x86-64: align RODATA kernel section to 2MB with CONFIG_DEBUG_RODATA
[safe/jmp/linux-2.6] / arch / x86 / mm / pageattr.c
1 /*
2  * Copyright 2002 Andi Kleen, SuSE Labs.
3  * Thanks to Ben LaHaise for precious feedback.
4  */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/slab.h>
10 #include <linux/mm.h>
11 #include <linux/interrupt.h>
12 #include <linux/seq_file.h>
13 #include <linux/debugfs.h>
14 #include <linux/pfn.h>
15 #include <linux/percpu.h>
16
17 #include <asm/e820.h>
18 #include <asm/processor.h>
19 #include <asm/tlbflush.h>
20 #include <asm/sections.h>
21 #include <asm/setup.h>
22 #include <asm/uaccess.h>
23 #include <asm/pgalloc.h>
24 #include <asm/proto.h>
25 #include <asm/pat.h>
26
27 /*
28  * The current flushing context - we pass it instead of 5 arguments:
29  */
30 struct cpa_data {
31         unsigned long   *vaddr;
32         pgprot_t        mask_set;
33         pgprot_t        mask_clr;
34         int             numpages;
35         int             flags;
36         unsigned long   pfn;
37         unsigned        force_split : 1;
38         int             curpage;
39         struct page     **pages;
40 };
41
42 /*
43  * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
44  * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
45  * entries change the page attribute in parallel to some other cpu
46  * splitting a large page entry along with changing the attribute.
47  */
48 static DEFINE_SPINLOCK(cpa_lock);
49
50 #define CPA_FLUSHTLB 1
51 #define CPA_ARRAY 2
52 #define CPA_PAGES_ARRAY 4
53
54 #ifdef CONFIG_PROC_FS
55 static unsigned long direct_pages_count[PG_LEVEL_NUM];
56
57 void update_page_count(int level, unsigned long pages)
58 {
59         unsigned long flags;
60
61         /* Protect against CPA */
62         spin_lock_irqsave(&pgd_lock, flags);
63         direct_pages_count[level] += pages;
64         spin_unlock_irqrestore(&pgd_lock, flags);
65 }
66
67 static void split_page_count(int level)
68 {
69         direct_pages_count[level]--;
70         direct_pages_count[level - 1] += PTRS_PER_PTE;
71 }
72
73 void arch_report_meminfo(struct seq_file *m)
74 {
75         seq_printf(m, "DirectMap4k:    %8lu kB\n",
76                         direct_pages_count[PG_LEVEL_4K] << 2);
77 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
78         seq_printf(m, "DirectMap2M:    %8lu kB\n",
79                         direct_pages_count[PG_LEVEL_2M] << 11);
80 #else
81         seq_printf(m, "DirectMap4M:    %8lu kB\n",
82                         direct_pages_count[PG_LEVEL_2M] << 12);
83 #endif
84 #ifdef CONFIG_X86_64
85         if (direct_gbpages)
86                 seq_printf(m, "DirectMap1G:    %8lu kB\n",
87                         direct_pages_count[PG_LEVEL_1G] << 20);
88 #endif
89 }
90 #else
91 static inline void split_page_count(int level) { }
92 #endif
93
94 #ifdef CONFIG_X86_64
95
96 static inline unsigned long highmap_start_pfn(void)
97 {
98         return __pa(_text) >> PAGE_SHIFT;
99 }
100
101 static inline unsigned long highmap_end_pfn(void)
102 {
103         return __pa(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
104 }
105
106 #endif
107
108 #ifdef CONFIG_DEBUG_PAGEALLOC
109 # define debug_pagealloc 1
110 #else
111 # define debug_pagealloc 0
112 #endif
113
114 static inline int
115 within(unsigned long addr, unsigned long start, unsigned long end)
116 {
117         return addr >= start && addr < end;
118 }
119
120 /*
121  * Flushing functions
122  */
123
124 /**
125  * clflush_cache_range - flush a cache range with clflush
126  * @addr:       virtual start address
127  * @size:       number of bytes to flush
128  *
129  * clflush is an unordered instruction which needs fencing with mfence
130  * to avoid ordering issues.
131  */
132 void clflush_cache_range(void *vaddr, unsigned int size)
133 {
134         void *vend = vaddr + size - 1;
135
136         mb();
137
138         for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
139                 clflush(vaddr);
140         /*
141          * Flush any possible final partial cacheline:
142          */
143         clflush(vend);
144
145         mb();
146 }
147 EXPORT_SYMBOL_GPL(clflush_cache_range);
148
149 static void __cpa_flush_all(void *arg)
150 {
151         unsigned long cache = (unsigned long)arg;
152
153         /*
154          * Flush all to work around Errata in early athlons regarding
155          * large page flushing.
156          */
157         __flush_tlb_all();
158
159         if (cache && boot_cpu_data.x86 >= 4)
160                 wbinvd();
161 }
162
163 static void cpa_flush_all(unsigned long cache)
164 {
165         BUG_ON(irqs_disabled());
166
167         on_each_cpu(__cpa_flush_all, (void *) cache, 1);
168 }
169
170 static void __cpa_flush_range(void *arg)
171 {
172         /*
173          * We could optimize that further and do individual per page
174          * tlb invalidates for a low number of pages. Caveat: we must
175          * flush the high aliases on 64bit as well.
