cc540f27053fd2ef7879381655a5b09ed93ca0d0
[safe/jmp/linux-2.6] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Amit Shah    <amit.shah@qumranet.com>
14  *   Ben-Ami Yassour <benami@il.ibm.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
28
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
40 #include <linux/user-return-notifier.h>
41 #include <linux/srcu.h>
42 #include <linux/slab.h>
43 #include <trace/events/kvm.h>
44
45 #define CREATE_TRACE_POINTS
46 #include "trace.h"
47
48 #include <asm/debugreg.h>
49 #include <asm/uaccess.h>
50 #include <asm/msr.h>
51 #include <asm/desc.h>
52 #include <asm/mtrr.h>
53 #include <asm/mce.h>
54
55 #define MAX_IO_MSRS 256
56 #define CR0_RESERVED_BITS                                               \
57         (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
58                           | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
59                           | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
60 #define CR4_RESERVED_BITS                                               \
61         (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
62                           | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
63                           | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR  \
64                           | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
65
66 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
67
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
70
71 /* EFER defaults:
72  * - enable syscall per default because its emulated by KVM
73  * - enable LME and LMA per default on 64 bit KVM
74  */
75 #ifdef CONFIG_X86_64
76 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
77 #else
78 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
79 #endif
80
81 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
82 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
83
84 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
85 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
86                                     struct kvm_cpuid_entry2 __user *entries);
87
88 struct kvm_x86_ops *kvm_x86_ops;
89 EXPORT_SYMBOL_GPL(kvm_x86_ops);
90
91 int ignore_msrs = 0;
92 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
93
94 #define KVM_NR_SHARED_MSRS 16
95
96 struct kvm_shared_msrs_global {
97         int nr;
98         u32 msrs[KVM_NR_SHARED_MSRS];
99 };
100
101 struct kvm_shared_msrs {
102         struct user_return_notifier urn;
103         bool registered;
104         struct kvm_shared_msr_values {
105                 u64 host;
106                 u64 curr;
107         } values[KVM_NR_SHARED_MSRS];
108 };
109
110 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
111 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
112
113 struct kvm_stats_debugfs_item debugfs_entries[] = {
114         { "pf_fixed", VCPU_STAT(pf_fixed) },
115         { "pf_guest", VCPU_STAT(pf_guest) },
116         { "tlb_flush", VCPU_STAT(tlb_flush) },
117         { "invlpg", VCPU_STAT(invlpg) },
118         { "exits", VCPU_STAT(exits) },
119         { "io_exits", VCPU_STAT(io_exits) },
120         { "mmio_exits", VCPU_STAT(mmio_exits) },
121         { "signal_exits", VCPU_STAT(signal_exits) },
122         { "irq_window", VCPU_STAT(irq_window_exits) },
123         { "nmi_window", VCPU_STAT(nmi_window_exits) },
124         { "halt_exits", VCPU_STAT(halt_exits) },
125         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
126         { "hypercalls", VCPU_STAT(hypercalls) },
127         { "request_irq", VCPU_STAT(request_irq_exits) },
128         { "irq_exits", VCPU_STAT(irq_exits) },
129         { "host_state_reload", VCPU_STAT(host_state_reload) },
130         { "efer_reload", VCPU_STAT(efer_reload) },
131         { "fpu_reload", VCPU_STAT(fpu_reload) },
132         { "insn_emulation", VCPU_STAT(insn_emulation) },
133         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
134         { "irq_injections", VCPU_STAT(irq_injections) },
135         { "nmi_injections", VCPU_STAT(nmi_injections) },
136         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
137         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
138         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
139         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
140         { "mmu_flooded", VM_STAT(mmu_flooded) },
141         { "mmu_recycled", VM_STAT(mmu_recycled) },
142         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
143         { "mmu_unsync", VM_STAT(mmu_unsync) },
144         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
145         { "largepages", VM_STAT(lpages) },
146         { NULL }
147 };
148
149 static void kvm_on_user_return(struct user_return_notifier *urn)
150 {
151         unsigned slot;
152         struct kvm_shared_msrs *locals
153                 = container_of(urn, struct kvm_shared_msrs, urn);
154         struct kvm_shared_msr_values *values;
155
156         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
157                 values = &locals->values[slot];
158                 if (values->host != values->curr) {
159                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
160                         values->curr = values->host;
161                 }
162         }
163         locals->registered = false;
164         user_return_notifier_unregister(urn);
165 }
166
167 static void shared_msr_update(unsigned slot, u32 msr)
168 {
169         struct kvm_shared_msrs *smsr;
170         u64 value;
171
172         smsr = &__get_cpu_var(shared_msrs);
173         /* only read, and nobody should modify it at this time,
174          * so don't need lock */
175         if (slot >= shared_msrs_global.nr) {
176                 printk(KERN_ERR "kvm: invalid MSR slot!");
177                 return;
178         }
179         rdmsrl_safe(msr, &value);
180         smsr->values[slot].host = value;
181         smsr->values[slot].curr = value;
182 }
183
184 void kvm_define_shared_msr(unsigned slot, u32 msr)
185 {
186         if (slot >= shared_msrs_global.nr)
187                 shared_msrs_global.nr = slot + 1;
188         shared_msrs_global.msrs[slot] = msr;
189         /* we need ensured the shared_msr_global have been updated */
190         smp_wmb();
191 }
192 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
193
194 static void kvm_shared_msr_cpu_online(void)
195 {
196         unsigned i;
197
198         for (i = 0; i < shared_msrs_global.nr; ++i)
199                 shared_msr_update(i, shared_msrs_global.msrs[i]);
200 }
201
202 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
203 {
204         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
205
206         if (((value ^ smsr->values[slot].curr) & mask) == 0)
207                 return;
208         smsr->values[slot].curr = value;
209         wrmsrl(shared_msrs_global.msrs[slot], value);
210         if (!smsr->registered) {
211                 smsr->urn.on_user_return = kvm_on_user_return;
212                 user_return_notifier_register(&smsr->urn);
213                 smsr->registered = true;
214         }
215 }
216 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
217
218 static void drop_user_return_notifiers(void *ignore)
219 {
220         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
221
222         if (smsr->registered)
223                 kvm_on_user_return(&smsr->urn);
224 }
225
226 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
227 {
228         if (irqchip_in_kernel(vcpu->kvm))
229                 return vcpu->arch.apic_base;
230         else
231                 return vcpu->arch.apic_base;
232 }
233 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
234
235 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
236 {
237         /* TODO: reserve bits check */
238         if (irqchip_in_kernel(vcpu->kvm))
239                 kvm_lapic_set_base(vcpu, data);
240         else
241                 vcpu->arch.apic_base = data;
242 }
243 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
244
245 #define EXCPT_BENIGN            0
246 #define EXCPT_CONTRIBUTORY      1
247 #define EXCPT_PF                2
248
249 static int exception_class(int vector)
250 {
251         switch (vector) {
252         case PF_VECTOR:
253                 return EXCPT_PF;
254         case DE_VECTOR:
255         case TS_VECTOR:
256         case NP_VECTOR:
257         case SS_VECTOR:
258         case GP_VECTOR:
259                 return EXCPT_CONTRIBUTORY;
260         default:
261                 break;
262         }
263         return EXCPT_BENIGN;
264 }
265
266 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
267                 unsigned nr, bool has_error, u32 error_code)
268 {
269         u32 prev_nr;
270         int class1, class2;
271
272         if (!vcpu->arch.exception.pending) {
273         queue:
274                 vcpu->arch.exception.pending = true;
275                 vcpu->arch.exception.has_error_code = has_error;
276                 vcpu->arch.exception.nr = nr;
277                 vcpu->arch.exception.error_code = error_code;
278                 return;
279         }
280
281         /* to check exception */
282         prev_nr = vcpu->arch.exception.nr;
283         if (prev_nr == DF_VECTOR) {
284                 /* triple fault -> shutdown */
285                 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
286                 return;
287         }
288         class1 = exception_class(prev_nr);
289         class2 = exception_class(nr);
290         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
291                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
292                 /* generate double fault per SDM Table 5-5 */
293                 vcpu->arch.exception.pending = true;
294                 vcpu->arch.exception.has_error_code = true;
295                 vcpu->arch.exception.nr = DF_VECTOR;
296                 vcpu->arch.exception.error_code = 0;
297         } else
298                 /* replace previous exception with a new one in a hope
299                    that instruction re-execution will regenerate lost
300                    exception */
301                 goto queue;
302 }
303
304 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
305 {
306         kvm_multiple_exception(vcpu, nr, false, 0);
307 }
308 EXPORT_SYMBOL_GPL(kvm_queue_exception);
309
310 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
311                            u32 error_code)
312 {
313         ++vcpu->stat.pf_guest;
314         vcpu->arch.cr2 = addr;
315         kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
316 }
317
318 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
319 {
320         vcpu->arch.nmi_pending = 1;
321 }
322 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
323
324 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
325 {
326         kvm_multiple_exception(vcpu, nr, true, error_code);
327 }
328 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
329
330 /*
331  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
332  * a #GP and return false.
333  */
334 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
335 {
336         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
337                 return true;
338         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
339         return false;
340 }
341 EXPORT_SYMBOL_GPL(kvm_require_cpl);
342
343 /*
344  * Load the pae pdptrs.  Return true is they are all valid.
345  */
346 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
347 {
348         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
349         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
350         int i;
351         int ret;
352         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
353
354         ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
355                                   offset * sizeof(u64), sizeof(pdpte));
356         if (ret < 0) {
357                 ret = 0;
358                 goto out;
359         }
360         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
361                 if (is_present_gpte(pdpte[i]) &&
362                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
363                         ret = 0;
364                         goto out;
365                 }
366         }
367         ret = 1;
368
369         memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
370         __set_bit(VCPU_EXREG_PDPTR,
371                   (unsigned long *)&vcpu->arch.regs_avail);
372         __set_bit(VCPU_EXREG_PDPTR,
373                   (unsigned long *)&vcpu->arch.regs_dirty);
374 out:
375
376         return ret;
377 }
378 EXPORT_SYMBOL_GPL(load_pdptrs);
379
380 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
381 {
382         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
383         bool changed = true;
384         int r;
385
386         if (is_long_mode(vcpu) || !is_pae(vcpu))
387                 return false;
388
389         if (!test_bit(VCPU_EXREG_PDPTR,
390                       (unsigned long *)&vcpu->arch.regs_avail))
391                 return true;
392
393         r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
394         if (r < 0)
395                 goto out;
396         changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
397 out:
398
399         return changed;
400 }
401
402 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
403 {
404         cr0 |= X86_CR0_ET;
405
406 #ifdef CONFIG_X86_64
407         if (cr0 & 0xffffffff00000000UL) {
408                 kvm_inject_gp(vcpu, 0);
409                 return;
410         }
411 #endif
412
413         cr0 &= ~CR0_RESERVED_BITS;
414
415         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
416                 kvm_inject_gp(vcpu, 0);
417                 return;
418         }
419
420         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
421                 kvm_inject_gp(vcpu, 0);
422                 return;
423         }
424
425         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
426 #ifdef CONFIG_X86_64
427                 if ((vcpu->arch.efer & EFER_LME)) {
428                         int cs_db, cs_l;
429
430                         if (!is_pae(vcpu)) {
431                                 kvm_inject_gp(vcpu, 0);
432                                 return;
433                         }
434                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
435                         if (cs_l) {
436                                 kvm_inject_gp(vcpu, 0);
437                                 return;
438
439                         }
440                 } else
441 #endif
442                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
443                         kvm_inject_gp(vcpu, 0);
444                         return;
445                 }
446
447         }
448
449         kvm_x86_ops->set_cr0(vcpu, cr0);
450
451         kvm_mmu_reset_context(vcpu);
452         return;
453 }
454 EXPORT_SYMBOL_GPL(kvm_set_cr0);
455
456 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
457 {
458         kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0ful) | (msw & 0x0f));
459 }
460 EXPORT_SYMBOL_GPL(kvm_lmsw);
461
462 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
463 {
464         unsigned long old_cr4 = kvm_read_cr4(vcpu);
465         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
466
467         if (cr4 & CR4_RESERVED_BITS) {
468                 kvm_inject_gp(vcpu, 0);
469                 return;
470         }
471
472         if (is_long_mode(vcpu)) {
473                 if (!(cr4 & X86_CR4_PAE)) {
474                         kvm_inject_gp(vcpu, 0);
475                         return;
476                 }
477         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
478                    && ((cr4 ^ old_cr4) & pdptr_bits)
479                    && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
480                 kvm_inject_gp(vcpu, 0);
481                 return;
482         }
483
484         if (cr4 & X86_CR4_VMXE) {
485                 kvm_inject_gp(vcpu, 0);
486                 return;
487         }
488         kvm_x86_ops->set_cr4(vcpu, cr4);
489         vcpu->arch.cr4 = cr4;
490         vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
491         kvm_mmu_reset_context(vcpu);
492 }
493 EXPORT_SYMBOL_GPL(kvm_set_cr4);
494
495 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
496 {
497         if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
498                 kvm_mmu_sync_roots(vcpu);
499                 kvm_mmu_flush_tlb(vcpu);
500                 return;
501         }
502
503         if (is_long_mode(vcpu)) {
504                 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
505                         kvm_inject_gp(vcpu, 0);
506                         return;
507                 }
508         } else {
509                 if (is_pae(vcpu)) {
510                         if (cr3 & CR3_PAE_RESERVED_BITS) {
511                                 kvm_inject_gp(vcpu, 0);
512                                 return;
513                         }
514                         if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
515                                 kvm_inject_gp(vcpu, 0);
516                                 return;
517                         }
518                 }
519                 /*
520                  * We don't check reserved bits in nonpae mode, because
521                  * this isn't enforced, and VMware depends on this.
522                  */
523         }
524
525         /*
526          * Does the new cr3 value map to physical memory? (Note, we
527          * catch an invalid cr3 even in real-mode, because it would
528          * cause trouble later on when we turn on paging anyway.)
529          *
530          * A real CPU would silently accept an invalid cr3 and would
531          * attempt to use it - with largely undefined (and often hard
532          * to debug) behavior on the guest side.
533          */
534         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
535                 kvm_inject_gp(vcpu, 0);
536         else {
537                 vcpu->arch.cr3 = cr3;
538                 vcpu->arch.mmu.new_cr3(vcpu);
539         }
540 }
541 EXPORT_SYMBOL_GPL(kvm_set_cr3);
542
543 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
544 {
545         if (cr8 & CR8_RESERVED_BITS) {
546                 kvm_inject_gp(vcpu, 0);
547                 return;
548         }
549         if (irqchip_in_kernel(vcpu->kvm))
550                 kvm_lapic_set_tpr(vcpu, cr8);
551         else
552                 vcpu->arch.cr8 = cr8;
553 }
554 EXPORT_SYMBOL_GPL(kvm_set_cr8);
555
556 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
557 {
558         if (irqchip_in_kernel(vcpu->kvm))
559                 return kvm_lapic_get_cr8(vcpu);
560         else
561                 return vcpu->arch.cr8;
562 }
563 EXPORT_SYMBOL_GPL(kvm_get_cr8);
564
565 static inline u32 bit(int bitno)
566 {
567         return 1 << (bitno & 31);
568 }
569
570 /*
571  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
572  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
573  *
574  * This list is modified at module load time to reflect the
575  * capabilities of the host cpu. This capabilities test skips MSRs that are
576  * kvm-specific. Those are put in the beginning of the list.
577  */
578
579 #define KVM_SAVE_MSRS_BEGIN     5
580 static u32 msrs_to_save[] = {
581         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
582         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
583         HV_X64_MSR_APIC_ASSIST_PAGE,
584         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
585         MSR_K6_STAR,
586 #ifdef CONFIG_X86_64
587         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
588 #endif
589         MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
590 };
591
592 static unsigned num_msrs_to_save;
593
594 static u32 emulated_msrs[] = {
595         MSR_IA32_MISC_ENABLE,
596 };
597
598 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
599 {
600         if (efer & efer_reserved_bits) {
601                 kvm_inject_gp(vcpu, 0);
602                 return;
603         }
604
605         if (is_paging(vcpu)
606             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) {
607                 kvm_inject_gp(vcpu, 0);
608                 return;
609         }
610
611         if (efer & EFER_FFXSR) {
612                 struct kvm_cpuid_entry2 *feat;
613
614                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
615                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
616                         kvm_inject_gp(vcpu, 0);
617                         return;
618                 }
619         }
620
621         if (efer & EFER_SVME) {
622                 struct kvm_cpuid_entry2 *feat;
623
624                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
625                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
626                         kvm_inject_gp(vcpu, 0);
627                         return;
628                 }
629         }
630
631         kvm_x86_ops->set_efer(vcpu, efer);
632
633         efer &= ~EFER_LMA;
634         efer |= vcpu->arch.efer & EFER_LMA;
635
636         vcpu->arch.efer = efer;
637
638         vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
639         kvm_mmu_reset_context(vcpu);
640 }
641
642 void kvm_enable_efer_bits(u64 mask)
643 {
644        efer_reserved_bits &= ~mask;
645 }
646 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
647
648
649 /*
650  * Writes msr value into into the appropriate "register".
651  * Returns 0 on success, non-0 otherwise.
652  * Assumes vcpu_load() was already called.
653  */
654 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
655 {
656         return kvm_x86_ops->set_msr(vcpu, msr_index, data);
657 }
658
659 /*
660  * Adapt set_msr() to msr_io()'s calling convention
661  */
662 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
663 {
664         return kvm_set_msr(vcpu, index, *data);
665 }
666
667 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
668 {
669         static int version;
670         struct pvclock_wall_clock wc;
671         struct timespec boot;
672
673         if (!wall_clock)
674                 return;
675
676         version++;
677
678         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
679
680         /*
681          * The guest calculates current wall clock time by adding
682          * system time (updated by kvm_write_guest_time below) to the
683          * wall clock specified here.  guest system time equals host
684          * system time for us, thus we must fill in host boot time here.
685          */
686         getboottime(&boot);
687
688         wc.sec = boot.tv_sec;
689         wc.nsec = boot.tv_nsec;
690         wc.version = version;
691
692         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
693
694         version++;
695         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
696 }
697
698 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
699 {
700         uint32_t quotient, remainder;
701
702         /* Don't try to replace with do_div(), this one calculates
703          * "(dividend << 32) / divisor" */
704         __asm__ ( "divl %4"
705                   : "=a" (quotient), "=d" (remainder)
706                   : "0" (0), "1" (dividend), "r" (divisor) );
707         return quotient;
708 }
709
710 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
711 {
712         uint64_t nsecs = 1000000000LL;
713         int32_t  shift = 0;
714         uint64_t tps64;
715         uint32_t tps32;
716
717         tps64 = tsc_khz * 1000LL;
718         while (tps64 > nsecs*2) {
719                 tps64 >>= 1;
720                 shift--;
721         }
722
723         tps32 = (uint32_t)tps64;
724         while (tps32 <= (uint32_t)nsecs) {
725                 tps32 <<= 1;
726                 shift++;
727         }
728
729         hv_clock->tsc_shift = shift;
730         hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
731
732         pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
733                  __func__, tsc_khz, hv_clock->tsc_shift,
734                  hv_clock->tsc_to_system_mul);
735 }
736
737 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
738
739 static void kvm_write_guest_time(struct kvm_vcpu *v)
740 {
741         struct timespec ts;
742         unsigned long flags;
743         struct kvm_vcpu_arch *vcpu = &v->arch;
744         void *shared_kaddr;
745         unsigned long this_tsc_khz;
746
747         if ((!vcpu->time_page))
748                 return;
749
750         this_tsc_khz = get_cpu_var(cpu_tsc_khz);
751         if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
752                 kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
753                 vcpu->hv_clock_tsc_khz = this_tsc_khz;
754         }
755         put_cpu_var(cpu_tsc_khz);
756
757         /* Keep irq disabled to prevent changes to the clock */
758         local_irq_save(flags);
759         kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
760         ktime_get_ts(&ts);
761         monotonic_to_bootbased(&ts);
762         local_irq_restore(flags);
763
764         /* With all the info we got, fill in the values */
765
766         vcpu->hv_clock.system_time = ts.tv_nsec +
767                                      (NSEC_PER_SEC * (u64)ts.tv_sec) + v->kvm->arch.kvmclock_offset;
768
769         /*
770          * The interface expects us to write an even number signaling that the
771          * update is finished. Since the guest won't see the intermediate
772          * state, we just increase by 2 at the end.
