) != 0)
623                         ret = -EFAULT;
624                 break;
625 #endif
626
627         case MSR_STAR:
628         case MSR_CSTAR:
629         case MSR_LSTAR:
630         case MSR_SYSCALL_MASK:
631         case MSR_IA32_SYSENTER_CS:
632         case MSR_IA32_SYSENTER_ESP:
633         case MSR_IA32_SYSENTER_EIP:
634                 /* Fast syscall setup is all done in hypercalls, so
635                    these are all ignored.  Stub them out here to stop
636                    Xen console noise. */
637                 break;
638
639         default:
640                 ret = native_write_msr_safe(msr, low, high);
641         }
642
643         return ret;
644 }
645
646 void xen_setup_shared_info(void)
647 {
648         if (!xen_feature(XENFEAT_auto_translated_physmap)) {
649                 set_fixmap(FIX_PARAVIRT_BOOTMAP,
650                            xen_start_info->shared_info);
651
652                 HYPERVISOR_shared_info =
653                         (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
654         } else
655                 HYPERVISOR_shared_info =
656                         (struct shared_info *)__va(xen_start_info->shared_info);
657
658 #ifndef CONFIG_SMP
659         /* In UP this is as good a place as any to set up shared info */
660         xen_setup_vcpu_info_placement();
661 #endif
662
663         xen_setup_mfn_list_list();
664 }
665
666 /* This is called once we have the cpu_possible_map */
667 void xen_setup_vcpu_info_placement(void)
668 {
669         int cpu;
670
671         for_each_possible_cpu(cpu)
672                 xen_vcpu_setup(cpu);
673
674         /* xen_vcpu_setup managed to place the vcpu_info within the
675            percpu area for all cpus, so make use of it */
676         if (have_vcpu_info_placement) {
677                 printk(KERN_INFO "Xen: using vcpu_info placement\n");
678
679                 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
680                 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
681                 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
682                 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
683                 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
684         }
685 }
686
687 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
688                           unsigned long addr, unsigned len)
689 {
690         char *start, *end, *reloc;
691         unsigned ret;
692
693         start = end = reloc = NULL;
694
695 #define SITE(op, x)                                                     \
696         case PARAVIRT_PATCH(op.x):                                      \
697         if (have_vcpu_info_placement) {                                 \
698                 start = (char *)xen_##x##_direct;                       \
699                 end = xen_##x##_direct_end;                             \
700                 reloc = xen_##x##_direct_reloc;                         \
701         }                                                               \
702         goto patch_site
703
704         switch (type) {
705                 SITE(pv_irq_ops, irq_enable);
706                 SITE(pv_irq_ops, irq_disable);
707                 SITE(pv_irq_ops, save_fl);
708                 SITE(pv_irq_ops, restore_fl);
709 #undef SITE
710
711         patch_site:
712                 if (start == NULL || (end-start) > len)
713                         goto default_patch;
714
715                 ret = paravirt_patch_insns(insnbuf, len, start, end);
716
717                 /* Note: because reloc is assigned from something that
718                    appears to be an array, gcc assumes it's non-null,
719                    but doesn't know its relationship with start and
720                    end. */
721                 if (reloc > start && reloc < end) {
722                         int reloc_off = reloc - start;
723                         long *relocp = (long *)(insnbuf + reloc_off);
724                         long delta = start - (char *)addr;
725
726                         *relocp += delta;
727                 }
728                 break;
729
730         default_patch:
731         default:
732                 ret = paravirt_patch_default(type, clobbers, insnbuf,
733                                              addr, len);
734                 break;
735         }
736
737         return ret;
738 }
739
740 static const struct pv_info xen_info __initdata = {
741         .paravirt_enabled = 1,
742         .shared_kernel_pmd = 0,
743
744         .name = "Xen",
745 };
746
747 static const struct pv_init_ops xen_init_ops __initdata = {
748         .patch = xen_patch,
749
750         .banner = xen_banner,
751         .memory_setup = xen_memory_setup,
752         .arch_setup = xen_arch_setup,
753         .post_allocator_init = xen_post_allocator_init,
754 };
755
756 static const struct pv_time_ops xen_time_ops __initdata = {
757         .time_init = xen_time_init,
758
759         .set_wallclock = xen_set_wallclock,
760         .get_wallclock = xen_get_wallclock,
761         .get_tsc_khz = xen_tsc_khz,
762         .sched_clock = xen_sched_clock,
763 };
764
765 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
766         .cpuid = xen_cpuid,
767
768         .set_debugreg = xen_set_debugreg,
769         .get_debugreg = xen_get_debugreg,
770
771         .clts = xen_clts,
772
773         .read_cr0 = native_read_cr0,
774         .write_cr0 = xen_write_cr0,
775
776         .read_cr4 = native_read_cr4,
777         .read_cr4_safe = native_read_cr4_safe,
778         .write_cr4 = xen_write_cr4,
779
780         .wbinvd = native_wbinvd,
781
782         .read_msr = native_read_msr_safe,
783         .write_msr = xen_write_msr_safe,
784         .read_tsc = native_read_tsc,
785         .read_pmc = native_read_pmc,
786
787         .iret = xen_iret,
788         .irq_enable_sysexit = xen_sysexit,
789 #ifdef CONFIG_X86_64