176          */
177         __flush_tlb_all();
178 }
179
180 static void cpa_flush_range(unsigned long start, int numpages, int cache)
181 {
182         unsigned int i, level;
183         unsigned long addr;
184
185         BUG_ON(irqs_disabled());
186         WARN_ON(PAGE_ALIGN(start) != start);
187
188         on_each_cpu(__cpa_flush_range, NULL, 1);
189
190         if (!cache)
191                 return;
192
193         /*
194          * We only need to flush on one CPU,
195          * clflush is a MESI-coherent instruction that
196          * will cause all other CPUs to flush the same
197          * cachelines:
198          */
199         for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
200                 pte_t *pte = lookup_address(addr, &level);
201
202                 /*
203                  * Only flush present addresses:
204                  */
205                 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
206                         clflush_cache_range((void *) addr, PAGE_SIZE);
207         }
208 }
209
210 static void cpa_flush_array(unsigned long *start, int numpages, int cache,
211                             int in_flags, struct page **pages)
212 {
213         unsigned int i, level;
214         unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
215
216         BUG_ON(irqs_disabled());
217
218         on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
219
220         if (!cache || do_wbinvd)
221                 return;
222
223         /*
224          * We only need to flush on one CPU,
225          * clflush is a MESI-coherent instruction that
226          * will cause all other CPUs to flush the same
227          * cachelines:
228          */
229         for (i = 0; i < numpages; i++) {
230                 unsigned long addr;
231                 pte_t *pte;
232
233                 if (in_flags & CPA_PAGES_ARRAY)
234                         addr = (unsigned long)page_address(pages[i]);
235                 else
236                         addr = start[i];
237
238                 pte = lookup_address(addr, &level);
239
240                 /*
241                  * Only flush present addresses:
242                  */
243                 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
244                         clflush_cache_range((void *)addr, PAGE_SIZE);
245         }
246 }
247
248 /*
249  * Certain areas of memory on x86 require very specific protection flags,
250  * for example the BIOS area or kernel text. Callers don't always get this
251  * right (again, ioremap() on BIOS memory is not uncommon) so this function
252  * checks and fixes these known static required protection bits.
253  */
254 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
255                                    unsigned long pfn)
256 {
257         pgprot_t forbidden = __pgprot(0);
258
259         /*
260          * The BIOS area between 640k and 1Mb needs to be executable for
261          * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
262          */
263         if (within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
264                 pgprot_val(forbidden) |= _PAGE_NX;
265
266         /*
267          * The kernel text needs to be executable for obvious reasons
268          * Does not cover __inittext since that is gone later on. On
269          * 64bit we do not enforce !NX on the low mapping
270          */
271         if (within(address, (unsigned long)_text, (unsigned long)_etext))
272                 pgprot_val(forbidden) |= _PAGE_NX;
273
274         /*
275          * The .rodata section needs to be read-only. Using the pfn
276          * catches all aliases.
277          */
278         if (within(pfn, __pa((unsigned long)__start_rodata) >> PAGE_SHIFT,
279                    __pa((unsigned long)__end_rodata) >> PAGE_SHIFT))
280                 pgprot_val(forbidden) |= _PAGE_RW;
281
282 #if defined(CONFIG_X86_64) && defined(CONFIG_DEBUG_RODATA)
283         /*
284          * Kernel text mappings for the large page aligned .rodata section
285          * will be read-only. For the kernel identity mappings covering
286          * the holes caused by this alignment can be anything.
287          *
288          * This will preserve the large page mappings for kernel text/data
289          * at no extra cost.
290          */
291         if (within(address, (unsigned long)_text,
292                    (unsigned long)__end_rodata_hpage_align))
293                 pgprot_val(forbidden) |= _PAGE_RW;
294 #endif
295
296         prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
297
298         return prot;
299 }
300
301 /*
302  * Lookup the page table entry for a virtual address. Return a pointer
303  * to the entry and the level of the mapping.
304  *
305  * Note: We return pud and pmd either when the entry is marked large
306  * or when the present bit is not set. Otherwise we would return a
307  * pointer to a nonexisting mapping.