773          */
774         vcpu->hv_clock.version += 2;
775
776         shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
777
778         memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
779                sizeof(vcpu->hv_clock));
780
781         kunmap_atomic(shared_kaddr, KM_USER0);
782
783         mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
784 }
785
786 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
787 {
788         struct kvm_vcpu_arch *vcpu = &v->arch;
789
790         if (!vcpu->time_page)
791                 return 0;
792         set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
793         return 1;
794 }
795
796 static bool msr_mtrr_valid(unsigned msr)
797 {
798         switch (msr) {
799         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
800         case MSR_MTRRfix64K_00000:
801         case MSR_MTRRfix16K_80000:
802         case MSR_MTRRfix16K_A0000:
803         case MSR_MTRRfix4K_C0000:
804         case MSR_MTRRfix4K_C8000:
805         case MSR_MTRRfix4K_D0000:
806         case MSR_MTRRfix4K_D8000:
807         case MSR_MTRRfix4K_E0000:
808         case MSR_MTRRfix4K_E8000:
809         case MSR_MTRRfix4K_F0000:
810         case MSR_MTRRfix4K_F8000:
811         case MSR_MTRRdefType:
812         case MSR_IA32_CR_PAT:
813                 return true;
814         case 0x2f8:
815                 return true;
816         }
817         return false;
818 }
819
820 static bool valid_pat_type(unsigned t)
821 {
822         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
823 }
824
825 static bool valid_mtrr_type(unsigned t)
826 {
827         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
828 }
829
830 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
831 {
832         int i;
833
834         if (!msr_mtrr_valid(msr))
835                 return false;
836
837         if (msr == MSR_IA32_CR_PAT) {
838                 for (i = 0; i < 8; i++)
839                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
840                                 return false;
841                 return true;
842         } else if (msr == MSR_MTRRdefType) {
843                 if (data & ~0xcff)
844                         return false;
845                 return valid_mtrr_type(data & 0xff);
846         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
847                 for (i = 0; i < 8 ; i++)
848                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
849                                 return false;
850                 return true;
851         }
852
853         /* variable MTRRs */
854         return valid_mtrr_type(data & 0xff);
855 }
856
857 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
858 {
859         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
860
861         if (!mtrr_valid(vcpu, msr, data))
862                 return 1;
863
864         if (msr == MSR_MTRRdefType) {
865                 vcpu->arch.mtrr_state.def_type = data;
866                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
867         } else if (msr == MSR_MTRRfix64K_00000)
868                 p[0] = data;
869         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
870                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
871         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
872                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
873         else if (msr == MSR_IA32_CR_PAT)
874                 vcpu->arch.pat = data;
875         else {  /* Variable MTRRs */
876                 int idx, is_mtrr_mask;
877                 u64 *pt;
878
879                 idx = (msr - 0x200) / 2;
880                 is_mtrr_mask = msr - 0x200 - 2 * idx;
881                 if (!is_mtrr_mask)
882                         pt =
883                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
884                 else
885                         pt =
886                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
887                 *pt = data;
888         }
889
890         kvm_mmu_reset_context(vcpu);
891         return 0;
892 }
893
894 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
895 {
896         u64 mcg_cap = vcpu->arch.mcg_cap;
897         unsigned bank_num = mcg_cap & 0xff;
898
899         switch (msr) {
900         case MSR_IA32_MCG_STATUS:
901                 vcpu->arch.mcg_status = data;
902                 break;
903         case MSR_IA32_MCG_CTL:
904                 if (!(mcg_cap & MCG_CTL_P))
905                         return 1;
906                 if (data != 0 && data != ~(u64)0)
907                         return -1;
908                 vcpu->arch.mcg_ctl = data;
909                 break;
910         default:
911                 if (msr >= MSR_IA32_MC0_CTL &&
912                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
913                         u32 offset = msr - MSR_IA32_MC0_CTL;
914                         /* only 0 or all 1s can be written to IA32_MCi_CTL
915                          * some Linux kernels though clear bit 10 in bank 4 to
916                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
917                          * this to avoid an uncatched #GP in the guest
918                          */
919                         if ((offset & 0x3) == 0 &&
920                             data != 0 && (data | (1 << 10)) != ~(u64)0)
921                                 return -1;
922                         vcpu->arch.mce_banks[offset] = data;
923                         break;
924                 }
925                 return 1;
926         }
927         return 0;
928 }
929
930 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
931 {
932         struct kvm *kvm = vcpu->kvm;
933         int lm = is_long_mode(vcpu);
934         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
935                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
936         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
937                 : kvm->arch.xen_hvm_config.blob_size_32;
938         u32 page_num = data & ~PAGE_MASK;
939         u64 page_addr = data & PAGE_MASK;
940         u8 *page;
941         int r;
942
943         r = -E2BIG;
944         if (page_num >= blob_size)
945                 goto out;
946         r = -ENOMEM;
947         page = kzalloc(PAGE_SIZE, GFP_KERNEL);
948         if (!page)
949                 goto out;
950         r = -EFAULT;
951         if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
952                 goto out_free;
953         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
954                 goto out_free;
955         r = 0;
956 out_free:
957         kfree(page);
958 out:
959         return r;
960 }
961
962 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
963 {
964         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
965 }
966
967 static bool kvm_hv_msr_partition_wide(u32 msr)
968 {
969         bool r = false;
970         switch (msr) {
971         case HV_X64_MSR_GUEST_OS_ID:
972         case HV_X64_MSR_HYPERCALL:
973                 r = true;
974                 break;
975         }
976
977         return r;
978 }
979
980 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
981 {
982         struct kvm *kvm = vcpu->kvm;
983
984         switch (msr) {
985         case HV_X64_MSR_GUEST_OS_ID:
986                 kvm->arch.hv_guest_os_id = data;
987                 /* setting guest os id to zero disables hypercall page */
988                 if (!kvm->arch.hv_guest_os_id)
989                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
990                 break;
991         case HV_X64_MSR_HYPERCALL: {
992                 u64 gfn;
993                 unsigned long addr;
994                 u8 instructions[4];
995
996                 /* if guest os id is not set hypercall should remain disabled */
997                 if (!kvm->arch.hv_guest_os_id)
998                         break;
999                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1000                         kvm->arch.hv_hypercall = data;
1001                         break;
1002                 }
1003                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1004                 addr = gfn_to_hva(kvm, gfn);
1005                 if (kvm_is_error_hva(addr))
1006                         return 1;
1007                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1008                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1009                 if (copy_to_user((void __user *)addr, instructions, 4))
1010                         return 1;
1011                 kvm->arch.hv_hypercall = data;
1012                 break;
1013         }
1014         default:
1015                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1016                           "data 0x%llx\n", msr, data);
1017                 return 1;
1018         }
1019         return 0;
1020 }
1021
1022 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1023 {
1024         switch (msr) {
1025         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1026                 unsigned long addr;
1027
1028                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1029                         vcpu->arch.hv_vapic = data;
1030                         break;
1031                 }
1032                 addr = gfn_to_hva(vcpu->kvm, data >>
1033                                   HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1034                 if (kvm_is_error_hva(addr))
1035                         return 1;
1036                 if (clear_user((void __user *)addr, PAGE_SIZE))
1037                         return 1;
1038                 vcpu->arch.hv_vapic = data;
1039                 break;
1040         }
1041         case HV_X64_MSR_EOI:
1042                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1043         case HV_X64_MSR_ICR:
1044                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1045         case HV_X64_MSR_TPR:
1046                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1047         default:
1048                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1049                           "data 0x%llx\n", msr, data);
1050                 return 1;
1051         }
1052
1053         return 0;
1054 }
1055
1056 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1057 {
1058         switch (msr) {
1059         case MSR_EFER:
1060                 set_efer(vcpu, data);
1061                 break;
1062         case MSR_K7_HWCR:
1063                 data &= ~(u64)0x40;     /* ignore flush filter disable */
1064                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
1065                 if (data != 0) {
1066                         pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1067                                 data);
1068                         return 1;
1069                 }
1070                 break;
1071         case MSR_FAM10H_MMIO_CONF_BASE:
1072                 if (data != 0) {
1073                         pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1074                                 "0x%llx\n", data);
1075                         return 1;
1076                 }
1077                 break;
1078         case MSR_AMD64_NB_CFG:
1079                 break;
1080         case MSR_IA32_DEBUGCTLMSR:
1081                 if (!data) {
1082                         /* We support the non-activated case already */
1083                         break;
1084                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1085                         /* Values other than LBR and BTF are vendor-specific,
1086                            thus reserved and should throw a #GP */
1087                         return 1;
1088                 }
1089                 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1090                         __func__, data);
1091                 break;
1092         case MSR_IA32_UCODE_REV:
1093         case MSR_IA32_UCODE_WRITE:
1094         case MSR_VM_HSAVE_PA:
1095         case MSR_AMD64_PATCH_LOADER:
1096                 break;
1097         case 0x200 ... 0x2ff:
1098                 return set_msr_mtrr(vcpu, msr, data);
1099         case MSR_IA32_APICBASE:
1100                 kvm_set_apic_base(vcpu, data);
1101                 break;
1102         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1103                 return kvm_x2apic_msr_write(vcpu, msr, data);
1104         case MSR_IA32_MISC_ENABLE:
1105                 vcpu->arch.ia32_misc_enable_msr = data;
1106                 break;
1107         case MSR_KVM_WALL_CLOCK:
1108                 vcpu->kvm->arch.wall_clock = data;
1109                 kvm_write_wall_clock(vcpu->kvm, data);
1110                 break;
1111         case MSR_KVM_SYSTEM_TIME: {
1112                 if (vcpu->arch.time_page) {
1113                         kvm_release_page_dirty(vcpu->arch.time_page);
1114                         vcpu->arch.time_page = NULL;
1115                 }
1116
1117                 vcpu->arch.time = data;
1118
1119                 /* we verify if the enable bit is set... */
1120                 if (!(data & 1))
1121                         break;
1122
1123                 /* ...but clean it before doing the actual write */
1124                 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1125
1126                 vcpu->arch.time_page =
1127                                 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1128
1129                 if (is_error_page(vcpu->arch.time_page)) {
1130                         kvm_release_page_clean(vcpu->arch.time_page);
1131                         vcpu->arch.time_page = NULL;
1132                 }
1133
1134                 kvm_request_guest_time_update(vcpu);
1135                 break;
1136         }
1137         case MSR_IA32_MCG_CTL:
1138         case MSR_IA32_MCG_STATUS:
1139         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1140                 return set_msr_mce(vcpu, msr, data);
1141
1142         /* Performance counters are not protected by a CPUID bit,
1143          * so we should check all of them in the generic path for the sake of
1144          * cross vendor migration.
1145          * Writing a zero into the event select MSRs disables them,
1146          * which we perfectly emulate ;-). Any other value should be at least
1147          * reported, some guests depend on them.
1148          */
1149         case MSR_P6_EVNTSEL0:
1150         case MSR_P6_EVNTSEL1:
1151         case MSR_K7_EVNTSEL0:
1152         case MSR_K7_EVNTSEL1:
1153         case MSR_K7_EVNTSEL2:
1154         case MSR_K7_EVNTSEL3:
1155                 if (data != 0)
1156                         pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1157                                 "0x%x data 0x%llx\n", msr, data);
1158                 break;
1159         /* at least RHEL 4 unconditionally writes to the perfctr registers,
1160          * so we ignore writes to make it happy.
1161          */
1162         case MSR_P6_PERFCTR0:
1163         case MSR_P6_PERFCTR1:
1164         case MSR_K7_PERFCTR0:
1165         case MSR_K7_PERFCTR1:
1166         case MSR_K7_PERFCTR2:
1167         case MSR_K7_PERFCTR3:
1168                 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1169                         "0x%x data 0x%llx\n", msr, data);
1170                 break;
1171         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1172                 if (kvm_hv_msr_partition_wide(msr)) {
1173                         int r;
1174                         mutex_lock(&vcpu->kvm->lock);
1175                         r = set_msr_hyperv_pw(vcpu, msr, data);
1176                         mutex_unlock(&vcpu->kvm->lock);
1177                         return r;
1178                 } else
1179                         return set_msr_hyperv(vcpu, msr, data);
1180                 break;
1181         default:
1182                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1183                         return xen_hvm_config(vcpu, data);
1184                 if (!ignore_msrs) {
1185                         pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1186                                 msr, data);
1187                         return 1;
1188                 } else {
1189                         pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1190                                 msr, data);
1191                         break;
1192                 }
1193         }
1194         return 0;
1195 }
1196 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1197
1198
1199 /*
1200  * Reads an msr value (of 'msr_index') into 'pdata'.
1201  * Returns 0 on success, non-0 otherwise.
1202  * Assumes vcpu_load() was already called.
1203  */
1204 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1205 {
1206         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1207 }
1208
1209 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1210 {
1211         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1212
1213         if (!msr_mtrr_valid(msr))
1214                 return 1;
1215
1216         if (msr == MSR_MTRRdefType)
1217                 *pdata = vcpu->arch.mtrr_state.def_type +
1218                          (vcpu->arch.mtrr_state.enabled << 10);
1219         else if (msr == MSR_MTRRfix64K_00000)
1220                 *pdata = p[0];
1221         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1222                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1223         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1224                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1225         else if (msr == MSR_IA32_CR_PAT)
1226                 *pdata = vcpu->arch.pat;
1227         else {  /* Variable MTRRs */
1228                 int idx, is_mtrr_mask;
1229                 u64 *pt;
1230
1231                 idx = (msr - 0x200) / 2;
1232                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1233                 if (!is_mtrr_mask)
1234                         pt =
1235                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1236                 else
1237                         pt =
1238                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1239                 *pdata = *pt;
1240         }
1241
1242         return 0;
1243 }
1244
1245 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1246 {
1247         u64 data;
1248         u64 mcg_cap = vcpu->arch.mcg_cap;
1249         unsigned bank_num = mcg_cap & 0xff;
1250
1251         switch (msr) {
1252         case MSR_IA32_P5_MC_ADDR:
1253         case MSR_IA32_P5_MC_TYPE:
1254                 data = 0;
1255                 break;
1256         case MSR_IA32_MCG_CAP:
1257                 data = vcpu->arch.mcg_cap;
1258                 break;
1259         case MSR_IA32_MCG_CTL:
1260                 if (!(mcg_cap & MCG_CTL_P))
1261                         return 1;
1262                 data = vcpu->arch.mcg_ctl;
1263                 break;
1264         case MSR_IA32_MCG_STATUS:
1265                 data = vcpu->arch.mcg_status;
1266                 break;
1267         default:
1268                 if (msr >= MSR_IA32_MC0_CTL &&
1269                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1270                         u32 offset = msr - MSR_IA32_MC0_CTL;
1271                         data = vcpu->arch.mce_banks[offset];
1272                         break;
1273                 }
1274                 return 1;
1275         }
1276         *pdata = data;
1277         return 0;
1278 }
1279
1280 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1281 {
1282         u64 data = 0;
1283         struct kvm *kvm = vcpu->kvm;
1284
1285         switch (msr) {
1286         case HV_X64_MSR_GUEST_OS_ID:
1287                 data = kvm->arch.hv_guest_os_id;
1288                 break;
1289         case HV_X64_MSR_HYPERCALL:
1290                 data = kvm->arch.hv_hypercall;
1291                 break;
1292         default:
1293                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1294                 return 1;
1295         }
1296
1297         *pdata = data;
1298         return 0;
1299 }
1300
1301 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1302 {
1303         u64 data = 0;
1304
1305         switch (msr) {
1306         case HV_X64_MSR_VP_INDEX: {
1307                 int r;
1308                 struct kvm_vcpu *v;
1309                 kvm_for_each_vcpu(r, v, vcpu->kvm)
1310                         if (v == vcpu)
1311                                 data = r;
1312                 break;
1313         }
1314         case HV_X64_MSR_EOI:
1315                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1316         case HV_X64_MSR_ICR:
1317                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1318         case HV_X64_MSR_TPR:
1319                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1320         default:
1321                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1322                 return 1;
1323         }
1324         *pdata = data;
1325         return 0;
1326 }
1327
1328 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1329 {
1330         u64 data;
1331
1332         switch (msr) {
1333         case MSR_IA32_PLATFORM_ID:
1334         case MSR_IA32_UCODE_REV:
1335         case MSR_IA32_EBL_CR_POWERON:
1336         case MSR_IA32_DEBUGCTLMSR:
1337         case MSR_IA32_LASTBRANCHFROMIP:
1338         case MSR_IA32_LASTBRANCHTOIP:
1339         case MSR_IA32_LASTINTFROMIP:
1340         case MSR_IA32_LASTINTTOIP:
1341         case MSR_K8_SYSCFG:
1342         case MSR_K7_HWCR:
1343         case MSR_VM_HSAVE_PA:
1344         case MSR_P6_PERFCTR0:
1345         case MSR_P6_PERFCTR1:
1346         case MSR_P6_EVNTSEL0:
1347         case MSR_P6_EVNTSEL1:
1348         case MSR_K7_EVNTSEL0:
1349         case MSR_K7_PERFCTR0:
1350         case MSR_K8_INT_PENDING_MSG:
1351         case MSR_AMD64_NB_CFG:
1352         case MSR_FAM10H_MMIO_CONF_BASE:
1353                 data = 0;
1354                 break;
1355         case MSR_MTRRcap:
1356                 data = 0x500 | KVM_NR_VAR_MTRR;
1357                 break;
1358         case 0x200 ... 0x2ff:
1359                 return get_msr_mtrr(vcpu, msr, pdata);
1360         case 0xcd: /* fsb frequency */
1361                 data = 3;
1362                 break;
1363         case MSR_IA32_APICBASE:
1364                 data = kvm_get_apic_base(vcpu);
1365                 break;
1366         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1367                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1368                 break;
1369         case MSR_IA32_MISC_ENABLE:
1370                 data = vcpu->arch.ia32_misc_enable_msr;
1371                 break;
1372         case MSR_IA32_PERF_STATUS:
1373                 /* TSC increment by tick */
1374                 data = 1000ULL;
1375                 /* CPU multiplier */
1376                 data |= (((uint64_t)4ULL) << 40);
1377                 break;
1378         case MSR_EFER:
1379                 data = vcpu->arch.efer;
1380                 break;
1381         case MSR_KVM_WALL_CLOCK:
1382                 data = vcpu->kvm->arch.wall_clock;
1383                 break;
1384         case MSR_KVM_SYSTEM_TIME:
1385                 data = vcpu->arch.time;
1386                 break;
1387         case MSR_IA32_P5_MC_ADDR:
1388         case MSR_IA32_P5_MC_TYPE:
1389         case MSR_IA32_MCG_CAP:
1390         case MSR_IA32_MCG_CTL:
1391         case MSR_IA32_MCG_STATUS:
1392         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1393                 return get_msr_mce(vcpu, msr, pdata);
1394         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1395                 if (kvm_hv_msr_partition_wide(msr)) {
1396                         int r;
1397                         mutex_lock(&vcpu->kvm->lock);
1398                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
1399                         mutex_unlock(&vcpu->kvm->lock);
1400                         return r;
1401                 } else
1402                         return get_msr_hyperv(vcpu, msr, pdata);
1403                 break;
1404         default:
1405                 if (!ignore_msrs) {
1406                         pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1407                         return 1;
1408                 } else {
1409                         pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1410                         data = 0;
1411                 }
1412                 break;
1413         }
1414         *pdata = data;
1415         return 0;
1416 }
1417 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1418
1419 /*
1420  * Read or write a bunch of msrs. All parameters are kernel addresses.
