KVM: x86: use kvm_get_gdt() and kvm_read_ldt()
[safe/jmp/linux-2.6] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Amit Shah    <amit.shah@qumranet.com>
14  *   Ben-Ami Yassour <benami@il.ibm.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
28
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
40 #include <trace/events/kvm.h>
41 #undef TRACE_INCLUDE_FILE
42 #define CREATE_TRACE_POINTS
43 #include "trace.h"
44
45 #include <asm/uaccess.h>
46 #include <asm/msr.h>
47 #include <asm/desc.h>
48 #include <asm/mtrr.h>
49 #include <asm/mce.h>
50
51 #define MAX_IO_MSRS 256
52 #define CR0_RESERVED_BITS                                               \
53         (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
54                           | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
55                           | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
56 #define CR4_RESERVED_BITS                                               \
57         (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
58                           | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
59                           | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR  \
60                           | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
61
62 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
63
64 #define KVM_MAX_MCE_BANKS 32
65 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
66
67 /* EFER defaults:
68  * - enable syscall per default because its emulated by KVM
69  * - enable LME and LMA per default on 64 bit KVM
70  */
71 #ifdef CONFIG_X86_64
72 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
73 #else
74 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
75 #endif
76
77 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
78 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
79
80 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
81                                     struct kvm_cpuid_entry2 __user *entries);
82
83 struct kvm_x86_ops *kvm_x86_ops;
84 EXPORT_SYMBOL_GPL(kvm_x86_ops);
85
86 int ignore_msrs = 0;
87 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
88
89 struct kvm_stats_debugfs_item debugfs_entries[] = {
90         { "pf_fixed", VCPU_STAT(pf_fixed) },
91         { "pf_guest", VCPU_STAT(pf_guest) },
92         { "tlb_flush", VCPU_STAT(tlb_flush) },
93         { "invlpg", VCPU_STAT(invlpg) },
94         { "exits", VCPU_STAT(exits) },
95         { "io_exits", VCPU_STAT(io_exits) },
96         { "mmio_exits", VCPU_STAT(mmio_exits) },
97         { "signal_exits", VCPU_STAT(signal_exits) },
98         { "irq_window", VCPU_STAT(irq_window_exits) },
99         { "nmi_window", VCPU_STAT(nmi_window_exits) },
100         { "halt_exits", VCPU_STAT(halt_exits) },
101         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
102         { "hypercalls", VCPU_STAT(hypercalls) },
103         { "request_irq", VCPU_STAT(request_irq_exits) },
104         { "irq_exits", VCPU_STAT(irq_exits) },
105         { "host_state_reload", VCPU_STAT(host_state_reload) },
106         { "efer_reload", VCPU_STAT(efer_reload) },
107         { "fpu_reload", VCPU_STAT(fpu_reload) },
108         { "insn_emulation", VCPU_STAT(insn_emulation) },
109         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
110         { "irq_injections", VCPU_STAT(irq_injections) },
111         { "nmi_injections", VCPU_STAT(nmi_injections) },
112         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
113         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
114         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
115         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
116         { "mmu_flooded", VM_STAT(mmu_flooded) },
117         { "mmu_recycled", VM_STAT(mmu_recycled) },
118         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
119         { "mmu_unsync", VM_STAT(mmu_unsync) },
120         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
121         { "largepages", VM_STAT(lpages) },
122         { NULL }
123 };
124
125 unsigned long segment_base(u16 selector)
126 {
127         struct descriptor_table gdt;
128         struct desc_struct *d;
129         unsigned long table_base;
130         unsigned long v;
131
132         if (selector == 0)
133                 return 0;
134
135         kvm_get_gdt(&gdt);
136         table_base = gdt.base;
137
138         if (selector & 4) {           /* from ldt */
139                 u16 ldt_selector = kvm_read_ldt();
140
141                 table_base = segment_base(ldt_selector);
142         }
143         d = (struct desc_struct *)(table_base + (selector & ~7));
144         v = get_desc_base(d);
145 #ifdef CONFIG_X86_64
146         if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
147                 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
148 #endif
149         return v;
150 }
151 EXPORT_SYMBOL_GPL(segment_base);
152
153 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
154 {
155         if (irqchip_in_kernel(vcpu->kvm))
156                 return vcpu->arch.apic_base;
157         else
158                 return vcpu->arch.apic_base;
159 }
160 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
161
162 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
163 {
164         /* TODO: reserve bits check */
165         if (irqchip_in_kernel(vcpu->kvm))
166                 kvm_lapic_set_base(vcpu, data);
167         else
168                 vcpu->arch.apic_base = data;
169 }
170 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
171
172 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
173 {
174         WARN_ON(vcpu->arch.exception.pending);
175         vcpu->arch.exception.pending = true;
176         vcpu->arch.exception.has_error_code = false;
177         vcpu->arch.exception.nr = nr;
178 }
179 EXPORT_SYMBOL_GPL(kvm_queue_exception);
180
181 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
182                            u32 error_code)
183 {
184         ++vcpu->stat.pf_guest;
185
186         if (vcpu->arch.exception.pending) {
187                 switch(vcpu->arch.exception.nr) {
188                 case DF_VECTOR:
189                         /* triple fault -> shutdown */
190                         set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
191                         return;
192                 case PF_VECTOR:
193                         vcpu->arch.exception.nr = DF_VECTOR;
194                         vcpu->arch.exception.error_code = 0;
195                         return;
196                 default:
197                         /* replace previous exception with a new one in a hope
198                            that instruction re-execution will regenerate lost
199                            exception */
200                         vcpu->arch.exception.pending = false;
201                         break;
202                 }
203         }
204         vcpu->arch.cr2 = addr;
205         kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
206 }
207
208 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
209 {
210         vcpu->arch.nmi_pending = 1;
211 }
212 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
213
214 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
215 {
216         WARN_ON(vcpu->arch.exception.pending);
217         vcpu->arch.exception.pending = true;
218         vcpu->arch.exception.has_error_code = true;
219         vcpu->arch.exception.nr = nr;
220         vcpu->arch.exception.error_code = error_code;
221 }
222 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
223
224 /*
225  * Load the pae pdptrs.  Return true is they are all valid.
226  */
227 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
228 {
229         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
230         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
231         int i;
232         int ret;
233         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
234
235         ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
236                                   offset * sizeof(u64), sizeof(pdpte));
237         if (ret < 0) {
238                 ret = 0;
239                 goto out;
240         }
241         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
242                 if (is_present_gpte(pdpte[i]) &&
243                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
244                         ret = 0;
245                         goto out;
246                 }
247         }
248         ret = 1;
249
250         memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
251         __set_bit(VCPU_EXREG_PDPTR,
252                   (unsigned long *)&vcpu->arch.regs_avail);
253         __set_bit(VCPU_EXREG_PDPTR,
254                   (unsigned long *)&vcpu->arch.regs_dirty);
255 out:
256
257         return ret;
258 }
259 EXPORT_SYMBOL_GPL(load_pdptrs);
260
261 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
262 {
263         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
264         bool changed = true;
265         int r;
266
267         if (is_long_mode(vcpu) || !is_pae(vcpu))
268                 return false;
269
270         if (!test_bit(VCPU_EXREG_PDPTR,
271                       (unsigned long *)&vcpu->arch.regs_avail))
272                 return true;
273
274         r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
275         if (r < 0)
276                 goto out;
277         changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
278 out:
279
280         return changed;
281 }
282
283 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
284 {
285         if (cr0 & CR0_RESERVED_BITS) {
286                 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
287                        cr0, vcpu->arch.cr0);
288                 kvm_inject_gp(vcpu, 0);
289                 return;
290         }
291
292         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
293                 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
294                 kvm_inject_gp(vcpu, 0);
295                 return;
296         }
297
298         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
299                 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
300                        "and a clear PE flag\n");
301                 kvm_inject_gp(vcpu, 0);
302                 return;
303         }
304
305         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
306 #ifdef CONFIG_X86_64
307                 if ((vcpu->arch.shadow_efer & EFER_LME)) {
308                         int cs_db, cs_l;
309
310                         if (!is_pae(vcpu)) {
311                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
312                                        "in long mode while PAE is disabled\n");
313                                 kvm_inject_gp(vcpu, 0);
314                                 return;
315                         }
316                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
317                         if (cs_l) {
318                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
319                                        "in long mode while CS.L == 1\n");
320                                 kvm_inject_gp(vcpu, 0);
321                                 return;
322
323                         }
324                 } else
325 #endif
326                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
327                         printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
328                                "reserved bits\n");
329                         kvm_inject_gp(vcpu, 0);
330                         return;
331                 }
332
333         }
334
335         kvm_x86_ops->set_cr0(vcpu, cr0);
336         vcpu->arch.cr0 = cr0;
337
338         kvm_mmu_reset_context(vcpu);
339         return;
340 }
341 EXPORT_SYMBOL_GPL(kvm_set_cr0);
342
343 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
344 {
345         kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
346 }
347 EXPORT_SYMBOL_GPL(kvm_lmsw);
348
349 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
350 {
351         unsigned long old_cr4 = vcpu->arch.cr4;
352         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
353
354         if (cr4 & CR4_RESERVED_BITS) {
355                 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
356                 kvm_inject_gp(vcpu, 0);
357                 return;
358         }
359
360         if (is_long_mode(vcpu)) {
361                 if (!(cr4 & X86_CR4_PAE)) {
362                         printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
363                                "in long mode\n");
364                         kvm_inject_gp(vcpu, 0);
365                         return;
366                 }
367         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
368                    && ((cr4 ^ old_cr4) & pdptr_bits)
369                    && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
370                 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
371                 kvm_inject_gp(vcpu, 0);
372                 return;
373         }
374
375         if (cr4 & X86_CR4_VMXE) {
376                 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
377                 kvm_inject_gp(vcpu, 0);
378                 return;
379         }
380         kvm_x86_ops->set_cr4(vcpu, cr4);
381         vcpu->arch.cr4 = cr4;
382         vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
383         kvm_mmu_reset_context(vcpu);
384 }
385 EXPORT_SYMBOL_GPL(kvm_set_cr4);
386
387 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
388 {
389         if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
390                 kvm_mmu_sync_roots(vcpu);
391                 kvm_mmu_flush_tlb(vcpu);
392                 return;
393         }
394
395         if (is_long_mode(vcpu)) {
396                 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
397                         printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
398                         kvm_inject_gp(vcpu, 0);
399                         return;
400                 }
401         } else {
402                 if (is_pae(vcpu)) {
403                         if (cr3 & CR3_PAE_RESERVED_BITS) {
404                                 printk(KERN_DEBUG
405                                        "set_cr3: #GP, reserved bits\n");
406                                 kvm_inject_gp(vcpu, 0);
407                                 return;
408                         }
409                         if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
410                                 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
411                                        "reserved bits\n");
412                                 kvm_inject_gp(vcpu, 0);
413                                 return;
414                         }
415                 }
416                 /*
417                  * We don't check reserved bits in nonpae mode, because
418                  * this isn't enforced, and VMware depends on this.