308  */
309 pte_t *lookup_address(unsigned long address, unsigned int *level)
310 {
311         pgd_t *pgd = pgd_offset_k(address);
312         pud_t *pud;
313         pmd_t *pmd;
314
315         *level = PG_LEVEL_NONE;
316
317         if (pgd_none(*pgd))
318                 return NULL;
319
320         pud = pud_offset(pgd, address);
321         if (pud_none(*pud))
322                 return NULL;
323
324         *level = PG_LEVEL_1G;
325         if (pud_large(*pud) || !pud_present(*pud))
326                 return (pte_t *)pud;
327
328         pmd = pmd_offset(pud, address);
329         if (pmd_none(*pmd))
330                 return NULL;
331
332         *level = PG_LEVEL_2M;
333         if (pmd_large(*pmd) || !pmd_present(*pmd))
334                 return (pte_t *)pmd;
335
336         *level = PG_LEVEL_4K;
337
338         return pte_offset_kernel(pmd, address);
339 }
340 EXPORT_SYMBOL_GPL(lookup_address);
341
342 /*
343  * Set the new pmd in all the pgds we know about:
344  */
345 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
346 {
347         /* change init_mm */
348         set_pte_atomic(kpte, pte);
349 #ifdef CONFIG_X86_32
350         if (!SHARED_KERNEL_PMD) {
351                 struct page *page;
352
353                 list_for_each_entry(page, &pgd_list, lru) {
354                         pgd_t *pgd;
355                         pud_t *pud;
356                         pmd_t *pmd;
357
358                         pgd = (pgd_t *)page_address(page) + pgd_index(address);
359                         pud = pud_offset(pgd, address);
360                         pmd = pmd_offset(pud, address);
361                         set_pte_atomic((pte_t *)pmd, pte);
362                 }
363         }
364 #endif
365 }
366
367 static int
368 try_preserve_large_page(pte_t *kpte, unsigned long address,
369                         struct cpa_data *cpa)
370 {
371         unsigned long nextpage_addr, numpages, pmask, psize, flags, addr, pfn;
372         pte_t new_pte, old_pte, *tmp;
373         pgprot_t old_prot, new_prot;
374         int i, do_split = 1;
375         unsigned int level;
376
377         if (cpa->force_split)
378                 return 1;
379
380         spin_lock_irqsave(&pgd_lock, flags);
381         /*
382          * Check for races, another CPU might have split this page
383          * up already:
384          */
385         tmp = lookup_address(address, &level);
386         if (tmp != kpte)
387                 goto out_unlock;
388
389         switch (level) {
390         case PG_LEVEL_2M:
391                 psize = PMD_PAGE_SIZE;
392                 pmask = PMD_PAGE_MASK;
393                 break;
394 #ifdef CONFIG_X86_64
395         case PG_LEVEL_1G:
396                 psize = PUD_PAGE_SIZE;
397                 pmask = PUD_PAGE_MASK;
398                 break;
399 #endif
400         default:
401                 do_split = -EINVAL;
402                 goto out_unlock;
403         }
404
405         /*
406          * Calculate the number of pages, which fit into this large
407          * page starting at address:
408          */
409         nextpage_addr = (address + psize) & pmask;
410         numpages = (nextpage_addr - address) >> PAGE_SHIFT;
411         if (numpages < cpa->numpages)
412                 cpa->numpages = numpages;
413
414         /*
415          * We are safe now. Check whether the new pgprot is the same:
416          */
417         old_pte = *kpte;
418         old_prot = new_prot = pte_pgprot(old_pte);
419
420         pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
421         pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
422
423         /*
424          * old_pte points to the large page base address. So we need
425          * to add the offset of the virtual address:
426          */
427         pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
428         cpa->pfn = pfn;
429
430         new_prot = static_protections(new_prot, address, pfn);
431
432         /*
433          * We need to check the full range, whether
434          * static_protection() requires a different pgprot for one of
435          * the pages in the range we try to preserve:
436          */
437         addr = address + PAGE_SIZE;
438         pfn++;
439         for (i = 1; i < cpa->numpages; i++, addr += PAGE_SIZE, pfn++) {
440                 pgprot_t chk_prot = static_protections(new_prot, addr, pfn);
441
442                 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
443                         goto out_unlock;
444         }
445
446         /*
447          * If there are no changes, return. maxpages has been updated
448          * above:
449          */
450         if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
451                 do_split = 0;
452                 goto out_unlock;
453         }
454
455         /*
456          * We need to change the attributes. Check, whether we can
457          * change the large page in one go. We request a split, when
458          * the address is not aligned and the number of pages is
459          * smaller than the number of pages in the large page. Note
460          * that we limited the number of possible pages already to
461          * the number of pages in the large page.
462          */
463         if (address == (nextpage_addr - psize) && cpa->numpages == numpages) {
464                 /*
465                  * The address is aligned and the number of pages
466                  * covers the full page.