1421  *
1422  * @return number of msrs set successfully.
1423  */
1424 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1425                     struct kvm_msr_entry *entries,
1426                     int (*do_msr)(struct kvm_vcpu *vcpu,
1427                                   unsigned index, u64 *data))
1428 {
1429         int i, idx;
1430
1431         vcpu_load(vcpu);
1432
1433         idx = srcu_read_lock(&vcpu->kvm->srcu);
1434         for (i = 0; i < msrs->nmsrs; ++i)
1435                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1436                         break;
1437         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1438
1439         vcpu_put(vcpu);
1440
1441         return i;
1442 }
1443
1444 /*
1445  * Read or write a bunch of msrs. Parameters are user addresses.
1446  *
1447  * @return number of msrs set successfully.
1448  */
1449 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1450                   int (*do_msr)(struct kvm_vcpu *vcpu,
1451                                 unsigned index, u64 *data),
1452                   int writeback)
1453 {
1454         struct kvm_msrs msrs;
1455         struct kvm_msr_entry *entries;
1456         int r, n;
1457         unsigned size;
1458
1459         r = -EFAULT;
1460         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1461                 goto out;
1462
1463         r = -E2BIG;
1464         if (msrs.nmsrs >= MAX_IO_MSRS)
1465                 goto out;
1466
1467         r = -ENOMEM;
1468         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1469         entries = vmalloc(size);
1470         if (!entries)
1471                 goto out;
1472
1473         r = -EFAULT;
1474         if (copy_from_user(entries, user_msrs->entries, size))
1475                 goto out_free;
1476
1477         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1478         if (r < 0)
1479                 goto out_free;
1480
1481         r = -EFAULT;
1482         if (writeback && copy_to_user(user_msrs->entries, entries, size))
1483                 goto out_free;
1484
1485         r = n;
1486
1487 out_free:
1488         vfree(entries);
1489 out:
1490         return r;
1491 }
1492
1493 int kvm_dev_ioctl_check_extension(long ext)
1494 {
1495         int r;
1496
1497         switch (ext) {
1498         case KVM_CAP_IRQCHIP:
1499         case KVM_CAP_HLT:
1500         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1501         case KVM_CAP_SET_TSS_ADDR:
1502         case KVM_CAP_EXT_CPUID:
1503         case KVM_CAP_CLOCKSOURCE:
1504         case KVM_CAP_PIT:
1505         case KVM_CAP_NOP_IO_DELAY:
1506         case KVM_CAP_MP_STATE:
1507         case KVM_CAP_SYNC_MMU:
1508         case KVM_CAP_REINJECT_CONTROL:
1509         case KVM_CAP_IRQ_INJECT_STATUS:
1510         case KVM_CAP_ASSIGN_DEV_IRQ:
1511         case KVM_CAP_IRQFD:
1512         case KVM_CAP_IOEVENTFD:
1513         case KVM_CAP_PIT2:
1514         case KVM_CAP_PIT_STATE2:
1515         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1516         case KVM_CAP_XEN_HVM:
1517         case KVM_CAP_ADJUST_CLOCK:
1518         case KVM_CAP_VCPU_EVENTS:
1519         case KVM_CAP_HYPERV:
1520         case KVM_CAP_HYPERV_VAPIC:
1521         case KVM_CAP_HYPERV_SPIN:
1522         case KVM_CAP_PCI_SEGMENT:
1523         case KVM_CAP_DEBUGREGS:
1524         case KVM_CAP_X86_ROBUST_SINGLESTEP:
1525                 r = 1;
1526                 break;
1527         case KVM_CAP_COALESCED_MMIO:
1528                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1529                 break;
1530         case KVM_CAP_VAPIC:
1531                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1532                 break;
1533         case KVM_CAP_NR_VCPUS:
1534                 r = KVM_MAX_VCPUS;
1535                 break;
1536         case KVM_CAP_NR_MEMSLOTS:
1537                 r = KVM_MEMORY_SLOTS;
1538                 break;
1539         case KVM_CAP_PV_MMU:    /* obsolete */
1540                 r = 0;
1541                 break;
1542         case KVM_CAP_IOMMU:
1543                 r = iommu_found();
1544                 break;
1545         case KVM_CAP_MCE:
1546                 r = KVM_MAX_MCE_BANKS;
1547                 break;
1548         default:
1549                 r = 0;
1550                 break;
1551         }
1552         return r;
1553
1554 }
1555
1556 long kvm_arch_dev_ioctl(struct file *filp,
1557                         unsigned int ioctl, unsigned long arg)
1558 {
1559         void __user *argp = (void __user *)arg;
1560         long r;
1561
1562         switch (ioctl) {
1563         case KVM_GET_MSR_INDEX_LIST: {
1564                 struct kvm_msr_list __user *user_msr_list = argp;
1565                 struct kvm_msr_list msr_list;
1566                 unsigned n;
1567
1568                 r = -EFAULT;
1569                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1570                         goto out;
1571                 n = msr_list.nmsrs;
1572                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1573                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1574                         goto out;
1575                 r = -E2BIG;
1576                 if (n < msr_list.nmsrs)
1577                         goto out;
1578                 r = -EFAULT;
1579                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1580                                  num_msrs_to_save * sizeof(u32)))
1581                         goto out;
1582                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1583                                  &emulated_msrs,
1584                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1585                         goto out;
1586                 r = 0;
1587                 break;
1588         }
1589         case KVM_GET_SUPPORTED_CPUID: {
1590                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1591                 struct kvm_cpuid2 cpuid;
1592
1593                 r = -EFAULT;
1594                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1595                         goto out;
1596                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1597                                                       cpuid_arg->entries);
1598                 if (r)
1599                         goto out;
1600
1601                 r = -EFAULT;
1602                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1603                         goto out;
1604                 r = 0;
1605                 break;
1606         }
1607         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
1608                 u64 mce_cap;
1609
1610                 mce_cap = KVM_MCE_CAP_SUPPORTED;
1611                 r = -EFAULT;
1612                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
1613                         goto out;
1614                 r = 0;
1615                 break;
1616         }
1617         default:
1618                 r = -EINVAL;
1619         }
1620 out:
1621         return r;
1622 }
1623
1624 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1625 {
1626         kvm_x86_ops->vcpu_load(vcpu, cpu);
1627         if (unlikely(per_cpu(cpu_tsc_khz, cpu) == 0)) {
1628                 unsigned long khz = cpufreq_quick_get(cpu);
1629                 if (!khz)
1630                         khz = tsc_khz;
1631                 per_cpu(cpu_tsc_khz, cpu) = khz;
1632         }
1633         kvm_request_guest_time_update(vcpu);
1634 }
1635
1636 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1637 {
1638         kvm_put_guest_fpu(vcpu);
1639         kvm_x86_ops->vcpu_put(vcpu);
1640 }
1641
1642 static int is_efer_nx(void)
1643 {
1644         unsigned long long efer = 0;
1645
1646         rdmsrl_safe(MSR_EFER, &efer);
1647         return efer & EFER_NX;
1648 }
1649
1650 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1651 {
1652         int i;
1653         struct kvm_cpuid_entry2 *e, *entry;
1654
1655         entry = NULL;
1656         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1657                 e = &vcpu->arch.cpuid_entries[i];
1658                 if (e->function == 0x80000001) {
1659                         entry = e;
1660                         break;
1661                 }
1662         }
1663         if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1664                 entry->edx &= ~(1 << 20);
1665                 printk(KERN_INFO "kvm: guest NX capability removed\n");
1666         }
1667 }
1668
1669 /* when an old userspace process fills a new kernel module */
1670 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1671                                     struct kvm_cpuid *cpuid,
1672                                     struct kvm_cpuid_entry __user *entries)
1673 {
1674         int r, i;
1675         struct kvm_cpuid_entry *cpuid_entries;
1676
1677         r = -E2BIG;
1678         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1679                 goto out;
1680         r = -ENOMEM;
1681         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1682         if (!cpuid_entries)
1683                 goto out;
1684         r = -EFAULT;
1685         if (copy_from_user(cpuid_entries, entries,
1686                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1687                 goto out_free;
1688         for (i = 0; i < cpuid->nent; i++) {
1689                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1690                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1691                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1692                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1693                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1694                 vcpu->arch.cpuid_entries[i].index = 0;
1695                 vcpu->arch.cpuid_entries[i].flags = 0;
1696                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1697                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1698                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1699         }
1700         vcpu->arch.cpuid_nent = cpuid->nent;
1701         cpuid_fix_nx_cap(vcpu);
1702         r = 0;
1703         kvm_apic_set_version(vcpu);
1704         kvm_x86_ops->cpuid_update(vcpu);
1705
1706 out_free:
1707         vfree(cpuid_entries);
1708 out:
1709         return r;
1710 }
1711
1712 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1713                                      struct kvm_cpuid2 *cpuid,
1714                                      struct kvm_cpuid_entry2 __user *entries)
1715 {
1716         int r;
1717
1718         r = -E2BIG;
1719         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1720                 goto out;
1721         r = -EFAULT;
1722         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1723                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1724                 goto out;
1725         vcpu->arch.cpuid_nent = cpuid->nent;
1726         kvm_apic_set_version(vcpu);
1727         kvm_x86_ops->cpuid_update(vcpu);
1728         return 0;
1729
1730 out:
1731         return r;
1732 }
1733
1734 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1735                                      struct kvm_cpuid2 *cpuid,
1736                                      struct kvm_cpuid_entry2 __user *entries)
1737 {
1738         int r;
1739
1740         r = -E2BIG;
1741         if (cpuid->nent < vcpu->arch.cpuid_nent)
1742                 goto out;
1743         r = -EFAULT;
1744         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1745                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1746                 goto out;
1747         return 0;
1748
1749 out:
1750         cpuid->nent = vcpu->arch.cpuid_nent;
1751         return r;
1752 }
1753
1754 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1755                            u32 index)
1756 {
1757         entry->function = function;
1758         entry->index = index;
1759         cpuid_count(entry->function, entry->index,
1760                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1761         entry->flags = 0;
1762 }
1763
1764 #define F(x) bit(X86_FEATURE_##x)
1765
1766 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1767                          u32 index, int *nent, int maxnent)
1768 {
1769         unsigned f_nx = is_efer_nx() ? F(NX) : 0;
1770 #ifdef CONFIG_X86_64
1771         unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
1772                                 ? F(GBPAGES) : 0;
1773         unsigned f_lm = F(LM);
1774 #else
1775         unsigned f_gbpages = 0;
1776         unsigned f_lm = 0;
1777 #endif
1778         unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
1779
1780         /* cpuid 1.edx */
1781         const u32 kvm_supported_word0_x86_features =
1782                 F(FPU) | F(VME) | F(DE) | F(PSE) |
1783                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1784                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
1785                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1786                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
1787                 0 /* Reserved, DS, ACPI */ | F(MMX) |
1788                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
1789                 0 /* HTT, TM, Reserved, PBE */;
1790         /* cpuid 0x80000001.edx */
1791         const u32 kvm_supported_word1_x86_features =
1792                 F(FPU) | F(VME) | F(DE) | F(PSE) |
1793                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1794                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
1795                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1796                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
1797                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
1798                 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
1799                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
1800         /* cpuid 1.ecx */
1801         const u32 kvm_supported_word4_x86_features =
1802                 F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
1803                 0 /* DS-CPL, VMX, SMX, EST */ |
1804                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
1805                 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
1806                 0 /* Reserved, DCA */ | F(XMM4_1) |
1807                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
1808                 0 /* Reserved, XSAVE, OSXSAVE */;
1809         /* cpuid 0x80000001.ecx */
1810         const u32 kvm_supported_word6_x86_features =
1811                 F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
1812                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
1813                 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
1814                 0 /* SKINIT */ | 0 /* WDT */;
1815
1816         /* all calls to cpuid_count() should be made on the same cpu */
1817         get_cpu();
1818         do_cpuid_1_ent(entry, function, index);
1819         ++*nent;
1820
1821         switch (function) {
1822         case 0:
1823                 entry->eax = min(entry->eax, (u32)0xb);
1824                 break;
1825         case 1:
1826                 entry->edx &= kvm_supported_word0_x86_features;
1827                 entry->ecx &= kvm_supported_word4_x86_features;
1828                 /* we support x2apic emulation even if host does not support
1829                  * it since we emulate x2apic in software */
1830                 entry->ecx |= F(X2APIC);
1831                 break;
1832         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1833          * may return different values. This forces us to get_cpu() before
1834          * issuing the first command, and also to emulate this annoying behavior
1835          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1836         case 2: {
1837                 int t, times = entry->eax & 0xff;
1838
1839                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1840                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
1841                 for (t = 1; t < times && *nent < maxnent; ++t) {
1842                         do_cpuid_1_ent(&entry[t], function, 0);
1843                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1844                         ++*nent;
1845                 }
1846                 break;
1847         }
1848         /* function 4 and 0xb have additional index. */
1849         case 4: {
1850                 int i, cache_type;
1851
1852                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1853                 /* read more entries until cache_type is zero */
1854                 for (i = 1; *nent < maxnent; ++i) {
1855                         cache_type = entry[i - 1].eax & 0x1f;
1856                         if (!cache_type)
1857                                 break;
1858                         do_cpuid_1_ent(&entry[i], function, i);
1859                         entry[i].flags |=
1860                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1861                         ++*nent;
1862                 }
1863                 break;
1864         }
1865         case 0xb: {
1866                 int i, level_type;
1867
1868                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1869                 /* read more entries until level_type is zero */
1870                 for (i = 1; *nent < maxnent; ++i) {
1871                         level_type = entry[i - 1].ecx & 0xff00;
1872                         if (!level_type)
1873                                 break;
1874                         do_cpuid_1_ent(&entry[i], function, i);
1875                         entry[i].flags |=
1876                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1877                         ++*nent;
1878                 }
1879                 break;
1880         }
1881         case 0x80000000:
1882                 entry->eax = min(entry->eax, 0x8000001a);
1883                 break;
1884         case 0x80000001:
1885                 entry->edx &= kvm_supported_word1_x86_features;
1886                 entry->ecx &= kvm_supported_word6_x86_features;
1887                 break;
1888         }
1889         put_cpu();
1890 }
1891
1892 #undef F
1893
1894 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1895                                      struct kvm_cpuid_entry2 __user *entries)
1896 {
1897         struct kvm_cpuid_entry2 *cpuid_entries;
1898         int limit, nent = 0, r = -E2BIG;
1899         u32 func;
1900
1901         if (cpuid->nent < 1)
1902                 goto out;
1903         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1904                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1905         r = -ENOMEM;
1906         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1907         if (!cpuid_entries)
1908                 goto out;
1909
1910         do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1911         limit = cpuid_entries[0].eax;
1912         for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1913                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1914                              &nent, cpuid->nent);
1915         r = -E2BIG;
1916         if (nent >= cpuid->nent)
1917                 goto out_free;
1918
1919         do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1920         limit = cpuid_entries[nent - 1].eax;
1921         for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1922                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1923                              &nent, cpuid->nent);
1924         r = -E2BIG;
1925         if (nent >= cpuid->nent)
1926                 goto out_free;
1927
1928         r = -EFAULT;
1929         if (copy_to_user(entries, cpuid_entries,
1930                          nent * sizeof(struct kvm_cpuid_entry2)))
1931                 goto out_free;
1932         cpuid->nent = nent;
1933         r = 0;
1934
1935 out_free:
1936         vfree(cpuid_entries);
1937 out:
1938         return r;
1939 }
1940
1941 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1942                                     struct kvm_lapic_state *s)
1943 {
1944         vcpu_load(vcpu);
1945         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1946         vcpu_put(vcpu);
1947
1948         return 0;
1949 }
1950
1951 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1952                                     struct kvm_lapic_state *s)
1953 {
1954         vcpu_load(vcpu);
1955         memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1956         kvm_apic_post_state_restore(vcpu);
1957         update_cr8_intercept(vcpu);
1958         vcpu_put(vcpu);
1959
1960         return 0;
1961 }
1962
1963 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1964                                     struct kvm_interrupt *irq)
1965 {
1966         if (irq->irq < 0 || irq->irq >= 256)
1967                 return -EINVAL;
1968         if (irqchip_in_kernel(vcpu->kvm))
1969                 return -ENXIO;
1970         vcpu_load(vcpu);
1971
1972         kvm_queue_interrupt(vcpu, irq->irq, false);
1973
1974         vcpu_put(vcpu);
1975
1976         return 0;
1977 }
1978
1979 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
1980 {
1981         vcpu_load(vcpu);
1982         kvm_inject_nmi(vcpu);
1983         vcpu_put(vcpu);
1984
1985         return 0;
1986 }
1987
1988 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1989                                            struct kvm_tpr_access_ctl *tac)
1990 {
1991         if (tac->flags)
1992                 return -EINVAL;
1993         vcpu->arch.tpr_access_reporting = !!tac->enabled;
1994         return 0;
1995 }
1996
1997 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
1998                                         u64 mcg_cap)
1999 {
2000         int r;
2001         unsigned bank_num = mcg_cap & 0xff, bank;
2002
2003         r = -EINVAL;
2004         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2005                 goto out;
2006         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2007                 goto out;
2008         r = 0;
2009         vcpu->arch.mcg_cap = mcg_cap;
2010         /* Init IA32_MCG_CTL to all 1s */
2011         if (mcg_cap & MCG_CTL_P)
2012                 vcpu->arch.mcg_ctl = ~(u64)0;
2013         /* Init IA32_MCi_CTL to all 1s */
2014         for (bank = 0; bank < bank_num; bank++)
2015                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2016 out:
2017         return r;
2018 }
2019
2020 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2021                                       struct kvm_x86_mce *mce)
2022 {
2023         u64 mcg_cap = vcpu->arch.mcg_cap;
2024         unsigned bank_num = mcg_cap & 0xff;
2025         u64 *banks = vcpu->arch.mce_banks;
2026
2027         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2028                 return -EINVAL;
2029         /*
2030          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2031          * reporting is disabled
2032          */
2033         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2034             vcpu->arch.mcg_ctl != ~(u64)0)
2035                 return 0;
2036         banks += 4 * mce->bank;
2037         /*
2038          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2039          * reporting is disabled for the bank
2040          */
2041         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2042                 return 0;
2043         if (mce->status & MCI_STATUS_UC) {
2044                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2045                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2046                         printk(KERN_DEBUG "kvm: set_mce: "
2047                                "injects mce exception while "
2048                                "previous one is in progress!\n");
2049                         set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
2050                         return 0;
2051                 }
2052                 if (banks[1] & MCI_STATUS_VAL)
2053                         mce->status |= MCI_STATUS_OVER;
2054                 banks[2] = mce->addr;
2055                 banks[3] = mce->misc;
2056                 vcpu->arch.mcg_status = mce->mcg_status;
2057                 banks[1] = mce->status;
2058                 kvm_queue_exception(vcpu, MC_VECTOR);
2059         } else if (!(banks[1] & MCI_STATUS_VAL)
2060                    || !(banks[1] & MCI_STATUS_UC)) {
2061                 if (banks[1] & MCI_STATUS_VAL)
