xen: mask XSAVE from cpuid
[safe/jmp/linux-2.6] / arch / x86 / xen / enlighten.c
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/preempt.h>
18 #include <linux/hardirq.h>
19 #include <linux/percpu.h>
20 #include <linux/delay.h>
21 #include <linux/start_kernel.h>
22 #include <linux/sched.h>
23 #include <linux/bootmem.h>
24 #include <linux/module.h>
25 #include <linux/mm.h>
26 #include <linux/page-flags.h>
27 #include <linux/highmem.h>
28 #include <linux/console.h>
29
30 #include <xen/interface/xen.h>
31 #include <xen/interface/version.h>
32 #include <xen/interface/physdev.h>
33 #include <xen/interface/vcpu.h>
34 #include <xen/features.h>
35 #include <xen/page.h>
36 #include <xen/hvc-console.h>
37
38 #include <asm/paravirt.h>
39 #include <asm/apic.h>
40 #include <asm/page.h>
41 #include <asm/xen/hypercall.h>
42 #include <asm/xen/hypervisor.h>
43 #include <asm/fixmap.h>
44 #include <asm/processor.h>
45 #include <asm/msr-index.h>
46 #include <asm/setup.h>
47 #include <asm/desc.h>
48 #include <asm/pgtable.h>
49 #include <asm/tlbflush.h>
50 #include <asm/reboot.h>
51
52 #include "xen-ops.h"
53 #include "mmu.h"
54 #include "multicalls.h"
55
56 EXPORT_SYMBOL_GPL(hypercall_page);
57
58 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
59 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
60
61 enum xen_domain_type xen_domain_type = XEN_NATIVE;
62 EXPORT_SYMBOL_GPL(xen_domain_type);
63
64 struct start_info *xen_start_info;
65 EXPORT_SYMBOL_GPL(xen_start_info);
66
67 struct shared_info xen_dummy_shared_info;
68
69 void *xen_initial_gdt;
70
71 /*
72  * Point at some empty memory to start with. We map the real shared_info
73  * page as soon as fixmap is up and running.
74  */
75 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
76
77 /*
78  * Flag to determine whether vcpu info placement is available on all
79  * VCPUs.  We assume it is to start with, and then set it to zero on
80  * the first failure.  This is because it can succeed on some VCPUs
81  * and not others, since it can involve hypervisor memory allocation,
82  * or because the guest failed to guarantee all the appropriate
83  * constraints on all VCPUs (ie buffer can't cross a page boundary).
84  *
85  * Note that any particular CPU may be using a placed vcpu structure,
86  * but we can only optimise if the all are.
87  *
88  * 0: not available, 1: available
89  */
90 static int have_vcpu_info_placement = 1;
91
92 static void xen_vcpu_setup(int cpu)
93 {
94         struct vcpu_register_vcpu_info info;
95         int err;
96         struct vcpu_info *vcpup;
97
98         BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
99         per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
100
101         if (!have_vcpu_info_placement)
102                 return;         /* already tested, not available */
103
104         vcpup = &per_cpu(xen_vcpu_info, cpu);
105
106         info.mfn = arbitrary_virt_to_mfn(vcpup);
107         info.offset = offset_in_page(vcpup);
108
109         printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
110                cpu, vcpup, info.mfn, info.offset);
111
112         /* Check to see if the hypervisor will put the vcpu_info
113            structure where we want it, which allows direct access via
114            a percpu-variable. */
115         err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
116
117         if (err) {
118                 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
119                 have_vcpu_info_placement = 0;
120         } else {
121                 /* This cpu is using the registered vcpu info, even if
122                    later ones fail to. */
123                 per_cpu(xen_vcpu, cpu) = vcpup;
124
125                 printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
126                        cpu, vcpup);
127         }
128 }
129
130 /*
131  * On restore, set the vcpu placement up again.
132  * If it fails, then we're in a bad state, since
133  * we can't back out from using it...
