hugetlb: modular state for hugetlb page size
[safe/jmp/linux-2.6] / arch / x86 / mm / hugetlbpage.c
1 /*
2  * IA-32 Huge TLB Page Support for Kernel.
3  *
4  * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
5  */
6
7 #include <linux/init.h>
8 #include <linux/fs.h>
9 #include <linux/mm.h>
10 #include <linux/hugetlb.h>
11 #include <linux/pagemap.h>
12 #include <linux/slab.h>
13 #include <linux/err.h>
14 #include <linux/sysctl.h>
15 #include <asm/mman.h>
16 #include <asm/tlb.h>
17 #include <asm/tlbflush.h>
18 #include <asm/pgalloc.h>
19
20 static unsigned long page_table_shareable(struct vm_area_struct *svma,
21                                 struct vm_area_struct *vma,
22                                 unsigned long addr, pgoff_t idx)
23 {
24         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
25                                 svma->vm_start;
26         unsigned long sbase = saddr & PUD_MASK;
27         unsigned long s_end = sbase + PUD_SIZE;
28
29         /*
30          * match the virtual addresses, permission and the alignment of the
31          * page table page.
32          */
33         if (pmd_index(addr) != pmd_index(saddr) ||
34             vma->vm_flags != svma->vm_flags ||
35             sbase < svma->vm_start || svma->vm_end < s_end)
36                 return 0;
37
38         return saddr;
39 }
40
41 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
42 {
43         unsigned long base = addr & PUD_MASK;
44         unsigned long end = base + PUD_SIZE;
45
46         /*
47          * check on proper vm_flags and page table alignment
48          */
49         if (vma->vm_flags & VM_MAYSHARE &&
50             vma->vm_start <= base && end <= vma->vm_end)
51                 return 1;
52         return 0;
53 }
54
55 /*
56  * search for a shareable pmd page for hugetlb.
57  */
58 static void huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
59 {
60         struct vm_area_struct *vma = find_vma(mm, addr);
61         struct address_space *mapping = vma->vm_file->f_mapping;
62         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
63                         vma->vm_pgoff;
64         struct prio_tree_iter iter;
65         struct vm_area_struct *svma;
66         unsigned long saddr;
67         pte_t *spte = NULL;
68
69         if (!vma_shareable(vma, addr))
70                 return;
71
72         spin_lock(&mapping->i_mmap_lock);
73         vma_prio_tree_foreach(svma, &iter, &mapping->i_mmap, idx, idx) {
74                 if (svma == vma)
75                         continue;
76
77                 saddr = page_table_shareable(svma, vma, addr, idx);
78                 if (saddr) {
79                         spte = huge_pte_offset(svma->vm_mm, saddr);
80                         if (spte) {
81                                 get_page(virt_to_page(spte));
82                                 break;
83                         }
84                 }
85         }
86
87         if (!spte)
88                 goto out;
89
90         spin_lock(&mm->page_table_lock);
91         if (pud_none(*pud))
92                 pud_populate(mm, pud, (pmd_t *)((unsigned long)spte & PAGE_MASK));
93         else
94                 put_page(virt_to_page(spte));
95         spin_unlock(&mm->page_table_lock);
96 out:
97         spin_unlock(&mapping->i_mmap_lock);
98 }
99
100 /*
101  * unmap huge page backed by shared pte.
102  *
103  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
104  * indicated by page_count > 1, unmap is achieved by clearing pud and
105  * decrementing the ref count. If count == 1, the pte page is not shared.
106  *
107  * called with vma->vm_mm->page_table_lock held.