2062                         mce->status |= MCI_STATUS_OVER;
2063                 banks[2] = mce->addr;
2064                 banks[3] = mce->misc;
2065                 banks[1] = mce->status;
2066         } else
2067                 banks[1] |= MCI_STATUS_OVER;
2068         return 0;
2069 }
2070
2071 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2072                                                struct kvm_vcpu_events *events)
2073 {
2074         vcpu_load(vcpu);
2075
2076         events->exception.injected =
2077                 vcpu->arch.exception.pending &&
2078                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2079         events->exception.nr = vcpu->arch.exception.nr;
2080         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2081         events->exception.error_code = vcpu->arch.exception.error_code;
2082
2083         events->interrupt.injected =
2084                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2085         events->interrupt.nr = vcpu->arch.interrupt.nr;
2086         events->interrupt.soft = 0;
2087         events->interrupt.shadow =
2088                 kvm_x86_ops->get_interrupt_shadow(vcpu,
2089                         KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2090
2091         events->nmi.injected = vcpu->arch.nmi_injected;
2092         events->nmi.pending = vcpu->arch.nmi_pending;
2093         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2094
2095         events->sipi_vector = vcpu->arch.sipi_vector;
2096
2097         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2098                          | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2099                          | KVM_VCPUEVENT_VALID_SHADOW);
2100
2101         vcpu_put(vcpu);
2102 }
2103
2104 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2105                                               struct kvm_vcpu_events *events)
2106 {
2107         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2108                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2109                               | KVM_VCPUEVENT_VALID_SHADOW))
2110                 return -EINVAL;
2111
2112         vcpu_load(vcpu);
2113
2114         vcpu->arch.exception.pending = events->exception.injected;
2115         vcpu->arch.exception.nr = events->exception.nr;
2116         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2117         vcpu->arch.exception.error_code = events->exception.error_code;
2118
2119         vcpu->arch.interrupt.pending = events->interrupt.injected;
2120         vcpu->arch.interrupt.nr = events->interrupt.nr;
2121         vcpu->arch.interrupt.soft = events->interrupt.soft;
2122         if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
2123                 kvm_pic_clear_isr_ack(vcpu->kvm);
2124         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2125                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2126                                                   events->interrupt.shadow);
2127
2128         vcpu->arch.nmi_injected = events->nmi.injected;
2129         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2130                 vcpu->arch.nmi_pending = events->nmi.pending;
2131         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2132
2133         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2134                 vcpu->arch.sipi_vector = events->sipi_vector;
2135
2136         vcpu_put(vcpu);
2137
2138         return 0;
2139 }
2140
2141 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2142                                              struct kvm_debugregs *dbgregs)
2143 {
2144         vcpu_load(vcpu);
2145
2146         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2147         dbgregs->dr6 = vcpu->arch.dr6;
2148         dbgregs->dr7 = vcpu->arch.dr7;
2149         dbgregs->flags = 0;
2150
2151         vcpu_put(vcpu);
2152 }
2153
2154 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2155                                             struct kvm_debugregs *dbgregs)
2156 {
2157         if (dbgregs->flags)
2158                 return -EINVAL;
2159
2160         vcpu_load(vcpu);
2161
2162         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2163         vcpu->arch.dr6 = dbgregs->dr6;
2164         vcpu->arch.dr7 = dbgregs->dr7;
2165
2166         vcpu_put(vcpu);
2167
2168         return 0;
2169 }
2170
2171 long kvm_arch_vcpu_ioctl(struct file *filp,
2172                          unsigned int ioctl, unsigned long arg)
2173 {
2174         struct kvm_vcpu *vcpu = filp->private_data;
2175         void __user *argp = (void __user *)arg;
2176         int r;
2177         struct kvm_lapic_state *lapic = NULL;
2178
2179         switch (ioctl) {
2180         case KVM_GET_LAPIC: {
2181                 r = -EINVAL;
2182                 if (!vcpu->arch.apic)
2183                         goto out;
2184                 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2185
2186                 r = -ENOMEM;
2187                 if (!lapic)
2188                         goto out;
2189                 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
2190                 if (r)
2191                         goto out;
2192                 r = -EFAULT;
2193                 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
2194                         goto out;
2195                 r = 0;
2196                 break;
2197         }
2198         case KVM_SET_LAPIC: {
2199                 r = -EINVAL;
2200                 if (!vcpu->arch.apic)
2201                         goto out;
2202                 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2203                 r = -ENOMEM;
2204                 if (!lapic)
2205                         goto out;
2206                 r = -EFAULT;
2207                 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
2208                         goto out;
2209                 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
2210                 if (r)
2211                         goto out;
2212                 r = 0;
2213                 break;
2214         }
2215         case KVM_INTERRUPT: {
2216                 struct kvm_interrupt irq;
2217
2218                 r = -EFAULT;
2219                 if (copy_from_user(&irq, argp, sizeof irq))
2220                         goto out;
2221                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2222                 if (r)
2223                         goto out;
2224                 r = 0;
2225                 break;
2226         }
2227         case KVM_NMI: {
2228                 r = kvm_vcpu_ioctl_nmi(vcpu);
2229                 if (r)
2230                         goto out;
2231                 r = 0;
2232                 break;
2233         }
2234         case KVM_SET_CPUID: {
2235                 struct kvm_cpuid __user *cpuid_arg = argp;
2236                 struct kvm_cpuid cpuid;
2237
2238                 r = -EFAULT;
2239                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2240                         goto out;
2241                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2242                 if (r)
2243                         goto out;
2244                 break;
2245         }
2246         case KVM_SET_CPUID2: {
2247                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2248                 struct kvm_cpuid2 cpuid;
2249
2250                 r = -EFAULT;
2251                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2252                         goto out;
2253                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2254                                               cpuid_arg->entries);
2255                 if (r)
2256                         goto out;
2257                 break;
2258         }
2259         case KVM_GET_CPUID2: {
2260                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2261                 struct kvm_cpuid2 cpuid;
2262
2263                 r = -EFAULT;
2264                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2265                         goto out;
2266                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2267                                               cpuid_arg->entries);
2268                 if (r)
2269                         goto out;
2270                 r = -EFAULT;
2271                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2272                         goto out;
2273                 r = 0;
2274                 break;
2275         }
2276         case KVM_GET_MSRS:
2277                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2278                 break;
2279         case KVM_SET_MSRS:
2280                 r = msr_io(vcpu, argp, do_set_msr, 0);
2281                 break;
2282         case KVM_TPR_ACCESS_REPORTING: {
2283                 struct kvm_tpr_access_ctl tac;
2284
2285                 r = -EFAULT;
2286                 if (copy_from_user(&tac, argp, sizeof tac))
2287                         goto out;
2288                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2289                 if (r)
2290                         goto out;
2291                 r = -EFAULT;
2292                 if (copy_to_user(argp, &tac, sizeof tac))
2293                         goto out;
2294                 r = 0;
2295                 break;
2296         };
2297         case KVM_SET_VAPIC_ADDR: {
2298                 struct kvm_vapic_addr va;
2299
2300                 r = -EINVAL;
2301                 if (!irqchip_in_kernel(vcpu->kvm))
2302                         goto out;
2303                 r = -EFAULT;
2304                 if (copy_from_user(&va, argp, sizeof va))
2305                         goto out;
2306                 r = 0;
2307                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2308                 break;
2309         }
2310         case KVM_X86_SETUP_MCE: {
2311                 u64 mcg_cap;
2312
2313                 r = -EFAULT;
2314                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2315                         goto out;
2316                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2317                 break;
2318         }
2319         case KVM_X86_SET_MCE: {
2320                 struct kvm_x86_mce mce;
2321
2322                 r = -EFAULT;
2323                 if (copy_from_user(&mce, argp, sizeof mce))
2324                         goto out;
2325                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2326                 break;
2327         }
2328         case KVM_GET_VCPU_EVENTS: {
2329                 struct kvm_vcpu_events events;
2330
2331                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2332
2333                 r = -EFAULT;
2334                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2335                         break;
2336                 r = 0;
2337                 break;
2338         }
2339         case KVM_SET_VCPU_EVENTS: {
2340                 struct kvm_vcpu_events events;
2341
2342                 r = -EFAULT;
2343                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2344                         break;
2345
2346                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2347                 break;
2348         }
2349         case KVM_GET_DEBUGREGS: {
2350                 struct kvm_debugregs dbgregs;
2351
2352                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2353
2354                 r = -EFAULT;
2355                 if (copy_to_user(argp, &dbgregs,
2356                                  sizeof(struct kvm_debugregs)))
2357                         break;
2358                 r = 0;
2359                 break;
2360         }
2361         case KVM_SET_DEBUGREGS: {
2362                 struct kvm_debugregs dbgregs;
2363
2364                 r = -EFAULT;
2365                 if (copy_from_user(&dbgregs, argp,
2366                                    sizeof(struct kvm_debugregs)))
2367                         break;
2368
2369                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2370                 break;
2371         }
2372         default:
2373                 r = -EINVAL;
2374         }
2375 out:
2376         kfree(lapic);
2377         return r;
2378 }
2379
2380 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2381 {
2382         int ret;
2383
2384         if (addr > (unsigned int)(-3 * PAGE_SIZE))
2385                 return -1;
2386         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2387         return ret;
2388 }
2389
2390 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2391                                               u64 ident_addr)
2392 {
2393         kvm->arch.ept_identity_map_addr = ident_addr;
2394         return 0;
2395 }
2396
2397 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2398                                           u32 kvm_nr_mmu_pages)
2399 {
2400         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2401                 return -EINVAL;
2402
2403         mutex_lock(&kvm->slots_lock);
2404         spin_lock(&kvm->mmu_lock);
2405
2406         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2407         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2408
2409         spin_unlock(&kvm->mmu_lock);
2410         mutex_unlock(&kvm->slots_lock);
2411         return 0;
2412 }
2413
2414 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2415 {
2416         return kvm->arch.n_alloc_mmu_pages;
2417 }
2418
2419 gfn_t unalias_gfn_instantiation(struct kvm *kvm, gfn_t gfn)
2420 {
2421         int i;
2422         struct kvm_mem_alias *alias;
2423         struct kvm_mem_aliases *aliases;
2424
2425         aliases = rcu_dereference(kvm->arch.aliases);
2426
2427         for (i = 0; i < aliases->naliases; ++i) {
2428                 alias = &aliases->aliases[i];
2429                 if (alias->flags & KVM_ALIAS_INVALID)
2430                         continue;
2431                 if (gfn >= alias->base_gfn
2432                     && gfn < alias->base_gfn + alias->npages)
2433                         return alias->target_gfn + gfn - alias->base_gfn;
2434         }
2435         return gfn;
2436 }
2437
2438 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
2439 {
2440         int i;
2441         struct kvm_mem_alias *alias;
2442         struct kvm_mem_aliases *aliases;
2443
2444         aliases = rcu_dereference(kvm->arch.aliases);
2445
2446         for (i = 0; i < aliases->naliases; ++i) {
2447                 alias = &aliases->aliases[i];
2448                 if (gfn >= alias->base_gfn
2449                     && gfn < alias->base_gfn + alias->npages)
2450                         return alias->target_gfn + gfn - alias->base_gfn;
2451         }
2452         return gfn;
2453 }
2454
2455 /*
2456  * Set a new alias region.  Aliases map a portion of physical memory into
2457  * another portion.  This is useful for memory windows, for example the PC
2458  * VGA region.
2459  */
2460 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
2461                                          struct kvm_memory_alias *alias)
2462 {
2463         int r, n;
2464         struct kvm_mem_alias *p;
2465         struct kvm_mem_aliases *aliases, *old_aliases;
2466
2467         r = -EINVAL;
2468         /* General sanity checks */
2469         if (alias->memory_size & (PAGE_SIZE - 1))
2470                 goto out;
2471         if (alias->guest_phys_addr & (PAGE_SIZE - 1))
2472                 goto out;
2473         if (alias->slot >= KVM_ALIAS_SLOTS)
2474                 goto out;
2475         if (alias->guest_phys_addr + alias->memory_size
2476             < alias->guest_phys_addr)
2477                 goto out;
2478         if (alias->target_phys_addr + alias->memory_size
2479             < alias->target_phys_addr)
2480                 goto out;
2481
2482         r = -ENOMEM;
2483         aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
2484         if (!aliases)
2485                 goto out;
2486
2487         mutex_lock(&kvm->slots_lock);
2488
2489         /* invalidate any gfn reference in case of deletion/shrinking */
2490         memcpy(aliases, kvm->arch.aliases, sizeof(struct kvm_mem_aliases));
2491         aliases->aliases[alias->slot].flags |= KVM_ALIAS_INVALID;
2492         old_aliases = kvm->arch.aliases;
2493         rcu_assign_pointer(kvm->arch.aliases, aliases);
2494         synchronize_srcu_expedited(&kvm->srcu);
2495         kvm_mmu_zap_all(kvm);
2496         kfree(old_aliases);
2497
2498         r = -ENOMEM;
2499         aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
2500         if (!aliases)
2501                 goto out_unlock;
2502
2503         memcpy(aliases, kvm->arch.aliases, sizeof(struct kvm_mem_aliases));
2504
2505         p = &aliases->aliases[alias->slot];
2506         p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
2507         p->npages = alias->memory_size >> PAGE_SHIFT;
2508         p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
2509         p->flags &= ~(KVM_ALIAS_INVALID);
2510
2511         for (n = KVM_ALIAS_SLOTS; n > 0; --n)
2512                 if (aliases->aliases[n - 1].npages)
2513                         break;
2514         aliases->naliases = n;
2515
2516         old_aliases = kvm->arch.aliases;
2517         rcu_assign_pointer(kvm->arch.aliases, aliases);
2518         synchronize_srcu_expedited(&kvm->srcu);
2519         kfree(old_aliases);
2520         r = 0;
2521
2522 out_unlock:
2523         mutex_unlock(&kvm->slots_lock);
2524 out:
2525         return r;
2526 }
2527
2528 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2529 {
2530         int r;
2531
2532         r = 0;
2533         switch (chip->chip_id) {
2534         case KVM_IRQCHIP_PIC_MASTER:
2535                 memcpy(&chip->chip.pic,
2536                         &pic_irqchip(kvm)->pics[0],
2537                         sizeof(struct kvm_pic_state));
2538                 break;
2539         case KVM_IRQCHIP_PIC_SLAVE:
2540                 memcpy(&chip->chip.pic,
2541                         &pic_irqchip(kvm)->pics[1],
2542                         sizeof(struct kvm_pic_state));
2543                 break;
2544         case KVM_IRQCHIP_IOAPIC:
2545                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
2546                 break;
2547         default:
2548                 r = -EINVAL;
2549                 break;
2550         }
2551         return r;
2552 }
2553
2554 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2555 {
2556         int r;
2557
2558         r = 0;
2559         switch (chip->chip_id) {
2560         case KVM_IRQCHIP_PIC_MASTER:
2561                 raw_spin_lock(&pic_irqchip(kvm)->lock);
2562                 memcpy(&pic_irqchip(kvm)->pics[0],
2563                         &chip->chip.pic,
2564                         sizeof(struct kvm_pic_state));
2565                 raw_spin_unlock(&pic_irqchip(kvm)->lock);
2566                 break;
2567         case KVM_IRQCHIP_PIC_SLAVE:
2568                 raw_spin_lock(&pic_irqchip(kvm)->lock);
2569                 memcpy(&pic_irqchip(kvm)->pics[1],
2570                         &chip->chip.pic,
2571                         sizeof(struct kvm_pic_state));
2572                 raw_spin_unlock(&pic_irqchip(kvm)->lock);
2573                 break;
2574         case KVM_IRQCHIP_IOAPIC:
2575                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
2576                 break;
2577         default:
2578                 r = -EINVAL;
2579                 break;
2580         }
2581         kvm_pic_update_irq(pic_irqchip(kvm));
2582         return r;
2583 }
2584
2585 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2586 {
2587         int r = 0;
2588
2589         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2590         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2591         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2592         return r;
2593 }
2594
2595 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2596 {
2597         int r = 0;
2598
2599         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2600         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2601         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
2602         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2603         return r;
2604 }
2605
2606 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2607 {
2608         int r = 0;
2609
2610         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2611         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
2612                 sizeof(ps->channels));
2613         ps->flags = kvm->arch.vpit->pit_state.flags;
2614         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2615         return r;
2616 }
2617
2618 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2619 {
2620         int r = 0, start = 0;
2621         u32 prev_legacy, cur_legacy;
2622         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2623         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
2624         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
2625         if (!prev_legacy && cur_legacy)
2626                 start = 1;
2627         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
2628                sizeof(kvm->arch.vpit->pit_state.channels));
2629         kvm->arch.vpit->pit_state.flags = ps->flags;
2630         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
2631         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2632         return r;
2633 }
2634
2635 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
2636                                  struct kvm_reinject_control *control)
2637 {
2638         if (!kvm->arch.vpit)
2639                 return -ENXIO;
2640         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2641         kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
2642         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2643         return 0;
2644 }
2645
2646 /*
2647  * Get (and clear) the dirty memory log for a memory slot.
2648  */
2649 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2650                                       struct kvm_dirty_log *log)
2651 {
2652         int r, i;
2653         struct kvm_memory_slot *memslot;
2654         unsigned long n;
2655         unsigned long is_dirty = 0;
2656         unsigned long *dirty_bitmap = NULL;
2657
2658         mutex_lock(&kvm->slots_lock);
2659
2660         r = -EINVAL;
2661         if (log->slot >= KVM_MEMORY_SLOTS)
2662                 goto out;
2663
2664         memslot = &kvm->memslots->memslots[log->slot];
2665         r = -ENOENT;
2666         if (!memslot->dirty_bitmap)
2667                 goto out;
2668
2669         n = kvm_dirty_bitmap_bytes(memslot);
2670
2671         r = -ENOMEM;
2672         dirty_bitmap = vmalloc(n);
2673         if (!dirty_bitmap)
2674                 goto out;
2675         memset(dirty_bitmap, 0, n);
2676
2677         for (i = 0; !is_dirty && i < n/sizeof(long); i++)
2678                 is_dirty = memslot->dirty_bitmap[i];
2679
2680         /* If nothing is dirty, don't bother messing with page tables. */
2681         if (is_dirty) {
2682                 struct kvm_memslots *slots, *old_slots;
2683
2684                 spin_lock(&kvm->mmu_lock);
2685                 kvm_mmu_slot_remove_write_access(kvm, log->slot);
2686                 spin_unlock(&kvm->mmu_lock);
2687
2688                 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
2689                 if (!slots)
2690                         goto out_free;
2691
2692                 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
2693                 slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
2694
2695                 old_slots = kvm->memslots;
2696                 rcu_assign_pointer(kvm->memslots, slots);
2697                 synchronize_srcu_expedited(&kvm->srcu);
2698                 dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
2699                 kfree(old_slots);
2700         }
2701
2702         r = 0;
2703         if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
2704                 r = -EFAULT;
2705 out_free:
2706         vfree(dirty_bitmap);
2707 out:
2708         mutex_unlock(&kvm->slots_lock);
2709         return r;
2710 }
2711
2712 long kvm_arch_vm_ioctl(struct file *filp,
2713                        unsigned int ioctl, unsigned long arg)
2714 {
2715         struct kvm *kvm = filp->private_data;
2716         void __user *argp = (void __user *)arg;
2717         int r = -ENOTTY;
2718         /*
2719          * This union makes it completely explicit to gcc-3.x
2720          * that these two variables' stack usage should be
2721          * combined, not added together.