419                  */
420         }
421
422         /*
423          * Does the new cr3 value map to physical memory? (Note, we
424          * catch an invalid cr3 even in real-mode, because it would
425          * cause trouble later on when we turn on paging anyway.)
426          *
427          * A real CPU would silently accept an invalid cr3 and would
428          * attempt to use it - with largely undefined (and often hard
429          * to debug) behavior on the guest side.
430          */
431         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
432                 kvm_inject_gp(vcpu, 0);
433         else {
434                 vcpu->arch.cr3 = cr3;
435                 vcpu->arch.mmu.new_cr3(vcpu);
436         }
437 }
438 EXPORT_SYMBOL_GPL(kvm_set_cr3);
439
440 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
441 {
442         if (cr8 & CR8_RESERVED_BITS) {
443                 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
444                 kvm_inject_gp(vcpu, 0);
445                 return;
446         }
447         if (irqchip_in_kernel(vcpu->kvm))
448                 kvm_lapic_set_tpr(vcpu, cr8);
449         else
450                 vcpu->arch.cr8 = cr8;
451 }
452 EXPORT_SYMBOL_GPL(kvm_set_cr8);
453
454 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
455 {
456         if (irqchip_in_kernel(vcpu->kvm))
457                 return kvm_lapic_get_cr8(vcpu);
458         else
459                 return vcpu->arch.cr8;
460 }
461 EXPORT_SYMBOL_GPL(kvm_get_cr8);
462
463 static inline u32 bit(int bitno)
464 {
465         return 1 << (bitno & 31);
466 }
467
468 /*
469  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
470  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
471  *
472  * This list is modified at module load time to reflect the
473  * capabilities of the host cpu.
474  */
475 static u32 msrs_to_save[] = {
476         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
477         MSR_K6_STAR,
478 #ifdef CONFIG_X86_64
479         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
480 #endif
481         MSR_IA32_TSC, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
482         MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
483 };
484
485 static unsigned num_msrs_to_save;
486
487 static u32 emulated_msrs[] = {
488         MSR_IA32_MISC_ENABLE,
489 };
490
491 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
492 {
493         if (efer & efer_reserved_bits) {
494                 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
495                        efer);
496                 kvm_inject_gp(vcpu, 0);
497                 return;
498         }
499
500         if (is_paging(vcpu)
501             && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
502                 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
503                 kvm_inject_gp(vcpu, 0);
504                 return;
505         }
506
507         if (efer & EFER_FFXSR) {
508                 struct kvm_cpuid_entry2 *feat;
509
510                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
511                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
512                         printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
513                         kvm_inject_gp(vcpu, 0);
514                         return;
515                 }
516         }
517
518         if (efer & EFER_SVME) {
519                 struct kvm_cpuid_entry2 *feat;
520
521                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
522                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
523                         printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
524                         kvm_inject_gp(vcpu, 0);
525                         return;
526                 }
527         }
528
529         kvm_x86_ops->set_efer(vcpu, efer);
530
531         efer &= ~EFER_LMA;
532         efer |= vcpu->arch.shadow_efer & EFER_LMA;
533
534         vcpu->arch.shadow_efer = efer;
535
536         vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
537         kvm_mmu_reset_context(vcpu);
538 }
539
540 void kvm_enable_efer_bits(u64 mask)
541 {
542        efer_reserved_bits &= ~mask;
543 }
544 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
545
546
547 /*
548  * Writes msr value into into the appropriate "register".
549  * Returns 0 on success, non-0 otherwise.
550  * Assumes vcpu_load() was already called.
551  */
552 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
553 {
554         return kvm_x86_ops->set_msr(vcpu, msr_index, data);
555 }
556
557 /*
558  * Adapt set_msr() to msr_io()'s calling convention
559  */
560 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
561 {
562         return kvm_set_msr(vcpu, index, *data);
563 }
564
565 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
566 {
567         static int version;
568         struct pvclock_wall_clock wc;
569         struct timespec now, sys, boot;
570
571         if (!wall_clock)
572                 return;
573
574         version++;
575
576         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
577
578         /*
579          * The guest calculates current wall clock time by adding
580          * system time (updated by kvm_write_guest_time below) to the
581          * wall clock specified here.  guest system time equals host
582          * system time for us, thus we must fill in host boot time here.
583          */
584         now = current_kernel_time();
585         ktime_get_ts(&sys);
586         boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
587
588         wc.sec = boot.tv_sec;
589         wc.nsec = boot.tv_nsec;
590         wc.version = version;
591
592         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
593
594         version++;
595         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
596 }
597
598 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
599 {
600         uint32_t quotient, remainder;
601
602         /* Don't try to replace with do_div(), this one calculates
603          * "(dividend << 32) / divisor" */
604         __asm__ ( "divl %4"
605                   : "=a" (quotient), "=d" (remainder)
606                   : "0" (0), "1" (dividend), "r" (divisor) );
607         return quotient;
608 }
609
610 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
611 {
612         uint64_t nsecs = 1000000000LL;
613         int32_t  shift = 0;
614         uint64_t tps64;
615         uint32_t tps32;
616
617         tps64 = tsc_khz * 1000LL;
618         while (tps64 > nsecs*2) {
619                 tps64 >>= 1;
620                 shift--;
621         }
622
623         tps32 = (uint32_t)tps64;
624         while (tps32 <= (uint32_t)nsecs) {
625                 tps32 <<= 1;
626                 shift++;
627         }
628
629         hv_clock->tsc_shift = shift;
630         hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
631
632         pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
633                  __func__, tsc_khz, hv_clock->tsc_shift,
634                  hv_clock->tsc_to_system_mul);
635 }
636
637 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
638
639 static void kvm_write_guest_time(struct kvm_vcpu *v)
640 {
641         struct timespec ts;
642         unsigned long flags;
643         struct kvm_vcpu_arch *vcpu = &v->arch;
644         void *shared_kaddr;
645         unsigned long this_tsc_khz;
646
647         if ((!vcpu->time_page))
648                 return;
649
650         this_tsc_khz = get_cpu_var(cpu_tsc_khz);
651         if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
652                 kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
653                 vcpu->hv_clock_tsc_khz = this_tsc_khz;
654         }
655         put_cpu_var(cpu_tsc_khz);
656
657         /* Keep irq disabled to prevent changes to the clock */
658         local_irq_save(flags);
659         kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
660         ktime_get_ts(&ts);
661         local_irq_restore(flags);
662
663         /* With all the info we got, fill in the values */
664
665         vcpu->hv_clock.system_time = ts.tv_nsec +
666                                      (NSEC_PER_SEC * (u64)ts.tv_sec);
667         /*
668          * The interface expects us to write an even number signaling that the
669          * update is finished. Since the guest won't see the intermediate
670          * state, we just increase by 2 at the end.