467                  */
468                 new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
469                 __set_pmd_pte(kpte, address, new_pte);
470                 cpa->flags |= CPA_FLUSHTLB;
471                 do_split = 0;
472         }
473
474 out_unlock:
475         spin_unlock_irqrestore(&pgd_lock, flags);
476
477         return do_split;
478 }
479
480 static int split_large_page(pte_t *kpte, unsigned long address)
481 {
482         unsigned long flags, pfn, pfninc = 1;
483         unsigned int i, level;
484         pte_t *pbase, *tmp;
485         pgprot_t ref_prot;
486         struct page *base;
487
488         if (!debug_pagealloc)
489                 spin_unlock(&cpa_lock);
490         base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
491         if (!debug_pagealloc)
492                 spin_lock(&cpa_lock);
493         if (!base)
494                 return -ENOMEM;
495
496         spin_lock_irqsave(&pgd_lock, flags);
497         /*
498          * Check for races, another CPU might have split this page
499          * up for us already:
500          */
501         tmp = lookup_address(address, &level);
502         if (tmp != kpte)
503                 goto out_unlock;
504
505         pbase = (pte_t *)page_address(base);
506         paravirt_alloc_pte(&init_mm, page_to_pfn(base));
507         ref_prot = pte_pgprot(pte_clrhuge(*kpte));
508         /*
509          * If we ever want to utilize the PAT bit, we need to
510          * update this function to make sure it's converted from
511          * bit 12 to bit 7 when we cross from the 2MB level to
512          * the 4K level:
513          */
514         WARN_ON_ONCE(pgprot_val(ref_prot) & _PAGE_PAT_LARGE);
515
516 #ifdef CONFIG_X86_64
517         if (level == PG_LEVEL_1G) {
518                 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
519                 pgprot_val(ref_prot) |= _PAGE_PSE;
520         }
521 #endif
522
523         /*
524          * Get the target pfn from the original entry:
525          */
526         pfn = pte_pfn(*kpte);
527         for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
528                 set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
529
530         if (address >= (unsigned long)__va(0) &&
531                 address < (unsigned long)__va(max_low_pfn_mapped << PAGE_SHIFT))
532                 split_page_count(level);
533
534 #ifdef CONFIG_X86_64
535         if (address >= (unsigned long)__va(1UL<<32) &&
536                 address < (unsigned long)__va(max_pfn_mapped << PAGE_SHIFT))
537                 split_page_count(level);
538 #endif
539
540         /*
541          * Install the new, split up pagetable.
542          *
543          * We use the standard kernel pagetable protections for the new
544          * pagetable protections, the actual ptes set above control the
545          * primary protection behavior:
546          */
547         __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
548
549         /*
550          * Intel Atom errata AAH41 workaround.
551          *
552          * The real fix should be in hw or in a microcode update, but
553          * we also probabilistically try to reduce the window of having
554          * a large TLB mixed with 4K TLBs while instruction fetches are
555          * going on.
556          */
557         __flush_tlb_all();
558
559         base = NULL;
560
561 out_unlock:
562         /*
563          * If we dropped out via the lookup_address check under
564          * pgd_lock then stick the page back into the pool:
565          */
566         if (base)
567                 __free_page(base);
568         spin_unlock_irqrestore(&pgd_lock, flags);
569
570         return 0;
571 }
572
573 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
574                                int primary)
575 {
576         /*
577          * Ignore all non primary paths.
578          */
579         if (!primary)
580                 return 0;
581
582         /*
583          * Ignore the NULL PTE for kernel identity mapping, as it is expected
584          * to have holes.
585          * Also set numpages to '1' indicating that we processed cpa req for
586          * one virtual address page and its pfn. TBD: numpages can be set based
587          * on the initial value and the level returned by lookup_address().
588          */
589         if (within(vaddr, PAGE_OFFSET,
590                    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
591                 cpa->numpages = 1;
592                 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
593                 return 0;
594         } else {
595                 WARN(1, KERN_WARNING "CPA: called for zero pte. "
596                         "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
597                         *cpa->vaddr);
598
599                 return -EFAULT;
600         }
601 }
602
603 static int __change_page_attr(struct cpa_data *cpa, int primary)
604 {
605         unsigned long address;
606         int do_split, err;
607         unsigned int level;
608         pte_t *kpte, old_pte;
609
610         if (cpa->flags & CPA_PAGES_ARRAY) {
611                 struct page *page = cpa->pages[cpa->curpage];
612                 if (unlikely(PageHighMem(page)))
613                         return 0;
614                 address = (unsigned long)page_address(page);
615         } else if (cpa->flags & CPA_ARRAY)
616                 address = cpa->vaddr[cpa->curpage];
617         else
618                 address = *cpa->vaddr;
619 repeat:
620         kpte = lookup_address(address, &level);
621         if (!kpte)
622                 return __cpa_process_fault(cpa, address, primary);
623
624         old_pte = *kpte;
625         if (!pte_val(old_pte))
626                 return __cpa_process_fault(cpa, address, primary);
627
628         if (level == PG_LEVEL_4K) {
629                 pte_t new_pte;
630                 pgprot_t new_prot = pte_pgprot(old_pte);
631                 unsigned long pfn = pte_pfn(old_pte);
632
633                 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
634                 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
635
636                 new_prot = static_protections(new_prot, address, pfn);
637
638                 /*
639                  * We need to keep the pfn from the existing PTE,
640                  * after all we're only going to change it's attributes
641                  * not the memory it points to
642                  */
643                 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
644                 cpa->pfn = pfn;
645                 /*
646                  * Do we really change anything ?