2722          */
2723         union {
2724                 struct kvm_pit_state ps;
2725                 struct kvm_pit_state2 ps2;
2726                 struct kvm_memory_alias alias;
2727                 struct kvm_pit_config pit_config;
2728         } u;
2729
2730         switch (ioctl) {
2731         case KVM_SET_TSS_ADDR:
2732                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
2733                 if (r < 0)
2734                         goto out;
2735                 break;
2736         case KVM_SET_IDENTITY_MAP_ADDR: {
2737                 u64 ident_addr;
2738
2739                 r = -EFAULT;
2740                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
2741                         goto out;
2742                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
2743                 if (r < 0)
2744                         goto out;
2745                 break;
2746         }
2747         case KVM_SET_MEMORY_REGION: {
2748                 struct kvm_memory_region kvm_mem;
2749                 struct kvm_userspace_memory_region kvm_userspace_mem;
2750
2751                 r = -EFAULT;
2752                 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2753                         goto out;
2754                 kvm_userspace_mem.slot = kvm_mem.slot;
2755                 kvm_userspace_mem.flags = kvm_mem.flags;
2756                 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
2757                 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
2758                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
2759                 if (r)
2760                         goto out;
2761                 break;
2762         }
2763         case KVM_SET_NR_MMU_PAGES:
2764                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
2765                 if (r)
2766                         goto out;
2767                 break;
2768         case KVM_GET_NR_MMU_PAGES:
2769                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
2770                 break;
2771         case KVM_SET_MEMORY_ALIAS:
2772                 r = -EFAULT;
2773                 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
2774                         goto out;
2775                 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
2776                 if (r)
2777                         goto out;
2778                 break;
2779         case KVM_CREATE_IRQCHIP: {
2780                 struct kvm_pic *vpic;
2781
2782                 mutex_lock(&kvm->lock);
2783                 r = -EEXIST;
2784                 if (kvm->arch.vpic)
2785                         goto create_irqchip_unlock;
2786                 r = -ENOMEM;
2787                 vpic = kvm_create_pic(kvm);
2788                 if (vpic) {
2789                         r = kvm_ioapic_init(kvm);
2790                         if (r) {
2791                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
2792                                                           &vpic->dev);
2793                                 kfree(vpic);
2794                                 goto create_irqchip_unlock;
2795                         }
2796                 } else
2797                         goto create_irqchip_unlock;
2798                 smp_wmb();
2799                 kvm->arch.vpic = vpic;
2800                 smp_wmb();
2801                 r = kvm_setup_default_irq_routing(kvm);
2802                 if (r) {
2803                         mutex_lock(&kvm->irq_lock);
2804                         kvm_ioapic_destroy(kvm);
2805                         kvm_destroy_pic(kvm);
2806                         mutex_unlock(&kvm->irq_lock);
2807                 }
2808         create_irqchip_unlock:
2809                 mutex_unlock(&kvm->lock);
2810                 break;
2811         }
2812         case KVM_CREATE_PIT:
2813                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
2814                 goto create_pit;
2815         case KVM_CREATE_PIT2:
2816                 r = -EFAULT;
2817                 if (copy_from_user(&u.pit_config, argp,
2818                                    sizeof(struct kvm_pit_config)))
2819                         goto out;
2820         create_pit:
2821                 mutex_lock(&kvm->slots_lock);
2822                 r = -EEXIST;
2823                 if (kvm->arch.vpit)
2824                         goto create_pit_unlock;
2825                 r = -ENOMEM;
2826                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
2827                 if (kvm->arch.vpit)
2828                         r = 0;
2829         create_pit_unlock:
2830                 mutex_unlock(&kvm->slots_lock);
2831                 break;
2832         case KVM_IRQ_LINE_STATUS:
2833         case KVM_IRQ_LINE: {
2834                 struct kvm_irq_level irq_event;
2835
2836                 r = -EFAULT;
2837                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2838                         goto out;
2839                 r = -ENXIO;
2840                 if (irqchip_in_kernel(kvm)) {
2841                         __s32 status;
2842                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2843                                         irq_event.irq, irq_event.level);
2844                         if (ioctl == KVM_IRQ_LINE_STATUS) {
2845                                 r = -EFAULT;
2846                                 irq_event.status = status;
2847                                 if (copy_to_user(argp, &irq_event,
2848                                                         sizeof irq_event))
2849                                         goto out;
2850                         }
2851                         r = 0;
2852                 }
2853                 break;
2854         }
2855         case KVM_GET_IRQCHIP: {
2856                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2857                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2858
2859                 r = -ENOMEM;
2860                 if (!chip)
2861                         goto out;
2862                 r = -EFAULT;
2863                 if (copy_from_user(chip, argp, sizeof *chip))
2864                         goto get_irqchip_out;
2865                 r = -ENXIO;
2866                 if (!irqchip_in_kernel(kvm))
2867                         goto get_irqchip_out;
2868                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
2869                 if (r)
2870                         goto get_irqchip_out;
2871                 r = -EFAULT;
2872                 if (copy_to_user(argp, chip, sizeof *chip))
2873                         goto get_irqchip_out;
2874                 r = 0;
2875         get_irqchip_out:
2876                 kfree(chip);
2877                 if (r)
2878                         goto out;
2879                 break;
2880         }
2881         case KVM_SET_IRQCHIP: {
2882                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2883                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2884
2885                 r = -ENOMEM;
2886                 if (!chip)
2887                         goto out;
2888                 r = -EFAULT;
2889                 if (copy_from_user(chip, argp, sizeof *chip))
2890                         goto set_irqchip_out;
2891                 r = -ENXIO;
2892                 if (!irqchip_in_kernel(kvm))
2893                         goto set_irqchip_out;
2894                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
2895                 if (r)
2896                         goto set_irqchip_out;
2897                 r = 0;
2898         set_irqchip_out:
2899                 kfree(chip);
2900                 if (r)
2901                         goto out;
2902                 break;
2903         }
2904         case KVM_GET_PIT: {
2905                 r = -EFAULT;
2906                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
2907                         goto out;
2908                 r = -ENXIO;
2909                 if (!kvm->arch.vpit)
2910                         goto out;
2911                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
2912                 if (r)
2913                         goto out;
2914                 r = -EFAULT;
2915                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
2916                         goto out;
2917                 r = 0;
2918                 break;
2919         }
2920         case KVM_SET_PIT: {
2921                 r = -EFAULT;
2922                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
2923                         goto out;
2924                 r = -ENXIO;
2925                 if (!kvm->arch.vpit)
2926                         goto out;
2927                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
2928                 if (r)
2929                         goto out;
2930                 r = 0;
2931                 break;
2932         }
2933         case KVM_GET_PIT2: {
2934                 r = -ENXIO;
2935                 if (!kvm->arch.vpit)
2936                         goto out;
2937                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
2938                 if (r)
2939                         goto out;
2940                 r = -EFAULT;
2941                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
2942                         goto out;
2943                 r = 0;
2944                 break;
2945         }
2946         case KVM_SET_PIT2: {
2947                 r = -EFAULT;
2948                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
2949                         goto out;
2950                 r = -ENXIO;
2951                 if (!kvm->arch.vpit)
2952                         goto out;
2953                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
2954                 if (r)
2955                         goto out;
2956                 r = 0;
2957                 break;
2958         }
2959         case KVM_REINJECT_CONTROL: {
2960                 struct kvm_reinject_control control;
2961                 r =  -EFAULT;
2962                 if (copy_from_user(&control, argp, sizeof(control)))
2963                         goto out;
2964                 r = kvm_vm_ioctl_reinject(kvm, &control);
2965                 if (r)
2966                         goto out;
2967                 r = 0;
2968                 break;
2969         }
2970         case KVM_XEN_HVM_CONFIG: {
2971                 r = -EFAULT;
2972                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
2973                                    sizeof(struct kvm_xen_hvm_config)))
2974                         goto out;
2975                 r = -EINVAL;
2976                 if (kvm->arch.xen_hvm_config.flags)
2977                         goto out;
2978                 r = 0;
2979                 break;
2980         }
2981         case KVM_SET_CLOCK: {
2982                 struct timespec now;
2983                 struct kvm_clock_data user_ns;
2984                 u64 now_ns;
2985                 s64 delta;
2986
2987                 r = -EFAULT;
2988                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
2989                         goto out;
2990
2991                 r = -EINVAL;
2992                 if (user_ns.flags)
2993                         goto out;
2994
2995                 r = 0;
2996                 ktime_get_ts(&now);
2997                 now_ns = timespec_to_ns(&now);
2998                 delta = user_ns.clock - now_ns;
2999                 kvm->arch.kvmclock_offset = delta;
3000                 break;
3001         }
3002         case KVM_GET_CLOCK: {
3003                 struct timespec now;
3004                 struct kvm_clock_data user_ns;
3005                 u64 now_ns;
3006
3007                 ktime_get_ts(&now);
3008                 now_ns = timespec_to_ns(&now);
3009                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3010                 user_ns.flags = 0;
3011
3012                 r = -EFAULT;
3013                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3014                         goto out;
3015                 r = 0;
3016                 break;
3017         }
3018
3019         default:
3020                 ;
3021         }
3022 out:
3023         return r;
3024 }
3025
3026 static void kvm_init_msr_list(void)
3027 {
3028         u32 dummy[2];
3029         unsigned i, j;
3030
3031         /* skip the first msrs in the list. KVM-specific */
3032         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3033                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3034                         continue;
3035                 if (j < i)
3036                         msrs_to_save[j] = msrs_to_save[i];
3037                 j++;
3038         }
3039         num_msrs_to_save = j;
3040 }
3041
3042 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3043                            const void *v)
3044 {
3045         if (vcpu->arch.apic &&
3046             !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
3047                 return 0;
3048
3049         return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3050 }
3051
3052 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3053 {
3054         if (vcpu->arch.apic &&
3055             !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
3056                 return 0;
3057
3058         return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3059 }
3060
3061 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3062                         struct kvm_segment *var, int seg)
3063 {
3064         kvm_x86_ops->set_segment(vcpu, var, seg);
3065 }
3066
3067 void kvm_get_segment(struct kvm_vcpu *vcpu,
3068                      struct kvm_segment *var, int seg)
3069 {
3070         kvm_x86_ops->get_segment(vcpu, var, seg);
3071 }
3072
3073 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3074 {
3075         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3076         return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3077 }
3078
3079  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3080 {
3081         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3082         access |= PFERR_FETCH_MASK;
3083         return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3084 }
3085
3086 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3087 {
3088         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3089         access |= PFERR_WRITE_MASK;
3090         return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3091 }
3092
3093 /* uses this to access any guest's mapped memory without checking CPL */
3094 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3095 {
3096         return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, 0, error);
3097 }
3098
3099 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3100                                       struct kvm_vcpu *vcpu, u32 access,
3101                                       u32 *error)
3102 {
3103         void *data = val;
3104         int r = X86EMUL_CONTINUE;
3105
3106         while (bytes) {
3107                 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr, access, error);
3108                 unsigned offset = addr & (PAGE_SIZE-1);
3109                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3110                 int ret;
3111
3112                 if (gpa == UNMAPPED_GVA) {
3113                         r = X86EMUL_PROPAGATE_FAULT;
3114                         goto out;
3115                 }
3116                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3117                 if (ret < 0) {
3118                         r = X86EMUL_UNHANDLEABLE;
3119                         goto out;
3120                 }
3121
3122                 bytes -= toread;
3123                 data += toread;
3124                 addr += toread;
3125         }
3126 out:
3127         return r;
3128 }
3129
3130 /* used for instruction fetching */
3131 static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
3132                                 struct kvm_vcpu *vcpu, u32 *error)
3133 {
3134         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3135         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3136                                           access | PFERR_FETCH_MASK, error);
3137 }
3138
3139 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
3140                                struct kvm_vcpu *vcpu, u32 *error)
3141 {
3142         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3143         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3144                                           error);
3145 }
3146
3147 static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
3148                                struct kvm_vcpu *vcpu, u32 *error)
3149 {
3150         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, error);
3151 }
3152
3153 static int kvm_write_guest_virt_system(gva_t addr, void *val,
3154                                        unsigned int bytes,
3155                                        struct kvm_vcpu *vcpu,
3156                                        u32 *error)
3157 {
3158         void *data = val;
3159         int r = X86EMUL_CONTINUE;
3160
3161         while (bytes) {
3162                 gpa_t gpa =  vcpu->arch.mmu.gva_to_gpa(vcpu, addr,
3163                                                        PFERR_WRITE_MASK, error);
3164                 unsigned offset = addr & (PAGE_SIZE-1);
3165                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3166                 int ret;
3167
3168                 if (gpa == UNMAPPED_GVA) {
3169                         r = X86EMUL_PROPAGATE_FAULT;
3170                         goto out;
3171                 }
3172                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3173                 if (ret < 0) {
3174                         r = X86EMUL_UNHANDLEABLE;
3175                         goto out;
3176                 }
3177
3178                 bytes -= towrite;
3179                 data += towrite;
3180                 addr += towrite;
3181         }
3182 out:
3183         return r;
3184 }
3185
3186 static int emulator_read_emulated(unsigned long addr,
3187                                   void *val,
3188                                   unsigned int bytes,
3189                                   struct kvm_vcpu *vcpu)
3190 {
3191         gpa_t                 gpa;
3192         u32 error_code;
3193
3194         if (vcpu->mmio_read_completed) {
3195                 memcpy(val, vcpu->mmio_data, bytes);
3196                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3197                                vcpu->mmio_phys_addr, *(u64 *)val);
3198                 vcpu->mmio_read_completed = 0;
3199                 return X86EMUL_CONTINUE;
3200         }
3201
3202         gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, &error_code);
3203
3204         if (gpa == UNMAPPED_GVA) {
3205                 kvm_inject_page_fault(vcpu, addr, error_code);
3206                 return X86EMUL_PROPAGATE_FAULT;
3207         }
3208
3209         /* For APIC access vmexit */
3210         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3211                 goto mmio;
3212
3213         if (kvm_read_guest_virt(addr, val, bytes, vcpu, NULL)
3214                                 == X86EMUL_CONTINUE)
3215                 return X86EMUL_CONTINUE;
3216
3217 mmio:
3218         /*
3219          * Is this MMIO handled locally?
3220          */
3221         if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
3222                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
3223                 return X86EMUL_CONTINUE;
3224         }
3225
3226         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3227
3228         vcpu->mmio_needed = 1;
3229         vcpu->mmio_phys_addr = gpa;
3230         vcpu->mmio_size = bytes;
3231         vcpu->mmio_is_write = 0;
3232
3233         return X86EMUL_UNHANDLEABLE;
3234 }
3235
3236 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3237                           const void *val, int bytes)
3238 {
3239         int ret;
3240
3241         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3242         if (ret < 0)
3243                 return 0;
3244         kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
3245         return 1;
3246 }
3247
3248 static int emulator_write_emulated_onepage(unsigned long addr,
3249                                            const void *val,
3250                                            unsigned int bytes,
3251                                            struct kvm_vcpu *vcpu,
3252                                            bool mmu_only)
3253 {
3254         gpa_t                 gpa;
3255         u32 error_code;
3256
3257         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, &error_code);
3258
3259         if (gpa == UNMAPPED_GVA) {
3260                 kvm_inject_page_fault(vcpu, addr, error_code);
3261                 return X86EMUL_PROPAGATE_FAULT;
3262         }
3263
3264         /* For APIC access vmexit */
3265         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3266                 goto mmio;
3267
3268         if (mmu_only) {
3269                 kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
3270                 return X86EMUL_CONTINUE;
3271         }
3272         if (emulator_write_phys(vcpu, gpa, val, bytes))
3273                 return X86EMUL_CONTINUE;
3274
3275 mmio:
3276         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3277         /*
3278          * Is this MMIO handled locally?