790         .usergs_sysret32 = xen_sysret32,
791         .usergs_sysret64 = xen_sysret64,
792 #endif
793
794         .load_tr_desc = paravirt_nop,
795         .set_ldt = xen_set_ldt,
796         .load_gdt = xen_load_gdt,
797         .load_idt = xen_load_idt,
798         .load_tls = xen_load_tls,
799 #ifdef CONFIG_X86_64
800         .load_gs_index = xen_load_gs_index,
801 #endif
802
803         .alloc_ldt = xen_alloc_ldt,
804         .free_ldt = xen_free_ldt,
805
806         .store_gdt = native_store_gdt,
807         .store_idt = native_store_idt,
808         .store_tr = xen_store_tr,
809
810         .write_ldt_entry = xen_write_ldt_entry,
811         .write_gdt_entry = xen_write_gdt_entry,
812         .write_idt_entry = xen_write_idt_entry,
813         .load_sp0 = xen_load_sp0,
814
815         .set_iopl_mask = xen_set_iopl_mask,
816         .io_delay = xen_io_delay,
817
818         /* Xen takes care of %gs when switching to usermode for us */
819         .swapgs = paravirt_nop,
820
821         .lazy_mode = {
822                 .enter = paravirt_enter_lazy_cpu,
823                 .leave = xen_leave_lazy,
824         },
825 };
826
827 static const struct pv_apic_ops xen_apic_ops __initdata = {
828 #ifdef CONFIG_X86_LOCAL_APIC
829         .setup_boot_clock = paravirt_nop,
830         .setup_secondary_clock = paravirt_nop,
831         .startup_ipi_hook = paravirt_nop,
832 #endif
833 };
834
835 static void xen_reboot(int reason)
836 {
837         struct sched_shutdown r = { .reason = reason };
838
839 #ifdef CONFIG_SMP
840         smp_send_stop();
841 #endif
842
843         if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
844                 BUG();
845 }
846
847 static void xen_restart(char *msg)
848 {
849         xen_reboot(SHUTDOWN_reboot);
850 }
851
852 static void xen_emergency_restart(void)
853 {
854         xen_reboot(SHUTDOWN_reboot);
855 }
856
857 static void xen_machine_halt(void)
858 {
859         xen_reboot(SHUTDOWN_poweroff);
860 }
861
862 static void xen_crash_shutdown(struct pt_regs *regs)
863 {
864         xen_reboot(SHUTDOWN_crash);
865 }
866
867 static const struct machine_ops __initdata xen_machine_ops = {
868         .restart = xen_restart,
869         .halt = xen_machine_halt,
870         .power_off = xen_machine_halt,
871         .shutdown = xen_machine_halt,
872         .crash_shutdown = xen_crash_shutdown,
873         .emergency_restart = xen_emergency_restart,
874 };
875
876
877 /* First C function to be called on Xen boot */
878 asmlinkage void __init xen_start_kernel(void)
879 {
880         pgd_t *pgd;
881
882         if (!xen_start_info)
883                 return;
884
885         xen_domain_type = XEN_PV_DOMAIN;
886
887         BUG_ON(memcmp(xen_start_info->magic, "xen-3", 5) != 0);
888
889         xen_setup_features();
890
891         /* Install Xen paravirt ops */
892         pv_info = xen_info;
893         pv_init_ops = xen_init_ops;
894         pv_time_ops = xen_time_ops;
895         pv_cpu_ops = xen_cpu_ops;
896         pv_apic_ops = xen_apic_ops;
897         pv_mmu_ops = xen_mmu_ops;
898
899         xen_init_irq_ops();
900
901 #ifdef CONFIG_X86_LOCAL_APIC
902         /*
903          * set up the basic apic ops.
904          */
905         apic_ops = &xen_basic_apic_ops;
906 #endif
907
908         if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
909                 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
910                 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
911         }
912
913         machine_ops = xen_machine_ops;
914
915 #ifdef CONFIG_X86_64
916         /* Disable until direct per-cpu data access. */
917         have_vcpu_info_placement = 0;
918 #endif
919
920         xen_smp_init();
921
922         /* Get mfn list */
923         if (!xen_feature(XENFEAT_auto_translated_physmap))
924                 xen_build_dynamic_phys_to_machine();
925
926         pgd = (pgd_t *)xen_start_info->pt_base;
927
928         /* Prevent unwanted bits from being set in PTEs. */
929         __supported_pte_mask &= ~_PAGE_GLOBAL;
930         if (!xen_initial_domain())
931                 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
932
933         /* Don't do the full vcpu_info placement stuff until we have a
934            possible map and a non-dummy shared_info. */
935         per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
936
937         xen_raw_console_write("mapping kernel into physical memory\n");
938         pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
939
940         init_mm.pgd = pgd;
941
942         /* keep using Xen gdt for now; no urgent need to change it */
943
944         pv_info.kernel_rpl = 1;
945         if (xen_feature(XENFEAT_supervisor_mode_kernel))
946                 pv_info.kernel_rpl = 0;
947
948         /* set the limit of our address space */
949         xen_reserve_top();
950
951 #ifdef CONFIG_X86_32
952         /* set up basic CPUID stuff */
953         cpu_detect(&new_cpu_data);
954         new_cpu_data.hard_math = 1;
955         new_cpu_data.x86_capability[0] = cpuid_edx(1);
956 #endif
957
958         /* Poke various useful things into boot_params */
959         boot_params.hdr.type_of_loader = (9 << 4) | 0;
960         boot_params.hdr.ramdisk_image = xen_start_info->mod_start
961                 ? __pa(xen_start_info->mod_start) : 0;
962         boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
963         boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
964
965         if (!xen_initial_domain()) {
966                 add_preferred_console("xenboot", 0, NULL);
967                 add_preferred_console("tty", 0, NULL);
968                 add_preferred_console("hvc", 0, NULL);
969         }
970
971         xen_raw_console_write("about to get started...\n");
972
973         /* Start the world */
974 #ifdef CONFIG_X86_32
975         i386_start_kernel();
976 #else
977         x86_64_start_reservations((char *)__pa_symbol(&boot_params));
978 #endif
979 }