647                  */
648                 if (pte_val(old_pte) != pte_val(new_pte)) {
649                         set_pte_atomic(kpte, new_pte);
650                         cpa->flags |= CPA_FLUSHTLB;
651                 }
652                 cpa->numpages = 1;
653                 return 0;
654         }
655
656         /*
657          * Check, whether we can keep the large page intact
658          * and just change the pte:
659          */
660         do_split = try_preserve_large_page(kpte, address, cpa);
661         /*
662          * When the range fits into the existing large page,
663          * return. cp->numpages and cpa->tlbflush have been updated in
664          * try_large_page:
665          */
666         if (do_split <= 0)
667                 return do_split;
668
669         /*
670          * We have to split the large page:
671          */
672         err = split_large_page(kpte, address);
673         if (!err) {
674                 /*
675                  * Do a global flush tlb after splitting the large page
676                  * and before we do the actual change page attribute in the PTE.
677                  *
678                  * With out this, we violate the TLB application note, that says
679                  * "The TLBs may contain both ordinary and large-page
680                  *  translations for a 4-KByte range of linear addresses. This
681                  *  may occur if software modifies the paging structures so that
682                  *  the page size used for the address range changes. If the two
683                  *  translations differ with respect to page frame or attributes
684                  *  (e.g., permissions), processor behavior is undefined and may
685                  *  be implementation-specific."
686                  *
687                  * We do this global tlb flush inside the cpa_lock, so that we
688                  * don't allow any other cpu, with stale tlb entries change the
689                  * page attribute in parallel, that also falls into the
690                  * just split large page entry.
691                  */
692                 flush_tlb_all();
693                 goto repeat;
694         }
695
696         return err;
697 }
698
699 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
700
701 static int cpa_process_alias(struct cpa_data *cpa)
702 {
703         struct cpa_data alias_cpa;
704         unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
705         unsigned long vaddr;
706         int ret;
707
708         if (cpa->pfn >= max_pfn_mapped)
709                 return 0;
710
711 #ifdef CONFIG_X86_64
712         if (cpa->pfn >= max_low_pfn_mapped && cpa->pfn < (1UL<<(32-PAGE_SHIFT)))
713                 return 0;
714 #endif
715         /*
716          * No need to redo, when the primary call touched the direct
717          * mapping already:
718          */
719         if (cpa->flags & CPA_PAGES_ARRAY) {
720                 struct page *page = cpa->pages[cpa->curpage];
721                 if (unlikely(PageHighMem(page)))
722                         return 0;
723                 vaddr = (unsigned long)page_address(page);
724         } else if (cpa->flags & CPA_ARRAY)
725                 vaddr = cpa->vaddr[cpa->curpage];
726         else
727                 vaddr = *cpa->vaddr;
728
729         if (!(within(vaddr, PAGE_OFFSET,
730                     PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
731
732                 alias_cpa = *cpa;
733                 alias_cpa.vaddr = &laddr;
734                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
735
736                 ret = __change_page_attr_set_clr(&alias_cpa, 0);
737                 if (ret)
738                         return ret;
739         }
740
741 #ifdef CONFIG_X86_64
742         /*
743          * If the primary call didn't touch the high mapping already
744          * and the physical address is inside the kernel map, we need
745          * to touch the high mapped kernel as well:
746          */
747         if (!within(vaddr, (unsigned long)_text, _brk_end) &&
748             within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) {
749                 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
750                                                __START_KERNEL_map - phys_base;
751                 alias_cpa = *cpa;
752                 alias_cpa.vaddr = &temp_cpa_vaddr;
753                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
754
755                 /*
756                  * The high mapping range is imprecise, so ignore the
757                  * return value.
758                  */
759                 __change_page_attr_set_clr(&alias_cpa, 0);
760         }
761 #endif
762
763         return 0;
764 }
765
766 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
767 {
768         int ret, numpages = cpa->numpages;
769
770         while (numpages) {
771                 /*
772                  * Store the remaining nr of pages for the large page
773                  * preservation check.
774                  */
775                 cpa->numpages = numpages;
776                 /* for array changes, we can't use large page */
777                 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
778                         cpa->numpages = 1;
779
780                 if (!debug_pagealloc)
781                         spin_lock(&cpa_lock);
782                 ret = __change_page_attr(cpa, checkalias);
783                 if (!debug_pagealloc)
784                         spin_unlock(&cpa_lock);
785                 if (ret)
786                         return ret;
787
788                 if (checkalias) {
789                         ret = cpa_process_alias(cpa);
790                         if (ret)
791                                 return ret;
792                 }
793
794                 /*
795                  * Adjust the number of pages with the result of the
796                  * CPA operation. Either a large page has been
797                  * preserved or a single page update happened.