108  *
109  * returns: 1 successfully unmapped a shared pte page
110  *          0 the underlying pte page is not shared, or it is the last user
111  */
112 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
113 {
114         pgd_t *pgd = pgd_offset(mm, *addr);
115         pud_t *pud = pud_offset(pgd, *addr);
116
117         BUG_ON(page_count(virt_to_page(ptep)) == 0);
118         if (page_count(virt_to_page(ptep)) == 1)
119                 return 0;
120
121         pud_clear(pud);
122         put_page(virt_to_page(ptep));
123         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
124         return 1;
125 }
126
127 pte_t *huge_pte_alloc(struct mm_struct *mm,
128                         unsigned long addr, unsigned long sz)
129 {
130         pgd_t *pgd;
131         pud_t *pud;
132         pte_t *pte = NULL;
133
134         pgd = pgd_offset(mm, addr);
135         pud = pud_alloc(mm, pgd, addr);
136         if (pud) {
137                 if (pud_none(*pud))
138                         huge_pmd_share(mm, addr, pud);
139                 pte = (pte_t *) pmd_alloc(mm, pud, addr);
140         }
141         BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
142
143         return pte;
144 }
145
146 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
147 {
148         pgd_t *pgd;
149         pud_t *pud;
150         pmd_t *pmd = NULL;
151
152         pgd = pgd_offset(mm, addr);
153         if (pgd_present(*pgd)) {
154                 pud = pud_offset(pgd, addr);
155                 if (pud_present(*pud))
156                         pmd = pmd_offset(pud, addr);
157         }
158         return (pte_t *) pmd;
159 }
160
161 #if 0   /* This is just for testing */
162 struct page *
163 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
164 {
165         unsigned long start = address;
166         int length = 1;
167         int nr;
168         struct page *page;
169         struct vm_area_struct *vma;
170
171         vma = find_vma(mm, addr);
172         if (!vma || !is_vm_hugetlb_page(vma))
173                 return ERR_PTR(-EINVAL);
174
175         pte = huge_pte_offset(mm, address);
176
177         /* hugetlb should be locked, and hence, prefaulted */
178         WARN_ON(!pte || pte_none(*pte));
179
180         page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)];
181
182         WARN_ON(!PageHead(page));
183
184         return page;
185 }
186
187 int pmd_huge(pmd_t pmd)
188 {
189         return 0;
190 }
191
192 struct page *
193 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
194                 pmd_t *pmd, int write)
195 {
196         return NULL;
197 }
198
199 #else
200
201 struct page *
202 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
203 {
204         return ERR_PTR(-EINVAL);
205 }
206
207 int pmd_huge(pmd_t pmd)
208 {
209         return !!(pmd_val(pmd) & _PAGE_PSE);
210 }
211
212 struct page *
213 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
214                 pmd_t *pmd, int write)
215 {
216         struct page *page;
217
218         page = pte_page(*(pte_t *)pmd);
219         if (page)
220                 page += ((address & ~HPAGE_MASK) >> PAGE_SHIFT);
221         return page;
222 }
223 #endif
224
225 /* x86_64 also uses this file */
226
227 #ifdef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
228 static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *file,
229                 unsigned long addr, unsigned long len,
230                 unsigned long pgoff, unsigned long flags)
231 {
232         struct mm_struct *mm = current->mm;
233         struct vm_area_struct *vma;
234         unsigned long start_addr;
235
236         if (len > mm->cached_hole_size) {
237                 start_addr = mm->free_area_cache;
238         } else {
239                 start_addr = TASK_UNMAPPED_BASE;
240                 mm->cached_hole_size = 0;
241         }
242
243 full_search:
244         addr = ALIGN(start_addr, HPAGE_SIZE);
245
246         for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
247                 /* At this point:  (!vma || addr < vma->vm_end). */
248                 if (TASK_SIZE - len < addr) {
249                         /*
250                          * Start a new search - just in case we missed
251                          * some holes.