671          */
672         vcpu->hv_clock.version += 2;
673
674         shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
675
676         memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
677                sizeof(vcpu->hv_clock));
678
679         kunmap_atomic(shared_kaddr, KM_USER0);
680
681         mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
682 }
683
684 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
685 {
686         struct kvm_vcpu_arch *vcpu = &v->arch;
687
688         if (!vcpu->time_page)
689                 return 0;
690         set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
691         return 1;
692 }
693
694 static bool msr_mtrr_valid(unsigned msr)
695 {
696         switch (msr) {
697         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
698         case MSR_MTRRfix64K_00000:
699         case MSR_MTRRfix16K_80000:
700         case MSR_MTRRfix16K_A0000:
701         case MSR_MTRRfix4K_C0000:
702         case MSR_MTRRfix4K_C8000:
703         case MSR_MTRRfix4K_D0000:
704         case MSR_MTRRfix4K_D8000:
705         case MSR_MTRRfix4K_E0000:
706         case MSR_MTRRfix4K_E8000:
707         case MSR_MTRRfix4K_F0000:
708         case MSR_MTRRfix4K_F8000:
709         case MSR_MTRRdefType:
710         case MSR_IA32_CR_PAT:
711                 return true;
712         case 0x2f8:
713                 return true;
714         }
715         return false;
716 }
717
718 static bool valid_pat_type(unsigned t)
719 {
720         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
721 }
722
723 static bool valid_mtrr_type(unsigned t)
724 {
725         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
726 }
727
728 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
729 {
730         int i;
731
732         if (!msr_mtrr_valid(msr))
733                 return false;
734
735         if (msr == MSR_IA32_CR_PAT) {
736                 for (i = 0; i < 8; i++)
737                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
738                                 return false;
739                 return true;
740         } else if (msr == MSR_MTRRdefType) {
741                 if (data & ~0xcff)
742                         return false;
743                 return valid_mtrr_type(data & 0xff);
744         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
745                 for (i = 0; i < 8 ; i++)
746                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
747                                 return false;
748                 return true;
749         }
750
751         /* variable MTRRs */
752         return valid_mtrr_type(data & 0xff);
753 }
754
755 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
756 {
757         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
758
759         if (!mtrr_valid(vcpu, msr, data))
760                 return 1;
761
762         if (msr == MSR_MTRRdefType) {
763                 vcpu->arch.mtrr_state.def_type = data;
764                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
765         } else if (msr == MSR_MTRRfix64K_00000)
766                 p[0] = data;
767         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
768                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
769         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
770                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
771         else if (msr == MSR_IA32_CR_PAT)
772                 vcpu->arch.pat = data;
773         else {  /* Variable MTRRs */
774                 int idx, is_mtrr_mask;
775                 u64 *pt;
776
777                 idx = (msr - 0x200) / 2;
778                 is_mtrr_mask = msr - 0x200 - 2 * idx;
779                 if (!is_mtrr_mask)
780                         pt =
781                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
782                 else
783                         pt =
784                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
785                 *pt = data;
786         }
787
788         kvm_mmu_reset_context(vcpu);
789         return 0;
790 }
791
792 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
793 {
794         u64 mcg_cap = vcpu->arch.mcg_cap;
795         unsigned bank_num = mcg_cap & 0xff;
796
797         switch (msr) {
798         case MSR_IA32_MCG_STATUS:
799                 vcpu->arch.mcg_status = data;
800                 break;
801         case MSR_IA32_MCG_CTL:
802                 if (!(mcg_cap & MCG_CTL_P))
803                         return 1;
804                 if (data != 0 && data != ~(u64)0)
805                         return -1;
806                 vcpu->arch.mcg_ctl = data;
807                 break;
808         default:
809                 if (msr >= MSR_IA32_MC0_CTL &&
810                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
811                         u32 offset = msr - MSR_IA32_MC0_CTL;
812                         /* only 0 or all 1s can be written to IA32_MCi_CTL */
813                         if ((offset & 0x3) == 0 &&
814                             data != 0 && data != ~(u64)0)
815                                 return -1;
816                         vcpu->arch.mce_banks[offset] = data;
817                         break;
818                 }
819                 return 1;
820         }
821         return 0;
822 }
823
824 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
825 {
826         switch (msr) {
827         case MSR_EFER:
828                 set_efer(vcpu, data);
829                 break;
830         case MSR_K7_HWCR:
831                 data &= ~(u64)0x40;     /* ignore flush filter disable */
832                 if (data != 0) {
833                         pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
834                                 data);
835                         return 1;
836                 }
837                 break;
838         case MSR_FAM10H_MMIO_CONF_BASE:
839                 if (data != 0) {
840                         pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
841                                 "0x%llx\n", data);
842                         return 1;
843                 }
844                 break;
845         case MSR_AMD64_NB_CFG:
846                 break;
847         case MSR_IA32_DEBUGCTLMSR:
848                 if (!data) {
849                         /* We support the non-activated case already */
850                         break;
851                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
852                         /* Values other than LBR and BTF are vendor-specific,
853                            thus reserved and should throw a #GP */
854                         return 1;
855                 }
856                 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
857                         __func__, data);
858                 break;
859         case MSR_IA32_UCODE_REV:
860         case MSR_IA32_UCODE_WRITE:
861         case MSR_VM_HSAVE_PA:
862         case MSR_AMD64_PATCH_LOADER:
863                 break;
864         case 0x200 ... 0x2ff:
865                 return set_msr_mtrr(vcpu, msr, data);
866         case MSR_IA32_APICBASE:
867                 kvm_set_apic_base(vcpu, data);
868                 break;
869         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
870                 return kvm_x2apic_msr_write(vcpu, msr, data);
871         case MSR_IA32_MISC_ENABLE:
872                 vcpu->arch.ia32_misc_enable_msr = data;
873                 break;
874         case MSR_KVM_WALL_CLOCK:
875                 vcpu->kvm->arch.wall_clock = data;
876                 kvm_write_wall_clock(vcpu->kvm, data);
877                 break;
878         case MSR_KVM_SYSTEM_TIME: {
879                 if (vcpu->arch.time_page) {
880                         kvm_release_page_dirty(vcpu->arch.time_page);
881                         vcpu->arch.time_page = NULL;
882                 }
883
884                 vcpu->arch.time = data;
885
886                 /* we verify if the enable bit is set... */
887                 if (!(data & 1))
888                         break;
889
890                 /* ...but clean it before doing the actual write */
891                 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
892
893                 vcpu->arch.time_page =
894                                 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
895
896                 if (is_error_page(vcpu->arch.time_page)) {
897                         kvm_release_page_clean(vcpu->arch.time_page);
898                         vcpu->arch.time_page = NULL;
899                 }
900
901                 kvm_request_guest_time_update(vcpu);
902                 break;
903         }
904         case MSR_IA32_MCG_CTL:
905         case MSR_IA32_MCG_STATUS:
906         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
907                 return set_msr_mce(vcpu, msr, data);
908
909         /* Performance counters are not protected by a CPUID bit,
910          * so we should check all of them in the generic path for the sake of
911          * cross vendor migration.
912          * Writing a zero into the event select MSRs disables them,
913          * which we perfectly emulate ;-). Any other value should be at least
914          * reported, some guests depend on them.
915          */
916         case MSR_P6_EVNTSEL0:
917         case MSR_P6_EVNTSEL1:
918         case MSR_K7_EVNTSEL0:
919         case MSR_K7_EVNTSEL1:
920         case MSR_K7_EVNTSEL2:
921         case MSR_K7_EVNTSEL3:
922                 if (data != 0)
923                         pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
924                                 "0x%x data 0x%llx\n", msr, data);
925                 break;
926         /* at least RHEL 4 unconditionally writes to the perfctr registers,
927          * so we ignore writes to make it happy.
928          */
929         case MSR_P6_PERFCTR0:
930         case MSR_P6_PERFCTR1:
931         case MSR_K7_PERFCTR0:
932         case MSR_K7_PERFCTR1:
933         case MSR_K7_PERFCTR2:
934         case MSR_K7_PERFCTR3:
935                 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
936                         "0x%x data 0x%llx\n", msr, data);
937                 break;
938         default:
939                 if (!ignore_msrs) {
940                         pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
941                                 msr, data);
942                         return 1;
943                 } else {
944                         pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
945                                 msr, data);
946                         break;
947                 }
948         }
949         return 0;
950 }
951 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
952
953
954 /*
955  * Reads an msr value (of 'msr_index') into 'pdata'.
956  * Returns 0 on success, non-0 otherwise.
957  * Assumes vcpu_load() was already called.