798                  */
799                 BUG_ON(cpa->numpages > numpages);
800                 numpages -= cpa->numpages;
801                 if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
802                         cpa->curpage++;
803                 else
804                         *cpa->vaddr += cpa->numpages * PAGE_SIZE;
805
806         }
807         return 0;
808 }
809
810 static inline int cache_attr(pgprot_t attr)
811 {
812         return pgprot_val(attr) &
813                 (_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
814 }
815
816 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
817                                     pgprot_t mask_set, pgprot_t mask_clr,
818                                     int force_split, int in_flag,
819                                     struct page **pages)
820 {
821         struct cpa_data cpa;
822         int ret, cache, checkalias;
823         unsigned long baddr = 0;
824
825         /*
826          * Check, if we are requested to change a not supported
827          * feature:
828          */
829         mask_set = canon_pgprot(mask_set);
830         mask_clr = canon_pgprot(mask_clr);
831         if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
832                 return 0;
833
834         /* Ensure we are PAGE_SIZE aligned */
835         if (in_flag & CPA_ARRAY) {
836                 int i;
837                 for (i = 0; i < numpages; i++) {
838                         if (addr[i] & ~PAGE_MASK) {
839                                 addr[i] &= PAGE_MASK;
840                                 WARN_ON_ONCE(1);
841                         }
842                 }
843         } else if (!(in_flag & CPA_PAGES_ARRAY)) {
844                 /*
845                  * in_flag of CPA_PAGES_ARRAY implies it is aligned.
846                  * No need to cehck in that case
847                  */
848                 if (*addr & ~PAGE_MASK) {
849                         *addr &= PAGE_MASK;
850                         /*
851                          * People should not be passing in unaligned addresses:
852                          */
853                         WARN_ON_ONCE(1);
854                 }
855                 /*
856                  * Save address for cache flush. *addr is modified in the call
857                  * to __change_page_attr_set_clr() below.
858                  */
859                 baddr = *addr;
860         }
861
862         /* Must avoid aliasing mappings in the highmem code */
863         kmap_flush_unused();
864
865         vm_unmap_aliases();
866
867         cpa.vaddr = addr;
868         cpa.pages = pages;
869         cpa.numpages = numpages;
870         cpa.mask_set = mask_set;
871         cpa.mask_clr = mask_clr;
872         cpa.flags = 0;
873         cpa.curpage = 0;
874         cpa.force_split = force_split;
875
876         if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
877                 cpa.flags |= in_flag;
878
879         /* No alias checking for _NX bit modifications */
880         checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
881
882         ret = __change_page_attr_set_clr(&cpa, checkalias);
883
884         /*
885          * Check whether we really changed something:
886          */
887         if (!(cpa.flags & CPA_FLUSHTLB))
888                 goto out;
889
890         /*
891          * No need to flush, when we did not set any of the caching
892          * attributes:
893          */
894         cache = cache_attr(mask_set);
895
896         /*
897          * On success we use clflush, when the CPU supports it to
898          * avoid the wbindv. If the CPU does not support it and in the
899          * error case we fall back to cpa_flush_all (which uses
900          * wbindv):
901          */
902         if (!ret && cpu_has_clflush) {
903                 if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
904                         cpa_flush_array(addr, numpages, cache,
905                                         cpa.flags, pages);
906                 } else
907                         cpa_flush_range(baddr, numpages, cache);
908         } else
909                 cpa_flush_all(cache);
910
911 out:
912         return ret;
913 }
914
915 static inline int change_page_attr_set(unsigned long *addr, int numpages,
916                                        pgprot_t mask, int array)
917 {
918         return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
919                 (array ? CPA_ARRAY : 0), NULL);
920 }
921
922 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
923                                          pgprot_t mask, int array)
924 {
925         return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
926                 (array ? CPA_ARRAY : 0), NULL);
927 }
928
929 static inline int cpa_set_pages_array(struct page **pages, int numpages,
930                                        pgprot_t mask)
931 {
932         return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
933                 CPA_PAGES_ARRAY, pages);
934 }
935
936 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
937                                          pgprot_t mask)
938 {
939         return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
940                 CPA_PAGES_ARRAY, pages);
941 }
942
943 int _set_memory_uc(unsigned long addr, int numpages)
944 {
945         /*
946          * for now UC MINUS. see comments in ioremap_nocache()
947          */
948         return change_page_attr_set(&addr, numpages,
949                                     __pgprot(_PAGE_CACHE_UC_MINUS), 0);
950 }
951
952 int set_memory_uc(unsigned long addr, int numpages)
953 {
954         int ret;
955
956         /*
957          * for now UC MINUS. see comments in ioremap_nocache()
958          */
959         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