134  */
135 void xen_vcpu_restore(void)
136 {
137         if (have_vcpu_info_placement) {
138                 int cpu;
139
140                 for_each_online_cpu(cpu) {
141                         bool other_cpu = (cpu != smp_processor_id());
142
143                         if (other_cpu &&
144                             HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
145                                 BUG();
146
147                         xen_vcpu_setup(cpu);
148
149                         if (other_cpu &&
150                             HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
151                                 BUG();
152                 }
153
154                 BUG_ON(!have_vcpu_info_placement);
155         }
156 }
157
158 static void __init xen_banner(void)
159 {
160         unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
161         struct xen_extraversion extra;
162         HYPERVISOR_xen_version(XENVER_extraversion, &extra);
163
164         printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
165                pv_info.name);
166         printk(KERN_INFO "Xen version: %d.%d%s%s\n",
167                version >> 16, version & 0xffff, extra.extraversion,
168                xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
169 }
170
171 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
172 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
173
174 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
175                       unsigned int *cx, unsigned int *dx)
176 {
177         unsigned maskecx = ~0;
178         unsigned maskedx = ~0;
179
180         /*
181          * Mask out inconvenient features, to try and disable as many
182          * unsupported kernel subsystems as possible.
183          */
184         if (*ax == 1) {
185                 maskecx = cpuid_leaf1_ecx_mask;
186                 maskedx = cpuid_leaf1_edx_mask;
187         }
188
189         asm(XEN_EMULATE_PREFIX "cpuid"
190                 : "=a" (*ax),
191                   "=b" (*bx),
192                   "=c" (*cx),
193                   "=d" (*dx)
194                 : "0" (*ax), "2" (*cx));
195
196         *cx &= maskecx;
197         *dx &= maskedx;
198 }
199
200 static __init void xen_init_cpuid_mask(void)
201 {
202         unsigned int ax, bx, cx, dx;
203
204         cpuid_leaf1_edx_mask =
205                 ~((1 << X86_FEATURE_MCE)  |  /* disable MCE */
206                   (1 << X86_FEATURE_MCA)  |  /* disable MCA */
207                   (1 << X86_FEATURE_ACC));   /* thermal monitoring */
208
209         if (!xen_initial_domain())
210                 cpuid_leaf1_edx_mask &=
211                         ~((1 << X86_FEATURE_APIC) |  /* disable local APIC */
212                           (1 << X86_FEATURE_ACPI));  /* disable ACPI */
213
214         ax = 1;
215         xen_cpuid(&ax, &bx, &cx, &dx);
216
217         /* cpuid claims we support xsave; try enabling it to see what happens */
218         if (cx & (1 << (X86_FEATURE_XSAVE % 32))) {
219                 unsigned long cr4;
220
221                 set_in_cr4(X86_CR4_OSXSAVE);
222                 
223                 cr4 = read_cr4();
224
225                 if ((cr4 & X86_CR4_OSXSAVE) == 0)
226                         cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_XSAVE % 32));
227
228                 clear_in_cr4(X86_CR4_OSXSAVE);
229         }
230 }
231
232 static void xen_set_debugreg(int reg, unsigned long val)
233 {
234         HYPERVISOR_set_debugreg(reg, val);
235 }
236
237 static unsigned long xen_get_debugreg(int reg)
238 {
239         return HYPERVISOR_get_debugreg(reg);
240 }
241
242 void xen_leave_lazy(void)
243 {
244         paravirt_leave_lazy(paravirt_get_lazy_mode());
245         xen_mc_flush();
246 }
247
248 static unsigned long xen_store_tr(void)
249 {
250         return 0;
251 }
252
253 /*
254  * Set the page permissions for a particular virtual address.  If the
255  * address is a vmalloc mapping (or other non-linear mapping), then
256  * find the linear mapping of the page and also set its protections to
257  * match.