958  */
959 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
960 {
961         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
962 }
963
964 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
965 {
966         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
967
968         if (!msr_mtrr_valid(msr))
969                 return 1;
970
971         if (msr == MSR_MTRRdefType)
972                 *pdata = vcpu->arch.mtrr_state.def_type +
973                          (vcpu->arch.mtrr_state.enabled << 10);
974         else if (msr == MSR_MTRRfix64K_00000)
975                 *pdata = p[0];
976         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
977                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
978         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
979                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
980         else if (msr == MSR_IA32_CR_PAT)
981                 *pdata = vcpu->arch.pat;
982         else {  /* Variable MTRRs */
983                 int idx, is_mtrr_mask;
984                 u64 *pt;
985
986                 idx = (msr - 0x200) / 2;
987                 is_mtrr_mask = msr - 0x200 - 2 * idx;
988                 if (!is_mtrr_mask)
989                         pt =
990                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
991                 else
992                         pt =
993                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
994                 *pdata = *pt;
995         }
996
997         return 0;
998 }
999
1000 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1001 {
1002         u64 data;
1003         u64 mcg_cap = vcpu->arch.mcg_cap;
1004         unsigned bank_num = mcg_cap & 0xff;
1005
1006         switch (msr) {
1007         case MSR_IA32_P5_MC_ADDR:
1008         case MSR_IA32_P5_MC_TYPE:
1009                 data = 0;
1010                 break;
1011         case MSR_IA32_MCG_CAP:
1012                 data = vcpu->arch.mcg_cap;
1013                 break;
1014         case MSR_IA32_MCG_CTL:
1015                 if (!(mcg_cap & MCG_CTL_P))
1016                         return 1;
1017                 data = vcpu->arch.mcg_ctl;
1018                 break;
1019         case MSR_IA32_MCG_STATUS:
1020                 data = vcpu->arch.mcg_status;
1021                 break;
1022         default:
1023                 if (msr >= MSR_IA32_MC0_CTL &&
1024                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1025                         u32 offset = msr - MSR_IA32_MC0_CTL;
1026                         data = vcpu->arch.mce_banks[offset];
1027                         break;
1028                 }
1029                 return 1;
1030         }
1031         *pdata = data;
1032         return 0;
1033 }
1034
1035 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1036 {
1037         u64 data;
1038
1039         switch (msr) {
1040         case MSR_IA32_PLATFORM_ID:
1041         case MSR_IA32_UCODE_REV:
1042         case MSR_IA32_EBL_CR_POWERON:
1043         case MSR_IA32_DEBUGCTLMSR:
1044         case MSR_IA32_LASTBRANCHFROMIP:
1045         case MSR_IA32_LASTBRANCHTOIP:
1046         case MSR_IA32_LASTINTFROMIP:
1047         case MSR_IA32_LASTINTTOIP:
1048         case MSR_K8_SYSCFG:
1049         case MSR_K7_HWCR:
1050         case MSR_VM_HSAVE_PA:
1051         case MSR_P6_EVNTSEL0:
1052         case MSR_P6_EVNTSEL1:
1053         case MSR_K7_EVNTSEL0:
1054         case MSR_K8_INT_PENDING_MSG:
1055         case MSR_AMD64_NB_CFG:
1056         case MSR_FAM10H_MMIO_CONF_BASE:
1057                 data = 0;
1058                 break;
1059         case MSR_MTRRcap:
1060                 data = 0x500 | KVM_NR_VAR_MTRR;
1061                 break;
1062         case 0x200 ... 0x2ff:
1063                 return get_msr_mtrr(vcpu, msr, pdata);
1064         case 0xcd: /* fsb frequency */
1065                 data = 3;
1066                 break;
1067         case MSR_IA32_APICBASE:
1068                 data = kvm_get_apic_base(vcpu);
1069                 break;
1070         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1071                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1072                 break;
1073         case MSR_IA32_MISC_ENABLE:
1074                 data = vcpu->arch.ia32_misc_enable_msr;
1075                 break;
1076         case MSR_IA32_PERF_STATUS:
1077                 /* TSC increment by tick */
1078                 data = 1000ULL;
1079                 /* CPU multiplier */
1080                 data |= (((uint64_t)4ULL) << 40);
1081                 break;
1082         case MSR_EFER:
1083                 data = vcpu->arch.shadow_efer;
1084                 break;
1085         case MSR_KVM_WALL_CLOCK:
1086                 data = vcpu->kvm->arch.wall_clock;
1087                 break;
1088         case MSR_KVM_SYSTEM_TIME:
1089                 data = vcpu->arch.time;
1090                 break;
1091         case MSR_IA32_P5_MC_ADDR:
1092         case MSR_IA32_P5_MC_TYPE:
1093         case MSR_IA32_MCG_CAP:
1094         case MSR_IA32_MCG_CTL:
1095         case MSR_IA32_MCG_STATUS:
1096         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1097                 return get_msr_mce(vcpu, msr, pdata);
1098         default:
1099                 if (!ignore_msrs) {
1100                         pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1101                         return 1;
1102                 } else {
1103                         pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1104                         data = 0;
1105                 }
1106                 break;
1107         }
1108         *pdata = data;
1109         return 0;
1110 }
1111 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1112
1113 /*
1114  * Read or write a bunch of msrs. All parameters are kernel addresses.
1115  *
1116  * @return number of msrs set successfully.
1117  */
1118 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1119                     struct kvm_msr_entry *entries,
1120                     int (*do_msr)(struct kvm_vcpu *vcpu,
1121                                   unsigned index, u64 *data))
1122 {
1123         int i;
1124
1125         vcpu_load(vcpu);
1126
1127         down_read(&vcpu->kvm->slots_lock);
1128         for (i = 0; i < msrs->nmsrs; ++i)
1129                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1130                         break;
1131         up_read(&vcpu->kvm->slots_lock);
1132
1133         vcpu_put(vcpu);
1134
1135         return i;
1136 }
1137
1138 /*
1139  * Read or write a bunch of msrs. Parameters are user addresses.
1140  *
1141  * @return number of msrs set successfully.
1142  */
1143 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1144                   int (*do_msr)(struct kvm_vcpu *vcpu,
1145                                 unsigned index, u64 *data),
1146                   int writeback)
1147 {
1148         struct kvm_msrs msrs;
1149         struct kvm_msr_entry *entries;
1150         int r, n;
1151         unsigned size;
1152
1153         r = -EFAULT;
1154         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1155                 goto out;
1156
1157         r = -E2BIG;
1158         if (msrs.nmsrs >= MAX_IO_MSRS)
1159                 goto out;
1160
1161         r = -ENOMEM;
1162         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1163         entries = vmalloc(size);
1164         if (!entries)
1165                 goto out;
1166
1167         r = -EFAULT;
1168         if (copy_from_user(entries, user_msrs->entries, size))
1169                 goto out_free;
1170
1171         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1172         if (r < 0)
1173                 goto out_free;
1174
1175         r = -EFAULT;
1176         if (writeback && copy_to_user(user_msrs->entries, entries, size))
1177                 goto out_free;
1178
1179         r = n;
1180
1181 out_free:
1182         vfree(entries);
1183 out:
1184         return r;
1185 }
1186
1187 int kvm_dev_ioctl_check_extension(long ext)
1188 {
1189         int r;
1190
1191         switch (ext) {
1192         case KVM_CAP_IRQCHIP:
1193         case KVM_CAP_HLT:
1194         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1195         case KVM_CAP_SET_TSS_ADDR:
1196         case KVM_CAP_EXT_CPUID:
1197         case KVM_CAP_CLOCKSOURCE:
1198         case KVM_CAP_PIT:
1199         case KVM_CAP_NOP_IO_DELAY:
1200         case KVM_CAP_MP_STATE:
1201         case KVM_CAP_SYNC_MMU:
1202         case KVM_CAP_REINJECT_CONTROL:
1203         case KVM_CAP_IRQ_INJECT_STATUS:
1204         case KVM_CAP_ASSIGN_DEV_IRQ:
1205         case KVM_CAP_IRQFD:
1206         case KVM_CAP_IOEVENTFD:
1207         case KVM_CAP_PIT2:
1208         case KVM_CAP_PIT_STATE2:
1209                 r = 1;
1210                 break;
1211         case KVM_CAP_COALESCED_MMIO:
1212                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1213                 break;
1214         case KVM_CAP_VAPIC:
1215                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1216                 break;
1217         case KVM_CAP_NR_VCPUS:
1218                 r = KVM_MAX_VCPUS;
1219                 break;
1220         case KVM_CAP_NR_MEMSLOTS:
1221                 r = KVM_MEMORY_SLOTS;
1222                 break;
1223         case KVM_CAP_PV_MMU:
1224                 r = !tdp_enabled;
1225                 break;
1226         case KVM_CAP_IOMMU:
1227                 r = iommu_found();
1228                 break;
1229         case KVM_CAP_MCE:
1230                 r = KVM_MAX_MCE_BANKS;
1231                 break;
1232         default:
1233                 r = 0;
1234                 break;
1235         }
1236         return r;
1237
1238 }
1239
1240 long kvm_arch_dev_ioctl(struct file *filp,
1241                         unsigned int ioctl, unsigned long arg)
1242 {
1243         void __user *argp = (void __user *)arg;
1244         long r;
1245
1246         switch (ioctl) {
1247         case KVM_GET_MSR_INDEX_LIST: {
1248                 struct kvm_msr_list __user *user_msr_list = argp;
1249                 struct kvm_msr_list msr_list;
1250                 unsigned n;
1251
1252                 r = -EFAULT;
1253                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1254                         goto out;
1255                 n = msr_list.nmsrs;
1256                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1257                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1258                         goto out;
1259                 r = -E2BIG;
1260                 if (n < msr_list.nmsrs)
1261                         goto out;
1262                 r = -EFAULT;
1263                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1264                                  num_msrs_to_save * sizeof(u32)))
1265                         goto out;
