hw-breakpoints: Wrap in the KVM breakpoint active state check
[safe/jmp/linux-2.6] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Amit Shah    <amit.shah@qumranet.com>
14  *   Ben-Ami Yassour <benami@il.ibm.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
28
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
40 #include <trace/events/kvm.h>
41 #undef TRACE_INCLUDE_FILE
42 #define CREATE_TRACE_POINTS
43 #include "trace.h"
44
45 #include <asm/debugreg.h>
46 #include <asm/uaccess.h>
47 #include <asm/msr.h>
48 #include <asm/desc.h>
49 #include <asm/mtrr.h>
50 #include <asm/mce.h>
51
52 #define MAX_IO_MSRS 256
53 #define CR0_RESERVED_BITS                                               \
54         (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
55                           | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
56                           | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
57 #define CR4_RESERVED_BITS                                               \
58         (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
59                           | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
60                           | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR  \
61                           | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
62
63 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
64
65 #define KVM_MAX_MCE_BANKS 32
66 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
67
68 /* EFER defaults:
69  * - enable syscall per default because its emulated by KVM
70  * - enable LME and LMA per default on 64 bit KVM
71  */
72 #ifdef CONFIG_X86_64
73 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
74 #else
75 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
76 #endif
77
78 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
79 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
80
81 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
82 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
83                                     struct kvm_cpuid_entry2 __user *entries);
84
85 struct kvm_x86_ops *kvm_x86_ops;
86 EXPORT_SYMBOL_GPL(kvm_x86_ops);
87
88 int ignore_msrs = 0;
89 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
90
91 struct kvm_stats_debugfs_item debugfs_entries[] = {
92         { "pf_fixed", VCPU_STAT(pf_fixed) },
93         { "pf_guest", VCPU_STAT(pf_guest) },
94         { "tlb_flush", VCPU_STAT(tlb_flush) },
95         { "invlpg", VCPU_STAT(invlpg) },
96         { "exits", VCPU_STAT(exits) },
97         { "io_exits", VCPU_STAT(io_exits) },
98         { "mmio_exits", VCPU_STAT(mmio_exits) },
99         { "signal_exits", VCPU_STAT(signal_exits) },
100         { "irq_window", VCPU_STAT(irq_window_exits) },
101         { "nmi_window", VCPU_STAT(nmi_window_exits) },
102         { "halt_exits", VCPU_STAT(halt_exits) },
103         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
104         { "hypercalls", VCPU_STAT(hypercalls) },
105         { "request_irq", VCPU_STAT(request_irq_exits) },
106         { "irq_exits", VCPU_STAT(irq_exits) },
107         { "host_state_reload", VCPU_STAT(host_state_reload) },
108         { "efer_reload", VCPU_STAT(efer_reload) },
109         { "fpu_reload", VCPU_STAT(fpu_reload) },
110         { "insn_emulation", VCPU_STAT(insn_emulation) },
111         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
112         { "irq_injections", VCPU_STAT(irq_injections) },
113         { "nmi_injections", VCPU_STAT(nmi_injections) },
114         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
115         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
116         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
117         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
118         { "mmu_flooded", VM_STAT(mmu_flooded) },
119         { "mmu_recycled", VM_STAT(mmu_recycled) },
120         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
121         { "mmu_unsync", VM_STAT(mmu_unsync) },
122         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
123         { "largepages", VM_STAT(lpages) },
124         { NULL }
125 };
126
127 unsigned long segment_base(u16 selector)
128 {
129         struct descriptor_table gdt;
130         struct desc_struct *d;
131         unsigned long table_base;
132         unsigned long v;
133
134         if (selector == 0)
135                 return 0;
136
137         kvm_get_gdt(&gdt);
138         table_base = gdt.base;
139
140         if (selector & 4) {           /* from ldt */
141                 u16 ldt_selector = kvm_read_ldt();
142
143                 table_base = segment_base(ldt_selector);
144         }
145         d = (struct desc_struct *)(table_base + (selector & ~7));
146         v = get_desc_base(d);
147 #ifdef CONFIG_X86_64
148         if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
149                 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
150 #endif
151         return v;
152 }
153 EXPORT_SYMBOL_GPL(segment_base);
154
155 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
156 {
157         if (irqchip_in_kernel(vcpu->kvm))
158                 return vcpu->arch.apic_base;
159         else
160                 return vcpu->arch.apic_base;
161 }
162 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
163
164 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
165 {
166         /* TODO: reserve bits check */
167         if (irqchip_in_kernel(vcpu->kvm))
168                 kvm_lapic_set_base(vcpu, data);
169         else
170                 vcpu->arch.apic_base = data;
171 }
172 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
173
174 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
175 {
176         WARN_ON(vcpu->arch.exception.pending);
177         vcpu->arch.exception.pending = true;
178         vcpu->arch.exception.has_error_code = false;
179         vcpu->arch.exception.nr = nr;
180 }
181 EXPORT_SYMBOL_GPL(kvm_queue_exception);
182
183 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
184                            u32 error_code)
185 {
186         ++vcpu->stat.pf_guest;
187
188         if (vcpu->arch.exception.pending) {
189                 switch(vcpu->arch.exception.nr) {
190                 case DF_VECTOR:
191                         /* triple fault -> shutdown */
192                         set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
193                         return;
194                 case PF_VECTOR:
195                         vcpu->arch.exception.nr = DF_VECTOR;
196                         vcpu->arch.exception.error_code = 0;
197                         return;
198                 default:
199                         /* replace previous exception with a new one in a hope
200                            that instruction re-execution will regenerate lost
201                            exception */
202                         vcpu->arch.exception.pending = false;
203                         break;
204                 }
205         }
206         vcpu->arch.cr2 = addr;
207         kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
208 }
209
210 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
211 {
212         vcpu->arch.nmi_pending = 1;
213 }
214 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
215
216 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
217 {
218         WARN_ON(vcpu->arch.exception.pending);
219         vcpu->arch.exception.pending = true;
220         vcpu->arch.exception.has_error_code = true;
221         vcpu->arch.exception.nr = nr;
222         vcpu->arch.exception.error_code = error_code;
223 }
224 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
225
226 /*
227  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
228  * a #GP and return false.
229  */
230 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
231 {
232         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
233                 return true;
234         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
235         return false;
236 }
237 EXPORT_SYMBOL_GPL(kvm_require_cpl);
238
239 /*
240  * Load the pae pdptrs.  Return true is they are all valid.
241  */
242 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
243 {
244         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
245         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
246         int i;
247         int ret;
248         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
249
250         ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
251                                   offset * sizeof(u64), sizeof(pdpte));
252         if (ret < 0) {
253                 ret = 0;
254                 goto out;
255         }
256         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
257                 if (is_present_gpte(pdpte[i]) &&
258                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
259                         ret = 0;
260                         goto out;
261                 }
262         }
263         ret = 1;
264
265         memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
266         __set_bit(VCPU_EXREG_PDPTR,
267                   (unsigned long *)&vcpu->arch.regs_avail);
268         __set_bit(VCPU_EXREG_PDPTR,
269                   (unsigned long *)&vcpu->arch.regs_dirty);
270 out:
271
272         return ret;
273 }
274 EXPORT_SYMBOL_GPL(load_pdptrs);
275
276 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
277 {
278         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
279         bool changed = true;
280         int r;
281
282         if (is_long_mode(vcpu) || !is_pae(vcpu))
283                 return false;
284
285         if (!test_bit(VCPU_EXREG_PDPTR,
286                       (unsigned long *)&vcpu->arch.regs_avail))
287                 return true;
288
289         r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
290         if (r < 0)
291                 goto out;
292         changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
293 out:
294
295         return changed;
296 }
297
298 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
299 {
300         if (cr0 & CR0_RESERVED_BITS) {
301                 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
302                        cr0, vcpu->arch.cr0);
303                 kvm_inject_gp(vcpu, 0);
304                 return;
305         }
306
307         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
308                 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
309                 kvm_inject_gp(vcpu, 0);
310                 return;
311         }
312
313         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
314                 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
315                        "and a clear PE flag\n");
316                 kvm_inject_gp(vcpu, 0);
317                 return;
318         }
319
320         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
321 #ifdef CONFIG_X86_64
322                 if ((vcpu->arch.shadow_efer & EFER_LME)) {
323                         int cs_db, cs_l;
324
325                         if (!is_pae(vcpu)) {
326                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
327                                        "in long mode while PAE is disabled\n");
328                                 kvm_inject_gp(vcpu, 0);
329                                 return;
330                         }
331                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
332                         if (cs_l) {
333                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
334                                        "in long mode while CS.L == 1\n");
335                                 kvm_inject_gp(vcpu, 0);
336                                 return;
337
338                         }
339                 } else
340 #endif
341                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
342                         printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
343                                "reserved bits\n");
344                         kvm_inject_gp(vcpu, 0);
345                         return;
346                 }
347
348         }
349
350         kvm_x86_ops->set_cr0(vcpu, cr0);
351         vcpu->arch.cr0 = cr0;
352
353         kvm_mmu_reset_context(vcpu);
354         return;
355 }
356 EXPORT_SYMBOL_GPL(kvm_set_cr0);
357
358 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
359 {
360         kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
361 }
362 EXPORT_SYMBOL_GPL(kvm_lmsw);
363
364 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
365 {
366         unsigned long old_cr4 = vcpu->arch.cr4;
367         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
368
369         if (cr4 & CR4_RESERVED_BITS) {
370                 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
371                 kvm_inject_gp(vcpu, 0);
372                 return;
373         }
374
375         if (is_long_mode(vcpu)) {
376                 if (!(cr4 & X86_CR4_PAE)) {
377                         printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
378                                "in long mode\n");
379                         kvm_inject_gp(vcpu, 0);
380                         return;
381                 }
382         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
383                    && ((cr4 ^ old_cr4) & pdptr_bits)
384                    && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
385                 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
386                 kvm_inject_gp(vcpu, 0);
387                 return;
388         }
389
390         if (cr4 & X86_CR4_VMXE) {
391                 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
392                 kvm_inject_gp(vcpu, 0);
393                 return;
394         }
395         kvm_x86_ops->set_cr4(vcpu, cr4);
396         vcpu->arch.cr4 = cr4;
397         vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
398         kvm_mmu_reset_context(vcpu);
399 }
400 EXPORT_SYMBOL_GPL(kvm_set_cr4);
401
402 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
403 {
404         if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
405                 kvm_mmu_sync_roots(vcpu);
406                 kvm_mmu_flush_tlb(vcpu);
407                 return;
408         }
409
410         if (is_long_mode(vcpu)) {
411                 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
412                         printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
413                         kvm_inject_gp(vcpu, 0);
414                         return;
415                 }
416         } else {
417                 if (is_pae(vcpu)) {
418                         if (cr3 & CR3_PAE_RESERVED_BITS) {
419                                 printk(KERN_DEBUG
420                                        "set_cr3: #GP, reserved bits\n");
421                                 kvm_inject_gp(vcpu, 0);
422                                 return;
423                         }
424                         if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
425                                 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
426                                        "reserved bits\n");
427                                 kvm_inject_gp(vcpu, 0);
428                                 return;
429                         }
430                 }
431                 /*
432                  * We don't check reserved bits in nonpae mode, because
433                  * this isn't enforced, and VMware depends on this.
434                  */
435         }
436
437         /*
438          * Does the new cr3 value map to physical memory? (Note, we
439          * catch an invalid cr3 even in real-mode, because it would
440          * cause trouble later on when we turn on paging anyway.)
441          *
442          * A real CPU would silently accept an invalid cr3 and would
443          * attempt to use it - with largely undefined (and often hard
444          * to debug) behavior on the guest side.
445          */
446         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
447                 kvm_inject_gp(vcpu, 0);
448         else {
449                 vcpu->arch.cr3 = cr3;
450                 vcpu->arch.mmu.new_cr3(vcpu);
451         }
452 }
453 EXPORT_SYMBOL_GPL(kvm_set_cr3);
454
455 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
456 {
457         if (cr8 & CR8_RESERVED_BITS) {
458                 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
459                 kvm_inject_gp(vcpu, 0);
460                 return;
461         }
462         if (irqchip_in_kernel(vcpu->kvm))
463                 kvm_lapic_set_tpr(vcpu, cr8);
464         else
465                 vcpu->arch.cr8 = cr8;
466 }
467 EXPORT_SYMBOL_GPL(kvm_set_cr8);
468
469 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
470 {
471         if (irqchip_in_kernel(vcpu->kvm))
472                 return kvm_lapic_get_cr8(vcpu);
473         else
474                 return vcpu->arch.cr8;
475 }
476 EXPORT_SYMBOL_GPL(kvm_get_cr8);
477
478 static inline u32 bit(int bitno)
479 {
480         return 1 << (bitno & 31);
481 }
482
483 /*
484  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
485  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
486  *
487  * This list is modified at module load time to reflect the
488  * capabilities of the host cpu.
489  */
490 static u32 msrs_to_save[] = {
491         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
492         MSR_K6_STAR,
493 #ifdef CONFIG_X86_64
494         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
495 #endif
496         MSR_IA32_TSC, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
497         MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
498 };
499
500 static unsigned num_msrs_to_save;
501
502 static u32 emulated_msrs[] = {
503         MSR_IA32_MISC_ENABLE,
504 };
505
506 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
507 {
508         if (efer & efer_reserved_bits) {
509                 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
510                        efer);
511                 kvm_inject_gp(vcpu, 0);
512                 return;
513         }
514
515         if (is_paging(vcpu)
516             && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
517                 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
518                 kvm_inject_gp(vcpu, 0);
519                 return;
520         }
521
522         if (efer & EFER_FFXSR) {
523                 struct kvm_cpuid_entry2 *feat;
524
525                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
526                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
527                         printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
528                         kvm_inject_gp(vcpu, 0);
529                         return;
530                 }
531         }
532
533         if (efer & EFER_SVME) {
534                 struct kvm_cpuid_entry2 *feat;
535
536                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
537                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
538                         printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
539                         kvm_inject_gp(vcpu, 0);
540                         return;
541                 }
542         }
543
544         kvm_x86_ops->set_efer(vcpu, efer);
545
546         efer &= ~EFER_LMA;
547         efer |= vcpu->arch.shadow_efer & EFER_LMA;
548
549         vcpu->arch.shadow_efer = efer;
550
551         vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
552         kvm_mmu_reset_context(vcpu);
553 }
554
555 void kvm_enable_efer_bits(u64 mask)
556 {
557        efer_reserved_bits &= ~mask;
558 }
559 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
560
561
562 /*
563  * Writes msr value into into the appropriate "register".
564  * Returns 0 on success, non-0 otherwise.
565  * Assumes vcpu_load() was already called.
566  */
567 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
568 {
569         return kvm_x86_ops->set_msr(vcpu, msr_index, data);
570 }
571
572 /*
573  * Adapt set_msr() to msr_io()'s calling convention
574  */
575 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
576 {
577         return kvm_set_msr(vcpu, index, *data);
578 }
579
580 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
581 {
582         static int version;
583         struct pvclock_wall_clock wc;
584         struct timespec now, sys, boot;
585
586         if (!wall_clock)
587                 return;
588
589         version++;
590
591         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
592
593         /*
594          * The guest calculates current wall clock time by adding
595          * system time (updated by kvm_write_guest_time below) to the
596          * wall clock specified here.  guest system time equals host
597          * system time for us, thus we must fill in host boot time here.
598          */
599         now = current_kernel_time();
600         ktime_get_ts(&sys);
601         boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
602
603         wc.sec = boot.tv_sec;
604         wc.nsec = boot.tv_nsec;
605         wc.version = version;
606
607         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
608
609         version++;
610         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
611 }
612
613 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
614 {
615         uint32_t quotient, remainder;
616
617         /* Don't try to replace with do_div(), this one calculates
618          * "(dividend << 32) / divisor" */
619         __asm__ ( "divl %4"
620                   : "=a" (quotient), "=d" (remainder)
621                   : "0" (0), "1" (dividend), "r" (divisor) );
622         return quotient;
623 }
624
625 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
626 {
627         uint64_t nsecs = 1000000000LL;
628         int32_t  shift = 0;
629         uint64_t tps64;
630         uint32_t tps32;
631
632         tps64 = tsc_khz * 1000LL;
633         while (tps64 > nsecs*2) {
634                 tps64 >>= 1;
635                 shift--;
636         }
637
638         tps32 = (uint32_t)tps64;
639         while (tps32 <= (uint32_t)nsecs) {
640                 tps32 <<= 1;
641                 shift++;
642         }
643
644         hv_clock->tsc_shift = shift;
645         hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
646
647         pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
648                  __func__, tsc_khz, hv_clock->tsc_shift,
649                  hv_clock->tsc_to_system_mul);
650 }
651
652 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
653
654 static void kvm_write_guest_time(struct kvm_vcpu *v)
655 {
656         struct timespec ts;
657         unsigned long flags;
658         struct kvm_vcpu_arch *vcpu = &v->arch;
659         void *shared_kaddr;
660         unsigned long this_tsc_khz;
661
662         if ((!vcpu->time_page))
663                 return;
664
665         this_tsc_khz = get_cpu_var(cpu_tsc_khz);
666         if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
667                 kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
668                 vcpu->hv_clock_tsc_khz = this_tsc_khz;
669         }
670         put_cpu_var(cpu_tsc_khz);
671
672         /* Keep irq disabled to prevent changes to the clock */
673         local_irq_save(flags);
674         kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
675         ktime_get_ts(&ts);
676         local_irq_restore(flags);
677
678         /* With all the info we got, fill in the values */
679
680         vcpu->hv_clock.system_time = ts.tv_nsec +
681                                      (NSEC_PER_SEC * (u64)ts.tv_sec);
682         /*
683          * The interface expects us to write an even number signaling that the
684          * update is finished. Since the guest won't see the intermediate
685          * state, we just increase by 2 at the end.