3279          */
3280         if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
3281                 return X86EMUL_CONTINUE;
3282
3283         vcpu->mmio_needed = 1;
3284         vcpu->mmio_phys_addr = gpa;
3285         vcpu->mmio_size = bytes;
3286         vcpu->mmio_is_write = 1;
3287         memcpy(vcpu->mmio_data, val, bytes);
3288
3289         return X86EMUL_CONTINUE;
3290 }
3291
3292 int __emulator_write_emulated(unsigned long addr,
3293                                    const void *val,
3294                                    unsigned int bytes,
3295                                    struct kvm_vcpu *vcpu,
3296                                    bool mmu_only)
3297 {
3298         /* Crossing a page boundary? */
3299         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3300                 int rc, now;
3301
3302                 now = -addr & ~PAGE_MASK;
3303                 rc = emulator_write_emulated_onepage(addr, val, now, vcpu,
3304                                                      mmu_only);
3305                 if (rc != X86EMUL_CONTINUE)
3306                         return rc;
3307                 addr += now;
3308                 val += now;
3309                 bytes -= now;
3310         }
3311         return emulator_write_emulated_onepage(addr, val, bytes, vcpu,
3312                                                mmu_only);
3313 }
3314
3315 int emulator_write_emulated(unsigned long addr,
3316                                    const void *val,
3317                                    unsigned int bytes,
3318                                    struct kvm_vcpu *vcpu)
3319 {
3320         return __emulator_write_emulated(addr, val, bytes, vcpu, false);
3321 }
3322 EXPORT_SYMBOL_GPL(emulator_write_emulated);
3323
3324 #define CMPXCHG_TYPE(t, ptr, old, new) \
3325         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3326
3327 #ifdef CONFIG_X86_64
3328 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3329 #else
3330 #  define CMPXCHG64(ptr, old, new) \
3331         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u *)(new)) == *(u64 *)(old))
3332 #endif
3333
3334 static int emulator_cmpxchg_emulated(unsigned long addr,
3335                                      const void *old,
3336                                      const void *new,
3337                                      unsigned int bytes,
3338                                      struct kvm_vcpu *vcpu)
3339 {
3340         gpa_t gpa;
3341         struct page *page;
3342         char *kaddr;
3343         bool exchanged;
3344
3345         /* guests cmpxchg8b have to be emulated atomically */
3346         if (bytes > 8 || (bytes & (bytes - 1)))
3347                 goto emul_write;
3348
3349         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3350
3351         if (gpa == UNMAPPED_GVA ||
3352             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3353                 goto emul_write;
3354
3355         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3356                 goto emul_write;
3357
3358         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3359
3360         kaddr = kmap_atomic(page, KM_USER0);
3361         kaddr += offset_in_page(gpa);
3362         switch (bytes) {
3363         case 1:
3364                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3365                 break;
3366         case 2:
3367                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3368                 break;
3369         case 4:
3370                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3371                 break;
3372         case 8:
3373                 exchanged = CMPXCHG64(kaddr, old, new);
3374                 break;
3375         default:
3376                 BUG();
3377         }
3378         kunmap_atomic(kaddr, KM_USER0);
3379         kvm_release_page_dirty(page);
3380
3381         if (!exchanged)
3382                 return X86EMUL_CMPXCHG_FAILED;
3383
3384         return __emulator_write_emulated(addr, new, bytes, vcpu, true);
3385
3386 emul_write:
3387         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3388
3389         return emulator_write_emulated(addr, new, bytes, vcpu);
3390 }
3391
3392 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3393 {
3394         /* TODO: String I/O for in kernel device */
3395         int r;
3396
3397         if (vcpu->arch.pio.in)
3398                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3399                                     vcpu->arch.pio.size, pd);
3400         else
3401                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3402                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
3403                                      pd);
3404         return r;
3405 }
3406
3407
3408 static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
3409                              unsigned int count, struct kvm_vcpu *vcpu)
3410 {
3411         if (vcpu->arch.pio.count)
3412                 goto data_avail;
3413
3414         trace_kvm_pio(1, port, size, 1);
3415
3416         vcpu->arch.pio.port = port;
3417         vcpu->arch.pio.in = 1;
3418         vcpu->arch.pio.count  = count;
3419         vcpu->arch.pio.size = size;
3420
3421         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3422         data_avail:
3423                 memcpy(val, vcpu->arch.pio_data, size * count);
3424                 vcpu->arch.pio.count = 0;
3425                 return 1;
3426         }
3427
3428         vcpu->run->exit_reason = KVM_EXIT_IO;
3429         vcpu->run->io.direction = KVM_EXIT_IO_IN;
3430         vcpu->run->io.size = size;
3431         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3432         vcpu->run->io.count = count;
3433         vcpu->run->io.port = port;
3434
3435         return 0;
3436 }
3437
3438 static int emulator_pio_out_emulated(int size, unsigned short port,
3439                               const void *val, unsigned int count,
3440                               struct kvm_vcpu *vcpu)
3441 {
3442         trace_kvm_pio(0, port, size, 1);
3443
3444         vcpu->arch.pio.port = port;
3445         vcpu->arch.pio.in = 0;
3446         vcpu->arch.pio.count = count;
3447         vcpu->arch.pio.size = size;
3448
3449         memcpy(vcpu->arch.pio_data, val, size * count);
3450
3451         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3452                 vcpu->arch.pio.count = 0;
3453                 return 1;
3454         }
3455
3456         vcpu->run->exit_reason = KVM_EXIT_IO;
3457         vcpu->run->io.direction = KVM_EXIT_IO_OUT;
3458         vcpu->run->io.size = size;
3459         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3460         vcpu->run->io.count = count;
3461         vcpu->run->io.port = port;
3462
3463         return 0;
3464 }
3465
3466 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
3467 {
3468         return kvm_x86_ops->get_segment_base(vcpu, seg);
3469 }
3470
3471 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
3472 {
3473         kvm_mmu_invlpg(vcpu, address);
3474         return X86EMUL_CONTINUE;
3475 }
3476
3477 int emulate_clts(struct kvm_vcpu *vcpu)
3478 {
3479         kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
3480         kvm_x86_ops->fpu_activate(vcpu);
3481         return X86EMUL_CONTINUE;
3482 }
3483
3484 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
3485 {
3486         return kvm_x86_ops->get_dr(ctxt->vcpu, dr, dest);
3487 }
3488
3489 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
3490 {
3491         unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
3492
3493         return kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask);
3494 }
3495
3496 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
3497 {
3498         u8 opcodes[4];
3499         unsigned long rip = kvm_rip_read(vcpu);
3500         unsigned long rip_linear;
3501
3502         if (!printk_ratelimit())
3503                 return;
3504
3505         rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
3506
3507         kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu, NULL);
3508
3509         printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
3510                context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
3511 }
3512 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
3513
3514 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
3515 {
3516         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
3517 }
3518
3519 static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
3520 {
3521         unsigned long value;
3522
3523         switch (cr) {
3524         case 0:
3525                 value = kvm_read_cr0(vcpu);
3526                 break;
3527         case 2:
3528                 value = vcpu->arch.cr2;
3529                 break;
3530         case 3:
3531                 value = vcpu->arch.cr3;
3532                 break;
3533         case 4:
3534                 value = kvm_read_cr4(vcpu);
3535                 break;
3536         case 8:
3537                 value = kvm_get_cr8(vcpu);
3538                 break;
3539         default:
3540                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3541                 return 0;
3542         }
3543
3544         return value;
3545 }
3546
3547 static void emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
3548 {
3549         switch (cr) {
3550         case 0:
3551                 kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
3552                 break;
3553         case 2:
3554                 vcpu->arch.cr2 = val;
3555                 break;
3556         case 3:
3557                 kvm_set_cr3(vcpu, val);
3558                 break;
3559         case 4:
3560                 kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
3561                 break;
3562         case 8:
3563                 kvm_set_cr8(vcpu, val & 0xfUL);
3564                 break;
3565         default:
3566                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3567         }
3568 }
3569
3570 static int emulator_get_cpl(struct kvm_vcpu *vcpu)
3571 {
3572         return kvm_x86_ops->get_cpl(vcpu);
3573 }
3574
3575 static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
3576 {
3577         kvm_x86_ops->get_gdt(vcpu, dt);
3578 }
3579
3580 static bool emulator_get_cached_descriptor(struct desc_struct *desc, int seg,
3581                                            struct kvm_vcpu *vcpu)
3582 {
3583         struct kvm_segment var;
3584
3585         kvm_get_segment(vcpu, &var, seg);
3586
3587         if (var.unusable)
3588                 return false;
3589
3590         if (var.g)
3591                 var.limit >>= 12;
3592         set_desc_limit(desc, var.limit);
3593         set_desc_base(desc, (unsigned long)var.base);
3594         desc->type = var.type;
3595         desc->s = var.s;
3596         desc->dpl = var.dpl;
3597         desc->p = var.present;
3598         desc->avl = var.avl;
3599         desc->l = var.l;
3600         desc->d = var.db;
3601         desc->g = var.g;
3602
3603         return true;
3604 }
3605
3606 static void emulator_set_cached_descriptor(struct desc_struct *desc, int seg,
3607                                            struct kvm_vcpu *vcpu)
3608 {
3609         struct kvm_segment var;
3610
3611         /* needed to preserve selector */
3612         kvm_get_segment(vcpu, &var, seg);
3613
3614         var.base = get_desc_base(desc);
3615         var.limit = get_desc_limit(desc);
3616         if (desc->g)
3617                 var.limit = (var.limit << 12) | 0xfff;
3618         var.type = desc->type;
3619         var.present = desc->p;
3620         var.dpl = desc->dpl;
3621         var.db = desc->d;
3622         var.s = desc->s;
3623         var.l = desc->l;
3624         var.g = desc->g;
3625         var.avl = desc->avl;
3626         var.present = desc->p;
3627         var.unusable = !var.present;
3628         var.padding = 0;
3629
3630         kvm_set_segment(vcpu, &var, seg);
3631         return;
3632 }
3633
3634 static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
3635 {
3636         struct kvm_segment kvm_seg;
3637
3638         kvm_get_segment(vcpu, &kvm_seg, seg);
3639         return kvm_seg.selector;
3640 }
3641
3642 static void emulator_set_segment_selector(u16 sel, int seg,
3643                                           struct kvm_vcpu *vcpu)
3644 {
3645         struct kvm_segment kvm_seg;
3646
3647         kvm_get_segment(vcpu, &kvm_seg, seg);
3648         kvm_seg.selector = sel;
3649         kvm_set_segment(vcpu, &kvm_seg, seg);
3650 }
3651
3652 static struct x86_emulate_ops emulate_ops = {
3653         .read_std            = kvm_read_guest_virt_system,
3654         .write_std           = kvm_write_guest_virt_system,
3655         .fetch               = kvm_fetch_guest_virt,
3656         .read_emulated       = emulator_read_emulated,
3657         .write_emulated      = emulator_write_emulated,
3658         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
3659         .pio_in_emulated     = emulator_pio_in_emulated,
3660         .pio_out_emulated    = emulator_pio_out_emulated,
3661         .get_cached_descriptor = emulator_get_cached_descriptor,
3662         .set_cached_descriptor = emulator_set_cached_descriptor,
3663         .get_segment_selector = emulator_get_segment_selector,
3664         .set_segment_selector = emulator_set_segment_selector,
3665         .get_gdt             = emulator_get_gdt,
3666         .get_cr              = emulator_get_cr,
3667         .set_cr              = emulator_set_cr,
3668         .cpl                 = emulator_get_cpl,
3669 };
3670
3671 static void cache_all_regs(struct kvm_vcpu *vcpu)
3672 {
3673         kvm_register_read(vcpu, VCPU_REGS_RAX);
3674         kvm_register_read(vcpu, VCPU_REGS_RSP);
3675         kvm_register_read(vcpu, VCPU_REGS_RIP);
3676         vcpu->arch.regs_dirty = ~0;
3677 }
3678
3679 int emulate_instruction(struct kvm_vcpu *vcpu,
3680                         unsigned long cr2,
3681                         u16 error_code,
3682                         int emulation_type)
3683 {
3684         int r, shadow_mask;
3685         struct decode_cache *c;
3686         struct kvm_run *run = vcpu->run;
3687
3688         kvm_clear_exception_queue(vcpu);
3689         vcpu->arch.mmio_fault_cr2 = cr2;
3690         /*
3691          * TODO: fix emulate.c to use guest_read/write_register
3692          * instead of direct ->regs accesses, can save hundred cycles
3693          * on Intel for instructions that don't read/change RSP, for
3694          * for example.
3695          */
3696         cache_all_regs(vcpu);
3697
3698         vcpu->mmio_is_write = 0;
3699
3700         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
3701                 int cs_db, cs_l;
3702                 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
3703
3704                 vcpu->arch.emulate_ctxt.vcpu = vcpu;
3705                 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
3706                 vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
3707                 vcpu->arch.emulate_ctxt.mode =
3708                         (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
3709                         (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
3710                         ? X86EMUL_MODE_VM86 : cs_l
3711                         ? X86EMUL_MODE_PROT64 : cs_db
3712                         ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
3713
3714                 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
3715
3716                 /* Only allow emulation of specific instructions on #UD
3717                  * (namely VMMCALL, sysenter, sysexit, syscall)*/
3718                 c = &vcpu->arch.emulate_ctxt.decode;
3719                 if (emulation_type & EMULTYPE_TRAP_UD) {
3720                         if (!c->twobyte)
3721                                 return EMULATE_FAIL;
3722                         switch (c->b) {
3723                         case 0x01: /* VMMCALL */
3724                                 if (c->modrm_mod != 3 || c->modrm_rm != 1)
3725                                         return EMULATE_FAIL;
3726                                 break;
3727                         case 0x34: /* sysenter */
3728                         case 0x35: /* sysexit */
3729                                 if (c->modrm_mod != 0 || c->modrm_rm != 0)
3730                                         return EMULATE_FAIL;
3731                                 break;
3732                         case 0x05: /* syscall */
3733                                 if (c->modrm_mod != 0 || c->modrm_rm != 0)
3734                                         return EMULATE_FAIL;
3735                                 break;
3736                         default:
3737                                 return EMULATE_FAIL;
3738                         }
3739
3740                         if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
3741                                 return EMULATE_FAIL;
3742                 }
3743
3744                 ++vcpu->stat.insn_emulation;
3745                 if (r)  {
3746                         ++vcpu->stat.insn_emulation_fail;
3747                         if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
3748                                 return EMULATE_DONE;
3749                         return EMULATE_FAIL;
3750                 }
3751         }
3752
3753         if (emulation_type & EMULTYPE_SKIP) {
3754                 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
3755                 return EMULATE_DONE;
3756         }
3757
3758 restart:
3759         r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
3760         shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
3761
3762         if (r == 0)
3763                 kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
3764
3765         if (vcpu->arch.pio.count) {
3766                 if (!vcpu->arch.pio.in)
3767                         vcpu->arch.pio.count = 0;
3768                 return EMULATE_DO_MMIO;
3769         }
3770
3771         if (r || vcpu->mmio_is_write) {
3772                 run->exit_reason = KVM_EXIT_MMIO;
3773                 run->mmio.phys_addr = vcpu->mmio_phys_addr;
3774                 memcpy(run->mmio.data, vcpu->mmio_data, 8);
3775                 run->mmio.len = vcpu->mmio_size;
3776                 run->mmio.is_write = vcpu->mmio_is_write;
3777         }
3778
3779         if (r) {
3780                 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
3781                         goto done;
3782                 if (!vcpu->mmio_needed) {
3783                         kvm_report_emulation_failure(vcpu, "mmio");
3784                         return EMULATE_FAIL;
3785                 }
3786                 return EMULATE_DO_MMIO;
3787         }
3788
3789         kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
3790
3791         if (vcpu->mmio_is_write) {
3792                 vcpu->mmio_needed = 0;
3793                 return EMULATE_DO_MMIO;
3794         }
3795
3796 done:
3797         if (vcpu->arch.exception.pending)
3798                 vcpu->arch.emulate_ctxt.restart = false;
3799
3800         if (vcpu->arch.emulate_ctxt.restart)
3801                 goto restart;
3802
3803         return EMULATE_DONE;
3804 }
3805 EXPORT_SYMBOL_GPL(emulate_instruction);
3806
3807 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
3808 {
3809         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
3810         int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
3811         /* do not return to emulator after return from userspace */
3812         vcpu->arch.pio.count = 0;
3813         return ret;
3814 }
3815 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
3816
3817 static void bounce_off(void *info)
3818 {
3819         /* nothing */
3820 }
3821
3822 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
3823                                      void *data)
3824 {
3825         struct cpufreq_freqs *freq = data;
3826         struct kvm *kvm;
3827         struct kvm_vcpu *vcpu;
3828         int i, send_ipi = 0;
3829
3830         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
3831                 return 0;
3832         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
3833                 return 0;
3834         per_cpu(cpu_tsc_khz, freq->cpu) = freq->new;
3835
3836         spin_lock(&kvm_lock);
3837         list_for_each_entry(kvm, &vm_list, vm_list) {
3838                 kvm_for_each_vcpu(i, vcpu, kvm) {
3839                         if (vcpu->cpu != freq->cpu)
3840                                 continue;
3841                         if (!kvm_request_guest_time_update(vcpu))
3842                                 continue;
3843                         if (vcpu->cpu != smp_processor_id())
3844                                 send_ipi++;
3845                 }
3846         }
3847         spin_unlock(&kvm_lock);
3848
3849         if (freq->old < freq->new && send_ipi) {
3850                 /*
3851                  * We upscale the frequency.  Must make the guest
3852                  * doesn't see old kvmclock values while running with
3853                  * the new frequency, otherwise we risk the guest sees
3854                  * time go backwards.
3855                  *
3856                  * In case we update the frequency for another cpu
3857                  * (which might be in guest context) send an interrupt
3858                  * to kick the cpu out of guest context.  Next time
3859                  * guest context is entered kvmclock will be updated,
3860                  * so the guest will not see stale values.
3861                  */
3862                 smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
3863         }
3864         return 0;
3865 }
3866
3867 static struct notifier_block kvmclock_cpufreq_notifier_block = {
3868         .notifier_call  = kvmclock_cpufreq_notifier
3869 };
3870
3871 static void kvm_timer_init(void)
3872 {
3873         int cpu;
3874
3875         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
3876                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
3877                                           CPUFREQ_TRANSITION_NOTIFIER);
3878                 for_each_online_cpu(cpu) {
3879                         unsigned long khz = cpufreq_get(cpu);
3880                         if (!khz)
3881                                 khz = tsc_khz;
3882                         per_cpu(cpu_tsc_khz, cpu) = khz;
3883                 }
3884         } else {
3885                 for_each_possible_cpu(cpu)
3886                         per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
3887         }
3888 }
3889
3890 int kvm_arch_init(void *opaque)
3891 {
3892         int r;
3893         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
3894
3895         if (kvm_x86_ops) {
3896                 printk(KERN_ERR "kvm: already loaded the other module\n");
3897                 r = -EEXIST;
3898                 goto out;
3899         }
3900
3901         if (!ops->cpu_has_kvm_support()) {
3902                 printk(KERN_ERR "kvm: no hardware support\n");
3903                 r = -EOPNOTSUPP;
3904                 goto out;
3905         }
3906         if (ops->disabled_by_bios()) {
3907                 printk(KERN_ERR "kvm: disabled by bios\n");
3908                 r = -EOPNOTSUPP;
3909                 goto out;
3910         }
3911
3912         r = kvm_mmu_module_init();
3913         if (r)
3914                 goto out;
3915
3916         kvm_init_msr_list();
3917
3918         kvm_x86_ops = ops;
3919         kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
3920         kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
3921         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
3922                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
3923
3924         kvm_timer_init();
3925
3926         return 0;
3927
3928 out:
3929         return r;
3930 }
3931
3932 void kvm_arch_exit(void)
3933 {
3934         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
3935                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
3936                                             CPUFREQ_TRANSITION_NOTIFIER);
3937         kvm_x86_ops = NULL;
3938         kvm_mmu_module_exit();
3939 }
3940
3941 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
3942 {
3943         ++vcpu->stat.halt_exits;
3944         if (irqchip_in_kernel(vcpu->kvm)) {
3945                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
3946                 return 1;
3947         } else {
3948                 vcpu->run->exit_reason = KVM_EXIT_HLT;
3949                 return 0;
3950         }
3951 }
3952 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
3953
3954 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
3955                            unsigned long a1)
3956 {
3957         if (is_long_mode(vcpu))
3958                 return a0;
3959         else
3960                 return a0 | ((gpa_t)a1 << 32);
3961 }
3962
3963 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
3964 {
3965         u64 param, ingpa, outgpa, ret;
3966         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
3967         bool fast, longmode;
3968         int cs_db, cs_l;
3969
3970         /*
3971          * hypercall generates UD from non zero cpl and real mode
3972          * per HYPER-V spec
3973          */
3974         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
3975                 kvm_queue_exception(vcpu, UD_VECTOR);
3976                 return 0;
3977         }
3978
3979         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
3980         longmode = is_long_mode(vcpu) && cs_l == 1;
3981
3982         if (!longmode) {
3983                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
3984                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
3985                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
3986                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
3987                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
3988                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
3989         }
3990 #ifdef CONFIG_X86_64
3991         else {
3992                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
3993                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
3994                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
3995         }
3996 #endif
3997
3998         code = param & 0xffff;
3999         fast = (param >> 16) & 0x1;
4000         rep_cnt = (param >> 32) & 0xfff;
4001         rep_idx = (param >> 48) & 0xfff;
4002
4003         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
4004
4005         switch (code) {
4006         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
4007                 kvm_vcpu_on_spin(vcpu);
4008                 break;
4009         default:
4010                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
4011                 break;
4012         }
4013
4014         ret = res | (((u64)rep_done & 0xfff) << 32);
4015         if (longmode) {
4016                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4017         } else {
4018                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
4019                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
4020         }
4021
4022         return 1;
4023 }
4024
4025 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
4026 {
4027         unsigned long nr, a0, a1, a2, a3, ret;
4028         int r = 1;
4029
4030         if (kvm_hv_hypercall_enabled(vcpu->kvm))
4031                 return kvm_hv_hypercall(vcpu);
4032
4033         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
4034         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
4035         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
4036         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
4037         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
4038
4039         trace_kvm_hypercall(nr, a0, a1, a2, a3);
4040
4041         if (!is_long_mode(vcpu)) {
4042                 nr &= 0xFFFFFFFF;
4043                 a0 &= 0xFFFFFFFF;
4044                 a1 &= 0xFFFFFFFF;
4045                 a2 &= 0xFFFFFFFF;
4046                 a3 &= 0xFFFFFFFF;
4047         }
4048
4049         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
4050                 ret = -KVM_EPERM;
4051                 goto out;
4052         }
4053
4054         switch (nr) {
4055         case KVM_HC_VAPIC_POLL_IRQ:
4056                 ret = 0;
4057                 break;
4058         case KVM_HC_MMU_OP:
4059                 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
4060                 break;
4061         default:
4062                 ret = -KVM_ENOSYS;
4063                 break;
4064         }
4065 out:
4066         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4067         ++vcpu->stat.hypercalls;
4068         return r;
4069 }
4070 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
4071
4072 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
4073 {
4074         char instruction[3];
4075         unsigned long rip = kvm_rip_read(vcpu);
4076
4077         /*
4078          * Blow out the MMU to ensure that no other VCPU has an active mapping
4079          * to ensure that the updated hypercall appears atomically across all
4080          * VCPUs.