1266                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1267                                  &emulated_msrs,
1268                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1269                         goto out;
1270                 r = 0;
1271                 break;
1272         }
1273         case KVM_GET_SUPPORTED_CPUID: {
1274                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1275                 struct kvm_cpuid2 cpuid;
1276
1277                 r = -EFAULT;
1278                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1279                         goto out;
1280                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1281                                                       cpuid_arg->entries);
1282                 if (r)
1283                         goto out;
1284
1285                 r = -EFAULT;
1286                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1287                         goto out;
1288                 r = 0;
1289                 break;
1290         }
1291         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
1292                 u64 mce_cap;
1293
1294                 mce_cap = KVM_MCE_CAP_SUPPORTED;
1295                 r = -EFAULT;
1296                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
1297                         goto out;
1298                 r = 0;
1299                 break;
1300         }
1301         default:
1302                 r = -EINVAL;
1303         }
1304 out:
1305         return r;
1306 }
1307
1308 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1309 {
1310         kvm_x86_ops->vcpu_load(vcpu, cpu);
1311         kvm_request_guest_time_update(vcpu);
1312 }
1313
1314 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1315 {
1316         kvm_x86_ops->vcpu_put(vcpu);
1317         kvm_put_guest_fpu(vcpu);
1318 }
1319
1320 static int is_efer_nx(void)
1321 {
1322         unsigned long long efer = 0;
1323
1324         rdmsrl_safe(MSR_EFER, &efer);
1325         return efer & EFER_NX;
1326 }
1327
1328 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1329 {
1330         int i;
1331         struct kvm_cpuid_entry2 *e, *entry;
1332
1333         entry = NULL;
1334         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1335                 e = &vcpu->arch.cpuid_entries[i];
1336                 if (e->function == 0x80000001) {
1337                         entry = e;
1338                         break;
1339                 }
1340         }
1341         if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1342                 entry->edx &= ~(1 << 20);
1343                 printk(KERN_INFO "kvm: guest NX capability removed\n");
1344         }
1345 }
1346
1347 /* when an old userspace process fills a new kernel module */
1348 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1349                                     struct kvm_cpuid *cpuid,
1350                                     struct kvm_cpuid_entry __user *entries)
1351 {
1352         int r, i;
1353         struct kvm_cpuid_entry *cpuid_entries;
1354
1355         r = -E2BIG;
1356         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1357                 goto out;
1358         r = -ENOMEM;
1359         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1360         if (!cpuid_entries)
1361                 goto out;
1362         r = -EFAULT;
1363         if (copy_from_user(cpuid_entries, entries,
1364                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1365                 goto out_free;
1366         for (i = 0; i < cpuid->nent; i++) {
1367                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1368                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1369                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1370                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1371                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1372                 vcpu->arch.cpuid_entries[i].index = 0;
1373                 vcpu->arch.cpuid_entries[i].flags = 0;
1374                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1375                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1376                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1377         }
1378         vcpu->arch.cpuid_nent = cpuid->nent;
1379         cpuid_fix_nx_cap(vcpu);
1380         r = 0;
1381         kvm_apic_set_version(vcpu);
1382
1383 out_free:
1384         vfree(cpuid_entries);
1385 out:
1386         return r;
1387 }
1388
1389 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1390                                      struct kvm_cpuid2 *cpuid,
1391                                      struct kvm_cpuid_entry2 __user *entries)
1392 {
1393         int r;
1394
1395         r = -E2BIG;
1396         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1397                 goto out;
1398         r = -EFAULT;
1399         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1400                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1401                 goto out;
1402         vcpu->arch.cpuid_nent = cpuid->nent;
1403         kvm_apic_set_version(vcpu);
1404         return 0;
1405
1406 out:
1407         return r;
1408 }
1409
1410 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1411                                      struct kvm_cpuid2 *cpuid,
1412                                      struct kvm_cpuid_entry2 __user *entries)
1413 {
1414         int r;
1415
1416         r = -E2BIG;
1417         if (cpuid->nent < vcpu->arch.cpuid_nent)
1418                 goto out;
1419         r = -EFAULT;
1420         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1421                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1422                 goto out;
1423         return 0;
1424
1425 out:
1426         cpuid->nent = vcpu->arch.cpuid_nent;
1427         return r;
1428 }
1429
1430 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1431                            u32 index)
1432 {
1433         entry->function = function;
1434         entry->index = index;
1435         cpuid_count(entry->function, entry->index,
1436                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1437         entry->flags = 0;
1438 }
1439
1440 #define F(x) bit(X86_FEATURE_##x)
1441
1442 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1443                          u32 index, int *nent, int maxnent)
1444 {
1445         unsigned f_nx = is_efer_nx() ? F(NX) : 0;
1446 #ifdef CONFIG_X86_64
1447         unsigned f_lm = F(LM);
1448 #else
1449         unsigned f_lm = 0;
1450 #endif
1451
1452         /* cpuid 1.edx */
1453         const u32 kvm_supported_word0_x86_features =
1454                 F(FPU) | F(VME) | F(DE) | F(PSE) |
1455                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1456                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
1457                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1458                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
1459                 0 /* Reserved, DS, ACPI */ | F(MMX) |
1460                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
1461                 0 /* HTT, TM, Reserved, PBE */;
1462         /* cpuid 0x80000001.edx */
1463         const u32 kvm_supported_word1_x86_features =
1464                 F(FPU) | F(VME) | F(DE) | F(PSE) |
1465                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1466                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
1467                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1468                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
1469                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
1470                 F(FXSR) | F(FXSR_OPT) | 0 /* GBPAGES */ | 0 /* RDTSCP */ |
1471                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
1472         /* cpuid 1.ecx */
1473         const u32 kvm_supported_word4_x86_features =
1474                 F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
1475                 0 /* DS-CPL, VMX, SMX, EST */ |
1476                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
1477                 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
1478                 0 /* Reserved, DCA */ | F(XMM4_1) |
1479                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
1480                 0 /* Reserved, XSAVE, OSXSAVE */;
1481         /* cpuid 0x80000001.ecx */
1482         const u32 kvm_supported_word6_x86_features =
1483                 F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
1484                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
1485                 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
1486                 0 /* SKINIT */ | 0 /* WDT */;
1487
1488         /* all calls to cpuid_count() should be made on the same cpu */
1489         get_cpu();
1490         do_cpuid_1_ent(entry, function, index);
1491         ++*nent;
1492
1493         switch (function) {
1494         case 0:
1495                 entry->eax = min(entry->eax, (u32)0xb);
1496                 break;
1497         case 1:
1498                 entry->edx &= kvm_supported_word0_x86_features;
1499                 entry->ecx &= kvm_supported_word4_x86_features;
1500                 /* we support x2apic emulation even if host does not support
1501                  * it since we emulate x2apic in software */
1502                 entry->ecx |= F(X2APIC);
1503                 break;
1504         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1505          * may return different values. This forces us to get_cpu() before
1506          * issuing the first command, and also to emulate this annoying behavior
1507          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1508         case 2: {
1509                 int t, times = entry->eax & 0xff;
1510
1511                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1512                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
1513                 for (t = 1; t < times && *nent < maxnent; ++t) {
1514                         do_cpuid_1_ent(&entry[t], function, 0);
1515                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1516                         ++*nent;
1517                 }
1518                 break;
1519         }
1520         /* function 4 and 0xb have additional index. */
1521         case 4: {
1522                 int i, cache_type;
1523
1524                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1525                 /* read more entries until cache_type is zero */
1526                 for (i = 1; *nent < maxnent; ++i) {
1527                         cache_type = entry[i - 1].eax & 0x1f;
1528                         if (!cache_type)
1529                                 break;