960                             _PAGE_CACHE_UC_MINUS, NULL);
961         if (ret)
962                 goto out_err;
963
964         ret = _set_memory_uc(addr, numpages);
965         if (ret)
966                 goto out_free;
967
968         return 0;
969
970 out_free:
971         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
972 out_err:
973         return ret;
974 }
975 EXPORT_SYMBOL(set_memory_uc);
976
977 int set_memory_array_uc(unsigned long *addr, int addrinarray)
978 {
979         int i, j;
980         int ret;
981
982         /*
983          * for now UC MINUS. see comments in ioremap_nocache()
984          */
985         for (i = 0; i < addrinarray; i++) {
986                 ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
987                                         _PAGE_CACHE_UC_MINUS, NULL);
988                 if (ret)
989                         goto out_free;
990         }
991
992         ret = change_page_attr_set(addr, addrinarray,
993                                     __pgprot(_PAGE_CACHE_UC_MINUS), 1);
994         if (ret)
995                 goto out_free;
996
997         return 0;
998
999 out_free:
1000         for (j = 0; j < i; j++)
1001                 free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1002
1003         return ret;
1004 }
1005 EXPORT_SYMBOL(set_memory_array_uc);
1006
1007 int _set_memory_wc(unsigned long addr, int numpages)
1008 {
1009         int ret;
1010         unsigned long addr_copy = addr;
1011
1012         ret = change_page_attr_set(&addr, numpages,
1013                                     __pgprot(_PAGE_CACHE_UC_MINUS), 0);
1014         if (!ret) {
1015                 ret = change_page_attr_set_clr(&addr_copy, numpages,
1016                                                __pgprot(_PAGE_CACHE_WC),
1017                                                __pgprot(_PAGE_CACHE_MASK),
1018                                                0, 0, NULL);
1019         }
1020         return ret;
1021 }
1022
1023 int set_memory_wc(unsigned long addr, int numpages)
1024 {
1025         int ret;
1026
1027         if (!pat_enabled)
1028                 return set_memory_uc(addr, numpages);
1029
1030         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1031                 _PAGE_CACHE_WC, NULL);
1032         if (ret)
1033                 goto out_err;
1034
1035         ret = _set_memory_wc(addr, numpages);
1036         if (ret)
1037                 goto out_free;
1038
1039         return 0;
1040
1041 out_free:
1042         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1043 out_err:
1044         return ret;
1045 }
1046 EXPORT_SYMBOL(set_memory_wc);
1047
1048 int _set_memory_wb(unsigned long addr, int numpages)
1049 {
1050         return change_page_attr_clear(&addr, numpages,
1051                                       __pgprot(_PAGE_CACHE_MASK), 0);
1052 }
1053
1054 int set_memory_wb(unsigned long addr, int numpages)
1055 {
1056         int ret;
1057
1058         ret = _set_memory_wb(addr, numpages);
1059         if (ret)
1060                 return ret;
1061
1062         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1063         return 0;
1064 }
1065 EXPORT_SYMBOL(set_memory_wb);
1066
1067 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1068 {
1069         int i;
1070         int ret;
1071
1072         ret = change_page_attr_clear(addr, addrinarray,
1073                                       __pgprot(_PAGE_CACHE_MASK), 1);
1074         if (ret)
1075                 return ret;
1076
1077         for (i = 0; i < addrinarray; i++)
1078                 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1079
1080         return 0;
1081 }
1082 EXPORT_SYMBOL(set_memory_array_wb);
1083
1084 int set_memory_x(unsigned long addr, int numpages)
1085 {
1086         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1087 }
1088 EXPORT_SYMBOL(set_memory_x);
1089
1090 int set_memory_nx(unsigned long addr, int numpages)
1091 {
1092         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1093 }
1094 EXPORT_SYMBOL(set_memory_nx);
1095
1096 int set_memory_ro(unsigned long addr, int numpages)
1097 {
1098         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1099 }
1100 EXPORT_SYMBOL_GPL(set_memory_ro);
1101
1102 int set_memory_rw(unsigned long addr, int numpages)
1103 {
1104         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1105 }
1106 EXPORT_SYMBOL_GPL(set_memory_rw);
1107
1108 int set_memory_np(unsigned long addr, int numpages)
1109 {
1110         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1111 }
1112
1113 int set_memory_4k(unsigned long addr, int numpages)
1114 {
1115         return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1116                                         __pgprot(0), 1, 0, NULL);
1117 }
1118
1119 int set_pages_uc(struct page *page, int numpages)
1120 {
1121         unsigned long addr = (unsigned long)page_address(page);
1122
1123         return set_memory_uc(addr, numpages);
1124 }
1125 EXPORT_SYMBOL(set_pages_uc);
1126
1127 int set_pages_array_uc(struct page **pages, int addrinarray)
1128 {
1129         unsigned long start;
1130         unsigned long end;
1131         int i;
1132         int free_idx;
1133
1134         for (i = 0; i < addrinarray; i++) {
1135                 if (PageHighMem(pages[i]))
1136                         continue;
1137                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1138                 end = start + PAGE_SIZE;
1139                 if (reserve_memtype(start, end, _PAGE_CACHE_UC_MINUS, NULL))
1140                         goto err_out;
1141         }
1142
1143         if (cpa_set_pages_array(pages, addrinarray,
1144                         __pgprot(_PAGE_CACHE_UC_MINUS)) == 0) {
1145                 return 0; /* Success */
1146         }
1147 err_out:
1148         free_idx = i;