686          */
687         vcpu->hv_clock.version += 2;
688
689         shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
690
691         memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
692                sizeof(vcpu->hv_clock));
693
694         kunmap_atomic(shared_kaddr, KM_USER0);
695
696         mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
697 }
698
699 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
700 {
701         struct kvm_vcpu_arch *vcpu = &v->arch;
702
703         if (!vcpu->time_page)
704                 return 0;
705         set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
706         return 1;
707 }
708
709 static bool msr_mtrr_valid(unsigned msr)
710 {
711         switch (msr) {
712         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
713         case MSR_MTRRfix64K_00000:
714         case MSR_MTRRfix16K_80000:
715         case MSR_MTRRfix16K_A0000:
716         case MSR_MTRRfix4K_C0000:
717         case MSR_MTRRfix4K_C8000:
718         case MSR_MTRRfix4K_D0000:
719         case MSR_MTRRfix4K_D8000:
720         case MSR_MTRRfix4K_E0000:
721         case MSR_MTRRfix4K_E8000:
722         case MSR_MTRRfix4K_F0000:
723         case MSR_MTRRfix4K_F8000:
724         case MSR_MTRRdefType:
725         case MSR_IA32_CR_PAT:
726                 return true;
727         case 0x2f8:
728                 return true;
729         }
730         return false;
731 }
732
733 static bool valid_pat_type(unsigned t)
734 {
735         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
736 }
737
738 static bool valid_mtrr_type(unsigned t)
739 {
740         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
741 }
742
743 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
744 {
745         int i;
746
747         if (!msr_mtrr_valid(msr))
748                 return false;
749
750         if (msr == MSR_IA32_CR_PAT) {
751                 for (i = 0; i < 8; i++)
752                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
753                                 return false;
754                 return true;
755         } else if (msr == MSR_MTRRdefType) {
756                 if (data & ~0xcff)
757                         return false;
758                 return valid_mtrr_type(data & 0xff);
759         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
760                 for (i = 0; i < 8 ; i++)
761                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
762                                 return false;
763                 return true;
764         }
765
766         /* variable MTRRs */
767         return valid_mtrr_type(data & 0xff);
768 }
769
770 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
771 {
772         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
773
774         if (!mtrr_valid(vcpu, msr, data))
775                 return 1;
776
777         if (msr == MSR_MTRRdefType) {
778                 vcpu->arch.mtrr_state.def_type = data;
779                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
780         } else if (msr == MSR_MTRRfix64K_00000)
781                 p[0] = data;
782         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
783                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
784         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
785                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
786         else if (msr == MSR_IA32_CR_PAT)
787                 vcpu->arch.pat = data;
788         else {  /* Variable MTRRs */
789                 int idx, is_mtrr_mask;
790                 u64 *pt;
791
792                 idx = (msr - 0x200) / 2;
793                 is_mtrr_mask = msr - 0x200 - 2 * idx;
794                 if (!is_mtrr_mask)
795                         pt =
796                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
797                 else
798                         pt =
799                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
800                 *pt = data;
801         }
802
803         kvm_mmu_reset_context(vcpu);
804         return 0;
805 }
806
807 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
808 {
809         u64 mcg_cap = vcpu->arch.mcg_cap;
810         unsigned bank_num = mcg_cap & 0xff;
811
812         switch (msr) {
813         case MSR_IA32_MCG_STATUS:
814                 vcpu->arch.mcg_status = data;
815                 break;
816         case MSR_IA32_MCG_CTL:
817                 if (!(mcg_cap & MCG_CTL_P))
818                         return 1;
819                 if (data != 0 && data != ~(u64)0)
820                         return -1;
821                 vcpu->arch.mcg_ctl = data;
822                 break;
823         default:
824                 if (msr >= MSR_IA32_MC0_CTL &&
825                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
826                         u32 offset = msr - MSR_IA32_MC0_CTL;
827                         /* only 0 or all 1s can be written to IA32_MCi_CTL */
828                         if ((offset & 0x3) == 0 &&
829                             data != 0 && data != ~(u64)0)
830                                 return -1;
831                         vcpu->arch.mce_banks[offset] = data;
832                         break;
833                 }
834                 return 1;
835         }
836         return 0;
837 }
838
839 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
840 {
841         switch (msr) {
842         case MSR_EFER:
843                 set_efer(vcpu, data);
844                 break;
845         case MSR_K7_HWCR:
846                 data &= ~(u64)0x40;     /* ignore flush filter disable */
847                 if (data != 0) {
848                         pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
849                                 data);
850                         return 1;
851                 }
852                 break;
853         case MSR_FAM10H_MMIO_CONF_BASE:
854                 if (data != 0) {
855                         pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
856                                 "0x%llx\n", data);
857                         return 1;
858                 }
859                 break;
860         case MSR_AMD64_NB_CFG:
861                 break;
862         case MSR_IA32_DEBUGCTLMSR:
863                 if (!data) {
864                         /* We support the non-activated case already */
865                         break;
866                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
867                         /* Values other than LBR and BTF are vendor-specific,
868                            thus reserved and should throw a #GP */
869                         return 1;
870                 }
871                 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
872                         __func__, data);
873                 break;
874         case MSR_IA32_UCODE_REV:
875         case MSR_IA32_UCODE_WRITE:
876         case MSR_VM_HSAVE_PA:
877         case MSR_AMD64_PATCH_LOADER:
878                 break;
879         case 0x200 ... 0x2ff:
880                 return set_msr_mtrr(vcpu, msr, data);
881         case MSR_IA32_APICBASE:
882                 kvm_set_apic_base(vcpu, data);
883                 break;
884         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
885                 return kvm_x2apic_msr_write(vcpu, msr, data);
886         case MSR_IA32_MISC_ENABLE:
887                 vcpu->arch.ia32_misc_enable_msr = data;
888                 break;
889         case MSR_KVM_WALL_CLOCK:
890                 vcpu->kvm->arch.wall_clock = data;
891                 kvm_write_wall_clock(vcpu->kvm, data);
892                 break;
893         case MSR_KVM_SYSTEM_TIME: {
894                 if (vcpu->arch.time_page) {
895                         kvm_release_page_dirty(vcpu->arch.time_page);
896                         vcpu->arch.time_page = NULL;
897                 }
898
899                 vcpu->arch.time = data;
900
901                 /* we verify if the enable bit is set... */
902                 if (!(data & 1))
903                         break;
904
905                 /* ...but clean it before doing the actual write */
906                 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
907
908                 vcpu->arch.time_page =
909                                 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
910
911                 if (is_error_page(vcpu->arch.time_page)) {
912                         kvm_release_page_clean(vcpu->arch.time_page);
913                         vcpu->arch.time_page = NULL;
914                 }
915
916                 kvm_request_guest_time_update(vcpu);
917                 break;
918         }
919         case MSR_IA32_MCG_CTL:
920         case MSR_IA32_MCG_STATUS:
921         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
922                 return set_msr_mce(vcpu, msr, data);
923
924         /* Performance counters are not protected by a CPUID bit,
925          * so we should check all of them in the generic path for the sake of
926          * cross vendor migration.
927          * Writing a zero into the event select MSRs disables them,
928          * which we perfectly emulate ;-). Any other value should be at least
929          * reported, some guests depend on them.
930          */
931         case MSR_P6_EVNTSEL0:
932         case MSR_P6_EVNTSEL1:
933         case MSR_K7_EVNTSEL0:
934         case MSR_K7_EVNTSEL1:
935         case MSR_K7_EVNTSEL2:
936         case MSR_K7_EVNTSEL3:
937                 if (data != 0)
938                         pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
939                                 "0x%x data 0x%llx\n", msr, data);
940                 break;
941         /* at least RHEL 4 unconditionally writes to the perfctr registers,
942          * so we ignore writes to make it happy.
943          */
944         case MSR_P6_PERFCTR0:
945         case MSR_P6_PERFCTR1:
946         case MSR_K7_PERFCTR0:
947         case MSR_K7_PERFCTR1:
948         case MSR_K7_PERFCTR2:
949         case MSR_K7_PERFCTR3:
950                 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
951                         "0x%x data 0x%llx\n", msr, data);
952                 break;
953         default:
954                 if (!ignore_msrs) {
955                         pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
956                                 msr, data);
957                         return 1;
958                 } else {
959                         pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
960                                 msr, data);
961                         break;
962                 }
963         }
964         return 0;
965 }
966 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
967
968
969 /*
970  * Reads an msr value (of 'msr_index') into 'pdata'.
971  * Returns 0 on success, non-0 otherwise.
972  * Assumes vcpu_load() was already called.
973  */
974 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
975 {
976         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
977 }
978
979 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
980 {
981         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
982
983         if (!msr_mtrr_valid(msr))
984                 return 1;
985
986         if (msr == MSR_MTRRdefType)
987                 *pdata = vcpu->arch.mtrr_state.def_type +
988                          (vcpu->arch.mtrr_state.enabled << 10);
989         else if (msr == MSR_MTRRfix64K_00000)
990                 *pdata = p[0];
991         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
992                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
993         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
994                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
995         else if (msr == MSR_IA32_CR_PAT)
996                 *pdata = vcpu->arch.pat;
997         else {  /* Variable MTRRs */
998                 int idx, is_mtrr_mask;
999                 u64 *pt;
1000
1001                 idx = (msr - 0x200) / 2;
1002                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1003                 if (!is_mtrr_mask)
1004                         pt =
1005                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1006                 else
1007                         pt =
1008                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1009                 *pdata = *pt;
1010         }
1011
1012         return 0;
1013 }
1014
1015 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1016 {
1017         u64 data;
1018         u64 mcg_cap = vcpu->arch.mcg_cap;
1019         unsigned bank_num = mcg_cap & 0xff;
1020
1021         switch (msr) {
1022         case MSR_IA32_P5_MC_ADDR:
1023         case MSR_IA32_P5_MC_TYPE:
1024                 data = 0;
1025                 break;
1026         case MSR_IA32_MCG_CAP:
1027                 data = vcpu->arch.mcg_cap;
1028                 break;
1029         case MSR_IA32_MCG_CTL:
1030                 if (!(mcg_cap & MCG_CTL_P))
1031                         return 1;
1032                 data = vcpu->arch.mcg_ctl;
1033                 break;
1034         case MSR_IA32_MCG_STATUS:
1035                 data = vcpu->arch.mcg_status;
1036                 break;
1037         default:
1038                 if (msr >= MSR_IA32_MC0_CTL &&
1039                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1040                         u32 offset = msr - MSR_IA32_MC0_CTL;
1041                         data = vcpu->arch.mce_banks[offset];
1042                         break;
1043                 }
1044                 return 1;
1045         }
1046         *pdata = data;
1047         return 0;
1048 }
1049
1050 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1051 {
1052         u64 data;
1053
1054         switch (msr) {
1055         case MSR_IA32_PLATFORM_ID:
1056         case MSR_IA32_UCODE_REV:
1057         case MSR_IA32_EBL_CR_POWERON:
1058         case MSR_IA32_DEBUGCTLMSR:
1059         case MSR_IA32_LASTBRANCHFROMIP:
1060         case MSR_IA32_LASTBRANCHTOIP:
1061         case MSR_IA32_LASTINTFROMIP:
1062         case MSR_IA32_LASTINTTOIP:
1063         case MSR_K8_SYSCFG:
1064         case MSR_K7_HWCR:
1065         case MSR_VM_HSAVE_PA:
1066         case MSR_P6_PERFCTR0:
1067         case MSR_P6_PERFCTR1:
1068         case MSR_P6_EVNTSEL0:
1069         case MSR_P6_EVNTSEL1:
1070         case MSR_K7_EVNTSEL0:
1071         case MSR_K7_PERFCTR0:
1072         case MSR_K8_INT_PENDING_MSG:
1073         case MSR_AMD64_NB_CFG:
1074         case MSR_FAM10H_MMIO_CONF_BASE:
1075                 data = 0;
1076                 break;
1077         case MSR_MTRRcap:
1078                 data = 0x500 | KVM_NR_VAR_MTRR;
1079                 break;
1080         case 0x200 ... 0x2ff:
1081                 return get_msr_mtrr(vcpu, msr, pdata);
1082         case 0xcd: /* fsb frequency */
1083                 data = 3;
1084                 break;
1085         case MSR_IA32_APICBASE:
1086                 data = kvm_get_apic_base(vcpu);
1087                 break;
1088         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1089                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1090                 break;
1091         case MSR_IA32_MISC_ENABLE:
1092                 data = vcpu->arch.ia32_misc_enable_msr;
1093                 break;
1094         case MSR_IA32_PERF_STATUS:
1095                 /* TSC increment by tick */
1096                 data = 1000ULL;
1097                 /* CPU multiplier */
1098                 data |= (((uint64_t)4ULL) << 40);
1099                 break;
1100         case MSR_EFER:
1101                 data = vcpu->arch.shadow_efer;
1102                 break;
1103         case MSR_KVM_WALL_CLOCK:
1104                 data = vcpu->kvm->arch.wall_clock;
1105                 break;
1106         case MSR_KVM_SYSTEM_TIME:
1107                 data = vcpu->arch.time;
1108                 break;
1109         case MSR_IA32_P5_MC_ADDR:
1110         case MSR_IA32_P5_MC_TYPE:
1111         case MSR_IA32_MCG_CAP:
1112         case MSR_IA32_MCG_CTL:
1113         case MSR_IA32_MCG_STATUS:
1114         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1115                 return get_msr_mce(vcpu, msr, pdata);
1116         default:
1117                 if (!ignore_msrs) {
1118                         pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1119                         return 1;
1120                 } else {
1121                         pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1122                         data = 0;
1123                 }
1124                 break;
1125         }
1126         *pdata = data;
1127         return 0;
1128 }
1129 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1130
1131 /*
1132  * Read or write a bunch of msrs. All parameters are kernel addresses.
1133  *
1134  * @return number of msrs set successfully.
1135  */
1136 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1137                     struct kvm_msr_entry *entries,
1138                     int (*do_msr)(struct kvm_vcpu *vcpu,
1139                                   unsigned index, u64 *data))
1140 {
1141         int i;
1142
1143         vcpu_load(vcpu);
1144
1145         down_read(&vcpu->kvm->slots_lock);
1146         for (i = 0; i < msrs->nmsrs; ++i)
1147                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1148                         break;
1149         up_read(&vcpu->kvm->slots_lock);
1150
1151         vcpu_put(vcpu);
1152
1153         return i;
1154 }
1155
1156 /*
1157  * Read or write a bunch of msrs. Parameters are user addresses.
1158  *
1159  * @return number of msrs set successfully.