1530                         do_cpuid_1_ent(&entry[i], function, i);
1531                         entry[i].flags |=
1532                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1533                         ++*nent;
1534                 }
1535                 break;
1536         }
1537         case 0xb: {
1538                 int i, level_type;
1539
1540                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1541                 /* read more entries until level_type is zero */
1542                 for (i = 1; *nent < maxnent; ++i) {
1543                         level_type = entry[i - 1].ecx & 0xff00;
1544                         if (!level_type)
1545                                 break;
1546                         do_cpuid_1_ent(&entry[i], function, i);
1547                         entry[i].flags |=
1548                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1549                         ++*nent;
1550                 }
1551                 break;
1552         }
1553         case 0x80000000:
1554                 entry->eax = min(entry->eax, 0x8000001a);
1555                 break;
1556         case 0x80000001:
1557                 entry->edx &= kvm_supported_word1_x86_features;
1558                 entry->ecx &= kvm_supported_word6_x86_features;
1559                 break;
1560         }
1561         put_cpu();
1562 }
1563
1564 #undef F
1565
1566 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1567                                      struct kvm_cpuid_entry2 __user *entries)
1568 {
1569         struct kvm_cpuid_entry2 *cpuid_entries;
1570         int limit, nent = 0, r = -E2BIG;
1571         u32 func;
1572
1573         if (cpuid->nent < 1)
1574                 goto out;
1575         r = -ENOMEM;
1576         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1577         if (!cpuid_entries)
1578                 goto out;
1579
1580         do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1581         limit = cpuid_entries[0].eax;
1582         for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1583                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1584                              &nent, cpuid->nent);
1585         r = -E2BIG;
1586         if (nent >= cpuid->nent)
1587                 goto out_free;
1588
1589         do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1590         limit = cpuid_entries[nent - 1].eax;
1591         for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1592                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1593                              &nent, cpuid->nent);
1594         r = -E2BIG;
1595         if (nent >= cpuid->nent)
1596                 goto out_free;
1597
1598         r = -EFAULT;
1599         if (copy_to_user(entries, cpuid_entries,
1600                          nent * sizeof(struct kvm_cpuid_entry2)))
1601                 goto out_free;
1602         cpuid->nent = nent;
1603         r = 0;
1604
1605 out_free:
1606         vfree(cpuid_entries);
1607 out:
1608         return r;
1609 }
1610
1611 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1612                                     struct kvm_lapic_state *s)
1613 {
1614         vcpu_load(vcpu);
1615         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1616         vcpu_put(vcpu);
1617
1618         return 0;
1619 }
1620
1621 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1622                                     struct kvm_lapic_state *s)
1623 {
1624         vcpu_load(vcpu);
1625         memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1626         kvm_apic_post_state_restore(vcpu);
1627         vcpu_put(vcpu);
1628
1629         return 0;
1630 }
1631
1632 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1633                                     struct kvm_interrupt *irq)
1634 {
1635         if (irq->irq < 0 || irq->irq >= 256)
1636                 return -EINVAL;
1637         if (irqchip_in_kernel(vcpu->kvm))
1638                 return -ENXIO;
1639         vcpu_load(vcpu);
1640
1641         kvm_queue_interrupt(vcpu, irq->irq, false);
1642
1643         vcpu_put(vcpu);
1644
1645         return 0;
1646 }
1647
1648 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
1649 {
1650         vcpu_load(vcpu);
1651         kvm_inject_nmi(vcpu);
1652         vcpu_put(vcpu);
1653
1654         return 0;
1655 }
1656
1657 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1658                                            struct kvm_tpr_access_ctl *tac)
1659 {
1660         if (tac->flags)
1661                 return -EINVAL;
1662         vcpu->arch.tpr_access_reporting = !!tac->enabled;
1663         return 0;
1664 }
1665
1666 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
1667                                         u64 mcg_cap)
1668 {
1669         int r;
1670         unsigned bank_num = mcg_cap & 0xff, bank;
1671
1672         r = -EINVAL;
1673         if (!bank_num)
1674                 goto out;
1675         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
1676                 goto out;
1677         r = 0;
1678         vcpu->arch.mcg_cap = mcg_cap;
1679         /* Init IA32_MCG_CTL to all 1s */
1680         if (mcg_cap & MCG_CTL_P)
1681                 vcpu->arch.mcg_ctl = ~(u64)0;
1682         /* Init IA32_MCi_CTL to all 1s */
1683         for (bank = 0; bank < bank_num; bank++)
1684                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
1685 out:
1686         return r;
1687 }
1688
1689 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
1690                                       struct kvm_x86_mce *mce)
1691 {
1692         u64 mcg_cap = vcpu->arch.mcg_cap;
1693         unsigned bank_num = mcg_cap & 0xff;
1694         u64 *banks = vcpu->arch.mce_banks;
1695
1696         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
1697                 return -EINVAL;
1698         /*
1699          * if IA32_MCG_CTL is not all 1s, the uncorrected error
1700          * reporting is disabled
1701          */
1702         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
1703             vcpu->arch.mcg_ctl != ~(u64)0)
1704                 return 0;
1705         banks += 4 * mce->bank;
1706         /*
1707          * if IA32_MCi_CTL is not all 1s, the uncorrected error
1708          * reporting is disabled for the bank
1709          */
1710         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
1711                 return 0;
1712         if (mce->status & MCI_STATUS_UC) {
1713                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
1714                     !(vcpu->arch.cr4 & X86_CR4_MCE)) {
1715                         printk(KERN_DEBUG "kvm: set_mce: "
1716                                "injects mce exception while "
1717                                "previous one is in progress!\n");
1718                         set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
1719                         return 0;
1720                 }
1721                 if (banks[1] & MCI_STATUS_VAL)
1722                         mce->status |= MCI_STATUS_OVER;
1723                 banks[2] = mce->addr;
1724                 banks[3] = mce->misc;
1725                 vcpu->arch.mcg_status = mce->mcg_status;
1726                 banks[1] = mce->status;
1727                 kvm_queue_exception(vcpu, MC_VECTOR);
1728         } else if (!(banks[1] & MCI_STATUS_VAL)
1729                    || !(banks[1] & MCI_STATUS_UC)) {
1730                 if (banks[1] & MCI_STATUS_VAL)
1731                         mce->status |= MCI_STATUS_OVER;
1732                 banks[2] = mce->addr;
1733                 banks[3] = mce->misc;
1734                 banks[1] = mce->status;
1735         } else
1736                 banks[1] |= MCI_STATUS_OVER;
1737         return 0;
1738 }
1739
1740 long kvm_arch_vcpu_ioctl(struct file *filp,
1741                          unsigned int ioctl, unsigned long arg)
1742 {
1743         struct kvm_vcpu *vcpu = filp->private_data;
1744         void __user *argp = (void __user *)arg;
1745         int r;
1746         struct kvm_lapic_state *lapic = NULL;
1747
1748         switch (ioctl) {
1749         case KVM_GET_LAPIC: {
1750                 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1751
1752                 r = -ENOMEM;
1753                 if (!lapic)
1754                         goto out;
1755                 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
1756                 if (r)
1757                         goto out;
1758                 r = -EFAULT;
1759                 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
1760                         goto out;
1761                 r = 0;
1762                 break;
1763         }
1764         case KVM_SET_LAPIC: {
1765                 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1766                 r = -ENOMEM;
1767                 if (!lapic)
1768                         goto out;
1769                 r = -EFAULT;
1770                 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
1771                         goto out;
1772                 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
1773                 if (r)
1774                         goto out;
1775                 r = 0;
1776                 break;
1777         }
1778         case KVM_INTERRUPT: {
1779                 struct kvm_interrupt irq;
1780
1781                 r = -EFAULT;
1782                 if (copy_from_user(&irq, argp, sizeof irq))
1783                         goto out;
1784                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1785                 if (r)
1786                         goto out;
1787                 r = 0;
1788                 break;
1789         }
1790         case KVM_NMI: {
1791                 r = kvm_vcpu_ioctl_nmi(vcpu);
1792                 if (r)
1793                         goto out;
1794                 r = 0;
1795                 break;
1796         }
1797         case KVM_SET_CPUID: {
1798                 struct kvm_cpuid __user *cpuid_arg = argp;
1799                 struct kvm_cpuid cpuid;
1800
1801                 r = -EFAULT;
1802                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1803                         goto out;
1804                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1805                 if (r)
1806                         goto out;
1807                 break;
1808         }
1809         case KVM_SET_CPUID2: {
1810                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1811                 struct kvm_cpuid2 cpuid;
1812
1813                 r = -EFAULT;
1814                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1815                         goto out;
1816                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1817                                               cpuid_arg->entries);
1818                 if (r)
1819                         goto out;