258  */
259 static void set_aliased_prot(void *v, pgprot_t prot)
260 {
261         int level;
262         pte_t *ptep;
263         pte_t pte;
264         unsigned long pfn;
265         struct page *page;
266
267         ptep = lookup_address((unsigned long)v, &level);
268         BUG_ON(ptep == NULL);
269
270         pfn = pte_pfn(*ptep);
271         page = pfn_to_page(pfn);
272
273         pte = pfn_pte(pfn, prot);
274
275         if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
276                 BUG();
277
278         if (!PageHighMem(page)) {
279                 void *av = __va(PFN_PHYS(pfn));
280
281                 if (av != v)
282                         if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
283                                 BUG();
284         } else
285                 kmap_flush_unused();
286 }
287
288 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
289 {
290         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
291         int i;
292
293         for(i = 0; i < entries; i += entries_per_page)
294                 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
295 }
296
297 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
298 {
299         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
300         int i;
301
302         for(i = 0; i < entries; i += entries_per_page)
303                 set_aliased_prot(ldt + i, PAGE_KERNEL);
304 }
305
306 static void xen_set_ldt(const void *addr, unsigned entries)
307 {
308         struct mmuext_op *op;
309         struct multicall_space mcs = xen_mc_entry(sizeof(*op));
310
311         op = mcs.args;
312         op->cmd = MMUEXT_SET_LDT;
313         op->arg1.linear_addr = (unsigned long)addr;
314         op->arg2.nr_ents = entries;
315
316         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
317
318         xen_mc_issue(PARAVIRT_LAZY_CPU);
319 }
320
321 static void xen_load_gdt(const struct desc_ptr *dtr)
322 {
323         unsigned long va = dtr->address;
324         unsigned int size = dtr->size + 1;
325         unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
326         unsigned long frames[pages];
327         int f;
328
329         /* A GDT can be up to 64k in size, which corresponds to 8192
330            8-byte entries, or 16 4k pages.. */
331
332         BUG_ON(size > 65536);
333         BUG_ON(va & ~PAGE_MASK);
334
335         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
336                 int level;
337                 pte_t *ptep = lookup_address(va, &level);
338                 unsigned long pfn, mfn;
339                 void *virt;
340
341                 BUG_ON(ptep == NULL);
342
343                 pfn = pte_pfn(*ptep);
344                 mfn = pfn_to_mfn(pfn);
345                 virt = __va(PFN_PHYS(pfn));
346
347                 frames[f] = mfn;
348
349                 make_lowmem_page_readonly((void *)va);
350                 make_lowmem_page_readonly(virt);
351         }
352
353         if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
354                 BUG();
355 }
356
357 static void load_TLS_descriptor(struct thread_struct *t,
358                                 unsigned int cpu, unsigned int i)
359 {
360         struct desc_struct *gdt = get_cpu_gdt_table(cpu);
361         xmaddr_t maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
362         struct multicall_space mc = __xen_mc_entry(0);
363
364         MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
365 }
366
367 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
368 {
369         /*
370          * XXX sleazy hack: If we're being called in a lazy-cpu zone
371          * and lazy gs handling is enabled, it means we're in a
372          * context switch, and %gs has just been saved.  This means we
373          * can zero it out to prevent faults on exit from the
374          * hypervisor if the next process has no %gs.  Either way, it
375          * has been saved, and the new value will get loaded properly.
376          * This will go away as soon as Xen has been modified to not
377          * save/restore %gs for normal hypercalls.
378          *
379          * On x86_64, this hack is not used for %gs, because gs points
380          * to KERNEL_GS_BASE (and uses it for PDA references), so we
381          * must not zero %gs on x86_64
382          *
383          * For x86_64, we need to zero %fs, otherwise we may get an
384          * exception between the new %fs descriptor being loaded and
385          * %fs being effectively cleared at __switch_to().
386          */
387         if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
388 #ifdef CONFIG_X86_32
389                 lazy_load_gs(0);
390 #else
391                 loadsegment(fs, 0);
392 #endif
393         }
394
395         xen_mc_batch();
396
397         load_TLS_descriptor(t, cpu, 0);
398         load_TLS_descriptor(t, cpu, 1);
399         load_TLS_descriptor(t, cpu, 2);
400