1160  */
1161 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1162                   int (*do_msr)(struct kvm_vcpu *vcpu,
1163                                 unsigned index, u64 *data),
1164                   int writeback)
1165 {
1166         struct kvm_msrs msrs;
1167         struct kvm_msr_entry *entries;
1168         int r, n;
1169         unsigned size;
1170
1171         r = -EFAULT;
1172         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1173                 goto out;
1174
1175         r = -E2BIG;
1176         if (msrs.nmsrs >= MAX_IO_MSRS)
1177                 goto out;
1178
1179         r = -ENOMEM;
1180         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1181         entries = vmalloc(size);
1182         if (!entries)
1183                 goto out;
1184
1185         r = -EFAULT;
1186         if (copy_from_user(entries, user_msrs->entries, size))
1187                 goto out_free;
1188
1189         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1190         if (r < 0)
1191                 goto out_free;
1192
1193         r = -EFAULT;
1194         if (writeback && copy_to_user(user_msrs->entries, entries, size))
1195                 goto out_free;
1196
1197         r = n;
1198
1199 out_free:
1200         vfree(entries);
1201 out:
1202         return r;
1203 }
1204
1205 int kvm_dev_ioctl_check_extension(long ext)
1206 {
1207         int r;
1208
1209         switch (ext) {
1210         case KVM_CAP_IRQCHIP:
1211         case KVM_CAP_HLT:
1212         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1213         case KVM_CAP_SET_TSS_ADDR:
1214         case KVM_CAP_EXT_CPUID:
1215         case KVM_CAP_CLOCKSOURCE:
1216         case KVM_CAP_PIT:
1217         case KVM_CAP_NOP_IO_DELAY:
1218         case KVM_CAP_MP_STATE:
1219         case KVM_CAP_SYNC_MMU:
1220         case KVM_CAP_REINJECT_CONTROL:
1221         case KVM_CAP_IRQ_INJECT_STATUS:
1222         case KVM_CAP_ASSIGN_DEV_IRQ:
1223         case KVM_CAP_IRQFD:
1224         case KVM_CAP_IOEVENTFD:
1225         case KVM_CAP_PIT2:
1226         case KVM_CAP_PIT_STATE2:
1227         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1228                 r = 1;
1229                 break;
1230         case KVM_CAP_COALESCED_MMIO:
1231                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1232                 break;
1233         case KVM_CAP_VAPIC:
1234                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1235                 break;
1236         case KVM_CAP_NR_VCPUS:
1237                 r = KVM_MAX_VCPUS;
1238                 break;
1239         case KVM_CAP_NR_MEMSLOTS:
1240                 r = KVM_MEMORY_SLOTS;
1241                 break;
1242         case KVM_CAP_PV_MMU:
1243                 r = !tdp_enabled;
1244                 break;
1245         case KVM_CAP_IOMMU:
1246                 r = iommu_found();
1247                 break;
1248         case KVM_CAP_MCE:
1249                 r = KVM_MAX_MCE_BANKS;
1250                 break;
1251         default:
1252                 r = 0;
1253                 break;
1254         }
1255         return r;
1256
1257 }
1258
1259 long kvm_arch_dev_ioctl(struct file *filp,
1260                         unsigned int ioctl, unsigned long arg)
1261 {
1262         void __user *argp = (void __user *)arg;
1263         long r;
1264
1265         switch (ioctl) {
1266         case KVM_GET_MSR_INDEX_LIST: {
1267                 struct kvm_msr_list __user *user_msr_list = argp;
1268                 struct kvm_msr_list msr_list;
1269                 unsigned n;
1270
1271                 r = -EFAULT;
1272                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1273                         goto out;
1274                 n = msr_list.nmsrs;
1275                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1276                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1277                         goto out;
1278                 r = -E2BIG;
1279                 if (n < msr_list.nmsrs)
1280                         goto out;
1281                 r = -EFAULT;
1282                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1283                                  num_msrs_to_save * sizeof(u32)))
1284                         goto out;
1285                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1286                                  &emulated_msrs,
1287                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1288                         goto out;
1289                 r = 0;
1290                 break;
1291         }
1292         case KVM_GET_SUPPORTED_CPUID: {
1293                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1294                 struct kvm_cpuid2 cpuid;
1295
1296                 r = -EFAULT;
1297                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1298                         goto out;
1299                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1300                                                       cpuid_arg->entries);
1301                 if (r)
1302                         goto out;
1303
1304                 r = -EFAULT;
1305                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1306                         goto out;
1307                 r = 0;
1308                 break;
1309         }
1310         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
1311                 u64 mce_cap;
1312
1313                 mce_cap = KVM_MCE_CAP_SUPPORTED;
1314                 r = -EFAULT;
1315                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
1316                         goto out;
1317                 r = 0;
1318                 break;
1319         }
1320         default:
1321                 r = -EINVAL;
1322         }
1323 out:
1324         return r;
1325 }
1326
1327 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1328 {
1329         kvm_x86_ops->vcpu_load(vcpu, cpu);
1330         kvm_request_guest_time_update(vcpu);
1331 }
1332
1333 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1334 {
1335         kvm_x86_ops->vcpu_put(vcpu);
1336         kvm_put_guest_fpu(vcpu);
1337 }
1338
1339 static int is_efer_nx(void)
1340 {
1341         unsigned long long efer = 0;
1342
1343         rdmsrl_safe(MSR_EFER, &efer);
1344         return efer & EFER_NX;
1345 }
1346
1347 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1348 {
1349         int i;
1350         struct kvm_cpuid_entry2 *e, *entry;
1351
1352         entry = NULL;
1353         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1354                 e = &vcpu->arch.cpuid_entries[i];
1355                 if (e->function == 0x80000001) {
1356                         entry = e;
1357                         break;
1358                 }
1359         }
1360         if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1361                 entry->edx &= ~(1 << 20);
1362                 printk(KERN_INFO "kvm: guest NX capability removed\n");
1363         }
1364 }
1365
1366 /* when an old userspace process fills a new kernel module */
1367 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1368                                     struct kvm_cpuid *cpuid,
1369                                     struct kvm_cpuid_entry __user *entries)
1370 {
1371         int r, i;
1372         struct kvm_cpuid_entry *cpuid_entries;
1373
1374         r = -E2BIG;
1375         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1376                 goto out;
1377         r = -ENOMEM;
1378         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1379         if (!cpuid_entries)
1380                 goto out;
1381         r = -EFAULT;
1382         if (copy_from_user(cpuid_entries, entries,
1383                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1384                 goto out_free;
1385         for (i = 0; i < cpuid->nent; i++) {
1386                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1387                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1388                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1389                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1390                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1391                 vcpu->arch.cpuid_entries[i].index = 0;
1392                 vcpu->arch.cpuid_entries[i].flags = 0;
1393                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1394                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1395                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1396         }
1397         vcpu->arch.cpuid_nent = cpuid->nent;
1398         cpuid_fix_nx_cap(vcpu);
1399         r = 0;
1400         kvm_apic_set_version(vcpu);
1401
1402 out_free:
1403         vfree(cpuid_entries);
1404 out:
1405         return r;
1406 }
1407
1408 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1409                                      struct kvm_cpuid2 *cpuid,
1410                                      struct kvm_cpuid_entry2 __user *entries)
1411 {
1412         int r;
1413
1414         r = -E2BIG;
1415         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1416                 goto out;
1417         r = -EFAULT;
1418         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1419                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1420                 goto out;
1421         vcpu->arch.cpuid_nent = cpuid->nent;
1422         kvm_apic_set_version(vcpu);
1423         return 0;
1424
1425 out:
1426         return r;
1427 }
1428
1429 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1430                                      struct kvm_cpuid2 *cpuid,
1431                                      struct kvm_cpuid_entry2 __user *entries)
1432 {
1433         int r;
1434
1435         r = -E2BIG;
1436         if (cpuid->nent < vcpu->arch.cpuid_nent)
1437                 goto out;
1438         r = -EFAULT;
1439         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1440                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1441                 goto out;
1442         return 0;
1443
1444 out:
1445         cpuid->nent = vcpu->arch.cpuid_nent;
1446         return r;
1447 }
1448
1449 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1450                            u32 index)
1451 {
1452         entry->function = function;
1453         entry->index = index;
1454         cpuid_count(entry->function, entry->index,
1455                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1456         entry->flags = 0;
1457 }
1458
1459 #define F(x) bit(X86_FEATURE_##x)
1460
1461 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1462                          u32 index, int *nent, int maxnent)
1463 {
1464         unsigned f_nx = is_efer_nx() ? F(NX) : 0;
1465         unsigned f_gbpages = kvm_x86_ops->gb_page_enable() ? F(GBPAGES) : 0;
1466 #ifdef CONFIG_X86_64
1467         unsigned f_lm = F(LM);
1468 #else
1469         unsigned f_lm = 0;
1470 #endif
1471
1472         /* cpuid 1.edx */
1473         const u32 kvm_supported_word0_x86_features =
1474                 F(FPU) | F(VME) | F(DE) | F(PSE) |
1475                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1476                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
1477                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1478                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
1479                 0 /* Reserved, DS, ACPI */ | F(MMX) |
1480                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
1481                 0 /* HTT, TM, Reserved, PBE */;
1482         /* cpuid 0x80000001.edx */
1483         const u32 kvm_supported_word1_x86_features =
1484                 F(FPU) | F(VME) | F(DE) | F(PSE) |
1485                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1486                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
1487                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1488                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
1489                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
1490                 F(FXSR) | F(FXSR_OPT) | f_gbpages | 0 /* RDTSCP */ |
1491                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
1492         /* cpuid 1.ecx */
1493         const u32 kvm_supported_word4_x86_features =
1494                 F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
1495                 0 /* DS-CPL, VMX, SMX, EST */ |
1496                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
1497                 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
1498                 0 /* Reserved, DCA */ | F(XMM4_1) |
1499                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
1500                 0 /* Reserved, XSAVE, OSXSAVE */;
1501         /* cpuid 0x80000001.ecx */
1502         const u32 kvm_supported_word6_x86_features =
1503                 F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
1504                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
1505                 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
1506                 0 /* SKINIT */ | 0 /* WDT */;
1507
1508         /* all calls to cpuid_count() should be made on the same cpu */
1509         get_cpu();
1510         do_cpuid_1_ent(entry, function, index);
1511         ++*nent;
1512
1513         switch (function) {
1514         case 0:
1515                 entry->eax = min(entry->eax, (u32)0xb);
1516                 break;
1517         case 1:
1518                 entry->edx &= kvm_supported_word0_x86_features;
1519                 entry->ecx &= kvm_supported_word4_x86_features;
1520                 /* we support x2apic emulation even if host does not support
1521                  * it since we emulate x2apic in software */
1522                 entry->ecx |= F(X2APIC);
1523                 break;
1524         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1525          * may return different values. This forces us to get_cpu() before
1526          * issuing the first command, and also to emulate this annoying behavior
1527          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1528         case 2: {
1529                 int t, times = entry->eax & 0xff;
1530
1531                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1532                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
1533                 for (t = 1; t < times && *nent < maxnent; ++t) {
1534                         do_cpuid_1_ent(&entry[t], function, 0);
1535                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1536                         ++*nent;
1537                 }
1538                 break;
1539         }
1540         /* function 4 and 0xb have additional index. */
1541         case 4: {
1542                 int i, cache_type;
1543
1544                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1545                 /* read more entries until cache_type is zero */
1546                 for (i = 1; *nent < maxnent; ++i) {
1547                         cache_type = entry[i - 1].eax & 0x1f;
1548                         if (!cache_type)
1549                                 break;
1550                         do_cpuid_1_ent(&entry[i], function, i);
1551                         entry[i].flags |=
1552                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1553                         ++*nent;
1554                 }
1555                 break;
1556         }
1557         case 0xb: {
1558                 int i, level_type;
1559
1560                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1561                 /* read more entries until level_type is zero */
1562                 for (i = 1; *nent < maxnent; ++i) {
1563                         level_type = entry[i - 1].ecx & 0xff00;
1564                         if (!level_type)
1565                                 break;
1566                         do_cpuid_1_ent(&entry[i], function, i);
1567                         entry[i].flags |=
1568                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1569                         ++*nent;
1570                 }
1571                 break;
1572         }
1573         case 0x80000000:
1574                 entry->eax = min(entry->eax, 0x8000001a);
1575                 break;
1576         case 0x80000001:
1577                 entry->edx &= kvm_supported_word1_x86_features;
1578                 entry->ecx &= kvm_supported_word6_x86_features;
1579                 break;
1580         }
1581         put_cpu();
1582 }
1583
1584 #undef F
1585
1586 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1587                                      struct kvm_cpuid_entry2 __user *entries)
1588 {
1589         struct kvm_cpuid_entry2 *cpuid_entries;
1590         int limit, nent = 0, r = -E2BIG;
1591         u32 func;
1592
1593         if (cpuid->nent < 1)
1594                 goto out;
1595         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1596                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1597         r = -ENOMEM;
1598         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1599         if (!cpuid_entries)
1600                 goto out;
1601
1602         do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1603         limit = cpuid_entries[0].eax;
1604         for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1605                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1606                              &nent, cpuid->nent);
1607         r = -E2BIG;
1608         if (nent >= cpuid->nent)
1609                 goto out_free;
1610
1611         do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1612         limit = cpuid_entries[nent - 1].eax;
1613         for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1614                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1615                              &nent, cpuid->nent);
1616         r = -E2BIG;
1617         if (nent >= cpuid->nent)
1618                 goto out_free;
1619
1620         r = -EFAULT;
1621         if (copy_to_user(entries, cpuid_entries,
1622                          nent * sizeof(struct kvm_cpuid_entry2)))
1623                 goto out_free;
1624         cpuid->nent = nent;
1625         r = 0;
1626
1627 out_free:
1628         vfree(cpuid_entries);
1629 out:
1630         return r;
1631 }
1632
1633 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1634                                     struct kvm_lapic_state *s)
1635 {
1636         vcpu_load(vcpu);
1637         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1638         vcpu_put(vcpu);
1639
1640         return 0;
1641 }
1642
1643 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1644                                     struct kvm_lapic_state *s)
1645 {
1646         vcpu_load(vcpu);
1647         memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1648         kvm_apic_post_state_restore(vcpu);
1649         update_cr8_intercept(vcpu);
1650         vcpu_put(vcpu);
1651
1652         return 0;
1653 }
1654
1655 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1656                                     struct kvm_interrupt *irq)
1657 {
1658         if (irq->irq < 0 || irq->irq >= 256)
1659                 return -EINVAL;
1660         if (irqchip_in_kernel(vcpu->kvm))
1661                 return -ENXIO;
1662         vcpu_load(vcpu);
1663
1664         kvm_queue_interrupt(vcpu, irq->irq, false);
1665
1666         vcpu_put(vcpu);
1667
1668         return 0;
1669 }
1670
1671 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
1672 {
1673         vcpu_load(vcpu);
1674         kvm_inject_nmi(vcpu);
1675         vcpu_put(vcpu);
1676
1677         return 0;
1678 }
1679
1680 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1681                                            struct kvm_tpr_access_ctl *tac)
1682 {
1683         if (tac->flags)
1684                 return -EINVAL;
1685         vcpu->arch.tpr_access_reporting = !!tac->enabled;
1686         return 0;
1687 }
1688
1689 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
1690                                         u64 mcg_cap)
1691 {
1692         int r;
1693         unsigned bank_num = mcg_cap & 0xff, bank;
1694
1695         r = -EINVAL;
1696         if (!bank_num)
1697                 goto out;
1698         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
1699                 goto out;
1700         r = 0;
1701         vcpu->arch.mcg_cap = mcg_cap;
1702         /* Init IA32_MCG_CTL to all 1s */
1703         if (mcg_cap & MCG_CTL_P)
1704                 vcpu->arch.mcg_ctl = ~(u64)0;
1705         /* Init IA32_MCi_CTL to all 1s */
1706         for (bank = 0; bank < bank_num; bank++)
1707                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
1708 out:
1709         return r;
1710 }
1711
1712 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
1713                                       struct kvm_x86_mce *mce)
1714 {
1715         u64 mcg_cap = vcpu->arch.mcg_cap;
1716         unsigned bank_num = mcg_cap & 0xff;
1717         u64 *banks = vcpu->arch.mce_banks;
1718
1719         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
1720                 return -EINVAL;
1721         /*
1722          * if IA32_MCG_CTL is not all 1s, the uncorrected error
1723          * reporting is disabled
1724          */
1725         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
1726             vcpu->arch.mcg_ctl != ~(u64)0)
1727                 return 0;
1728         banks += 4 * mce->bank;
1729         /*
1730          * if IA32_MCi_CTL is not all 1s, the uncorrected error
1731          * reporting is disabled for the bank
1732          */
1733         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
1734                 return 0;
1735         if (mce->status & MCI_STATUS_UC) {
1736                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
1737                     !(vcpu->arch.cr4 & X86_CR4_MCE)) {
1738                         printk(KERN_DEBUG "kvm: set_mce: "
1739                                "injects mce exception while "
1740                                "previous one is in progress!\n");
1741                         set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
1742                         return 0;
1743                 }
1744                 if (banks[1] & MCI_STATUS_VAL)
1745                         mce->status |= MCI_STATUS_OVER;
1746                 banks[2] = mce->addr;
1747                 banks[3] = mce->misc;
1748                 vcpu->arch.mcg_status = mce->mcg_status;
1749                 banks[1] = mce->status;
1750                 kvm_queue_exception(vcpu, MC_VECTOR);
1751         } else if (!(banks[1] & MCI_STATUS_VAL)
1752                    || !(banks[1] & MCI_STATUS_UC)) {
1753                 if (banks[1] & MCI_STATUS_VAL)
1754                         mce->status |= MCI_STATUS_OVER;
1755                 banks[2] = mce->addr;
1756                 banks[3] = mce->misc;
1757                 banks[1] = mce->status;
1758         } else
1759                 banks[1] |= MCI_STATUS_OVER;
1760         return 0;
1761 }
1762
1763 long kvm_arch_vcpu_ioctl(struct file *filp,
1764                          unsigned int ioctl, unsigned long arg)
1765 {
1766         struct kvm_vcpu *vcpu = filp->private_data;
1767         void __user *argp = (void __user *)arg;
1768         int r;
1769         struct kvm_lapic_state *lapic = NULL;
1770
1771         switch (ioctl) {
1772         case KVM_GET_LAPIC: {
1773                 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1774
1775                 r = -ENOMEM;
1776                 if (!lapic)
1777                         goto out;
1778                 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
1779                 if (r)
1780                         goto out;
1781                 r = -EFAULT;
1782                 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
1783                         goto out;
1784                 r = 0;
1785                 break;
1786         }
1787         case KVM_SET_LAPIC: {
1788                 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1789                 r = -ENOMEM;
1790                 if (!lapic)
1791                         goto out;
1792                 r = -EFAULT;
1793                 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
1794                         goto out;
1795                 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
1796                 if (r)
1797                         goto out;
1798                 r = 0;
1799                 break;
1800         }
1801         case KVM_INTERRUPT: {
1802                 struct kvm_interrupt irq;
1803
1804                 r = -EFAULT;
1805                 if (copy_from_user(&irq, argp, sizeof irq))
1806                         goto out;
1807                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1808                 if (r)
1809                         goto out;
1810                 r = 0;
1811                 break;
1812         }
1813         case KVM_NMI: {
1814                 r = kvm_vcpu_ioctl_nmi(vcpu);
1815                 if (r)
1816                         goto out;
1817                 r = 0;
1818                 break;
1819         }
1820         case KVM_SET_CPUID: {
1821                 struct kvm_cpuid __user *cpuid_arg = argp;
1822                 struct kvm_cpuid cpuid;
1823
1824                 r = -EFAULT;
1825                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1826                         goto out;
1827                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1828                 if (r)
1829                         goto out;
1830                 break;
1831         }
1832         case KVM_SET_CPUID2: {
1833                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1834                 struct kvm_cpuid2 cpuid;
1835
1836                 r = -EFAULT;
1837                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1838                         goto out;
1839                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1840                                               cpuid_arg->entries);
1841                 if (r)
1842                         goto out;
1843                 break;
1844         }
1845         case KVM_GET_CPUID2: {
1846                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1847                 struct kvm_cpuid2 cpuid;
1848
1849                 r = -EFAULT;
1850                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1851                         goto out;
1852                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1853                                               cpuid_arg->entries);
1854                 if (r)
1855                         goto out;
1856                 r = -EFAULT;
1857                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1858                         goto out;
1859                 r = 0;
1860                 break;
1861         }
1862         case KVM_GET_MSRS:
1863                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1864                 break;
1865         case KVM_SET_MSRS:
1866                 r = msr_io(vcpu, argp, do_set_msr, 0);
1867                 break;
1868         case KVM_TPR_ACCESS_REPORTING: {
1869                 struct kvm_tpr_access_ctl tac;
1870
1871                 r = -EFAULT;
1872                 if (copy_from_user(&tac, argp, sizeof tac))
1873                         goto out;
1874                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1875                 if (r)
1876                         goto out;
1877                 r = -EFAULT;
1878                 if (copy_to_user(argp, &tac, sizeof tac))
1879                         goto out;
1880                 r = 0;
1881                 break;
1882         };
1883         case KVM_SET_VAPIC_ADDR: {
1884                 struct kvm_vapic_addr va;
1885
1886                 r = -EINVAL;
1887                 if (!irqchip_in_kernel(vcpu->kvm))
1888                         goto out;
1889                 r = -EFAULT;
1890                 if (copy_from_user(&va, argp, sizeof va))
1891                         goto out;
1892                 r = 0;
1893                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1894                 break;
1895         }
1896         case KVM_X86_SETUP_MCE: {
1897                 u64 mcg_cap;
1898
1899                 r = -EFAULT;
1900                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
1901                         goto out;
1902                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
1903                 break;
1904         }
1905         case KVM_X86_SET_MCE: {
1906                 struct kvm_x86_mce mce;
1907
1908                 r = -EFAULT;
1909                 if (copy_from_user(&mce, argp, sizeof mce))
1910                         goto out;
1911                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
1912                 break;
1913         }
1914         default:
1915                 r = -EINVAL;
1916         }
1917 out:
1918         kfree(lapic);
1919         return r;
1920 }
1921
1922 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1923 {
1924         int ret;
1925
1926         if (addr > (unsigned int)(-3 * PAGE_SIZE))
1927                 return -1;
1928         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1929         return ret;
1930 }
1931
1932 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
1933                                               u64 ident_addr)
1934 {
1935         kvm->arch.ept_identity_map_addr = ident_addr;
1936         return 0;
1937 }
1938
1939 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1940                                           u32 kvm_nr_mmu_pages)
1941 {
1942         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1943                 return -EINVAL;
1944
1945         down_write(&kvm->slots_lock);
1946         spin_lock(&kvm->mmu_lock);
1947
1948         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1949         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1950
1951         spin_unlock(&kvm->mmu_lock);
1952         up_write(&kvm->slots_lock);
1953         return 0;
1954 }
1955
1956 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1957 {
1958         return kvm->arch.n_alloc_mmu_pages;
1959 }
1960
1961 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1962 {
1963         int i;
1964         struct kvm_mem_alias *alias;
1965
1966         for (i = 0; i < kvm->arch.naliases; ++i) {
1967                 alias = &kvm->arch.aliases[i];
1968                 if (gfn >= alias->base_gfn
1969                     && gfn < alias->base_gfn + alias->npages)
1970                         return alias->target_gfn + gfn - alias->base_gfn;
1971         }
1972         return gfn;
1973 }
1974
1975 /*
1976  * Set a new alias region.  Aliases map a portion of physical memory into
1977  * another portion.  This is useful for memory windows, for example the PC
1978  * VGA region.