1820                 break;
1821         }
1822         case KVM_GET_CPUID2: {
1823                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1824                 struct kvm_cpuid2 cpuid;
1825
1826                 r = -EFAULT;
1827                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1828                         goto out;
1829                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1830                                               cpuid_arg->entries);
1831                 if (r)
1832                         goto out;
1833                 r = -EFAULT;
1834                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1835                         goto out;
1836                 r = 0;
1837                 break;
1838         }
1839         case KVM_GET_MSRS:
1840                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1841                 break;
1842         case KVM_SET_MSRS:
1843                 r = msr_io(vcpu, argp, do_set_msr, 0);
1844                 break;
1845         case KVM_TPR_ACCESS_REPORTING: {
1846                 struct kvm_tpr_access_ctl tac;
1847
1848                 r = -EFAULT;
1849                 if (copy_from_user(&tac, argp, sizeof tac))
1850                         goto out;
1851                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1852                 if (r)
1853                         goto out;
1854                 r = -EFAULT;
1855                 if (copy_to_user(argp, &tac, sizeof tac))
1856                         goto out;
1857                 r = 0;
1858                 break;
1859         };
1860         case KVM_SET_VAPIC_ADDR: {
1861                 struct kvm_vapic_addr va;
1862
1863                 r = -EINVAL;
1864                 if (!irqchip_in_kernel(vcpu->kvm))
1865                         goto out;
1866                 r = -EFAULT;
1867                 if (copy_from_user(&va, argp, sizeof va))
1868                         goto out;
1869                 r = 0;
1870                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1871                 break;
1872         }
1873         case KVM_X86_SETUP_MCE: {
1874                 u64 mcg_cap;
1875
1876                 r = -EFAULT;
1877                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
1878                         goto out;
1879                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
1880                 break;
1881         }
1882         case KVM_X86_SET_MCE: {
1883                 struct kvm_x86_mce mce;
1884
1885                 r = -EFAULT;
1886                 if (copy_from_user(&mce, argp, sizeof mce))
1887                         goto out;
1888                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
1889                 break;
1890         }
1891         default:
1892                 r = -EINVAL;
1893         }
1894 out:
1895         kfree(lapic);
1896         return r;
1897 }
1898
1899 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1900 {
1901         int ret;
1902
1903         if (addr > (unsigned int)(-3 * PAGE_SIZE))
1904                 return -1;
1905         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1906         return ret;
1907 }
1908
1909 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1910                                           u32 kvm_nr_mmu_pages)
1911 {
1912         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1913                 return -EINVAL;
1914
1915         down_write(&kvm->slots_lock);
1916         spin_lock(&kvm->mmu_lock);
1917
1918         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1919         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1920
1921         spin_unlock(&kvm->mmu_lock);
1922         up_write(&kvm->slots_lock);
1923         return 0;
1924 }
1925
1926 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1927 {
1928         return kvm->arch.n_alloc_mmu_pages;
1929 }
1930
1931 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1932 {
1933         int i;
1934         struct kvm_mem_alias *alias;
1935
1936         for (i = 0; i < kvm->arch.naliases; ++i) {
1937                 alias = &kvm->arch.aliases[i];
1938                 if (gfn >= alias->base_gfn
1939                     && gfn < alias->base_gfn + alias->npages)
1940                         return alias->target_gfn + gfn - alias->base_gfn;
1941         }
1942         return gfn;
1943 }
1944
1945 /*
1946  * Set a new alias region.  Aliases map a portion of physical memory into
1947  * another portion.  This is useful for memory windows, for example the PC
1948  * VGA region.
1949  */
1950 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1951                                          struct kvm_memory_alias *alias)
1952 {
1953         int r, n;
1954         struct kvm_mem_alias *p;
1955
1956         r = -EINVAL;
1957         /* General sanity checks */
1958         if (alias->memory_size & (PAGE_SIZE - 1))
1959                 goto out;
1960         if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1961                 goto out;
1962         if (alias->slot >= KVM_ALIAS_SLOTS)
1963                 goto out;
1964         if (alias->guest_phys_addr + alias->memory_size
1965             < alias->guest_phys_addr)
1966                 goto out;
1967         if (alias->target_phys_addr + alias->memory_size
1968             < alias->target_phys_addr)
1969                 goto out;
1970
1971         down_write(&kvm->slots_lock);
1972         spin_lock(&kvm->mmu_lock);
1973
1974         p = &kvm->arch.aliases[alias->slot];
1975         p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
1976         p->npages = alias->memory_size >> PAGE_SHIFT;
1977         p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
1978
1979         for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1980                 if (kvm->arch.aliases[n - 1].npages)
1981                         break;
1982         kvm->arch.naliases = n;
1983
1984         spin_unlock(&kvm->mmu_lock);
1985         kvm_mmu_zap_all(kvm);
1986
1987         up_write(&kvm->slots_lock);
1988
1989         return 0;
1990
1991 out:
1992         return r;
1993 }
1994
1995 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1996 {
1997         int r;
1998
1999         r = 0;
2000         switch (chip->chip_id) {
2001         case KVM_IRQCHIP_PIC_MASTER:
2002                 memcpy(&chip->chip.pic,
2003                         &pic_irqchip(kvm)->pics[0],
2004                         sizeof(struct kvm_pic_state));
2005                 break;
2006         case KVM_IRQCHIP_PIC_SLAVE:
2007                 memcpy(&chip->chip.pic,
2008                         &pic_irqchip(kvm)->pics[1],
2009                         sizeof(struct kvm_pic_state));
2010                 break;
2011         case KVM_IRQCHIP_IOAPIC:
2012                 memcpy(&chip->chip.ioapic,
2013                         ioapic_irqchip(kvm),
2014                         sizeof(struct kvm_ioapic_state));
2015                 break;
2016         default:
2017                 r = -EINVAL;
2018                 break;
2019         }
2020         return r;
2021 }
2022
2023 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2024 {
2025         int r;
2026
2027         r = 0;
2028         switch (chip->chip_id) {
2029         case KVM_IRQCHIP_PIC_MASTER:
2030                 spin_lock(&pic_irqchip(kvm)->lock);
2031                 memcpy(&pic_irqchip(kvm)->pics[0],
2032                         &chip->chip.pic,
2033                         sizeof(struct kvm_pic_state));
2034                 spin_unlock(&pic_irqchip(kvm)->lock);
2035                 break;
2036         case KVM_IRQCHIP_PIC_SLAVE:
2037                 spin_lock(&pic_irqchip(kvm)->lock);
2038                 memcpy(&pic_irqchip(kvm)->pics[1],
2039                         &chip->chip.pic,
2040                         sizeof(struct kvm_pic_state));
2041                 spin_unlock(&pic_irqchip(kvm)->lock);
2042                 break;
2043         case KVM_IRQCHIP_IOAPIC:
2044                 mutex_lock(&kvm->irq_lock);
2045                 memcpy(ioapic_irqchip(kvm),
2046                         &chip->chip.ioapic,
2047                         sizeof(struct kvm_ioapic_state));
2048                 mutex_unlock(&kvm->irq_lock);
2049                 break;
2050         default:
2051                 r = -EINVAL;
2052                 break;
2053         }
2054         kvm_pic_update_irq(pic_irqchip(kvm));
2055         return r;
2056 }
2057
2058 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2059 {
2060         int r = 0;
2061
2062         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2063         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2064         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2065         return r;
2066 }
2067
2068 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2069 {
2070         int r = 0;
2071
2072         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2073         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2074         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
2075         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2076         return r;
2077 }
2078
2079 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2080 {
2081         int r = 0;
2082
2083         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2084         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
2085                 sizeof(ps->channels));
2086         ps->flags = kvm->arch.vpit->pit_state.flags;
2087         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2088         return r;
2089 }
2090
2091 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2092 {
2093         int r = 0, start = 0;
2094         u32 prev_legacy, cur_legacy;
2095         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2096         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
2097         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
2098         if (!prev_legacy && cur_legacy)
2099                 start = 1;
2100         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
2101                sizeof(kvm->arch.vpit->pit_state.channels));
2102         kvm->arch.vpit->pit_state.flags = ps->flags;
2103         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
2104         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2105         return r;
2106 }
2107
2108 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
2109                                  struct kvm_reinject_control *control)
2110 {
2111         if (!kvm->arch.vpit)
2112                 return -ENXIO;
2113         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2114         kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
2115         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2116         return 0;
2117 }
2118
2119 /*
2120  * Get (and clear) the dirty memory log for a memory slot.