401         xen_mc_issue(PARAVIRT_LAZY_CPU);
402 }
403
404 #ifdef CONFIG_X86_64
405 static void xen_load_gs_index(unsigned int idx)
406 {
407         if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
408                 BUG();
409 }
410 #endif
411
412 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
413                                 const void *ptr)
414 {
415         xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
416         u64 entry = *(u64 *)ptr;
417
418         preempt_disable();
419
420         xen_mc_flush();
421         if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
422                 BUG();
423
424         preempt_enable();
425 }
426
427 static int cvt_gate_to_trap(int vector, const gate_desc *val,
428                             struct trap_info *info)
429 {
430         if (val->type != 0xf && val->type != 0xe)
431                 return 0;
432
433         info->vector = vector;
434         info->address = gate_offset(*val);
435         info->cs = gate_segment(*val);
436         info->flags = val->dpl;
437         /* interrupt gates clear IF */
438         if (val->type == 0xe)
439                 info->flags |= 4;
440
441         return 1;
442 }
443
444 /* Locations of each CPU's IDT */
445 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
446
447 /* Set an IDT entry.  If the entry is part of the current IDT, then
448    also update Xen. */
449 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
450 {
451         unsigned long p = (unsigned long)&dt[entrynum];
452         unsigned long start, end;
453
454         preempt_disable();
455
456         start = __get_cpu_var(idt_desc).address;
457         end = start + __get_cpu_var(idt_desc).size + 1;
458
459         xen_mc_flush();
460
461         native_write_idt_entry(dt, entrynum, g);
462
463         if (p >= start && (p + 8) <= end) {
464                 struct trap_info info[2];
465
466                 info[1].address = 0;
467
468                 if (cvt_gate_to_trap(entrynum, g, &info[0]))
469                         if (HYPERVISOR_set_trap_table(info))
470                                 BUG();
471         }
472
473         preempt_enable();
474 }
475
476 static void xen_convert_trap_info(const struct desc_ptr *desc,
477                                   struct trap_info *traps)
478 {
479         unsigned in, out, count;
480
481         count = (desc->size+1) / sizeof(gate_desc);
482         BUG_ON(count > 256);
483
484         for (in = out = 0; in < count; in++) {
485                 gate_desc *entry = (gate_desc*)(desc->address) + in;
486
487                 if (cvt_gate_to_trap(in, entry, &traps[out]))
488                         out++;
489         }
490         traps[out].address = 0;
491 }
492
493 void xen_copy_trap_info(struct trap_info *traps)
494 {
495         const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
496
497         xen_convert_trap_info(desc, traps);
498 }
499
500 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
501    hold a spinlock to protect the static traps[] array (static because
502    it avoids allocation, and saves stack space). */
503 static void xen_load_idt(const struct desc_ptr *desc)
504 {
505         static DEFINE_SPINLOCK(lock);
506         static struct trap_info traps[257];
507
508         spin_lock(&lock);
509
510         __get_cpu_var(idt_desc) = *desc;
511
512         xen_convert_trap_info(desc, traps);
513
514         xen_mc_flush();
515         if (HYPERVISOR_set_trap_table(traps))
516                 BUG();
517
518         spin_unlock(&lock);
519 }
520
521 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
522    they're handled differently. */
523 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
524                                 const void *desc, int type)
525 {
526         preempt_disable();
527
528         switch (type) {
529         case DESC_LDT:
530         case DESC_TSS:
531                 /* ignore */
532                 break;
533
534         default: {
535                 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
536
537                 xen_mc_flush();
538                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
539                         BUG();
540         }
541
542         }
543
544         preempt_enable();
545 }
546
547 static void xen_load_sp0(struct tss_struct *tss,
548                          struct thread_struct *thread)
549 {
550         struct multicall_space mcs = xen_mc_entry(0);
551         MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
552         xen_mc_issue(PARAVIRT_LAZY_CPU);
553 }
554
555 static void xen_set_iopl_mask(unsigned mask)
556 {
557         struct physdev_set_iopl set_iopl;
558
559         /* Force the change at ring 0. */
560         set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
561         HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
562 }
563
564 static void xen_io_delay(void)
565 {
566 }
567