4081          */
4082         kvm_mmu_zap_all(vcpu->kvm);
4083
4084         kvm_x86_ops->patch_hypercall(vcpu, instruction);
4085
4086         return __emulator_write_emulated(rip, instruction, 3, vcpu, false);
4087 }
4088
4089 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4090 {
4091         struct desc_ptr dt = { limit, base };
4092
4093         kvm_x86_ops->set_gdt(vcpu, &dt);
4094 }
4095
4096 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4097 {
4098         struct desc_ptr dt = { limit, base };
4099
4100         kvm_x86_ops->set_idt(vcpu, &dt);
4101 }
4102
4103 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
4104 {
4105         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
4106         int j, nent = vcpu->arch.cpuid_nent;
4107
4108         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
4109         /* when no next entry is found, the current entry[i] is reselected */
4110         for (j = i + 1; ; j = (j + 1) % nent) {
4111                 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
4112                 if (ej->function == e->function) {
4113                         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
4114                         return j;
4115                 }
4116         }
4117         return 0; /* silence gcc, even though control never reaches here */
4118 }
4119
4120 /* find an entry with matching function, matching index (if needed), and that
4121  * should be read next (if it's stateful) */
4122 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
4123         u32 function, u32 index)
4124 {
4125         if (e->function != function)
4126                 return 0;
4127         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
4128                 return 0;
4129         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
4130             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
4131                 return 0;
4132         return 1;
4133 }
4134
4135 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
4136                                               u32 function, u32 index)
4137 {
4138         int i;
4139         struct kvm_cpuid_entry2 *best = NULL;
4140
4141         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
4142                 struct kvm_cpuid_entry2 *e;
4143
4144                 e = &vcpu->arch.cpuid_entries[i];
4145                 if (is_matching_cpuid_entry(e, function, index)) {
4146                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
4147                                 move_to_next_stateful_cpuid_entry(vcpu, i);
4148                         best = e;
4149                         break;
4150                 }
4151                 /*
4152                  * Both basic or both extended?
4153                  */
4154                 if (((e->function ^ function) & 0x80000000) == 0)
4155                         if (!best || e->function > best->function)
4156                                 best = e;
4157         }
4158         return best;
4159 }
4160 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
4161
4162 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
4163 {
4164         struct kvm_cpuid_entry2 *best;
4165
4166         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
4167         if (best)
4168                 return best->eax & 0xff;
4169         return 36;
4170 }
4171
4172 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
4173 {
4174         u32 function, index;
4175         struct kvm_cpuid_entry2 *best;
4176
4177         function = kvm_register_read(vcpu, VCPU_REGS_RAX);
4178         index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4179         kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
4180         kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
4181         kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
4182         kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
4183         best = kvm_find_cpuid_entry(vcpu, function, index);
4184         if (best) {
4185                 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
4186                 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
4187                 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
4188                 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
4189         }
4190         kvm_x86_ops->skip_emulated_instruction(vcpu);
4191         trace_kvm_cpuid(function,
4192                         kvm_register_read(vcpu, VCPU_REGS_RAX),
4193                         kvm_register_read(vcpu, VCPU_REGS_RBX),
4194                         kvm_register_read(vcpu, VCPU_REGS_RCX),
4195                         kvm_register_read(vcpu, VCPU_REGS_RDX));
4196 }
4197 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
4198
4199 /*
4200  * Check if userspace requested an interrupt window, and that the
4201  * interrupt window is open.
4202  *
4203  * No need to exit to userspace if we already have an interrupt queued.
4204  */
4205 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
4206 {
4207         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
4208                 vcpu->run->request_interrupt_window &&
4209                 kvm_arch_interrupt_allowed(vcpu));
4210 }
4211
4212 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
4213 {
4214         struct kvm_run *kvm_run = vcpu->run;
4215
4216         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
4217         kvm_run->cr8 = kvm_get_cr8(vcpu);
4218         kvm_run->apic_base = kvm_get_apic_base(vcpu);
4219         if (irqchip_in_kernel(vcpu->kvm))
4220                 kvm_run->ready_for_interrupt_injection = 1;
4221         else
4222                 kvm_run->ready_for_interrupt_injection =
4223                         kvm_arch_interrupt_allowed(vcpu) &&
4224                         !kvm_cpu_has_interrupt(vcpu) &&
4225                         !kvm_event_needs_reinjection(vcpu);
4226 }
4227
4228 static void vapic_enter(struct kvm_vcpu *vcpu)
4229 {
4230         struct kvm_lapic *apic = vcpu->arch.apic;
4231         struct page *page;
4232
4233         if (!apic || !apic->vapic_addr)
4234                 return;
4235
4236         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4237
4238         vcpu->arch.apic->vapic_page = page;
4239 }
4240
4241 static void vapic_exit(struct kvm_vcpu *vcpu)
4242 {
4243         struct kvm_lapic *apic = vcpu->arch.apic;
4244         int idx;
4245
4246         if (!apic || !apic->vapic_addr)
4247                 return;
4248
4249         idx = srcu_read_lock(&vcpu->kvm->srcu);
4250         kvm_release_page_dirty(apic->vapic_page);
4251         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4252         srcu_read_unlock(&vcpu->kvm->srcu, idx);
4253 }
4254
4255 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
4256 {
4257         int max_irr, tpr;
4258
4259         if (!kvm_x86_ops->update_cr8_intercept)
4260                 return;
4261
4262         if (!vcpu->arch.apic)
4263                 return;
4264
4265         if (!vcpu->arch.apic->vapic_addr)
4266                 max_irr = kvm_lapic_find_highest_irr(vcpu);
4267         else
4268                 max_irr = -1;
4269
4270         if (max_irr != -1)
4271                 max_irr >>= 4;
4272
4273         tpr = kvm_lapic_get_cr8(vcpu);
4274
4275         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
4276 }
4277
4278 static void inject_pending_event(struct kvm_vcpu *vcpu)
4279 {
4280         /* try to reinject previous events if any */
4281         if (vcpu->arch.exception.pending) {
4282                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
4283                                         vcpu->arch.exception.has_error_code,
4284                                         vcpu->arch.exception.error_code);
4285                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
4286                                           vcpu->arch.exception.has_error_code,
4287                                           vcpu->arch.exception.error_code);
4288                 return;
4289         }
4290
4291         if (vcpu->arch.nmi_injected) {
4292                 kvm_x86_ops->set_nmi(vcpu);
4293                 return;
4294         }
4295
4296         if (vcpu->arch.interrupt.pending) {
4297                 kvm_x86_ops->set_irq(vcpu);
4298                 return;
4299         }
4300
4301         /* try to inject new event if pending */
4302         if (vcpu->arch.nmi_pending) {
4303                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
4304                         vcpu->arch.nmi_pending = false;
4305                         vcpu->arch.nmi_injected = true;
4306                         kvm_x86_ops->set_nmi(vcpu);
4307                 }
4308         } else if (kvm_cpu_has_interrupt(vcpu)) {
4309                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
4310                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
4311                                             false);
4312                         kvm_x86_ops->set_irq(vcpu);
4313                 }
4314         }
4315 }
4316
4317 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
4318 {
4319         int r;
4320         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
4321                 vcpu->run->request_interrupt_window;
4322
4323         if (vcpu->requests)
4324                 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
4325                         kvm_mmu_unload(vcpu);
4326
4327         r = kvm_mmu_reload(vcpu);
4328         if (unlikely(r))
4329                 goto out;
4330
4331         if (vcpu->requests) {
4332                 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
4333                         __kvm_migrate_timers(vcpu);
4334                 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
4335                         kvm_write_guest_time(vcpu);
4336                 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
4337                         kvm_mmu_sync_roots(vcpu);
4338                 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
4339                         kvm_x86_ops->tlb_flush(vcpu);
4340                 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
4341                                        &vcpu->requests)) {
4342                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
4343                         r = 0;
4344                         goto out;
4345                 }
4346                 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
4347                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4348                         r = 0;
4349                         goto out;
4350                 }
4351                 if (test_and_clear_bit(KVM_REQ_DEACTIVATE_FPU, &vcpu->requests)) {
4352                         vcpu->fpu_active = 0;
4353                         kvm_x86_ops->fpu_deactivate(vcpu);
4354                 }
4355         }
4356
4357         preempt_disable();
4358
4359         kvm_x86_ops->prepare_guest_switch(vcpu);
4360         if (vcpu->fpu_active)
4361                 kvm_load_guest_fpu(vcpu);
4362
4363         local_irq_disable();
4364
4365         clear_bit(KVM_REQ_KICK, &vcpu->requests);
4366         smp_mb__after_clear_bit();
4367
4368         if (vcpu->requests || need_resched() || signal_pending(current)) {
4369                 set_bit(KVM_REQ_KICK, &vcpu->requests);
4370                 local_irq_enable();
4371                 preempt_enable();
4372                 r = 1;
4373                 goto out;
4374         }
4375
4376         inject_pending_event(vcpu);
4377
4378         /* enable NMI/IRQ window open exits if needed */
4379         if (vcpu->arch.nmi_pending)
4380                 kvm_x86_ops->enable_nmi_window(vcpu);
4381         else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
4382                 kvm_x86_ops->enable_irq_window(vcpu);
4383
4384         if (kvm_lapic_enabled(vcpu)) {
4385                 update_cr8_intercept(vcpu);
4386                 kvm_lapic_sync_to_vapic(vcpu);
4387         }
4388
4389         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4390
4391         kvm_guest_enter();
4392
4393         if (unlikely(vcpu->arch.switch_db_regs)) {
4394                 set_debugreg(0, 7);
4395                 set_debugreg(vcpu->arch.eff_db[0], 0);
4396                 set_debugreg(vcpu->arch.eff_db[1], 1);
4397                 set_debugreg(vcpu->arch.eff_db[2], 2);
4398                 set_debugreg(vcpu->arch.eff_db[3], 3);
4399         }
4400
4401         trace_kvm_entry(vcpu->vcpu_id);
4402         kvm_x86_ops->run(vcpu);
4403
4404         /*
4405          * If the guest has used debug registers, at least dr7
4406          * will be disabled while returning to the host.
4407          * If we don't have active breakpoints in the host, we don't
4408          * care about the messed up debug address registers. But if
4409          * we have some of them active, restore the old state.
4410          */
4411         if (hw_breakpoint_active())
4412                 hw_breakpoint_restore();
4413
4414         set_bit(KVM_REQ_KICK, &vcpu->requests);
4415         local_irq_enable();
4416
4417         ++vcpu->stat.exits;
4418
4419         /*
4420          * We must have an instruction between local_irq_enable() and
4421          * kvm_guest_exit(), so the timer interrupt isn't delayed by
4422          * the interrupt shadow.  The stat.exits increment will do nicely.
4423          * But we need to prevent reordering, hence this barrier():
4424          */
4425         barrier();
4426
4427         kvm_guest_exit();
4428
4429         preempt_enable();
4430
4431         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4432
4433         /*
4434          * Profile KVM exit RIPs:
4435          */
4436         if (unlikely(prof_on == KVM_PROFILING)) {
4437                 unsigned long rip = kvm_rip_read(vcpu);
4438                 profile_hit(KVM_PROFILING, (void *)rip);
4439         }
4440
4441
4442         kvm_lapic_sync_from_vapic(vcpu);
4443
4444         r = kvm_x86_ops->handle_exit(vcpu);
4445 out:
4446         return r;
4447 }
4448
4449
4450 static int __vcpu_run(struct kvm_vcpu *vcpu)
4451 {
4452         int r;
4453         struct kvm *kvm = vcpu->kvm;
4454
4455         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
4456                 pr_debug("vcpu %d received sipi with vector # %x\n",
4457                          vcpu->vcpu_id, vcpu->arch.sipi_vector);
4458                 kvm_lapic_reset(vcpu);
4459                 r = kvm_arch_vcpu_reset(vcpu);
4460                 if (r)
4461                         return r;
4462                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4463         }
4464
4465         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4466         vapic_enter(vcpu);
4467
4468         r = 1;
4469         while (r > 0) {
4470                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
4471                         r = vcpu_enter_guest(vcpu);
4472                 else {
4473                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4474                         kvm_vcpu_block(vcpu);
4475                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4476                         if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
4477                         {
4478                                 switch(vcpu->arch.mp_state) {
4479                                 case KVM_MP_STATE_HALTED:
4480                                         vcpu->arch.mp_state =
4481                                                 KVM_MP_STATE_RUNNABLE;
4482                                 case KVM_MP_STATE_RUNNABLE:
4483                                         break;
4484                                 case KVM_MP_STATE_SIPI_RECEIVED:
4485                                 default:
4486                                         r = -EINTR;
4487                                         break;
4488                                 }
4489                         }
4490                 }
4491
4492                 if (r <= 0)
4493                         break;
4494
4495                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
4496                 if (kvm_cpu_has_pending_timer(vcpu))
4497                         kvm_inject_pending_timer_irqs(vcpu);
4498
4499                 if (dm_request_for_irq_injection(vcpu)) {
4500                         r = -EINTR;
4501                         vcpu->run->exit_reason = KVM_EXIT_INTR;
4502                         ++vcpu->stat.request_irq_exits;
4503                 }
4504                 if (signal_pending(current)) {
4505                         r = -EINTR;
4506                         vcpu->run->exit_reason = KVM_EXIT_INTR;
4507                         ++vcpu->stat.signal_exits;
4508                 }
4509                 if (need_resched()) {
4510                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4511                         kvm_resched(vcpu);
4512                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4513                 }
4514         }
4515
4516         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4517         post_kvm_run_save(vcpu);
4518
4519         vapic_exit(vcpu);
4520
4521         return r;
4522 }
4523
4524 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
4525 {
4526         int r;
4527         sigset_t sigsaved;
4528
4529         vcpu_load(vcpu);
4530
4531         if (vcpu->sigset_active)
4532                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
4533
4534         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
4535                 kvm_vcpu_block(vcpu);
4536                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
4537                 r = -EAGAIN;
4538                 goto out;
4539         }
4540
4541         /* re-sync apic's tpr */
4542         if (!irqchip_in_kernel(vcpu->kvm))
4543                 kvm_set_cr8(vcpu, kvm_run->cr8);
4544
4545         if (vcpu->arch.pio.count || vcpu->mmio_needed ||
4546             vcpu->arch.emulate_ctxt.restart) {
4547                 if (vcpu->mmio_needed) {
4548                         memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
4549                         vcpu->mmio_read_completed = 1;
4550                         vcpu->mmio_needed = 0;
4551                 }
4552                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4553                 r = emulate_instruction(vcpu, 0, 0, EMULTYPE_NO_DECODE);
4554                 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4555                 if (r == EMULATE_DO_MMIO) {
4556                         r = 0;
4557                         goto out;
4558                 }
4559         }
4560         if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
4561                 kvm_register_write(vcpu, VCPU_REGS_RAX,
4562                                      kvm_run->hypercall.ret);
4563
4564         r = __vcpu_run(vcpu);
4565
4566 out:
4567         if (vcpu->sigset_active)
4568                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
4569
4570         vcpu_put(vcpu);
4571         return r;
4572 }
4573
4574 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4575 {
4576         vcpu_load(vcpu);
4577
4578         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4579         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4580         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4581         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4582         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4583         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4584         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4585         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4586 #ifdef CONFIG_X86_64
4587         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
4588         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
4589         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
4590         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
4591         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
4592         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
4593         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
4594         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
4595 #endif
4596
4597         regs->rip = kvm_rip_read(vcpu);
4598         regs->rflags = kvm_get_rflags(vcpu);
4599
4600         vcpu_put(vcpu);
4601
4602         return 0;
4603 }
4604
4605 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4606 {
4607         vcpu_load(vcpu);
4608
4609         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
4610         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
4611         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
4612         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
4613         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
4614         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
4615         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
4616         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
4617 #ifdef CONFIG_X86_64
4618         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
4619         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
4620         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
4621         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
4622         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
4623         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
4624         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
4625         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
4626 #endif
4627
4628         kvm_rip_write(vcpu, regs->rip);
4629         kvm_set_rflags(vcpu, regs->rflags);
4630
4631         vcpu->arch.exception.pending = false;
4632
4633         vcpu_put(vcpu);
4634
4635         return 0;
4636 }
4637
4638 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4639 {
4640         struct kvm_segment cs;
4641
4642         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
4643         *db = cs.db;
4644         *l = cs.l;
4645 }
4646 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
4647
4648 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
4649                                   struct kvm_sregs *sregs)
4650 {
4651         struct desc_ptr dt;
4652
4653         vcpu_load(vcpu);
4654
4655         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4656         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4657         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4658         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4659         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4660         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4661
4662         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4663         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4664
4665         kvm_x86_ops->get_idt(vcpu, &dt);
4666         sregs->idt.limit = dt.size;
4667         sregs->idt.base = dt.address;
4668         kvm_x86_ops->get_gdt(vcpu, &dt);
4669         sregs->gdt.limit = dt.size;
4670         sregs->gdt.base = dt.address;
4671
4672         sregs->cr0 = kvm_read_cr0(vcpu);
4673         sregs->cr2 = vcpu->arch.cr2;
4674         sregs->cr3 = vcpu->arch.cr3;
4675         sregs->cr4 = kvm_read_cr4(vcpu);
4676         sregs->cr8 = kvm_get_cr8(vcpu);
4677         sregs->efer = vcpu->arch.efer;
4678         sregs->apic_base = kvm_get_apic_base(vcpu);
4679
4680         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
4681
4682         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
4683                 set_bit(vcpu->arch.interrupt.nr,
4684                         (unsigned long *)sregs->interrupt_bitmap);
4685
4686         vcpu_put(vcpu);
4687
4688         return 0;
4689 }
4690
4691 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
4692                                     struct kvm_mp_state *mp_state)
4693 {
4694         vcpu_load(vcpu);
4695         mp_state->mp_state = vcpu->arch.mp_state;
4696         vcpu_put(vcpu);
4697         return 0;
4698 }
4699
4700 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
4701                                     struct kvm_mp_state *mp_state)
4702 {
4703         vcpu_load(vcpu);
4704         vcpu->arch.mp_state = mp_state->mp_state;
4705         vcpu_put(vcpu);
4706         return 0;
4707 }
4708
4709 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
4710 {
4711         int cs_db, cs_l, ret;
4712         cache_all_regs(vcpu);
4713
4714         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4715
4716         vcpu->arch.emulate_ctxt.vcpu = vcpu;
4717         vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
4718         vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
4719         vcpu->arch.emulate_ctxt.mode =
4720                 (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4721                 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
4722                 ? X86EMUL_MODE_VM86 : cs_l
4723                 ? X86EMUL_MODE_PROT64 : cs_db
4724                 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
4725
4726         ret = emulator_task_switch(&vcpu->arch.emulate_ctxt, &emulate_ops,
4727                                    tss_selector, reason);
4728
4729         if (ret == X86EMUL_CONTINUE)
4730                 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4731
4732         return (ret != X86EMUL_CONTINUE);
4733 }
4734 EXPORT_SYMBOL_GPL(kvm_task_switch);
4735
4736 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
4737                                   struct kvm_sregs *sregs)
4738 {
4739         int mmu_reset_needed = 0;
4740         int pending_vec, max_bits;
4741         struct desc_ptr dt;
4742
4743         vcpu_load(vcpu);
4744
4745         dt.size = sregs->idt.limit;
4746         dt.address = sregs->idt.base;
4747         kvm_x86_ops->set_idt(vcpu, &dt);
4748         dt.size = sregs->gdt.limit;
4749         dt.address = sregs->gdt.base;
4750         kvm_x86_ops->set_gdt(vcpu, &dt);
4751
4752         vcpu->arch.cr2 = sregs->cr2;
4753         mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
4754         vcpu->arch.cr3 = sregs->cr3;
4755
4756         kvm_set_cr8(vcpu, sregs->cr8);
4757
4758         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
4759         kvm_x86_ops->set_efer(vcpu, sregs->efer);
4760         kvm_set_apic_base(vcpu, sregs->apic_base);
4761
4762         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
4763         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
4764         vcpu->arch.cr0 = sregs->cr0;
4765
4766         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
4767         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
4768         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
4769                 load_pdptrs(vcpu, vcpu->arch.cr3);
4770                 mmu_reset_needed = 1;
4771         }
4772
4773         if (mmu_reset_needed)
4774                 kvm_mmu_reset_context(vcpu);
4775
4776         max_bits = (sizeof sregs->interrupt_bitmap) << 3;
4777         pending_vec = find_first_bit(
4778                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
4779         if (pending_vec < max_bits) {
4780                 kvm_queue_interrupt(vcpu, pending_vec, false);
4781                 pr_debug("Set back pending irq %d\n", pending_vec);
4782                 if (irqchip_in_kernel(vcpu->kvm))
4783                         kvm_pic_clear_isr_ack(vcpu->kvm);
4784         }
4785
4786         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4787         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4788         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4789         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4790         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4791         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4792
4793         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4794         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4795
4796         update_cr8_intercept(vcpu);
4797
4798         /* Older userspace won't unhalt the vcpu on reset. */
4799         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
4800             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
4801             !is_protmode(vcpu))
4802                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4803
4804         vcpu_put(vcpu);
4805
4806         return 0;
4807 }
4808
4809 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
4810                                         struct kvm_guest_debug *dbg)
4811 {
4812         unsigned long rflags;
4813         int i, r;
4814
4815         vcpu_load(vcpu);
4816
4817         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
4818                 r = -EBUSY;
4819                 if (vcpu->arch.exception.pending)
4820                         goto unlock_out;
4821                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
4822                         kvm_queue_exception(vcpu, DB_VECTOR);
4823                 else
4824                         kvm_queue_exception(vcpu, BP_VECTOR);
4825         }
4826
4827         /*
4828          * Read rflags as long as potentially injected trace flags are still
4829          * filtered out.