252                          */
253                         if (start_addr != TASK_UNMAPPED_BASE) {
254                                 start_addr = TASK_UNMAPPED_BASE;
255                                 mm->cached_hole_size = 0;
256                                 goto full_search;
257                         }
258                         return -ENOMEM;
259                 }
260                 if (!vma || addr + len <= vma->vm_start) {
261                         mm->free_area_cache = addr + len;
262                         return addr;
263                 }
264                 if (addr + mm->cached_hole_size < vma->vm_start)
265                         mm->cached_hole_size = vma->vm_start - addr;
266                 addr = ALIGN(vma->vm_end, HPAGE_SIZE);
267         }
268 }
269
270 static unsigned long hugetlb_get_unmapped_area_topdown(struct file *file,
271                 unsigned long addr0, unsigned long len,
272                 unsigned long pgoff, unsigned long flags)
273 {
274         struct mm_struct *mm = current->mm;
275         struct vm_area_struct *vma, *prev_vma;
276         unsigned long base = mm->mmap_base, addr = addr0;
277         unsigned long largest_hole = mm->cached_hole_size;
278         int first_time = 1;
279
280         /* don't allow allocations above current base */
281         if (mm->free_area_cache > base)
282                 mm->free_area_cache = base;
283
284         if (len <= largest_hole) {
285                 largest_hole = 0;
286                 mm->free_area_cache  = base;
287         }
288 try_again:
289         /* make sure it can fit in the remaining address space */
290         if (mm->free_area_cache < len)
291                 goto fail;
292
293         /* either no address requested or cant fit in requested address hole */
294         addr = (mm->free_area_cache - len) & HPAGE_MASK;
295         do {
296                 /*
297                  * Lookup failure means no vma is above this address,
298                  * i.e. return with success:
299                  */
300                 if (!(vma = find_vma_prev(mm, addr, &prev_vma)))
301                         return addr;
302
303                 /*
304                  * new region fits between prev_vma->vm_end and
305                  * vma->vm_start, use it:
306                  */
307                 if (addr + len <= vma->vm_start &&
308                             (!prev_vma || (addr >= prev_vma->vm_end))) {
309                         /* remember the address as a hint for next time */
310                         mm->cached_hole_size = largest_hole;
311                         return (mm->free_area_cache = addr);
312                 } else {
313                         /* pull free_area_cache down to the first hole */
314                         if (mm->free_area_cache == vma->vm_end) {
315                                 mm->free_area_cache = vma->vm_start;
316                                 mm->cached_hole_size = largest_hole;
317                         }
318                 }
319
320                 /* remember the largest hole we saw so far */
321                 if (addr + largest_hole < vma->vm_start)
322                         largest_hole = vma->vm_start - addr;
323
324                 /* try just below the current vma->vm_start */
325                 addr = (vma->vm_start - len) & HPAGE_MASK;
326         } while (len <= vma->vm_start);
327
328 fail:
329         /*
330          * if hint left us with no space for the requested
331          * mapping then try again:
332          */
333         if (first_time) {
334                 mm->free_area_cache = base;
335                 largest_hole = 0;
336                 first_time = 0;
337                 goto try_again;
338         }
339         /*
340          * A failed mmap() very likely causes application failure,
341          * so fall back to the bottom-up function here. This scenario
342          * can happen with large stack limits and large mmap()
343          * allocations.
344          */
345         mm->free_area_cache = TASK_UNMAPPED_BASE;
346         mm->cached_hole_size = ~0UL;
347         addr = hugetlb_get_unmapped_area_bottomup(file, addr0,
348                         len, pgoff, flags);
349
350         /*
351          * Restore the topdown base:
352          */
353         mm->free_area_cache = base;
354         mm->cached_hole_size = ~0UL;
355
356         return addr;
357 }
358
359 unsigned long
360 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
361                 unsigned long len, unsigned long pgoff, unsigned long flags)
362 {
363         struct mm_struct *mm = current->mm;
364         struct vm_area_struct *vma;
365
366         if (len & ~HPAGE_MASK)
367                 return -EINVAL;
368         if (len > TASK_SIZE)
369                 return -ENOMEM;
370
371         if (flags & MAP_FIXED) {
372                 if (prepare_hugepage_range(file, addr, len))
373                         return -EINVAL;
374                 return addr;
375         }
376
377         if (addr) {
378                 addr = ALIGN(addr, HPAGE_SIZE);
379                 vma = find_vma(mm, addr);
380                 if (TASK_SIZE - len >= addr &&
381                     (!vma || addr + len <= vma->vm_start))
382                         return addr;
383         }
384         if (mm->get_unmapped_area == arch_get_unmapped_area)
385                 return hugetlb_get_unmapped_area_bottomup(file, addr, len,
386                                 pgoff, flags);
387         else
388                 return hugetlb_get_unmapped_area_topdown(file, addr, len,
389                                 pgoff, flags);
390 }
391
392 #endif /*HAVE_ARCH_HUGETLB_UNMAPPED_AREA*/
393