1979  */
1980 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1981                                          struct kvm_memory_alias *alias)
1982 {
1983         int r, n;
1984         struct kvm_mem_alias *p;
1985
1986         r = -EINVAL;
1987         /* General sanity checks */
1988         if (alias->memory_size & (PAGE_SIZE - 1))
1989                 goto out;
1990         if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1991                 goto out;
1992         if (alias->slot >= KVM_ALIAS_SLOTS)
1993                 goto out;
1994         if (alias->guest_phys_addr + alias->memory_size
1995             < alias->guest_phys_addr)
1996                 goto out;
1997         if (alias->target_phys_addr + alias->memory_size
1998             < alias->target_phys_addr)
1999                 goto out;
2000
2001         down_write(&kvm->slots_lock);
2002         spin_lock(&kvm->mmu_lock);
2003
2004         p = &kvm->arch.aliases[alias->slot];
2005         p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
2006         p->npages = alias->memory_size >> PAGE_SHIFT;
2007         p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
2008
2009         for (n = KVM_ALIAS_SLOTS; n > 0; --n)
2010                 if (kvm->arch.aliases[n - 1].npages)
2011                         break;
2012         kvm->arch.naliases = n;
2013
2014         spin_unlock(&kvm->mmu_lock);
2015         kvm_mmu_zap_all(kvm);
2016
2017         up_write(&kvm->slots_lock);
2018
2019         return 0;
2020
2021 out:
2022         return r;
2023 }
2024
2025 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2026 {
2027         int r;
2028
2029         r = 0;
2030         switch (chip->chip_id) {
2031         case KVM_IRQCHIP_PIC_MASTER:
2032                 memcpy(&chip->chip.pic,
2033                         &pic_irqchip(kvm)->pics[0],
2034                         sizeof(struct kvm_pic_state));
2035                 break;
2036         case KVM_IRQCHIP_PIC_SLAVE:
2037                 memcpy(&chip->chip.pic,
2038                         &pic_irqchip(kvm)->pics[1],
2039                         sizeof(struct kvm_pic_state));
2040                 break;
2041         case KVM_IRQCHIP_IOAPIC:
2042                 memcpy(&chip->chip.ioapic,
2043                         ioapic_irqchip(kvm),
2044                         sizeof(struct kvm_ioapic_state));
2045                 break;
2046         default:
2047                 r = -EINVAL;
2048                 break;
2049         }
2050         return r;
2051 }
2052
2053 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2054 {
2055         int r;
2056
2057         r = 0;
2058         switch (chip->chip_id) {
2059         case KVM_IRQCHIP_PIC_MASTER:
2060                 spin_lock(&pic_irqchip(kvm)->lock);
2061                 memcpy(&pic_irqchip(kvm)->pics[0],
2062                         &chip->chip.pic,
2063                         sizeof(struct kvm_pic_state));
2064                 spin_unlock(&pic_irqchip(kvm)->lock);
2065                 break;
2066         case KVM_IRQCHIP_PIC_SLAVE:
2067                 spin_lock(&pic_irqchip(kvm)->lock);
2068                 memcpy(&pic_irqchip(kvm)->pics[1],
2069                         &chip->chip.pic,
2070                         sizeof(struct kvm_pic_state));
2071                 spin_unlock(&pic_irqchip(kvm)->lock);
2072                 break;
2073         case KVM_IRQCHIP_IOAPIC:
2074                 mutex_lock(&kvm->irq_lock);
2075                 memcpy(ioapic_irqchip(kvm),
2076                         &chip->chip.ioapic,
2077                         sizeof(struct kvm_ioapic_state));
2078                 mutex_unlock(&kvm->irq_lock);
2079                 break;
2080         default:
2081                 r = -EINVAL;
2082                 break;
2083         }
2084         kvm_pic_update_irq(pic_irqchip(kvm));
2085         return r;
2086 }
2087
2088 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2089 {
2090         int r = 0;
2091
2092         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2093         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2094         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2095         return r;
2096 }
2097
2098 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2099 {
2100         int r = 0;
2101
2102         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2103         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2104         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
2105         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2106         return r;
2107 }
2108
2109 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2110 {
2111         int r = 0;
2112
2113         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2114         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
2115                 sizeof(ps->channels));
2116         ps->flags = kvm->arch.vpit->pit_state.flags;
2117         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2118         return r;
2119 }
2120
2121 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2122 {
2123         int r = 0, start = 0;
2124         u32 prev_legacy, cur_legacy;
2125         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2126         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
2127         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
2128         if (!prev_legacy && cur_legacy)
2129                 start = 1;
2130         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
2131                sizeof(kvm->arch.vpit->pit_state.channels));
2132         kvm->arch.vpit->pit_state.flags = ps->flags;
2133         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
2134         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2135         return r;
2136 }
2137
2138 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
2139                                  struct kvm_reinject_control *control)
2140 {
2141         if (!kvm->arch.vpit)
2142                 return -ENXIO;
2143         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2144         kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
2145         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2146         return 0;
2147 }
2148
2149 /*
2150  * Get (and clear) the dirty memory log for a memory slot.
2151  */
2152 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2153                                       struct kvm_dirty_log *log)
2154 {
2155         int r;
2156         int n;
2157         struct kvm_memory_slot *memslot;
2158         int is_dirty = 0;
2159
2160         down_write(&kvm->slots_lock);
2161
2162         r = kvm_get_dirty_log(kvm, log, &is_dirty);
2163         if (r)
2164                 goto out;
2165
2166         /* If nothing is dirty, don't bother messing with page tables. */
2167         if (is_dirty) {
2168                 spin_lock(&kvm->mmu_lock);
2169                 kvm_mmu_slot_remove_write_access(kvm, log->slot);
2170                 spin_unlock(&kvm->mmu_lock);
2171                 memslot = &kvm->memslots[log->slot];
2172                 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
2173                 memset(memslot->dirty_bitmap, 0, n);
2174         }
2175         r = 0;
2176 out:
2177         up_write(&kvm->slots_lock);
2178         return r;
2179 }
2180
2181 long kvm_arch_vm_ioctl(struct file *filp,
2182                        unsigned int ioctl, unsigned long arg)
2183 {
2184         struct kvm *kvm = filp->private_data;
2185         void __user *argp = (void __user *)arg;
2186         int r = -EINVAL;
2187         /*
2188          * This union makes it completely explicit to gcc-3.x
2189          * that these two variables' stack usage should be
2190          * combined, not added together.
2191          */
2192         union {
2193                 struct kvm_pit_state ps;
2194                 struct kvm_pit_state2 ps2;
2195                 struct kvm_memory_alias alias;
2196                 struct kvm_pit_config pit_config;
2197         } u;
2198
2199         switch (ioctl) {
2200         case KVM_SET_TSS_ADDR:
2201                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
2202                 if (r < 0)
2203                         goto out;
2204                 break;
2205         case KVM_SET_IDENTITY_MAP_ADDR: {
2206                 u64 ident_addr;
2207
2208                 r = -EFAULT;
2209                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
2210                         goto out;
2211                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
2212                 if (r < 0)
2213                         goto out;
2214                 break;
2215         }
2216         case KVM_SET_MEMORY_REGION: {
2217                 struct kvm_memory_region kvm_mem;
2218                 struct kvm_userspace_memory_region kvm_userspace_mem;
2219
2220                 r = -EFAULT;
2221                 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2222                         goto out;
2223                 kvm_userspace_mem.slot = kvm_mem.slot;
2224                 kvm_userspace_mem.flags = kvm_mem.flags;
2225                 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
2226                 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
2227                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
2228                 if (r)
2229                         goto out;
2230                 break;
2231         }
2232         case KVM_SET_NR_MMU_PAGES:
2233                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
2234                 if (r)
2235                         goto out;
2236                 break;
2237         case KVM_GET_NR_MMU_PAGES:
2238                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
2239                 break;
2240         case KVM_SET_MEMORY_ALIAS:
2241                 r = -EFAULT;
2242                 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
2243                         goto out;
2244                 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
2245                 if (r)
2246                         goto out;
2247                 break;
2248         case KVM_CREATE_IRQCHIP:
2249                 r = -ENOMEM;
2250                 kvm->arch.vpic = kvm_create_pic(kvm);
2251                 if (kvm->arch.vpic) {
2252                         r = kvm_ioapic_init(kvm);
2253                         if (r) {
2254                                 kfree(kvm->arch.vpic);
2255                                 kvm->arch.vpic = NULL;
2256                                 goto out;
2257                         }
2258                 } else
2259                         goto out;
2260                 r = kvm_setup_default_irq_routing(kvm);
2261                 if (r) {
2262                         kfree(kvm->arch.vpic);
2263                         kfree(kvm->arch.vioapic);
2264                         goto out;
2265                 }
2266                 break;
2267         case KVM_CREATE_PIT:
2268                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
2269                 goto create_pit;
2270         case KVM_CREATE_PIT2:
2271                 r = -EFAULT;
2272                 if (copy_from_user(&u.pit_config, argp,
2273                                    sizeof(struct kvm_pit_config)))
2274                         goto out;
2275         create_pit:
2276                 down_write(&kvm->slots_lock);
2277                 r = -EEXIST;
2278                 if (kvm->arch.vpit)
2279                         goto create_pit_unlock;
2280                 r = -ENOMEM;
2281                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
2282                 if (kvm->arch.vpit)
2283                         r = 0;
2284         create_pit_unlock:
2285                 up_write(&kvm->slots_lock);
2286                 break;
2287         case KVM_IRQ_LINE_STATUS:
2288         case KVM_IRQ_LINE: {
2289                 struct kvm_irq_level irq_event;
2290
2291                 r = -EFAULT;
2292                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2293                         goto out;
2294                 if (irqchip_in_kernel(kvm)) {
2295                         __s32 status;
2296                         mutex_lock(&kvm->irq_lock);
2297                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2298                                         irq_event.irq, irq_event.level);
2299                         mutex_unlock(&kvm->irq_lock);
2300                         if (ioctl == KVM_IRQ_LINE_STATUS) {
2301                                 irq_event.status = status;
2302                                 if (copy_to_user(argp, &irq_event,
2303                                                         sizeof irq_event))
2304                                         goto out;
2305                         }
2306                         r = 0;
2307                 }
2308                 break;
2309         }
2310         case KVM_GET_IRQCHIP: {
2311                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2312                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2313
2314                 r = -ENOMEM;
2315                 if (!chip)
2316                         goto out;
2317                 r = -EFAULT;
2318                 if (copy_from_user(chip, argp, sizeof *chip))
2319                         goto get_irqchip_out;
2320                 r = -ENXIO;
2321                 if (!irqchip_in_kernel(kvm))
2322                         goto get_irqchip_out;
2323                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
2324                 if (r)
2325                         goto get_irqchip_out;
2326                 r = -EFAULT;
2327                 if (copy_to_user(argp, chip, sizeof *chip))
2328                         goto get_irqchip_out;
2329                 r = 0;
2330         get_irqchip_out:
2331                 kfree(chip);
2332                 if (r)
2333                         goto out;
2334                 break;
2335         }
2336         case KVM_SET_IRQCHIP: {
2337                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2338                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2339
2340                 r = -ENOMEM;
2341                 if (!chip)
2342                         goto out;
2343                 r = -EFAULT;
2344                 if (copy_from_user(chip, argp, sizeof *chip))
2345                         goto set_irqchip_out;
2346                 r = -ENXIO;
2347                 if (!irqchip_in_kernel(kvm))
2348                         goto set_irqchip_out;
2349                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
2350                 if (r)
2351                         goto set_irqchip_out;
2352                 r = 0;
2353         set_irqchip_out:
2354                 kfree(chip);
2355                 if (r)
2356                         goto out;
2357                 break;
2358         }
2359         case KVM_GET_PIT: {
2360                 r = -EFAULT;
2361                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
2362                         goto out;
2363                 r = -ENXIO;
2364                 if (!kvm->arch.vpit)
2365                         goto out;
2366                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
2367                 if (r)
2368                         goto out;
2369                 r = -EFAULT;
2370                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
2371                         goto out;
2372                 r = 0;
2373                 break;
2374         }
2375         case KVM_SET_PIT: {
2376                 r = -EFAULT;
2377                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
2378                         goto out;
2379                 r = -ENXIO;
2380                 if (!kvm->arch.vpit)
2381                         goto out;
2382                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
2383                 if (r)
2384                         goto out;
2385                 r = 0;
2386                 break;
2387         }
2388         case KVM_GET_PIT2: {
2389                 r = -ENXIO;
2390                 if (!kvm->arch.vpit)
2391                         goto out;
2392                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
2393                 if (r)
2394                         goto out;
2395                 r = -EFAULT;
2396                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
2397                         goto out;
2398                 r = 0;
2399                 break;
2400         }
2401         case KVM_SET_PIT2: {
2402                 r = -EFAULT;
2403                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
2404                         goto out;
2405                 r = -ENXIO;
2406                 if (!kvm->arch.vpit)
2407                         goto out;
2408                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
2409                 if (r)
2410                         goto out;
2411                 r = 0;
2412                 break;
2413         }
2414         case KVM_REINJECT_CONTROL: {
2415                 struct kvm_reinject_control control;
2416                 r =  -EFAULT;
2417                 if (copy_from_user(&control, argp, sizeof(control)))
2418                         goto out;
2419                 r = kvm_vm_ioctl_reinject(kvm, &control);
2420                 if (r)
2421                         goto out;
2422                 r = 0;
2423                 break;
2424         }
2425         default:
2426                 ;
2427         }
2428 out:
2429         return r;
2430 }
2431
2432 static void kvm_init_msr_list(void)
2433 {
2434         u32 dummy[2];
2435         unsigned i, j;
2436
2437         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2438                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2439                         continue;
2440                 if (j < i)
2441                         msrs_to_save[j] = msrs_to_save[i];
2442                 j++;
2443         }
2444         num_msrs_to_save = j;
2445 }
2446
2447 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
2448                            const void *v)
2449 {
2450         if (vcpu->arch.apic &&
2451             !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
2452                 return 0;
2453
2454         return kvm_io_bus_write(&vcpu->kvm->mmio_bus, addr, len, v);
2455 }
2456
2457 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
2458 {
2459         if (vcpu->arch.apic &&
2460             !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
2461                 return 0;
2462
2463         return kvm_io_bus_read(&vcpu->kvm->mmio_bus, addr, len, v);
2464 }
2465
2466 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
2467                                struct kvm_vcpu *vcpu)
2468 {
2469         void *data = val;
2470         int r = X86EMUL_CONTINUE;
2471
2472         while (bytes) {
2473                 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2474                 unsigned offset = addr & (PAGE_SIZE-1);
2475                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
2476                 int ret;
2477
2478                 if (gpa == UNMAPPED_GVA) {
2479                         r = X86EMUL_PROPAGATE_FAULT;
2480                         goto out;
2481                 }
2482                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
2483                 if (ret < 0) {
2484                         r = X86EMUL_UNHANDLEABLE;
2485                         goto out;
2486                 }
2487
2488                 bytes -= toread;
2489                 data += toread;
2490                 addr += toread;
2491         }
2492 out:
2493         return r;
2494 }
2495
2496 static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
2497                                 struct kvm_vcpu *vcpu)
2498 {
2499         void *data = val;
2500         int r = X86EMUL_CONTINUE;
2501
2502         while (bytes) {
2503                 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2504                 unsigned offset = addr & (PAGE_SIZE-1);
2505                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
2506                 int ret;
2507
2508                 if (gpa == UNMAPPED_GVA) {
2509                         r = X86EMUL_PROPAGATE_FAULT;
2510                         goto out;
2511                 }
2512                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
2513                 if (ret < 0) {
2514                         r = X86EMUL_UNHANDLEABLE;
2515                         goto out;
2516                 }
2517
2518                 bytes -= towrite;
2519                 data += towrite;
2520                 addr += towrite;
2521         }
2522 out:
2523         return r;
2524 }
2525
2526
2527 static int emulator_read_emulated(unsigned long addr,
2528                                   void *val,
2529                                   unsigned int bytes,
2530                                   struct kvm_vcpu *vcpu)
2531 {
2532         gpa_t                 gpa;
2533
2534         if (vcpu->mmio_read_completed) {
2535                 memcpy(val, vcpu->mmio_data, bytes);
2536                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
2537                                vcpu->mmio_phys_addr, *(u64 *)val);
2538                 vcpu->mmio_read_completed = 0;
2539                 return X86EMUL_CONTINUE;
2540         }
2541
2542         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2543
2544         /* For APIC access vmexit */
2545         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2546                 goto mmio;
2547
2548         if (kvm_read_guest_virt(addr, val, bytes, vcpu)
2549                                 == X86EMUL_CONTINUE)
2550                 return X86EMUL_CONTINUE;
2551         if (gpa == UNMAPPED_GVA)
2552                 return X86EMUL_PROPAGATE_FAULT;
2553
2554 mmio:
2555         /*
2556          * Is this MMIO handled locally?