568 #ifdef CONFIG_X86_LOCAL_APIC
569 static u32 xen_apic_read(u32 reg)
570 {
571         return 0;
572 }
573
574 static void xen_apic_write(u32 reg, u32 val)
575 {
576         /* Warn to see if there's any stray references */
577         WARN_ON(1);
578 }
579
580 static u64 xen_apic_icr_read(void)
581 {
582         return 0;
583 }
584
585 static void xen_apic_icr_write(u32 low, u32 id)
586 {
587         /* Warn to see if there's any stray references */
588         WARN_ON(1);
589 }
590
591 static void xen_apic_wait_icr_idle(void)
592 {
593         return;
594 }
595
596 static u32 xen_safe_apic_wait_icr_idle(void)
597 {
598         return 0;
599 }
600
601 static void set_xen_basic_apic_ops(void)
602 {
603         apic->read = xen_apic_read;
604         apic->write = xen_apic_write;
605         apic->icr_read = xen_apic_icr_read;
606         apic->icr_write = xen_apic_icr_write;
607         apic->wait_icr_idle = xen_apic_wait_icr_idle;
608         apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
609 }
610
611 #endif
612
613
614 static void xen_clts(void)
615 {
616         struct multicall_space mcs;
617
618         mcs = xen_mc_entry(0);
619
620         MULTI_fpu_taskswitch(mcs.mc, 0);
621
622         xen_mc_issue(PARAVIRT_LAZY_CPU);
623 }
624
625 static void xen_write_cr0(unsigned long cr0)
626 {
627         struct multicall_space mcs;
628
629         /* Only pay attention to cr0.TS; everything else is
630            ignored. */
631         mcs = xen_mc_entry(0);
632
633         MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
634
635         xen_mc_issue(PARAVIRT_LAZY_CPU);
636 }
637
638 static void xen_write_cr4(unsigned long cr4)
639 {
640         cr4 &= ~X86_CR4_PGE;
641         cr4 &= ~X86_CR4_PSE;
642
643         native_write_cr4(cr4);
644 }
645
646 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
647 {
648         int ret;
649
650         ret = 0;
651
652         switch (msr) {
653 #ifdef CONFIG_X86_64
654                 unsigned which;
655                 u64 base;
656
657         case MSR_FS_BASE:               which = SEGBASE_FS; goto set;
658         case MSR_KERNEL_GS_BASE:        which = SEGBASE_GS_USER; goto set;
659         case MSR_GS_BASE:               which = SEGBASE_GS_KERNEL; goto set;
660
661         set:
662                 base = ((u64)high << 32) | low;
663                 if (HYPERVISOR_set_segment_base(which, base) != 0)
664                         ret = -EFAULT;
665                 break;
666 #endif
667
668         case MSR_STAR:
669         case MSR_CSTAR:
670         case MSR_LSTAR:
671         case MSR_SYSCALL_MASK:
672         case MSR_IA32_SYSENTER_CS:
673         case MSR_IA32_SYSENTER_ESP:
674         case MSR_IA32_SYSENTER_EIP:
675                 /* Fast syscall setup is all done in hypercalls, so
676                    these are all ignored.  Stub them out here to stop
677                    Xen console noise. */
678                 break;
679
680         default:
681                 ret = native_write_msr_safe(msr, low, high);
682         }
683
684         return ret;
685 }
686
687 void xen_setup_shared_info(void)
688 {
689         if (!xen_feature(XENFEAT_auto_translated_physmap)) {
690                 set_fixmap(FIX_PARAVIRT_BOOTMAP,
691                            xen_start_info->shared_info);
692
693                 HYPERVISOR_shared_info =
694                         (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
695         } else
696                 HYPERVISOR_shared_info =
697                         (struct shared_info *)__va(xen_start_info->shared_info);
698
699 #ifndef CONFIG_SMP
700         /* In UP this is as good a place as any to set up shared info */
701         xen_setup_vcpu_info_placement();
702 #endif
703
704         xen_setup_mfn_list_list();
705 }
706
707 /* This is called once we have the cpu_possible_map */
708 void xen_setup_vcpu_info_placement(void)
709 {
710         int cpu;
711
712         for_each_possible_cpu(cpu)
713                 xen_vcpu_setup(cpu);
714
715         /* xen_vcpu_setup managed to place the vcpu_info within the
716            percpu area for all cpus, so make use of it */
717         if (have_vcpu_info_placement) {
718                 printk(KERN_INFO "Xen: using vcpu_info placement\n");
719
720                 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
721                 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
722                 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
723                 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
724                 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
725         }
726 }
727
728 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
729                           unsigned long addr, unsigned len)
730 {
731         char *start, *end, *reloc;
732         unsigned ret;
733
734         start = end = reloc = NULL;
735
736 #define SITE(op, x)                                                     \