1149         for (i = 0; i < free_idx; i++) {
1150                 if (PageHighMem(pages[i]))
1151                         continue;
1152                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1153                 end = start + PAGE_SIZE;
1154                 free_memtype(start, end);
1155         }
1156         return -EINVAL;
1157 }
1158 EXPORT_SYMBOL(set_pages_array_uc);
1159
1160 int set_pages_wb(struct page *page, int numpages)
1161 {
1162         unsigned long addr = (unsigned long)page_address(page);
1163
1164         return set_memory_wb(addr, numpages);
1165 }
1166 EXPORT_SYMBOL(set_pages_wb);
1167
1168 int set_pages_array_wb(struct page **pages, int addrinarray)
1169 {
1170         int retval;
1171         unsigned long start;
1172         unsigned long end;
1173         int i;
1174
1175         retval = cpa_clear_pages_array(pages, addrinarray,
1176                         __pgprot(_PAGE_CACHE_MASK));
1177         if (retval)
1178                 return retval;
1179
1180         for (i = 0; i < addrinarray; i++) {
1181                 if (PageHighMem(pages[i]))
1182                         continue;
1183                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1184                 end = start + PAGE_SIZE;
1185                 free_memtype(start, end);
1186         }
1187
1188         return 0;
1189 }
1190 EXPORT_SYMBOL(set_pages_array_wb);
1191
1192 int set_pages_x(struct page *page, int numpages)
1193 {
1194         unsigned long addr = (unsigned long)page_address(page);
1195
1196         return set_memory_x(addr, numpages);
1197 }
1198 EXPORT_SYMBOL(set_pages_x);
1199
1200 int set_pages_nx(struct page *page, int numpages)
1201 {
1202         unsigned long addr = (unsigned long)page_address(page);
1203
1204         return set_memory_nx(addr, numpages);
1205 }
1206 EXPORT_SYMBOL(set_pages_nx);
1207
1208 int set_pages_ro(struct page *page, int numpages)
1209 {
1210         unsigned long addr = (unsigned long)page_address(page);
1211
1212         return set_memory_ro(addr, numpages);
1213 }
1214
1215 int set_pages_rw(struct page *page, int numpages)
1216 {
1217         unsigned long addr = (unsigned long)page_address(page);
1218
1219         return set_memory_rw(addr, numpages);
1220 }
1221
1222 #ifdef CONFIG_DEBUG_PAGEALLOC
1223
1224 static int __set_pages_p(struct page *page, int numpages)
1225 {
1226         unsigned long tempaddr = (unsigned long) page_address(page);
1227         struct cpa_data cpa = { .vaddr = &tempaddr,
1228                                 .numpages = numpages,
1229                                 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1230                                 .mask_clr = __pgprot(0),
1231                                 .flags = 0};
1232
1233         /*
1234          * No alias checking needed for setting present flag. otherwise,
1235          * we may need to break large pages for 64-bit kernel text
1236          * mappings (this adds to complexity if we want to do this from
1237          * atomic context especially). Let's keep it simple!
1238          */
1239         return __change_page_attr_set_clr(&cpa, 0);
1240 }
1241
1242 static int __set_pages_np(struct page *page, int numpages)
1243 {
1244         unsigned long tempaddr = (unsigned long) page_address(page);
1245         struct cpa_data cpa = { .vaddr = &tempaddr,
1246                                 .numpages = numpages,
1247                                 .mask_set = __pgprot(0),
1248                                 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1249                                 .flags = 0};
1250
1251         /*
1252          * No alias checking needed for setting not present flag. otherwise,
1253          * we may need to break large pages for 64-bit kernel text
1254          * mappings (this adds to complexity if we want to do this from
1255          * atomic context especially). Let's keep it simple!
1256          */
1257         return __change_page_attr_set_clr(&cpa, 0);
1258 }
1259
1260 void kernel_map_pages(struct page *page, int numpages, int enable)
1261 {
1262         if (PageHighMem(page))
1263                 return;
1264         if (!enable) {
1265                 debug_check_no_locks_freed(page_address(page),
1266                                            numpages * PAGE_SIZE);
1267         }
1268
1269         /*
1270          * If page allocator is not up yet then do not call c_p_a():
1271          */
1272         if (!debug_pagealloc_enabled)
1273                 return;
1274
1275         /*
1276          * The return value is ignored as the calls cannot fail.
1277          * Large pages for identity mappings are not used at boot time
1278          * and hence no memory allocations during large page split.
1279          */
1280         if (enable)
1281                 __set_pages_p(page, numpages);
1282         else
1283                 __set_pages_np(page, numpages);
1284
1285         /*
1286          * We should perform an IPI and flush all tlbs,
1287          * but that can deadlock->flush only current cpu:
1288          */
1289         __flush_tlb_all();
1290 }
1291
1292 #ifdef CONFIG_HIBERNATION
1293
1294 bool kernel_page_present(struct page *page)
1295 {
1296         unsigned int level;
1297         pte_t *pte;
1298
1299         if (PageHighMem(page))
1300                 return false;
1301
1302         pte = lookup_address((unsigned long)page_address(page), &level);
1303         return (pte_val(*pte) & _PAGE_PRESENT);
1304 }
1305
1306 #endif /* CONFIG_HIBERNATION */
1307
1308 #endif /* CONFIG_DEBUG_PAGEALLOC */
1309
1310 /*
1311  * The testcases use internal knowledge of the implementation that shouldn't
1312  * be exposed to the rest of the kernel. Include these directly here.
1313  */
1314 #ifdef CONFIG_CPA_DEBUG
1315 #include "pageattr-test.c"
1316 #endif