2557          */
2558         if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
2559                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
2560                 return X86EMUL_CONTINUE;
2561         }
2562
2563         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
2564
2565         vcpu->mmio_needed = 1;
2566         vcpu->mmio_phys_addr = gpa;
2567         vcpu->mmio_size = bytes;
2568         vcpu->mmio_is_write = 0;
2569
2570         return X86EMUL_UNHANDLEABLE;
2571 }
2572
2573 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2574                           const void *val, int bytes)
2575 {
2576         int ret;
2577
2578         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
2579         if (ret < 0)
2580                 return 0;
2581         kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
2582         return 1;
2583 }
2584
2585 static int emulator_write_emulated_onepage(unsigned long addr,
2586                                            const void *val,
2587                                            unsigned int bytes,
2588                                            struct kvm_vcpu *vcpu)
2589 {
2590         gpa_t                 gpa;
2591
2592         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2593
2594         if (gpa == UNMAPPED_GVA) {
2595                 kvm_inject_page_fault(vcpu, addr, 2);
2596                 return X86EMUL_PROPAGATE_FAULT;
2597         }
2598
2599         /* For APIC access vmexit */
2600         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2601                 goto mmio;
2602
2603         if (emulator_write_phys(vcpu, gpa, val, bytes))
2604                 return X86EMUL_CONTINUE;
2605
2606 mmio:
2607         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
2608         /*
2609          * Is this MMIO handled locally?
2610          */
2611         if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
2612                 return X86EMUL_CONTINUE;
2613
2614         vcpu->mmio_needed = 1;
2615         vcpu->mmio_phys_addr = gpa;
2616         vcpu->mmio_size = bytes;
2617         vcpu->mmio_is_write = 1;
2618         memcpy(vcpu->mmio_data, val, bytes);
2619
2620         return X86EMUL_CONTINUE;
2621 }
2622
2623 int emulator_write_emulated(unsigned long addr,
2624                                    const void *val,
2625                                    unsigned int bytes,
2626                                    struct kvm_vcpu *vcpu)
2627 {
2628         /* Crossing a page boundary? */
2629         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
2630                 int rc, now;
2631
2632                 now = -addr & ~PAGE_MASK;
2633                 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
2634                 if (rc != X86EMUL_CONTINUE)
2635                         return rc;
2636                 addr += now;
2637                 val += now;
2638                 bytes -= now;
2639         }
2640         return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
2641 }
2642 EXPORT_SYMBOL_GPL(emulator_write_emulated);
2643
2644 static int emulator_cmpxchg_emulated(unsigned long addr,
2645                                      const void *old,
2646                                      const void *new,
2647                                      unsigned int bytes,
2648                                      struct kvm_vcpu *vcpu)
2649 {
2650         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
2651 #ifndef CONFIG_X86_64
2652         /* guests cmpxchg8b have to be emulated atomically */
2653         if (bytes == 8) {
2654                 gpa_t gpa;
2655                 struct page *page;
2656                 char *kaddr;
2657                 u64 val;
2658
2659                 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2660
2661                 if (gpa == UNMAPPED_GVA ||
2662                    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2663                         goto emul_write;
2664
2665                 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
2666                         goto emul_write;
2667
2668                 val = *(u64 *)new;
2669
2670                 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2671
2672                 kaddr = kmap_atomic(page, KM_USER0);
2673                 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
2674                 kunmap_atomic(kaddr, KM_USER0);
2675                 kvm_release_page_dirty(page);
2676         }
2677 emul_write:
2678 #endif
2679
2680         return emulator_write_emulated(addr, new, bytes, vcpu);
2681 }
2682
2683 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
2684 {
2685         return kvm_x86_ops->get_segment_base(vcpu, seg);
2686 }
2687
2688 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
2689 {
2690         kvm_mmu_invlpg(vcpu, address);
2691         return X86EMUL_CONTINUE;
2692 }
2693
2694 int emulate_clts(struct kvm_vcpu *vcpu)
2695 {
2696         kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2697         return X86EMUL_CONTINUE;
2698 }
2699
2700 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
2701 {
2702         struct kvm_vcpu *vcpu = ctxt->vcpu;
2703
2704         switch (dr) {
2705         case 0 ... 3:
2706                 *dest = kvm_x86_ops->get_dr(vcpu, dr);
2707                 return X86EMUL_CONTINUE;
2708         default:
2709                 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2710                 return X86EMUL_UNHANDLEABLE;
2711         }
2712 }
2713
2714 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
2715 {
2716         unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
2717         int exception;
2718
2719         kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
2720         if (exception) {
2721                 /* FIXME: better handling */
2722                 return X86EMUL_UNHANDLEABLE;
2723         }
2724         return X86EMUL_CONTINUE;
2725 }
2726
2727 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
2728 {
2729         u8 opcodes[4];
2730         unsigned long rip = kvm_rip_read(vcpu);
2731         unsigned long rip_linear;
2732
2733         if (!printk_ratelimit())
2734                 return;
2735
2736         rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
2737
2738         kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
2739
2740         printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2741                context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
2742 }
2743 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
2744
2745 static struct x86_emulate_ops emulate_ops = {
2746         .read_std            = kvm_read_guest_virt,
2747         .read_emulated       = emulator_read_emulated,
2748         .write_emulated      = emulator_write_emulated,
2749         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
2750 };
2751
2752 static void cache_all_regs(struct kvm_vcpu *vcpu)
2753 {
2754         kvm_register_read(vcpu, VCPU_REGS_RAX);
2755         kvm_register_read(vcpu, VCPU_REGS_RSP);
2756         kvm_register_read(vcpu, VCPU_REGS_RIP);
2757         vcpu->arch.regs_dirty = ~0;
2758 }
2759
2760 int emulate_instruction(struct kvm_vcpu *vcpu,
2761                         struct kvm_run *run,
2762                         unsigned long cr2,
2763                         u16 error_code,
2764                         int emulation_type)
2765 {
2766         int r, shadow_mask;
2767         struct decode_cache *c;
2768
2769         kvm_clear_exception_queue(vcpu);
2770         vcpu->arch.mmio_fault_cr2 = cr2;
2771         /*
2772          * TODO: fix emulate.c to use guest_read/write_register
2773          * instead of direct ->regs accesses, can save hundred cycles
2774          * on Intel for instructions that don't read/change RSP, for
2775          * for example.
2776          */
2777         cache_all_regs(vcpu);
2778
2779         vcpu->mmio_is_write = 0;
2780         vcpu->arch.pio.string = 0;
2781
2782         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2783                 int cs_db, cs_l;
2784                 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2785
2786                 vcpu->arch.emulate_ctxt.vcpu = vcpu;
2787                 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
2788                 vcpu->arch.emulate_ctxt.mode =
2789                         (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2790                         ? X86EMUL_MODE_REAL : cs_l
2791                         ? X86EMUL_MODE_PROT64 : cs_db
2792                         ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2793
2794                 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2795
2796                 /* Only allow emulation of specific instructions on #UD
2797                  * (namely VMMCALL, sysenter, sysexit, syscall)*/
2798                 c = &vcpu->arch.emulate_ctxt.decode;
2799                 if (emulation_type & EMULTYPE_TRAP_UD) {
2800                         if (!c->twobyte)
2801                                 return EMULATE_FAIL;
2802                         switch (c->b) {
2803                         case 0x01: /* VMMCALL */
2804                                 if (c->modrm_mod != 3 || c->modrm_rm != 1)
2805                                         return EMULATE_FAIL;
2806                                 break;
2807                         case 0x34: /* sysenter */
2808                         case 0x35: /* sysexit */
2809                                 if (c->modrm_mod != 0 || c->modrm_rm != 0)
2810                                         return EMULATE_FAIL;
2811                                 break;
2812                         case 0x05: /* syscall */
2813                                 if (c->modrm_mod != 0 || c->modrm_rm != 0)
2814                                         return EMULATE_FAIL;
2815                                 break;
2816                         default:
2817                                 return EMULATE_FAIL;
2818                         }
2819
2820                         if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
2821                                 return EMULATE_FAIL;
2822                 }
2823
2824                 ++vcpu->stat.insn_emulation;
2825                 if (r)  {
2826                         ++vcpu->stat.insn_emulation_fail;
2827                         if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2828                                 return EMULATE_DONE;
2829                         return EMULATE_FAIL;
2830                 }
2831         }
2832
2833         if (emulation_type & EMULTYPE_SKIP) {
2834                 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
2835                 return EMULATE_DONE;
2836         }
2837
2838         r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2839         shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
2840
2841         if (r == 0)
2842                 kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
2843
2844         if (vcpu->arch.pio.string)
2845                 return EMULATE_DO_MMIO;
2846
2847         if ((r || vcpu->mmio_is_write) && run) {
2848                 run->exit_reason = KVM_EXIT_MMIO;
2849                 run->mmio.phys_addr = vcpu->mmio_phys_addr;
2850                 memcpy(run->mmio.data, vcpu->mmio_data, 8);
2851                 run->mmio.len = vcpu->mmio_size;
2852                 run->mmio.is_write = vcpu->mmio_is_write;
2853         }
2854
2855         if (r) {
2856                 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2857                         return EMULATE_DONE;
2858                 if (!vcpu->mmio_needed) {
2859                         kvm_report_emulation_failure(vcpu, "mmio");
2860                         return EMULATE_FAIL;
2861                 }
2862                 return EMULATE_DO_MMIO;
2863         }
2864
2865         kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2866
2867         if (vcpu->mmio_is_write) {
2868                 vcpu->mmio_needed = 0;
2869                 return EMULATE_DO_MMIO;
2870         }
2871
2872         return EMULATE_DONE;
2873 }
2874 EXPORT_SYMBOL_GPL(emulate_instruction);
2875
2876 static int pio_copy_data(struct kvm_vcpu *vcpu)
2877 {
2878         void *p = vcpu->arch.pio_data;
2879         gva_t q = vcpu->arch.pio.guest_gva;
2880         unsigned bytes;
2881         int ret;
2882
2883         bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2884         if (vcpu->arch.pio.in)
2885                 ret = kvm_write_guest_virt(q, p, bytes, vcpu);
2886         else
2887                 ret = kvm_read_guest_virt(q, p, bytes, vcpu);
2888         return ret;
2889 }
2890
2891 int complete_pio(struct kvm_vcpu *vcpu)
2892 {
2893         struct kvm_pio_request *io = &vcpu->arch.pio;
2894         long delta;
2895         int r;
2896         unsigned long val;
2897
2898         if (!io->string) {
2899                 if (io->in) {
2900                         val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2901                         memcpy(&val, vcpu->arch.pio_data, io->size);
2902                         kvm_register_write(vcpu, VCPU_REGS_RAX, val);
2903                 }
2904         } else {
2905                 if (io->in) {
2906                         r = pio_copy_data(vcpu);
2907                         if (r)
2908                                 return r;
2909                 }
2910
2911                 delta = 1;
2912                 if (io->rep) {
2913                         delta *= io->cur_count;
2914                         /*
2915                          * The size of the register should really depend on
2916                          * current address size.
2917                          */
2918                         val = kvm_register_read(vcpu, VCPU_REGS_RCX);
2919                         val -= delta;
2920                         kvm_register_write(vcpu, VCPU_REGS_RCX, val);
2921                 }
2922                 if (io->down)
2923                         delta = -delta;
2924                 delta *= io->size;
2925                 if (io->in) {
2926                         val = kvm_register_read(vcpu, VCPU_REGS_RDI);
2927                         val += delta;
2928                         kvm_register_write(vcpu, VCPU_REGS_RDI, val);
2929                 } else {
2930                         val = kvm_register_read(vcpu, VCPU_REGS_RSI);
2931                         val += delta;
2932                         kvm_register_write(vcpu, VCPU_REGS_RSI, val);
2933                 }
2934         }
2935
2936         io->count -= io->cur_count;
2937         io->cur_count = 0;
2938
2939         return 0;
2940 }
2941
2942 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
2943 {
2944         /* TODO: String I/O for in kernel device */
2945         int r;
2946
2947         if (vcpu->arch.pio.in)
2948                 r = kvm_io_bus_read(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
2949                                     vcpu->arch.pio.size, pd);
2950         else
2951                 r = kvm_io_bus_write(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
2952                                      vcpu->arch.pio.size, pd);
2953         return r;
2954 }
2955
2956 static int pio_string_write(struct kvm_vcpu *vcpu)
2957 {
2958         struct kvm_pio_request *io = &vcpu->arch.pio;
2959         void *pd = vcpu->arch.pio_data;
2960         int i, r = 0;
2961
2962         for (i = 0; i < io->cur_count; i++) {
2963                 if (kvm_io_bus_write(&vcpu->kvm->pio_bus,
2964                                      io->port, io->size, pd)) {
2965                         r = -EOPNOTSUPP;
2966                         break;
2967                 }
2968                 pd += io->size;
2969         }
2970         return r;
2971 }
2972
2973 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2974                   int size, unsigned port)
2975 {
2976         unsigned long val;
2977
2978         vcpu->run->exit_reason = KVM_EXIT_IO;
2979         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2980         vcpu->run->io.size = vcpu->arch.pio.size = size;
2981         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2982         vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2983         vcpu->run->io.port = vcpu->arch.pio.port = port;
2984         vcpu->arch.pio.in = in;
2985         vcpu->arch.pio.string = 0;
2986         vcpu->arch.pio.down = 0;
2987         vcpu->arch.pio.rep = 0;
2988
2989         trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
2990                       size, 1);
2991
2992         val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2993         memcpy(vcpu->arch.pio_data, &val, 4);
2994
2995         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
2996                 complete_pio(vcpu);
2997                 return 1;
2998         }
2999         return 0;
3000 }
3001 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
3002
3003 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
3004                   int size, unsigned long count, int down,
3005                   gva_t address, int rep, unsigned port)
3006 {
3007         unsigned now, in_page;
3008         int ret = 0;
3009
3010         vcpu->run->exit_reason = KVM_EXIT_IO;
3011         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
3012         vcpu->run->io.size = vcpu->arch.pio.size = size;
3013         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3014         vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
3015         vcpu->run->io.port = vcpu->arch.pio.port = port;
3016         vcpu->arch.pio.in = in;
3017         vcpu->arch.pio.string = 1;
3018         vcpu->arch.pio.down = down;
3019         vcpu->arch.pio.rep = rep;
3020
3021         trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
3022                       size, count);
3023
3024         if (!count) {
3025                 kvm_x86_ops->skip_emulated_instruction(vcpu);
3026                 return 1;
3027         }
3028
3029         if (!down)
3030                 in_page = PAGE_SIZE - offset_in_page(address);
3031         else
3032                 in_page = offset_in_page(address) + size;
3033         now = min(count, (unsigned long)in_page / size);
3034         if (!now)
3035                 now = 1;
3036         if (down) {
3037                 /*
3038                  * String I/O in reverse.  Yuck.  Kill the guest, fix later.
3039                  */
3040                 pr_unimpl(vcpu, "guest string pio down\n");
3041                 kvm_inject_gp(vcpu, 0);
3042                 return 1;
3043         }
3044         vcpu->run->io.count = now;
3045         vcpu->arch.pio.cur_count = now;
3046
3047         if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
3048                 kvm_x86_ops->skip_emulated_instruction(vcpu);
3049
3050         vcpu->arch.pio.guest_gva = address;
3051
3052         if (!vcpu->arch.pio.in) {
3053                 /* string PIO write */
3054                 ret = pio_copy_data(vcpu);
3055                 if (ret == X86EMUL_PROPAGATE_FAULT) {
3056                         kvm_inject_gp(vcpu, 0);
3057                         return 1;
3058                 }
3059                 if (ret == 0 && !pio_string_write(vcpu)) {
3060                         complete_pio(vcpu);
3061                         if (vcpu->arch.pio.count == 0)
3062                                 ret = 1;
3063                 }
3064         }
3065         /* no string PIO read support yet */
3066
3067         return ret;
3068 }
3069 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
3070
3071 static void bounce_off(void *info)
3072 {
3073         /* nothing */
3074 }
3075
3076 static unsigned int  ref_freq;
3077 static unsigned long tsc_khz_ref;
3078
3079 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
3080                                      void *data)
3081 {
3082         struct cpufreq_freqs *freq = data;
3083         struct kvm *kvm;
3084         struct kvm_vcpu *vcpu;
3085         int i, send_ipi = 0;
3086
3087         if (!ref_freq)
3088                 ref_freq = freq->old;
3089
3090         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
3091                 return 0;
3092         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
3093                 return 0;
3094         per_cpu(cpu_tsc_khz, freq->cpu) = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
3095
3096         spin_lock(&kvm_lock);
3097         list_for_each_entry(kvm, &vm_list, vm_list) {
3098                 kvm_for_each_vcpu(i, vcpu, kvm) {
3099                         if (vcpu->cpu != freq->cpu)
3100                                 continue;
3101                         if (!kvm_request_guest_time_update(vcpu))
3102                                 continue;
3103                         if (vcpu->cpu != smp_processor_id())
3104                                 send_ipi++;
3105                 }
3106         }
3107         spin_unlock(&kvm_lock);
3108
3109         if (freq->old < freq->new && send_ipi) {
3110                 /*
3111                  * We upscale the frequency.  Must make the guest
3112                  * doesn't see old kvmclock values while running with
3113                  * the new frequency, otherwise we risk the guest sees
3114                  * time go backwards.