4830          */
4831         rflags = kvm_get_rflags(vcpu);
4832
4833         vcpu->guest_debug = dbg->control;
4834         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
4835                 vcpu->guest_debug = 0;
4836
4837         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4838                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
4839                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
4840                 vcpu->arch.switch_db_regs =
4841                         (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
4842         } else {
4843                 for (i = 0; i < KVM_NR_DB_REGS; i++)
4844                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
4845                 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
4846         }
4847
4848         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
4849                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
4850                         get_segment_base(vcpu, VCPU_SREG_CS);
4851
4852         /*
4853          * Trigger an rflags update that will inject or remove the trace
4854          * flags.
4855          */
4856         kvm_set_rflags(vcpu, rflags);
4857
4858         kvm_x86_ops->set_guest_debug(vcpu, dbg);
4859
4860         r = 0;
4861
4862 unlock_out:
4863         vcpu_put(vcpu);
4864
4865         return r;
4866 }
4867
4868 /*
4869  * fxsave fpu state.  Taken from x86_64/processor.h.  To be killed when
4870  * we have asm/x86/processor.h
4871  */
4872 struct fxsave {
4873         u16     cwd;
4874         u16     swd;
4875         u16     twd;
4876         u16     fop;
4877         u64     rip;
4878         u64     rdp;
4879         u32     mxcsr;
4880         u32     mxcsr_mask;
4881         u32     st_space[32];   /* 8*16 bytes for each FP-reg = 128 bytes */
4882 #ifdef CONFIG_X86_64
4883         u32     xmm_space[64];  /* 16*16 bytes for each XMM-reg = 256 bytes */
4884 #else
4885         u32     xmm_space[32];  /* 8*16 bytes for each XMM-reg = 128 bytes */
4886 #endif
4887 };
4888
4889 /*
4890  * Translate a guest virtual address to a guest physical address.
4891  */
4892 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
4893                                     struct kvm_translation *tr)
4894 {
4895         unsigned long vaddr = tr->linear_address;
4896         gpa_t gpa;
4897         int idx;
4898
4899         vcpu_load(vcpu);
4900         idx = srcu_read_lock(&vcpu->kvm->srcu);
4901         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
4902         srcu_read_unlock(&vcpu->kvm->srcu, idx);
4903         tr->physical_address = gpa;
4904         tr->valid = gpa != UNMAPPED_GVA;
4905         tr->writeable = 1;
4906         tr->usermode = 0;
4907         vcpu_put(vcpu);
4908
4909         return 0;
4910 }
4911
4912 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4913 {
4914         struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4915
4916         vcpu_load(vcpu);
4917
4918         memcpy(fpu->fpr, fxsave->st_space, 128);
4919         fpu->fcw = fxsave->cwd;
4920         fpu->fsw = fxsave->swd;
4921         fpu->ftwx = fxsave->twd;
4922         fpu->last_opcode = fxsave->fop;
4923         fpu->last_ip = fxsave->rip;
4924         fpu->last_dp = fxsave->rdp;
4925         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
4926
4927         vcpu_put(vcpu);
4928
4929         return 0;
4930 }
4931
4932 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4933 {
4934         struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4935
4936         vcpu_load(vcpu);
4937
4938         memcpy(fxsave->st_space, fpu->fpr, 128);
4939         fxsave->cwd = fpu->fcw;
4940         fxsave->swd = fpu->fsw;
4941         fxsave->twd = fpu->ftwx;
4942         fxsave->fop = fpu->last_opcode;
4943         fxsave->rip = fpu->last_ip;
4944         fxsave->rdp = fpu->last_dp;
4945         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
4946
4947         vcpu_put(vcpu);
4948
4949         return 0;
4950 }
4951
4952 void fx_init(struct kvm_vcpu *vcpu)
4953 {
4954         unsigned after_mxcsr_mask;
4955
4956         /*
4957          * Touch the fpu the first time in non atomic context as if
4958          * this is the first fpu instruction the exception handler
4959          * will fire before the instruction returns and it'll have to
4960          * allocate ram with GFP_KERNEL.
4961          */
4962         if (!used_math())
4963                 kvm_fx_save(&vcpu->arch.host_fx_image);
4964
4965         /* Initialize guest FPU by resetting ours and saving into guest's */
4966         preempt_disable();
4967         kvm_fx_save(&vcpu->arch.host_fx_image);
4968         kvm_fx_finit();
4969         kvm_fx_save(&vcpu->arch.guest_fx_image);
4970         kvm_fx_restore(&vcpu->arch.host_fx_image);
4971         preempt_enable();
4972
4973         vcpu->arch.cr0 |= X86_CR0_ET;
4974         after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
4975         vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
4976         memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
4977                0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
4978 }
4979 EXPORT_SYMBOL_GPL(fx_init);
4980
4981 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
4982 {
4983         if (vcpu->guest_fpu_loaded)
4984                 return;
4985
4986         vcpu->guest_fpu_loaded = 1;
4987         kvm_fx_save(&vcpu->arch.host_fx_image);
4988         kvm_fx_restore(&vcpu->arch.guest_fx_image);
4989         trace_kvm_fpu(1);
4990 }
4991
4992 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
4993 {
4994         if (!vcpu->guest_fpu_loaded)
4995                 return;
4996
4997         vcpu->guest_fpu_loaded = 0;
4998         kvm_fx_save(&vcpu->arch.guest_fx_image);
4999         kvm_fx_restore(&vcpu->arch.host_fx_image);
5000         ++vcpu->stat.fpu_reload;
5001         set_bit(KVM_REQ_DEACTIVATE_FPU, &vcpu->requests);
5002         trace_kvm_fpu(0);
5003 }
5004
5005 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5006 {
5007         if (vcpu->arch.time_page) {
5008                 kvm_release_page_dirty(vcpu->arch.time_page);
5009                 vcpu->arch.time_page = NULL;
5010         }
5011
5012         kvm_x86_ops->vcpu_free(vcpu);
5013 }
5014
5015 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5016                                                 unsigned int id)
5017 {
5018         return kvm_x86_ops->vcpu_create(kvm, id);
5019 }
5020
5021 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5022 {
5023         int r;
5024
5025         /* We do fxsave: this must be aligned. */
5026         BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
5027
5028         vcpu->arch.mtrr_state.have_fixed = 1;
5029         vcpu_load(vcpu);
5030         r = kvm_arch_vcpu_reset(vcpu);
5031         if (r == 0)
5032                 r = kvm_mmu_setup(vcpu);
5033         vcpu_put(vcpu);
5034         if (r < 0)
5035                 goto free_vcpu;
5036
5037         return 0;
5038 free_vcpu:
5039         kvm_x86_ops->vcpu_free(vcpu);
5040         return r;
5041 }
5042
5043 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5044 {
5045         vcpu_load(vcpu);
5046         kvm_mmu_unload(vcpu);
5047         vcpu_put(vcpu);
5048
5049         kvm_x86_ops->vcpu_free(vcpu);
5050 }
5051
5052 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5053 {
5054         vcpu->arch.nmi_pending = false;
5055         vcpu->arch.nmi_injected = false;
5056
5057         vcpu->arch.switch_db_regs = 0;
5058         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5059         vcpu->arch.dr6 = DR6_FIXED_1;
5060         vcpu->arch.dr7 = DR7_FIXED_1;
5061
5062         return kvm_x86_ops->vcpu_reset(vcpu);
5063 }
5064
5065 int kvm_arch_hardware_enable(void *garbage)
5066 {
5067         /*
5068          * Since this may be called from a hotplug notifcation,
5069          * we can't get the CPU frequency directly.
5070          */
5071         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5072                 int cpu = raw_smp_processor_id();
5073                 per_cpu(cpu_tsc_khz, cpu) = 0;
5074         }
5075
5076         kvm_shared_msr_cpu_online();
5077
5078         return kvm_x86_ops->hardware_enable(garbage);
5079 }
5080
5081 void kvm_arch_hardware_disable(void *garbage)
5082 {
5083         kvm_x86_ops->hardware_disable(garbage);
5084         drop_user_return_notifiers(garbage);
5085 }
5086
5087 int kvm_arch_hardware_setup(void)
5088 {
5089         return kvm_x86_ops->hardware_setup();
5090 }
5091
5092 void kvm_arch_hardware_unsetup(void)
5093 {
5094         kvm_x86_ops->hardware_unsetup();
5095 }
5096
5097 void kvm_arch_check_processor_compat(void *rtn)
5098 {
5099         kvm_x86_ops->check_processor_compatibility(rtn);
5100 }
5101
5102 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
5103 {
5104         struct page *page;
5105         struct kvm *kvm;
5106         int r;
5107
5108         BUG_ON(vcpu->kvm == NULL);
5109         kvm = vcpu->kvm;
5110
5111         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5112         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
5113                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5114         else
5115                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
5116
5117         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
5118         if (!page) {
5119                 r = -ENOMEM;
5120                 goto fail;
5121         }
5122         vcpu->arch.pio_data = page_address(page);
5123
5124         r = kvm_mmu_create(vcpu);
5125         if (r < 0)
5126                 goto fail_free_pio_data;
5127
5128         if (irqchip_in_kernel(kvm)) {
5129                 r = kvm_create_lapic(vcpu);
5130                 if (r < 0)
5131                         goto fail_mmu_destroy;
5132         }
5133
5134         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
5135                                        GFP_KERNEL);
5136         if (!vcpu->arch.mce_banks) {
5137                 r = -ENOMEM;
5138                 goto fail_free_lapic;
5139         }
5140         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
5141
5142         return 0;
5143 fail_free_lapic:
5144         kvm_free_lapic(vcpu);
5145 fail_mmu_destroy:
5146         kvm_mmu_destroy(vcpu);
5147 fail_free_pio_data:
5148         free_page((unsigned long)vcpu->arch.pio_data);
5149 fail:
5150         return r;
5151 }
5152
5153 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
5154 {
5155         int idx;
5156
5157         kfree(vcpu->arch.mce_banks);
5158         kvm_free_lapic(vcpu);
5159         idx = srcu_read_lock(&vcpu->kvm->srcu);
5160         kvm_mmu_destroy(vcpu);
5161         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5162         free_page((unsigned long)vcpu->arch.pio_data);
5163 }
5164
5165 struct  kvm *kvm_arch_create_vm(void)
5166 {
5167         struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
5168
5169         if (!kvm)
5170                 return ERR_PTR(-ENOMEM);
5171
5172         kvm->arch.aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
5173         if (!kvm->arch.aliases) {
5174                 kfree(kvm);
5175                 return ERR_PTR(-ENOMEM);
5176         }
5177
5178         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
5179         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
5180
5181         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
5182         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
5183
5184         rdtscll(kvm->arch.vm_init_tsc);
5185
5186         return kvm;
5187 }
5188
5189 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
5190 {
5191         vcpu_load(vcpu);
5192         kvm_mmu_unload(vcpu);
5193         vcpu_put(vcpu);
5194 }
5195
5196 static void kvm_free_vcpus(struct kvm *kvm)
5197 {
5198         unsigned int i;
5199         struct kvm_vcpu *vcpu;
5200
5201         /*
5202          * Unpin any mmu pages first.
5203          */
5204         kvm_for_each_vcpu(i, vcpu, kvm)
5205                 kvm_unload_vcpu_mmu(vcpu);
5206         kvm_for_each_vcpu(i, vcpu, kvm)
5207                 kvm_arch_vcpu_free(vcpu);
5208
5209         mutex_lock(&kvm->lock);
5210         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
5211                 kvm->vcpus[i] = NULL;
5212
5213         atomic_set(&kvm->online_vcpus, 0);
5214         mutex_unlock(&kvm->lock);
5215 }
5216
5217 void kvm_arch_sync_events(struct kvm *kvm)
5218 {
5219         kvm_free_all_assigned_devices(kvm);
5220 }
5221
5222 void kvm_arch_destroy_vm(struct kvm *kvm)
5223 {
5224         kvm_iommu_unmap_guest(kvm);
5225         kvm_free_pit(kvm);
5226         kfree(kvm->arch.vpic);
5227         kfree(kvm->arch.vioapic);
5228         kvm_free_vcpus(kvm);
5229         kvm_free_physmem(kvm);
5230         if (kvm->arch.apic_access_page)
5231                 put_page(kvm->arch.apic_access_page);
5232         if (kvm->arch.ept_identity_pagetable)
5233                 put_page(kvm->arch.ept_identity_pagetable);
5234         cleanup_srcu_struct(&kvm->srcu);
5235         kfree(kvm->arch.aliases);
5236         kfree(kvm);
5237 }
5238
5239 int kvm_arch_prepare_memory_region(struct kvm *kvm,
5240                                 struct kvm_memory_slot *memslot,
5241                                 struct kvm_memory_slot old,
5242                                 struct kvm_userspace_memory_region *mem,
5243                                 int user_alloc)
5244 {
5245         int npages = memslot->npages;
5246
5247         /*To keep backward compatibility with older userspace,
5248          *x86 needs to hanlde !user_alloc case.
5249          */
5250         if (!user_alloc) {
5251                 if (npages && !old.rmap) {
5252                         unsigned long userspace_addr;
5253
5254                         down_write(&current->mm->mmap_sem);
5255                         userspace_addr = do_mmap(NULL, 0,
5256                                                  npages * PAGE_SIZE,
5257                                                  PROT_READ | PROT_WRITE,
5258                                                  MAP_PRIVATE | MAP_ANONYMOUS,
5259                                                  0);
5260                         up_write(&current->mm->mmap_sem);
5261
5262                         if (IS_ERR((void *)userspace_addr))
5263                                 return PTR_ERR((void *)userspace_addr);
5264
5265                         memslot->userspace_addr = userspace_addr;
5266                 }
5267         }
5268
5269
5270         return 0;
5271 }
5272
5273 void kvm_arch_commit_memory_region(struct kvm *kvm,
5274                                 struct kvm_userspace_memory_region *mem,
5275                                 struct kvm_memory_slot old,
5276                                 int user_alloc)
5277 {
5278
5279         int npages = mem->memory_size >> PAGE_SHIFT;
5280
5281         if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
5282                 int ret;
5283
5284                 down_write(&current->mm->mmap_sem);
5285                 ret = do_munmap(current->mm, old.userspace_addr,
5286                                 old.npages * PAGE_SIZE);
5287                 up_write(&current->mm->mmap_sem);
5288                 if (ret < 0)
5289                         printk(KERN_WARNING
5290                                "kvm_vm_ioctl_set_memory_region: "
5291                                "failed to munmap memory\n");
5292         }
5293
5294         spin_lock(&kvm->mmu_lock);
5295         if (!kvm->arch.n_requested_mmu_pages) {
5296                 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
5297                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
5298         }
5299
5300         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
5301         spin_unlock(&kvm->mmu_lock);
5302 }
5303
5304 void kvm_arch_flush_shadow(struct kvm *kvm)
5305 {
5306         kvm_mmu_zap_all(kvm);
5307         kvm_reload_remote_mmus(kvm);
5308 }
5309
5310 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
5311 {
5312         return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
5313                 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
5314                 || vcpu->arch.nmi_pending ||
5315                 (kvm_arch_interrupt_allowed(vcpu) &&
5316                  kvm_cpu_has_interrupt(vcpu));
5317 }
5318
5319 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
5320 {
5321         int me;
5322         int cpu = vcpu->cpu;
5323
5324         if (waitqueue_active(&vcpu->wq)) {
5325                 wake_up_interruptible(&vcpu->wq);
5326                 ++vcpu->stat.halt_wakeup;
5327         }
5328
5329         me = get_cpu();
5330         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
5331                 if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
5332                         smp_send_reschedule(cpu);
5333         put_cpu();
5334 }
5335
5336 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
5337 {
5338         return kvm_x86_ops->interrupt_allowed(vcpu);
5339 }
5340
5341 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
5342 {
5343         unsigned long current_rip = kvm_rip_read(vcpu) +
5344                 get_segment_base(vcpu, VCPU_SREG_CS);
5345
5346         return current_rip == linear_rip;
5347 }
5348 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
5349
5350 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
5351 {
5352         unsigned long rflags;
5353
5354         rflags = kvm_x86_ops->get_rflags(vcpu);
5355         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5356                 rflags &= ~X86_EFLAGS_TF;
5357         return rflags;
5358 }
5359 EXPORT_SYMBOL_GPL(kvm_get_rflags);
5360
5361 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
5362 {
5363         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
5364             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
5365                 rflags |= X86_EFLAGS_TF;
5366         kvm_x86_ops->set_rflags(vcpu, rflags);
5367 }
5368 EXPORT_SYMBOL_GPL(kvm_set_rflags);
5369
5370 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
5371 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
5372 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
5373 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
5374 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
5375 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
5376 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
5377 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
5378 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
5379 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
5380 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
5381 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);