737         case PARAVIRT_PATCH(op.x):                                      \
738         if (have_vcpu_info_placement) {                                 \
739                 start = (char *)xen_##x##_direct;                       \
740                 end = xen_##x##_direct_end;                             \
741                 reloc = xen_##x##_direct_reloc;                         \
742         }                                                               \
743         goto patch_site
744
745         switch (type) {
746                 SITE(pv_irq_ops, irq_enable);
747                 SITE(pv_irq_ops, irq_disable);
748                 SITE(pv_irq_ops, save_fl);
749                 SITE(pv_irq_ops, restore_fl);
750 #undef SITE
751
752         patch_site:
753                 if (start == NULL || (end-start) > len)
754                         goto default_patch;
755
756                 ret = paravirt_patch_insns(insnbuf, len, start, end);
757
758                 /* Note: because reloc is assigned from something that
759                    appears to be an array, gcc assumes it's non-null,
760                    but doesn't know its relationship with start and
761                    end. */
762                 if (reloc > start && reloc < end) {
763                         int reloc_off = reloc - start;
764                         long *relocp = (long *)(insnbuf + reloc_off);
765                         long delta = start - (char *)addr;
766
767                         *relocp += delta;
768                 }
769                 break;
770
771         default_patch:
772         default:
773                 ret = paravirt_patch_default(type, clobbers, insnbuf,
774                                              addr, len);
775                 break;
776         }
777
778         return ret;
779 }
780
781 static const struct pv_info xen_info __initdata = {
782         .paravirt_enabled = 1,
783         .shared_kernel_pmd = 0,
784
785         .name = "Xen",
786 };
787
788 static const struct pv_init_ops xen_init_ops __initdata = {
789         .patch = xen_patch,
790
791         .banner = xen_banner,
792         .memory_setup = xen_memory_setup,
793         .arch_setup = xen_arch_setup,
794         .post_allocator_init = xen_post_allocator_init,
795 };
796
797 static const struct pv_time_ops xen_time_ops __initdata = {
798         .time_init = xen_time_init,
799
800         .set_wallclock = xen_set_wallclock,
801         .get_wallclock = xen_get_wallclock,
802         .get_tsc_khz = xen_tsc_khz,
803         .sched_clock = xen_sched_clock,
804 };
805
806 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
807         .cpuid = xen_cpuid,
808
809         .set_debugreg = xen_set_debugreg,
810         .get_debugreg = xen_get_debugreg,
811
812         .clts = xen_clts,
813
814         .read_cr0 = native_read_cr0,
815         .write_cr0 = xen_write_cr0,
816
817         .read_cr4 = native_read_cr4,
818         .read_cr4_safe = native_read_cr4_safe,
819         .write_cr4 = xen_write_cr4,
820
821         .wbinvd = native_wbinvd,
822
823         .read_msr = native_read_msr_safe,
824         .write_msr = xen_write_msr_safe,
825         .read_tsc = native_read_tsc,
826         .read_pmc = native_read_pmc,
827
828         .iret = xen_iret,
829         .irq_enable_sysexit = xen_sysexit,
830 #ifdef CONFIG_X86_64
831         .usergs_sysret32 = xen_sysret32,
832         .usergs_sysret64 = xen_sysret64,
833 #endif
834
835         .load_tr_desc = paravirt_nop,
836         .set_ldt = xen_set_ldt,
837         .load_gdt = xen_load_gdt,
838         .load_idt = xen_load_idt,
839         .load_tls = xen_load_tls,
840 #ifdef CONFIG_X86_64
841         .load_gs_index = xen_load_gs_index,
842 #endif
843
844         .alloc_ldt = xen_alloc_ldt,
845         .free_ldt = xen_free_ldt,
846
847         .store_gdt = native_store_gdt,
848         .store_idt = native_store_idt,
849         .store_tr = xen_store_tr,
850
851         .write_ldt_entry = xen_write_ldt_entry,
852         .write_gdt_entry = xen_write_gdt_entry,
853         .write_idt_entry = xen_write_idt_entry,
854         .load_sp0 = xen_load_sp0,
855
856         .set_iopl_mask = xen_set_iopl_mask,
857         .io_delay = xen_io_delay,
858
859         /* Xen takes care of %gs when switching to usermode for us */
860         .swapgs = paravirt_nop,
861
862         .lazy_mode = {
863                 .enter = paravirt_enter_lazy_cpu,
864                 .leave = xen_leave_lazy,
865         },
866 };
867
868 static const struct pv_apic_ops xen_apic_ops __initdata = {
869 #ifdef CONFIG_X86_LOCAL_APIC
870         .setup_boot_clock = paravirt_nop,
871         .setup_secondary_clock = paravirt_nop,
872         .startup_ipi_hook = paravirt_nop,
873 #endif
874 };
875
876 static void xen_reboot(int reason)
877 {
878         struct sched_shutdown r = { .reason = reason };
879
880 #ifdef CONFIG_SMP
881         smp_send_stop();