3115                  *
3116                  * In case we update the frequency for another cpu
3117                  * (which might be in guest context) send an interrupt
3118                  * to kick the cpu out of guest context.  Next time
3119                  * guest context is entered kvmclock will be updated,
3120                  * so the guest will not see stale values.
3121                  */
3122                 smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
3123         }
3124         return 0;
3125 }
3126
3127 static struct notifier_block kvmclock_cpufreq_notifier_block = {
3128         .notifier_call  = kvmclock_cpufreq_notifier
3129 };
3130
3131 int kvm_arch_init(void *opaque)
3132 {
3133         int r, cpu;
3134         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
3135
3136         if (kvm_x86_ops) {
3137                 printk(KERN_ERR "kvm: already loaded the other module\n");
3138                 r = -EEXIST;
3139                 goto out;
3140         }
3141
3142         if (!ops->cpu_has_kvm_support()) {
3143                 printk(KERN_ERR "kvm: no hardware support\n");
3144                 r = -EOPNOTSUPP;
3145                 goto out;
3146         }
3147         if (ops->disabled_by_bios()) {
3148                 printk(KERN_ERR "kvm: disabled by bios\n");
3149                 r = -EOPNOTSUPP;
3150                 goto out;
3151         }
3152
3153         r = kvm_mmu_module_init();
3154         if (r)
3155                 goto out;
3156
3157         kvm_init_msr_list();
3158
3159         kvm_x86_ops = ops;
3160         kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
3161         kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
3162         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
3163                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
3164
3165         for_each_possible_cpu(cpu)
3166                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
3167         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
3168                 tsc_khz_ref = tsc_khz;
3169                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
3170                                           CPUFREQ_TRANSITION_NOTIFIER);
3171         }
3172
3173         return 0;
3174
3175 out:
3176         return r;
3177 }
3178
3179 void kvm_arch_exit(void)
3180 {
3181         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
3182                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
3183                                             CPUFREQ_TRANSITION_NOTIFIER);
3184         kvm_x86_ops = NULL;
3185         kvm_mmu_module_exit();
3186 }
3187
3188 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
3189 {
3190         ++vcpu->stat.halt_exits;
3191         if (irqchip_in_kernel(vcpu->kvm)) {
3192                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
3193                 return 1;
3194         } else {
3195                 vcpu->run->exit_reason = KVM_EXIT_HLT;
3196                 return 0;
3197         }
3198 }
3199 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
3200
3201 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
3202                            unsigned long a1)
3203 {
3204         if (is_long_mode(vcpu))
3205                 return a0;
3206         else
3207                 return a0 | ((gpa_t)a1 << 32);
3208 }
3209
3210 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
3211 {
3212         unsigned long nr, a0, a1, a2, a3, ret;
3213         int r = 1;
3214
3215         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
3216         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
3217         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
3218         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
3219         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
3220
3221         trace_kvm_hypercall(nr, a0, a1, a2, a3);
3222
3223         if (!is_long_mode(vcpu)) {
3224                 nr &= 0xFFFFFFFF;
3225                 a0 &= 0xFFFFFFFF;
3226                 a1 &= 0xFFFFFFFF;
3227                 a2 &= 0xFFFFFFFF;
3228                 a3 &= 0xFFFFFFFF;
3229         }
3230
3231         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
3232                 ret = -KVM_EPERM;
3233                 goto out;
3234         }
3235
3236         switch (nr) {
3237         case KVM_HC_VAPIC_POLL_IRQ:
3238                 ret = 0;
3239                 break;
3240         case KVM_HC_MMU_OP:
3241                 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
3242                 break;
3243         default:
3244                 ret = -KVM_ENOSYS;
3245                 break;
3246         }
3247 out:
3248         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
3249         ++vcpu->stat.hypercalls;
3250         return r;
3251 }
3252 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
3253
3254 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
3255 {
3256         char instruction[3];
3257         int ret = 0;
3258         unsigned long rip = kvm_rip_read(vcpu);
3259
3260
3261         /*
3262          * Blow out the MMU to ensure that no other VCPU has an active mapping
3263          * to ensure that the updated hypercall appears atomically across all
3264          * VCPUs.
3265          */
3266         kvm_mmu_zap_all(vcpu->kvm);
3267
3268         kvm_x86_ops->patch_hypercall(vcpu, instruction);
3269         if (emulator_write_emulated(rip, instruction, 3, vcpu)
3270             != X86EMUL_CONTINUE)
3271                 ret = -EFAULT;
3272
3273         return ret;
3274 }
3275
3276 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
3277 {
3278         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
3279 }
3280
3281 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3282 {
3283         struct descriptor_table dt = { limit, base };
3284
3285         kvm_x86_ops->set_gdt(vcpu, &dt);
3286 }
3287
3288 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3289 {
3290         struct descriptor_table dt = { limit, base };
3291
3292         kvm_x86_ops->set_idt(vcpu, &dt);
3293 }
3294
3295 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
3296                    unsigned long *rflags)
3297 {
3298         kvm_lmsw(vcpu, msw);
3299         *rflags = kvm_x86_ops->get_rflags(vcpu);
3300 }
3301
3302 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
3303 {
3304         unsigned long value;
3305
3306         kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3307         switch (cr) {
3308         case 0:
3309                 value = vcpu->arch.cr0;
3310                 break;
3311         case 2:
3312                 value = vcpu->arch.cr2;
3313                 break;
3314         case 3:
3315                 value = vcpu->arch.cr3;
3316                 break;
3317         case 4:
3318                 value = vcpu->arch.cr4;
3319                 break;
3320         case 8:
3321                 value = kvm_get_cr8(vcpu);
3322                 break;
3323         default:
3324                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3325                 return 0;
3326         }
3327
3328         return value;
3329 }
3330
3331 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
3332                      unsigned long *rflags)
3333 {
3334         switch (cr) {
3335         case 0:
3336                 kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
3337                 *rflags = kvm_x86_ops->get_rflags(vcpu);
3338                 break;
3339         case 2:
3340                 vcpu->arch.cr2 = val;
3341                 break;
3342         case 3:
3343                 kvm_set_cr3(vcpu, val);
3344                 break;
3345         case 4:
3346                 kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
3347                 break;
3348         case 8:
3349                 kvm_set_cr8(vcpu, val & 0xfUL);
3350                 break;
3351         default:
3352                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3353         }
3354 }
3355
3356 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
3357 {
3358         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
3359         int j, nent = vcpu->arch.cpuid_nent;
3360
3361         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
3362         /* when no next entry is found, the current entry[i] is reselected */
3363         for (j = i + 1; ; j = (j + 1) % nent) {
3364                 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
3365                 if (ej->function == e->function) {
3366                         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
3367                         return j;
3368                 }
3369         }
3370         return 0; /* silence gcc, even though control never reaches here */
3371 }
3372
3373 /* find an entry with matching function, matching index (if needed), and that
3374  * should be read next (if it's stateful) */
3375 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
3376         u32 function, u32 index)
3377 {
3378         if (e->function != function)
3379                 return 0;
3380         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
3381                 return 0;
3382         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
3383             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
3384                 return 0;
3385         return 1;
3386 }
3387
3388 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
3389                                               u32 function, u32 index)
3390 {
3391         int i;
3392         struct kvm_cpuid_entry2 *best = NULL;
3393
3394         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
3395                 struct kvm_cpuid_entry2 *e;
3396
3397                 e = &vcpu->arch.cpuid_entries[i];
3398                 if (is_matching_cpuid_entry(e, function, index)) {
3399                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
3400                                 move_to_next_stateful_cpuid_entry(vcpu, i);
3401                         best = e;
3402                         break;
3403                 }
3404                 /*
3405                  * Both basic or both extended?
3406                  */
3407                 if (((e->function ^ function) & 0x80000000) == 0)
3408                         if (!best || e->function > best->function)
3409                                 best = e;
3410         }
3411         return best;
3412 }
3413
3414 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
3415 {
3416         struct kvm_cpuid_entry2 *best;
3417
3418         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
3419         if (best)
3420                 return best->eax & 0xff;
3421         return 36;
3422 }
3423
3424 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
3425 {
3426         u32 function, index;
3427         struct kvm_cpuid_entry2 *best;
3428
3429         function = kvm_register_read(vcpu, VCPU_REGS_RAX);
3430         index = kvm_register_read(vcpu, VCPU_REGS_RCX);
3431         kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
3432         kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
3433         kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
3434         kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
3435         best = kvm_find_cpuid_entry(vcpu, function, index);
3436         if (best) {
3437                 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
3438                 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
3439                 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
3440                 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
3441         }
3442         kvm_x86_ops->skip_emulated_instruction(vcpu);
3443         trace_kvm_cpuid(function,
3444                         kvm_register_read(vcpu, VCPU_REGS_RAX),
3445                         kvm_register_read(vcpu, VCPU_REGS_RBX),
3446                         kvm_register_read(vcpu, VCPU_REGS_RCX),
3447                         kvm_register_read(vcpu, VCPU_REGS_RDX));
3448 }
3449 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
3450
3451 /*
3452  * Check if userspace requested an interrupt window, and that the
3453  * interrupt window is open.
3454  *
3455  * No need to exit to userspace if we already have an interrupt queued.
3456  */
3457 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
3458                                           struct kvm_run *kvm_run)
3459 {
3460         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
3461                 kvm_run->request_interrupt_window &&
3462                 kvm_arch_interrupt_allowed(vcpu));
3463 }
3464
3465 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
3466                               struct kvm_run *kvm_run)
3467 {
3468         kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
3469         kvm_run->cr8 = kvm_get_cr8(vcpu);
3470         kvm_run->apic_base = kvm_get_apic_base(vcpu);
3471         if (irqchip_in_kernel(vcpu->kvm))
3472                 kvm_run->ready_for_interrupt_injection = 1;
3473         else
3474                 kvm_run->ready_for_interrupt_injection =
3475                         kvm_arch_interrupt_allowed(vcpu) &&
3476                         !kvm_cpu_has_interrupt(vcpu) &&
3477                         !kvm_event_needs_reinjection(vcpu);
3478 }
3479
3480 static void vapic_enter(struct kvm_vcpu *vcpu)
3481 {
3482         struct kvm_lapic *apic = vcpu->arch.apic;
3483         struct page *page;
3484
3485         if (!apic || !apic->vapic_addr)
3486                 return;
3487
3488         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3489
3490         vcpu->arch.apic->vapic_page = page;
3491 }
3492
3493 static void vapic_exit(struct kvm_vcpu *vcpu)
3494 {
3495         struct kvm_lapic *apic = vcpu->arch.apic;
3496
3497         if (!apic || !apic->vapic_addr)
3498                 return;
3499
3500         down_read(&vcpu->kvm->slots_lock);
3501         kvm_release_page_dirty(apic->vapic_page);
3502         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3503         up_read(&vcpu->kvm->slots_lock);
3504 }
3505
3506 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
3507 {
3508         int max_irr, tpr;
3509
3510         if (!kvm_x86_ops->update_cr8_intercept)
3511                 return;
3512
3513         if (!vcpu->arch.apic)
3514                 return;
3515
3516         if (!vcpu->arch.apic->vapic_addr)
3517                 max_irr = kvm_lapic_find_highest_irr(vcpu);
3518         else
3519                 max_irr = -1;
3520
3521         if (max_irr != -1)
3522                 max_irr >>= 4;
3523
3524         tpr = kvm_lapic_get_cr8(vcpu);
3525
3526         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
3527 }
3528
3529 static void inject_pending_event(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3530 {
3531         /* try to reinject previous events if any */
3532         if (vcpu->arch.exception.pending) {
3533                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
3534                                           vcpu->arch.exception.has_error_code,
3535                                           vcpu->arch.exception.error_code);
3536                 return;
3537         }
3538
3539         if (vcpu->arch.nmi_injected) {
3540                 kvm_x86_ops->set_nmi(vcpu);
3541                 return;
3542         }
3543
3544         if (vcpu->arch.interrupt.pending) {
3545                 kvm_x86_ops->set_irq(vcpu);
3546                 return;
3547         }
3548
3549         /* try to inject new event if pending */
3550         if (vcpu->arch.nmi_pending) {
3551                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
3552                         vcpu->arch.nmi_pending = false;
3553                         vcpu->arch.nmi_injected = true;
3554                         kvm_x86_ops->set_nmi(vcpu);
3555                 }
3556         } else if (kvm_cpu_has_interrupt(vcpu)) {
3557                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
3558                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
3559                                             false);
3560                         kvm_x86_ops->set_irq(vcpu);
3561                 }
3562         }
3563 }
3564
3565 static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3566 {
3567         int r;
3568         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
3569                 kvm_run->request_interrupt_window;
3570
3571         if (vcpu->requests)
3572                 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
3573                         kvm_mmu_unload(vcpu);
3574
3575         r = kvm_mmu_reload(vcpu);
3576         if (unlikely(r))
3577                 goto out;
3578
3579         if (vcpu->requests) {
3580                 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
3581                         __kvm_migrate_timers(vcpu);
3582                 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
3583                         kvm_write_guest_time(vcpu);
3584                 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
3585                         kvm_mmu_sync_roots(vcpu);
3586                 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
3587                         kvm_x86_ops->tlb_flush(vcpu);
3588                 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
3589                                        &vcpu->requests)) {
3590                         kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
3591                         r = 0;
3592                         goto out;
3593                 }
3594                 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
3595                         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
3596                         r = 0;
3597                         goto out;
3598                 }
3599         }
3600
3601         preempt_disable();
3602
3603         kvm_x86_ops->prepare_guest_switch(vcpu);
3604         kvm_load_guest_fpu(vcpu);
3605
3606         local_irq_disable();
3607
3608         clear_bit(KVM_REQ_KICK, &vcpu->requests);
3609         smp_mb__after_clear_bit();
3610
3611         if (vcpu->requests || need_resched() || signal_pending(current)) {
3612                 set_bit(KVM_REQ_KICK, &vcpu->requests);
3613                 local_irq_enable();
3614                 preempt_enable();
3615                 r = 1;
3616                 goto out;
3617         }
3618
3619         inject_pending_event(vcpu, kvm_run);
3620
3621         /* enable NMI/IRQ window open exits if needed */
3622         if (vcpu->arch.nmi_pending)
3623                 kvm_x86_ops->enable_nmi_window(vcpu);
3624         else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
3625                 kvm_x86_ops->enable_irq_window(vcpu);
3626
3627         if (kvm_lapic_enabled(vcpu)) {
3628                 update_cr8_intercept(vcpu);
3629                 kvm_lapic_sync_to_vapic(vcpu);
3630         }
3631
3632         up_read(&vcpu->kvm->slots_lock);
3633
3634         kvm_guest_enter();
3635
3636         if (unlikely(vcpu->arch.switch_db_regs)) {
3637                 set_debugreg(0, 7);
3638                 set_debugreg(vcpu->arch.eff_db[0], 0);
3639                 set_debugreg(vcpu->arch.eff_db[1], 1);
3640                 set_debugreg(vcpu->arch.eff_db[2], 2);
3641                 set_debugreg(vcpu->arch.eff_db[3], 3);
3642         }
3643
3644         trace_kvm_entry(vcpu->vcpu_id);
3645         kvm_x86_ops->run(vcpu, kvm_run);
3646
3647         /*
3648          * If the guest has used debug registers, at least dr7
3649          * will be disabled while returning to the host.
3650          * If we don't have active breakpoints in the host, we don't
3651          * care about the messed up debug address registers. But if
3652          * we have some of them active, restore the old state.
3653          */
3654         if (hw_breakpoint_active())
3655                 hw_breakpoint_restore();
3656
3657         set_bit(KVM_REQ_KICK, &vcpu->requests);
3658         local_irq_enable();
3659
3660         ++vcpu->stat.exits;
3661
3662         /*
3663          * We must have an instruction between local_irq_enable() and
3664          * kvm_guest_exit(), so the timer interrupt isn't delayed by
3665          * the interrupt shadow.  The stat.exits increment will do nicely.
3666          * But we need to prevent reordering, hence this barrier():
3667          */
3668         barrier();
3669
3670         kvm_guest_exit();
3671
3672         preempt_enable();
3673
3674         down_read(&vcpu->kvm->slots_lock);
3675
3676         /*
3677          * Profile KVM exit RIPs:
3678          */
3679         if (unlikely(prof_on == KVM_PROFILING)) {
3680                 unsigned long rip = kvm_rip_read(vcpu);
3681                 profile_hit(KVM_PROFILING, (void *)rip);
3682         }
3683
3684
3685         kvm_lapic_sync_from_vapic(vcpu);
3686
3687         r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
3688 out:
3689         return r;
3690 }
3691
3692
3693 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3694 {
3695         int r;
3696
3697         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
3698                 pr_debug("vcpu %d received sipi with vector # %x\n",
3699                          vcpu->vcpu_id, vcpu->arch.sipi_vector);
3700                 kvm_lapic_reset(vcpu);
3701                 r = kvm_arch_vcpu_reset(vcpu);
3702                 if (r)
3703                         return r;
3704                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3705         }
3706
3707         down_read(&vcpu->kvm->slots_lock);
3708         vapic_enter(vcpu);
3709
3710         r = 1;
3711         while (r > 0) {
3712                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
3713                         r = vcpu_enter_guest(vcpu, kvm_run);
3714                 else {
3715                         up_read(&vcpu->kvm->slots_lock);
3716                         kvm_vcpu_block(vcpu);
3717                         down_read(&vcpu->kvm->slots_lock);
3718                         if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
3719                         {
3720                                 switch(vcpu->arch.mp_state) {
3721                                 case KVM_MP_STATE_HALTED:
3722                                         vcpu->arch.mp_state =
3723                                                 KVM_MP_STATE_RUNNABLE;
3724                                 case KVM_MP_STATE_RUNNABLE:
3725                                         break;
3726                                 case KVM_MP_STATE_SIPI_RECEIVED:
3727                                 default:
3728                                         r = -EINTR;
3729                                         break;
3730                                 }
3731                         }
3732                 }
3733
3734                 if (r <= 0)
3735                         break;
3736
3737                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
3738                 if (kvm_cpu_has_pending_timer(vcpu))
3739                         kvm_inject_pending_timer_irqs(vcpu);
3740
3741                 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
3742                         r = -EINTR;
3743                         kvm_run->exit_reason = KVM_EXIT_INTR;
3744                         ++vcpu->stat.request_irq_exits;
3745                 }
3746                 if (signal_pending(current)) {
3747                         r = -EINTR;
3748                         kvm_run->exit_reason = KVM_EXIT_INTR;
3749                         ++vcpu->stat.signal_exits;
3750                 }
3751                 if (need_resched()) {
3752                         up_read(&vcpu->kvm->slots_lock);
3753                         kvm_resched(vcpu);
3754                         down_read(&vcpu->kvm->slots_lock);
3755                 }
3756         }
3757
3758         up_read(&vcpu->kvm->slots_lock);
3759         post_kvm_run_save(vcpu, kvm_run);
3760
3761         vapic_exit(vcpu);
3762
3763         return r;
3764 }
3765
3766 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3767 {
3768         int r;
3769         sigset_t sigsaved;
3770
3771         vcpu_load(vcpu);
3772
3773         if (vcpu->sigset_active)
3774                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
3775
3776         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
3777                 kvm_vcpu_block(vcpu);
3778                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
3779                 r = -EAGAIN;
3780                 goto out;
3781         }
3782
3783         /* re-sync apic's tpr */
3784         if (!irqchip_in_kernel(vcpu->kvm))
3785                 kvm_set_cr8(vcpu, kvm_run->cr8);
3786
3787         if (vcpu->arch.pio.cur_count) {
3788                 r = complete_pio(vcpu);
3789                 if (r)
3790                         goto out;
3791         }
3792 #if CONFIG_HAS_IOMEM
3793         if (vcpu->mmio_needed) {
3794                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
3795                 vcpu->mmio_read_completed = 1;
3796                 vcpu->mmio_needed = 0;
3797
3798                 down_read(&vcpu->kvm->slots_lock);
3799                 r = emulate_instruction(vcpu, kvm_run,
3800                                         vcpu->arch.mmio_fault_cr2, 0,
3801                                         EMULTYPE_NO_DECODE);
3802                 up_read(&vcpu->kvm->slots_lock);
3803                 if (r == EMULATE_DO_MMIO) {
3804                         /*
3805                          * Read-modify-write.  Back to userspace.
3806                          */
3807                         r = 0;
3808                         goto out;
3809                 }
3810         }
3811 #endif
3812         if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
3813                 kvm_register_write(vcpu, VCPU_REGS_RAX,
3814                                      kvm_run->hypercall.ret);
3815
3816         r = __vcpu_run(vcpu, kvm_run);
3817
3818 out:
3819         if (vcpu->sigset_active)
3820                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
3821
3822         vcpu_put(vcpu);
3823         return r;
3824 }
3825
3826 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3827 {
3828         vcpu_load(vcpu);
3829
3830         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3831         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3832         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3833         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3834         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3835         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3836         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3837         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3838 #ifdef CONFIG_X86_64
3839         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
3840         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
3841         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
3842         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
3843         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
3844         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
3845         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
3846         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
3847 #endif
3848
3849         regs->rip = kvm_rip_read(vcpu);
3850         regs->rflags = kvm_x86_ops->get_rflags(vcpu);
3851
3852         /*
3853          * Don't leak debug flags in case they were set for guest debugging
3854          */
3855         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3856                 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
3857
3858         vcpu_put(vcpu);
3859
3860         return 0;
3861 }
3862
3863 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3864 {
3865         vcpu_load(vcpu);
3866
3867         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
3868         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
3869         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
3870         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
3871         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
3872         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
3873         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
3874         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
3875 #ifdef CONFIG_X86_64
3876         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
3877         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
3878         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
3879         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
3880         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
3881         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
3882         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
3883         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
3884
3885 #endif
3886
3887         kvm_rip_write(vcpu, regs->rip);
3888         kvm_x86_ops->set_rflags(vcpu, regs->rflags);
3889
3890
3891         vcpu->arch.exception.pending = false;
3892
3893         vcpu_put(vcpu);
3894
3895         return 0;
3896 }
3897
3898 void kvm_get_segment(struct kvm_vcpu *vcpu,
3899                      struct kvm_segment *var, int seg)
3900 {
3901         kvm_x86_ops->get_segment(vcpu, var, seg);
3902 }
3903
3904 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3905 {
3906         struct kvm_segment cs;
3907
3908         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
3909         *db = cs.db;
3910         *l = cs.l;
3911 }
3912 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
3913
3914 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
3915                                   struct kvm_sregs *sregs)
3916 {
3917         struct descriptor_table dt;
3918
3919         vcpu_load(vcpu);
3920
3921         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3922         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3923         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3924         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3925         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3926         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3927
3928         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3929         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3930
3931         kvm_x86_ops->get_idt(vcpu, &dt);
3932         sregs->idt.limit = dt.limit;
3933         sregs->idt.base = dt.base;
3934         kvm_x86_ops->get_gdt(vcpu, &dt);
3935         sregs->gdt.limit = dt.limit;
3936         sregs->gdt.base = dt.base;
3937
3938         kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3939         sregs->cr0 = vcpu->arch.cr0;
3940         sregs->cr2 = vcpu->arch.cr2;
3941         sregs->cr3 = vcpu->arch.cr3;
3942         sregs->cr4 = vcpu->arch.cr4;
3943         sregs->cr8 = kvm_get_cr8(vcpu);
3944         sregs->efer = vcpu->arch.shadow_efer;
3945         sregs->apic_base = kvm_get_apic_base(vcpu);
3946
3947         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
3948
3949         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
3950                 set_bit(vcpu->arch.interrupt.nr,
3951                         (unsigned long *)sregs->interrupt_bitmap);
3952
3953         vcpu_put(vcpu);
3954
3955         return 0;
3956 }
3957
3958 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
3959                                     struct kvm_mp_state *mp_state)
3960 {
3961         vcpu_load(vcpu);
3962         mp_state->mp_state = vcpu->arch.mp_state;
3963         vcpu_put(vcpu);
3964         return 0;
3965 }
3966
3967 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
3968                                     struct kvm_mp_state *mp_state)
3969 {
3970         vcpu_load(vcpu);
3971         vcpu->arch.mp_state = mp_state->mp_state;
3972         vcpu_put(vcpu);
3973         return 0;
3974 }
3975
3976 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3977                         struct kvm_segment *var, int seg)
3978 {
3979         kvm_x86_ops->set_segment(vcpu, var, seg);
3980 }
3981
3982 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
3983                                    struct kvm_segment *kvm_desct)
3984 {
3985         kvm_desct->base = get_desc_base(seg_desc);
3986         kvm_desct->limit = get_desc_limit(seg_desc);
3987         if (seg_desc->g) {
3988                 kvm_desct->limit <<= 12;
3989                 kvm_desct->limit |= 0xfff;
3990         }
3991         kvm_desct->selector = selector;
3992         kvm_desct->type = seg_desc->type;
3993         kvm_desct->present = seg_desc->p;
3994         kvm_desct->dpl = seg_desc->dpl;
3995         kvm_desct->db = seg_desc->d;
3996         kvm_desct->s = seg_desc->s;
3997         kvm_desct->l = seg_desc->l;
3998         kvm_desct->g = seg_desc->g;
3999         kvm_desct->avl = seg_desc->avl;
4000         if (!selector)
4001                 kvm_desct->unusable = 1;
4002         else
4003                 kvm_desct->unusable = 0;
4004         kvm_desct->padding = 0;
4005 }
4006
4007 static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
4008                                           u16 selector,
4009                                           struct descriptor_table *dtable)
4010 {
4011         if (selector & 1 << 2) {
4012                 struct kvm_segment kvm_seg;
4013
4014                 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
4015
4016                 if (kvm_seg.unusable)
4017                         dtable->limit = 0;
4018                 else
4019                         dtable->limit = kvm_seg.limit;
4020                 dtable->base = kvm_seg.base;
4021         }
4022         else
4023                 kvm_x86_ops->get_gdt(vcpu, dtable);
4024 }
4025
4026 /* allowed just for 8 bytes segments */
4027 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4028                                          struct desc_struct *seg_desc)
4029 {
4030         struct descriptor_table dtable;
4031         u16 index = selector >> 3;
4032
4033         get_segment_descriptor_dtable(vcpu, selector, &dtable);
4034
4035         if (dtable.limit < index * 8 + 7) {
4036                 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
4037                 return 1;
4038         }
4039         return kvm_read_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
4040 }
4041
4042 /* allowed just for 8 bytes segments */
4043 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4044                                          struct desc_struct *seg_desc)
4045 {
4046         struct descriptor_table dtable;
4047         u16 index = selector >> 3;
4048
4049         get_segment_descriptor_dtable(vcpu, selector, &dtable);
4050
4051         if (dtable.limit < index * 8 + 7)
4052                 return 1;
4053         return kvm_write_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
4054 }
4055
4056 static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
4057                              struct desc_struct *seg_desc)
4058 {
4059         u32 base_addr = get_desc_base(seg_desc);
4060
4061         return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
4062 }
4063
4064 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
4065 {
4066         struct kvm_segment kvm_seg;
4067
4068         kvm_get_segment(vcpu, &kvm_seg, seg);
4069         return kvm_seg.selector;
4070 }
4071
4072 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
4073                                                 u16 selector,
4074                                                 struct kvm_segment *kvm_seg)
4075 {
4076         struct desc_struct seg_desc;
4077
4078         if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
4079                 return 1;
4080         seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
4081         return 0;
4082 }
4083
4084 static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
4085 {
4086         struct kvm_segment segvar = {
4087                 .base = selector << 4,
4088                 .limit = 0xffff,
4089                 .selector = selector,
4090                 .type = 3,
4091                 .present = 1,
4092                 .dpl = 3,
4093                 .db = 0,
4094                 .s = 1,
4095                 .l = 0,
4096                 .g = 0,
4097                 .avl = 0,
4098                 .unusable = 0,
4099         };
4100         kvm_x86_ops->set_segment(vcpu, &segvar, seg);
4101         return 0;
4102 }
4103
4104 static int is_vm86_segment(struct kvm_vcpu *vcpu, int seg)
4105 {
4106         return (seg != VCPU_SREG_LDTR) &&
4107                 (seg != VCPU_SREG_TR) &&
4108                 (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_VM);
4109 }
4110
4111 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4112                                 int type_bits, int seg)
4113 {
4114         struct kvm_segment kvm_seg;
4115
4116         if (is_vm86_segment(vcpu, seg) || !(vcpu->arch.cr0 & X86_CR0_PE))
4117                 return kvm_load_realmode_segment(vcpu, selector, seg);
4118         if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
4119                 return 1;
4120         kvm_seg.type |= type_bits;
4121
4122         if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
4123             seg != VCPU_SREG_LDTR)
4124                 if (!kvm_seg.s)
4125                         kvm_seg.unusable = 1;
4126
4127         kvm_set_segment(vcpu, &kvm_seg, seg);
4128         return 0;
4129 }
4130
4131 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
4132                                 struct tss_segment_32 *tss)
4133 {
4134         tss->cr3 = vcpu->arch.cr3;
4135         tss->eip = kvm_rip_read(vcpu);
4136         tss->eflags = kvm_x86_ops->get_rflags(vcpu);
4137         tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4138         tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4139         tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4140         tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4141         tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4142         tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4143         tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4144         tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4145         tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4146         tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4147         tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4148         tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4149         tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
4150         tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
4151         tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4152 }
4153
4154 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
4155                                   struct tss_segment_32 *tss)
4156 {
4157         kvm_set_cr3(vcpu, tss->cr3);
4158
4159         kvm_rip_write(vcpu, tss->eip);
4160         kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
4161
4162         kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
4163         kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
4164         kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
4165         kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
4166         kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
4167         kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
4168         kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
4169         kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
4170
4171         if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
4172                 return 1;
4173
4174         if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
4175                 return 1;
4176
4177         if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
4178                 return 1;
4179
4180         if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
4181                 return 1;
4182
4183         if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
4184                 return 1;
4185
4186         if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
4187                 return 1;
4188
4189         if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
4190                 return 1;
4191         return 0;
4192 }
4193
4194 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
4195                                 struct tss_segment_16 *tss)
4196 {
4197         tss->ip = kvm_rip_read(vcpu);
4198         tss->flag = kvm_x86_ops->get_rflags(vcpu);
4199         tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4200         tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4201         tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4202         tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4203         tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4204         tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4205         tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
4206         tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
4207
4208         tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4209         tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4210         tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4211         tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4212         tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4213         tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
4214 }
4215
4216 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
4217                                  struct tss_segment_16 *tss)
4218 {
4219         kvm_rip_write(vcpu, tss->ip);
4220         kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
4221         kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
4222         kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
4223         kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
4224         kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
4225         kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
4226         kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
4227         kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
4228         kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
4229
4230         if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
4231                 return 1;
4232
4233         if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
4234                 return 1;
4235
4236         if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
4237                 return 1;
4238
4239         if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
4240                 return 1;
4241
4242         if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
4243                 return 1;
4244         return 0;
4245 }
4246
4247 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
4248                               u16 old_tss_sel, u32 old_tss_base,
4249                               struct desc_struct *nseg_desc)
4250 {
4251         struct tss_segment_16 tss_segment_16;
4252         int ret = 0;
4253
4254         if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4255                            sizeof tss_segment_16))
4256                 goto out;
4257
4258         save_state_to_tss16(vcpu, &tss_segment_16);
4259
4260         if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4261                             sizeof tss_segment_16))
4262                 goto out;
4263
4264         if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
4265                            &tss_segment_16, sizeof tss_segment_16))
4266                 goto out;
4267
4268         if (old_tss_sel != 0xffff) {
4269                 tss_segment_16.prev_task_link = old_tss_sel;
4270
4271                 if (kvm_write_guest(vcpu->kvm,
4272                                     get_tss_base_addr(vcpu, nseg_desc),
4273                                     &tss_segment_16.prev_task_link,
4274                                     sizeof tss_segment_16.prev_task_link))
4275                         goto out;
4276         }
4277
4278         if (load_state_from_tss16(vcpu, &tss_segment_16))
4279                 goto out;
4280
4281         ret = 1;
4282 out:
4283         return ret;
4284 }
4285
4286 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
4287                        u16 old_tss_sel, u32 old_tss_base,
4288                        struct desc_struct *nseg_desc)
4289 {
4290         struct tss_segment_32 tss_segment_32;
4291         int ret = 0;
4292
4293         if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
4294                            sizeof tss_segment_32))
4295                 goto out;
4296
4297         save_state_to_tss32(vcpu, &tss_segment_32);
4298
4299         if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
4300                             sizeof tss_segment_32))
4301                 goto out;
4302
4303         if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
4304                            &tss_segment_32, sizeof tss_segment_32))
4305                 goto out;
4306
4307         if (old_tss_sel != 0xffff) {
4308                 tss_segment_32.prev_task_link = old_tss_sel;
4309
4310                 if (kvm_write_guest(vcpu->kvm,
4311                                     get_tss_base_addr(vcpu, nseg_desc),
4312                                     &tss_segment_32.prev_task_link,
4313                                     sizeof tss_segment_32.prev_task_link))
4314                         goto out;
4315         }
4316
4317         if (load_state_from_tss32(vcpu, &tss_segment_32))
4318                 goto out;
4319
4320         ret = 1;
4321 out:
4322         return ret;
4323 }
4324
4325 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
4326 {
4327         struct kvm_segment tr_seg;
4328         struct desc_struct cseg_desc;
4329         struct desc_struct nseg_desc;
4330         int ret = 0;
4331         u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
4332         u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
4333
4334         old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
4335
4336         /* FIXME: Handle errors. Failure to read either TSS or their
4337          * descriptors should generate a pagefault.