882 #endif
883
884         if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
885                 BUG();
886 }
887
888 static void xen_restart(char *msg)
889 {
890         xen_reboot(SHUTDOWN_reboot);
891 }
892
893 static void xen_emergency_restart(void)
894 {
895         xen_reboot(SHUTDOWN_reboot);
896 }
897
898 static void xen_machine_halt(void)
899 {
900         xen_reboot(SHUTDOWN_poweroff);
901 }
902
903 static void xen_crash_shutdown(struct pt_regs *regs)
904 {
905         xen_reboot(SHUTDOWN_crash);
906 }
907
908 static const struct machine_ops __initdata xen_machine_ops = {
909         .restart = xen_restart,
910         .halt = xen_machine_halt,
911         .power_off = xen_machine_halt,
912         .shutdown = xen_machine_halt,
913         .crash_shutdown = xen_crash_shutdown,
914         .emergency_restart = xen_emergency_restart,
915 };
916
917
918 /* First C function to be called on Xen boot */
919 asmlinkage void __init xen_start_kernel(void)
920 {
921         pgd_t *pgd;
922
923         if (!xen_start_info)
924                 return;
925
926         xen_domain_type = XEN_PV_DOMAIN;
927
928         BUG_ON(memcmp(xen_start_info->magic, "xen-3", 5) != 0);
929
930         xen_setup_features();
931
932         /* Install Xen paravirt ops */
933         pv_info = xen_info;
934         pv_init_ops = xen_init_ops;
935         pv_time_ops = xen_time_ops;
936         pv_cpu_ops = xen_cpu_ops;
937         pv_apic_ops = xen_apic_ops;
938         pv_mmu_ops = xen_mmu_ops;
939
940         xen_init_irq_ops();
941
942         xen_init_cpuid_mask();
943
944 #ifdef CONFIG_X86_LOCAL_APIC
945         /*
946          * set up the basic apic ops.
947          */
948         set_xen_basic_apic_ops();
949 #endif
950
951         if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
952                 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
953                 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
954         }
955
956         machine_ops = xen_machine_ops;
957
958 #ifdef CONFIG_X86_64
959         /*
960          * Setup percpu state.  We only need to do this for 64-bit
961          * because 32-bit already has %fs set properly.
962          */
963         load_percpu_segment(0);
964 #endif
965         /*
966          * The only reliable way to retain the initial address of the
967          * percpu gdt_page is to remember it here, so we can go and
968          * mark it RW later, when the initial percpu area is freed.
969          */
970         xen_initial_gdt = &per_cpu(gdt_page, 0);
971
972         xen_smp_init();
973
974         /* Get mfn list */
975         if (!xen_feature(XENFEAT_auto_translated_physmap))
976                 xen_build_dynamic_phys_to_machine();
977
978         pgd = (pgd_t *)xen_start_info->pt_base;
979
980         /* Prevent unwanted bits from being set in PTEs. */
981         __supported_pte_mask &= ~_PAGE_GLOBAL;
982         if (!xen_initial_domain())
983                 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
984
985         /* Don't do the full vcpu_info placement stuff until we have a
986            possible map and a non-dummy shared_info. */
987         per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
988
989         local_irq_disable();
990         early_boot_irqs_off();
991
992         xen_raw_console_write("mapping kernel into physical memory\n");
993         pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
994
995         init_mm.pgd = pgd;
996
997         /* keep using Xen gdt for now; no urgent need to change it */
998
999         pv_info.kernel_rpl = 1;
1000         if (xen_feature(XENFEAT_supervisor_mode_kernel))
1001                 pv_info.kernel_rpl = 0;
1002
1003         /* set the limit of our address space */
1004         xen_reserve_top();
1005
1006 #ifdef CONFIG_X86_32
1007         /* set up basic CPUID stuff */
1008         cpu_detect(&new_cpu_data);
1009         new_cpu_data.hard_math = 1;
1010         new_cpu_data.x86_capability[0] = cpuid_edx(1);
1011 #endif
1012
1013         /* Poke various useful things into boot_params */
1014         boot_params.hdr.type_of_loader = (9 << 4) | 0;
1015         boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1016                 ? __pa(xen_start_info->mod_start) : 0;
1017         boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1018         boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1019
1020         if (!xen_initial_domain()) {
1021                 add_preferred_console("xenboot", 0, NULL);
1022                 add_preferred_console("tty", 0, NULL);
1023                 add_preferred_console("hvc", 0, NULL);
1024         }
1025
1026         xen_raw_console_write("about to get started...\n");
1027
1028         /* Start the world */
1029 #ifdef CONFIG_X86_32
1030         i386_start_kernel();
1031 #else
1032         x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1033 #endif
1034 }