4338          */
4339         if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
4340                 goto out;
4341
4342         if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
4343                 goto out;
4344
4345         if (reason != TASK_SWITCH_IRET) {
4346                 int cpl;
4347
4348                 cpl = kvm_x86_ops->get_cpl(vcpu);
4349                 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
4350                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4351                         return 1;
4352                 }
4353         }
4354
4355         if (!nseg_desc.p || get_desc_limit(&nseg_desc) < 0x67) {
4356                 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
4357                 return 1;
4358         }
4359
4360         if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
4361                 cseg_desc.type &= ~(1 << 1); //clear the B flag
4362                 save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
4363         }
4364
4365         if (reason == TASK_SWITCH_IRET) {
4366                 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
4367                 kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
4368         }
4369
4370         /* set back link to prev task only if NT bit is set in eflags
4371            note that old_tss_sel is not used afetr this point */
4372         if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
4373                 old_tss_sel = 0xffff;
4374
4375         /* set back link to prev task only if NT bit is set in eflags
4376            note that old_tss_sel is not used afetr this point */
4377         if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
4378                 old_tss_sel = 0xffff;
4379
4380         if (nseg_desc.type & 8)
4381                 ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
4382                                          old_tss_base, &nseg_desc);
4383         else
4384                 ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
4385                                          old_tss_base, &nseg_desc);
4386
4387         if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
4388                 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
4389                 kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
4390         }
4391
4392         if (reason != TASK_SWITCH_IRET) {
4393                 nseg_desc.type |= (1 << 1);
4394                 save_guest_segment_descriptor(vcpu, tss_selector,
4395                                               &nseg_desc);
4396         }
4397
4398         kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
4399         seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
4400         tr_seg.type = 11;
4401         kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
4402 out:
4403         return ret;
4404 }
4405 EXPORT_SYMBOL_GPL(kvm_task_switch);
4406
4407 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
4408                                   struct kvm_sregs *sregs)
4409 {
4410         int mmu_reset_needed = 0;
4411         int pending_vec, max_bits;
4412         struct descriptor_table dt;
4413
4414         vcpu_load(vcpu);
4415
4416         dt.limit = sregs->idt.limit;
4417         dt.base = sregs->idt.base;
4418         kvm_x86_ops->set_idt(vcpu, &dt);
4419         dt.limit = sregs->gdt.limit;
4420         dt.base = sregs->gdt.base;
4421         kvm_x86_ops->set_gdt(vcpu, &dt);
4422
4423         vcpu->arch.cr2 = sregs->cr2;
4424         mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
4425         vcpu->arch.cr3 = sregs->cr3;
4426
4427         kvm_set_cr8(vcpu, sregs->cr8);
4428
4429         mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
4430         kvm_x86_ops->set_efer(vcpu, sregs->efer);
4431         kvm_set_apic_base(vcpu, sregs->apic_base);
4432
4433         kvm_x86_ops->decache_cr4_guest_bits(vcpu);
4434
4435         mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
4436         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
4437         vcpu->arch.cr0 = sregs->cr0;
4438
4439         mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
4440         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
4441         if (!is_long_mode(vcpu) && is_pae(vcpu))
4442                 load_pdptrs(vcpu, vcpu->arch.cr3);
4443
4444         if (mmu_reset_needed)
4445                 kvm_mmu_reset_context(vcpu);
4446
4447         max_bits = (sizeof sregs->interrupt_bitmap) << 3;
4448         pending_vec = find_first_bit(
4449                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
4450         if (pending_vec < max_bits) {
4451                 kvm_queue_interrupt(vcpu, pending_vec, false);
4452                 pr_debug("Set back pending irq %d\n", pending_vec);
4453                 if (irqchip_in_kernel(vcpu->kvm))
4454                         kvm_pic_clear_isr_ack(vcpu->kvm);
4455         }
4456
4457         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4458         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4459         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4460         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4461         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4462         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4463
4464         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4465         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4466
4467         update_cr8_intercept(vcpu);
4468
4469         /* Older userspace won't unhalt the vcpu on reset. */
4470         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
4471             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
4472             !(vcpu->arch.cr0 & X86_CR0_PE))
4473                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4474
4475         vcpu_put(vcpu);
4476
4477         return 0;
4478 }
4479
4480 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
4481                                         struct kvm_guest_debug *dbg)
4482 {
4483         int i, r;
4484
4485         vcpu_load(vcpu);
4486
4487         if ((dbg->control & (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) ==
4488             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) {
4489                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
4490                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
4491                 vcpu->arch.switch_db_regs =
4492                         (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
4493         } else {
4494                 for (i = 0; i < KVM_NR_DB_REGS; i++)
4495                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
4496                 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
4497         }
4498
4499         r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
4500
4501         if (dbg->control & KVM_GUESTDBG_INJECT_DB)
4502                 kvm_queue_exception(vcpu, DB_VECTOR);
4503         else if (dbg->control & KVM_GUESTDBG_INJECT_BP)
4504                 kvm_queue_exception(vcpu, BP_VECTOR);
4505
4506         vcpu_put(vcpu);
4507
4508         return r;
4509 }
4510
4511 /*
4512  * fxsave fpu state.  Taken from x86_64/processor.h.  To be killed when
4513  * we have asm/x86/processor.h
4514  */
4515 struct fxsave {
4516         u16     cwd;
4517         u16     swd;
4518         u16     twd;
4519         u16     fop;
4520         u64     rip;
4521         u64     rdp;
4522         u32     mxcsr;
4523         u32     mxcsr_mask;
4524         u32     st_space[32];   /* 8*16 bytes for each FP-reg = 128 bytes */
4525 #ifdef CONFIG_X86_64
4526         u32     xmm_space[64];  /* 16*16 bytes for each XMM-reg = 256 bytes */
4527 #else
4528         u32     xmm_space[32];  /* 8*16 bytes for each XMM-reg = 128 bytes */
4529 #endif
4530 };
4531
4532 /*
4533  * Translate a guest virtual address to a guest physical address.
4534  */
4535 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
4536                                     struct kvm_translation *tr)
4537 {
4538         unsigned long vaddr = tr->linear_address;
4539         gpa_t gpa;
4540
4541         vcpu_load(vcpu);
4542         down_read(&vcpu->kvm->slots_lock);
4543         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
4544         up_read(&vcpu->kvm->slots_lock);
4545         tr->physical_address = gpa;
4546         tr->valid = gpa != UNMAPPED_GVA;
4547         tr->writeable = 1;
4548         tr->usermode = 0;
4549         vcpu_put(vcpu);
4550
4551         return 0;
4552 }
4553
4554 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4555 {
4556         struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4557
4558         vcpu_load(vcpu);
4559
4560         memcpy(fpu->fpr, fxsave->st_space, 128);
4561         fpu->fcw = fxsave->cwd;
4562         fpu->fsw = fxsave->swd;
4563         fpu->ftwx = fxsave->twd;
4564         fpu->last_opcode = fxsave->fop;
4565         fpu->last_ip = fxsave->rip;
4566         fpu->last_dp = fxsave->rdp;
4567         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
4568
4569         vcpu_put(vcpu);
4570
4571         return 0;
4572 }
4573
4574 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4575 {
4576         struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4577
4578         vcpu_load(vcpu);
4579
4580         memcpy(fxsave->st_space, fpu->fpr, 128);
4581         fxsave->cwd = fpu->fcw;
4582         fxsave->swd = fpu->fsw;
4583         fxsave->twd = fpu->ftwx;
4584         fxsave->fop = fpu->last_opcode;
4585         fxsave->rip = fpu->last_ip;
4586         fxsave->rdp = fpu->last_dp;
4587         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
4588
4589         vcpu_put(vcpu);
4590
4591         return 0;
4592 }
4593
4594 void fx_init(struct kvm_vcpu *vcpu)
4595 {
4596         unsigned after_mxcsr_mask;
4597
4598         /*
4599          * Touch the fpu the first time in non atomic context as if
4600          * this is the first fpu instruction the exception handler
4601          * will fire before the instruction returns and it'll have to
4602          * allocate ram with GFP_KERNEL.
4603          */
4604         if (!used_math())
4605                 kvm_fx_save(&vcpu->arch.host_fx_image);
4606
4607         /* Initialize guest FPU by resetting ours and saving into guest's */
4608         preempt_disable();
4609         kvm_fx_save(&vcpu->arch.host_fx_image);
4610         kvm_fx_finit();
4611         kvm_fx_save(&vcpu->arch.guest_fx_image);
4612         kvm_fx_restore(&vcpu->arch.host_fx_image);
4613         preempt_enable();
4614
4615         vcpu->arch.cr0 |= X86_CR0_ET;
4616         after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
4617         vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
4618         memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
4619                0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
4620 }
4621 EXPORT_SYMBOL_GPL(fx_init);
4622
4623 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
4624 {
4625         if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
4626                 return;
4627
4628         vcpu->guest_fpu_loaded = 1;
4629         kvm_fx_save(&vcpu->arch.host_fx_image);
4630         kvm_fx_restore(&vcpu->arch.guest_fx_image);
4631 }
4632 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
4633
4634 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
4635 {
4636         if (!vcpu->guest_fpu_loaded)
4637                 return;
4638
4639         vcpu->guest_fpu_loaded = 0;
4640         kvm_fx_save(&vcpu->arch.guest_fx_image);
4641         kvm_fx_restore(&vcpu->arch.host_fx_image);
4642         ++vcpu->stat.fpu_reload;
4643 }
4644 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
4645
4646 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
4647 {
4648         if (vcpu->arch.time_page) {
4649                 kvm_release_page_dirty(vcpu->arch.time_page);
4650                 vcpu->arch.time_page = NULL;
4651         }
4652
4653         kvm_x86_ops->vcpu_free(vcpu);
4654 }
4655
4656 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
4657                                                 unsigned int id)
4658 {
4659         return kvm_x86_ops->vcpu_create(kvm, id);
4660 }
4661
4662 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
4663 {
4664         int r;
4665
4666         /* We do fxsave: this must be aligned. */
4667         BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
4668
4669         vcpu->arch.mtrr_state.have_fixed = 1;
4670         vcpu_load(vcpu);
4671         r = kvm_arch_vcpu_reset(vcpu);
4672         if (r == 0)
4673                 r = kvm_mmu_setup(vcpu);
4674         vcpu_put(vcpu);
4675         if (r < 0)
4676                 goto free_vcpu;
4677
4678         return 0;
4679 free_vcpu:
4680         kvm_x86_ops->vcpu_free(vcpu);
4681         return r;
4682 }
4683
4684 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
4685 {
4686         vcpu_load(vcpu);
4687         kvm_mmu_unload(vcpu);
4688         vcpu_put(vcpu);
4689
4690         kvm_x86_ops->vcpu_free(vcpu);
4691 }
4692
4693 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
4694 {
4695         vcpu->arch.nmi_pending = false;
4696         vcpu->arch.nmi_injected = false;
4697
4698         vcpu->arch.switch_db_regs = 0;
4699         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
4700         vcpu->arch.dr6 = DR6_FIXED_1;
4701         vcpu->arch.dr7 = DR7_FIXED_1;
4702
4703         return kvm_x86_ops->vcpu_reset(vcpu);
4704 }
4705
4706 void kvm_arch_hardware_enable(void *garbage)
4707 {
4708         kvm_x86_ops->hardware_enable(garbage);
4709 }
4710
4711 void kvm_arch_hardware_disable(void *garbage)
4712 {
4713         kvm_x86_ops->hardware_disable(garbage);
4714 }
4715
4716 int kvm_arch_hardware_setup(void)
4717 {
4718         return kvm_x86_ops->hardware_setup();
4719 }
4720
4721 void kvm_arch_hardware_unsetup(void)
4722 {
4723         kvm_x86_ops->hardware_unsetup();
4724 }
4725
4726 void kvm_arch_check_processor_compat(void *rtn)
4727 {
4728         kvm_x86_ops->check_processor_compatibility(rtn);
4729 }
4730
4731 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
4732 {
4733         struct page *page;
4734         struct kvm *kvm;
4735         int r;
4736
4737         BUG_ON(vcpu->kvm == NULL);
4738         kvm = vcpu->kvm;
4739
4740         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4741         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
4742                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4743         else
4744                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
4745
4746         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
4747         if (!page) {
4748                 r = -ENOMEM;
4749                 goto fail;
4750         }
4751         vcpu->arch.pio_data = page_address(page);
4752
4753         r = kvm_mmu_create(vcpu);
4754         if (r < 0)
4755                 goto fail_free_pio_data;
4756
4757         if (irqchip_in_kernel(kvm)) {
4758                 r = kvm_create_lapic(vcpu);
4759                 if (r < 0)
4760                         goto fail_mmu_destroy;
4761         }
4762
4763         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
4764                                        GFP_KERNEL);
4765         if (!vcpu->arch.mce_banks) {
4766                 r = -ENOMEM;
4767                 goto fail_mmu_destroy;
4768         }
4769         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
4770
4771         return 0;
4772
4773 fail_mmu_destroy:
4774         kvm_mmu_destroy(vcpu);
4775 fail_free_pio_data:
4776         free_page((unsigned long)vcpu->arch.pio_data);
4777 fail:
4778         return r;
4779 }
4780
4781 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
4782 {
4783         kvm_free_lapic(vcpu);
4784         down_read(&vcpu->kvm->slots_lock);
4785         kvm_mmu_destroy(vcpu);
4786         up_read(&vcpu->kvm->slots_lock);
4787         free_page((unsigned long)vcpu->arch.pio_data);
4788 }
4789
4790 struct  kvm *kvm_arch_create_vm(void)
4791 {
4792         struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
4793
4794         if (!kvm)
4795                 return ERR_PTR(-ENOMEM);
4796
4797         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
4798         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
4799
4800         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
4801         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
4802
4803         rdtscll(kvm->arch.vm_init_tsc);
4804
4805         return kvm;
4806 }
4807
4808 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
4809 {
4810         vcpu_load(vcpu);
4811         kvm_mmu_unload(vcpu);
4812         vcpu_put(vcpu);
4813 }
4814
4815 static void kvm_free_vcpus(struct kvm *kvm)
4816 {
4817         unsigned int i;
4818         struct kvm_vcpu *vcpu;
4819
4820         /*
4821          * Unpin any mmu pages first.
4822          */
4823         kvm_for_each_vcpu(i, vcpu, kvm)
4824                 kvm_unload_vcpu_mmu(vcpu);
4825         kvm_for_each_vcpu(i, vcpu, kvm)
4826                 kvm_arch_vcpu_free(vcpu);
4827
4828         mutex_lock(&kvm->lock);
4829         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
4830                 kvm->vcpus[i] = NULL;
4831
4832         atomic_set(&kvm->online_vcpus, 0);
4833         mutex_unlock(&kvm->lock);
4834 }
4835
4836 void kvm_arch_sync_events(struct kvm *kvm)
4837 {
4838         kvm_free_all_assigned_devices(kvm);
4839 }
4840
4841 void kvm_arch_destroy_vm(struct kvm *kvm)
4842 {
4843         kvm_iommu_unmap_guest(kvm);
4844         kvm_free_pit(kvm);
4845         kfree(kvm->arch.vpic);
4846         kfree(kvm->arch.vioapic);
4847         kvm_free_vcpus(kvm);
4848         kvm_free_physmem(kvm);
4849         if (kvm->arch.apic_access_page)
4850                 put_page(kvm->arch.apic_access_page);
4851         if (kvm->arch.ept_identity_pagetable)
4852                 put_page(kvm->arch.ept_identity_pagetable);
4853         kfree(kvm);
4854 }
4855
4856 int kvm_arch_set_memory_region(struct kvm *kvm,
4857                                 struct kvm_userspace_memory_region *mem,
4858                                 struct kvm_memory_slot old,
4859                                 int user_alloc)
4860 {
4861         int npages = mem->memory_size >> PAGE_SHIFT;
4862         struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
4863
4864         /*To keep backward compatibility with older userspace,
4865          *x86 needs to hanlde !user_alloc case.
4866          */
4867         if (!user_alloc) {
4868                 if (npages && !old.rmap) {
4869                         unsigned long userspace_addr;
4870
4871                         down_write(&current->mm->mmap_sem);
4872                         userspace_addr = do_mmap(NULL, 0,
4873                                                  npages * PAGE_SIZE,
4874                                                  PROT_READ | PROT_WRITE,
4875                                                  MAP_PRIVATE | MAP_ANONYMOUS,
4876                                                  0);
4877                         up_write(&current->mm->mmap_sem);
4878
4879                         if (IS_ERR((void *)userspace_addr))
4880                                 return PTR_ERR((void *)userspace_addr);
4881
4882                         /* set userspace_addr atomically for kvm_hva_to_rmapp */
4883                         spin_lock(&kvm->mmu_lock);
4884                         memslot->userspace_addr = userspace_addr;
4885                         spin_unlock(&kvm->mmu_lock);
4886                 } else {
4887                         if (!old.user_alloc && old.rmap) {
4888                                 int ret;
4889
4890                                 down_write(&current->mm->mmap_sem);
4891                                 ret = do_munmap(current->mm, old.userspace_addr,
4892                                                 old.npages * PAGE_SIZE);
4893                                 up_write(&current->mm->mmap_sem);
4894                                 if (ret < 0)
4895                                         printk(KERN_WARNING
4896                                        "kvm_vm_ioctl_set_memory_region: "
4897                                        "failed to munmap memory\n");
4898                         }
4899                 }
4900         }
4901
4902         spin_lock(&kvm->mmu_lock);
4903         if (!kvm->arch.n_requested_mmu_pages) {
4904                 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
4905                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
4906         }
4907
4908         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
4909         spin_unlock(&kvm->mmu_lock);
4910
4911         return 0;
4912 }
4913
4914 void kvm_arch_flush_shadow(struct kvm *kvm)
4915 {
4916         kvm_mmu_zap_all(kvm);
4917         kvm_reload_remote_mmus(kvm);
4918 }
4919
4920 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
4921 {
4922         return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
4923                 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
4924                 || vcpu->arch.nmi_pending ||
4925                 (kvm_arch_interrupt_allowed(vcpu) &&
4926                  kvm_cpu_has_interrupt(vcpu));
4927 }
4928
4929 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
4930 {
4931         int me;
4932         int cpu = vcpu->cpu;
4933
4934         if (waitqueue_active(&vcpu->wq)) {
4935                 wake_up_interruptible(&vcpu->wq);
4936                 ++vcpu->stat.halt_wakeup;
4937         }
4938
4939         me = get_cpu();
4940         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
4941                 if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
4942                         smp_send_reschedule(cpu);
4943         put_cpu();
4944 }
4945
4946 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
4947 {
4948         return kvm_x86_ops->interrupt_allowed(vcpu);
4949 }
4950
4951 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
4952 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
4953 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
4954 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
4955 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);