2121  */
2122 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2123                                       struct kvm_dirty_log *log)
2124 {
2125         int r;
2126         int n;
2127         struct kvm_memory_slot *memslot;
2128         int is_dirty = 0;
2129
2130         down_write(&kvm->slots_lock);
2131
2132         r = kvm_get_dirty_log(kvm, log, &is_dirty);
2133         if (r)
2134                 goto out;
2135
2136         /* If nothing is dirty, don't bother messing with page tables. */
2137         if (is_dirty) {
2138                 spin_lock(&kvm->mmu_lock);
2139                 kvm_mmu_slot_remove_write_access(kvm, log->slot);
2140                 spin_unlock(&kvm->mmu_lock);
2141                 kvm_flush_remote_tlbs(kvm);
2142                 memslot = &kvm->memslots[log->slot];
2143                 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
2144                 memset(memslot->dirty_bitmap, 0, n);
2145         }
2146         r = 0;
2147 out:
2148         up_write(&kvm->slots_lock);
2149         return r;
2150 }
2151
2152 long kvm_arch_vm_ioctl(struct file *filp,
2153                        unsigned int ioctl, unsigned long arg)
2154 {
2155         struct kvm *kvm = filp->private_data;
2156         void __user *argp = (void __user *)arg;
2157         int r = -EINVAL;
2158         /*
2159          * This union makes it completely explicit to gcc-3.x
2160          * that these two variables' stack usage should be
2161          * combined, not added together.
2162          */
2163         union {
2164                 struct kvm_pit_state ps;
2165                 struct kvm_pit_state2 ps2;
2166                 struct kvm_memory_alias alias;
2167                 struct kvm_pit_config pit_config;
2168         } u;
2169
2170         switch (ioctl) {
2171         case KVM_SET_TSS_ADDR:
2172                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
2173                 if (r < 0)
2174                         goto out;
2175                 break;
2176         case KVM_SET_MEMORY_REGION: {
2177                 struct kvm_memory_region kvm_mem;
2178                 struct kvm_userspace_memory_region kvm_userspace_mem;
2179
2180                 r = -EFAULT;
2181                 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2182                         goto out;
2183                 kvm_userspace_mem.slot = kvm_mem.slot;
2184                 kvm_userspace_mem.flags = kvm_mem.flags;
2185                 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
2186                 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
2187                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
2188                 if (r)
2189                         goto out;
2190                 break;
2191         }
2192         case KVM_SET_NR_MMU_PAGES:
2193                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
2194                 if (r)
2195                         goto out;
2196                 break;
2197         case KVM_GET_NR_MMU_PAGES:
2198                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
2199                 break;
2200         case KVM_SET_MEMORY_ALIAS:
2201                 r = -EFAULT;
2202                 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
2203                         goto out;
2204                 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
2205                 if (r)
2206                         goto out;
2207                 break;
2208         case KVM_CREATE_IRQCHIP:
2209                 r = -ENOMEM;
2210                 kvm->arch.vpic = kvm_create_pic(kvm);
2211                 if (kvm->arch.vpic) {
2212                         r = kvm_ioapic_init(kvm);
2213                         if (r) {
2214                                 kfree(kvm->arch.vpic);
2215                                 kvm->arch.vpic = NULL;
2216                                 goto out;
2217                         }
2218                 } else
2219                         goto out;
2220                 r = kvm_setup_default_irq_routing(kvm);
2221                 if (r) {
2222                         kfree(kvm->arch.vpic);
2223                         kfree(kvm->arch.vioapic);
2224                         goto out;
2225                 }
2226                 break;
2227         case KVM_CREATE_PIT:
2228                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
2229                 goto create_pit;
2230         case KVM_CREATE_PIT2:
2231                 r = -EFAULT;
2232                 if (copy_from_user(&u.pit_config, argp,
2233                                    sizeof(struct kvm_pit_config)))
2234                         goto out;
2235         create_pit:
2236                 down_write(&kvm->slots_lock);
2237                 r = -EEXIST;
2238                 if (kvm->arch.vpit)
2239                         goto create_pit_unlock;
2240                 r = -ENOMEM;
2241                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
2242                 if (kvm->arch.vpit)
2243                         r = 0;
2244         create_pit_unlock:
2245                 up_write(&kvm->slots_lock);
2246                 break;
2247         case KVM_IRQ_LINE_STATUS:
2248         case KVM_IRQ_LINE: {
2249                 struct kvm_irq_level irq_event;
2250
2251                 r = -EFAULT;
2252                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2253                         goto out;
2254                 if (irqchip_in_kernel(kvm)) {
2255                         __s32 status;
2256                         mutex_lock(&kvm->irq_lock);
2257                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2258                                         irq_event.irq, irq_event.level);
2259                         mutex_unlock(&kvm->irq_lock);
2260                         if (ioctl == KVM_IRQ_LINE_STATUS) {
2261                                 irq_event.status = status;
2262                                 if (copy_to_user(argp, &irq_event,
2263                                                         sizeof irq_event))
2264                                         goto out;
2265                         }
2266                         r = 0;
2267                 }
2268                 break;
2269         }
2270         case KVM_GET_IRQCHIP: {
2271                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2272                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2273
2274                 r = -ENOMEM;
2275                 if (!chip)
2276                         goto out;
2277                 r = -EFAULT;
2278                 if (copy_from_user(chip, argp, sizeof *chip))
2279                         goto get_irqchip_out;
2280                 r = -ENXIO;
2281                 if (!irqchip_in_kernel(kvm))
2282                         goto get_irqchip_out;
2283                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
2284                 if (r)
2285                         goto get_irqchip_out;
2286                 r = -EFAULT;
2287                 if (copy_to_user(argp, chip, sizeof *chip))
2288                         goto get_irqchip_out;
2289                 r = 0;
2290         get_irqchip_out:
2291                 kfree(chip);
2292                 if (r)
2293                         goto out;
2294                 break;
2295         }
2296         case KVM_SET_IRQCHIP: {
2297                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2298                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2299
2300                 r = -ENOMEM;
2301                 if (!chip)
2302                         goto out;
2303                 r = -EFAULT;
2304                 if (copy_from_user(chip, argp, sizeof *chip))
2305                         goto set_irqchip_out;
2306                 r = -ENXIO;
2307                 if (!irqchip_in_kernel(kvm))
2308                         goto set_irqchip_out;
2309                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
2310                 if (r)
2311                         goto set_irqchip_out;
2312                 r = 0;
2313         set_irqchip_out:
2314                 kfree(chip);
2315                 if (r)
2316                         goto out;
2317                 break;
2318         }
2319         case KVM_GET_PIT: {
2320                 r = -EFAULT;
2321                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
2322                         goto out;
2323                 r = -ENXIO;
2324                 if (!kvm->arch.vpit)
2325                         goto out;
2326                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
2327                 if (r)
2328                         goto out;
2329                 r = -EFAULT;
2330                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
2331                         goto out;
2332                 r = 0;
2333                 break;
2334         }
2335         case KVM_SET_PIT: {
2336                 r = -EFAULT;
2337                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
2338                         goto out;
2339                 r = -ENXIO;
2340                 if (!kvm->arch.vpit)
2341                         goto out;
2342                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
2343                 if (r)
2344                         goto out;
2345                 r = 0;
2346                 break;
2347         }
2348         case KVM_GET_PIT2: {
2349                 r = -ENXIO;
2350                 if (!kvm->arch.vpit)
2351                         goto out;
2352                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
2353                 if (r)
2354                         goto out;
2355                 r = -EFAULT;
2356                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
2357                         goto out;
2358                 r = 0;
2359                 break;
2360         }
2361         case KVM_SET_PIT2: {
2362                 r = -EFAULT;
2363                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
2364                         goto out;
2365                 r = -ENXIO;
2366                 if (!kvm->arch.vpit)
2367                         goto out;
2368                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
2369                 if (r)
2370                         goto out;
2371                 r = 0;
2372                 break;
2373         }
2374         case KVM_REINJECT_CONTROL: {
2375                 struct kvm_reinject_control control;
2376                 r =  -EFAULT;
2377                 if (copy_from_user(&control, argp, sizeof(control)))
2378                         goto out;
2379                 r = kvm_vm_ioctl_reinject(kvm, &control);
2380                 if (r)
2381                         goto out;
2382                 r = 0;
2383                 break;
2384         }
2385         default:
2386                 ;
2387         }
2388 out:
2389         return r;
2390 }
2391
2392 static void kvm_init_msr_list(void)
2393 {
2394         u32 dummy[2];
2395         unsigned i, j;
2396
2397         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2398                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2399                         continue;
2400                 if (j < i)
2401                         msrs_to_save[j] = msrs_to_save[i];
2402                 j++;
2403         }
2404         num_msrs_to_save = j;
2405 }
2406
2407 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
2408                            const void *v)
2409 {
2410         if (vcpu->arch.apic &&
2411             !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
2412                 return 0;
2413
2414         return kvm_io_bus_write(&vcpu->kvm->mmio_bus, addr, len, v);
2415 }
2416
2417 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
2418 {
2419         if (vcpu->arch.apic &&
2420             !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
2421                 return 0;
2422
2423         return kvm_io_bus_read(&vcpu->kvm->mmio_bus, addr, len, v);
2424 }
2425
2426 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
2427                                struct kvm_vcpu *vcpu)
2428 {
2429         void *data = val;
2430         int r = X86EMUL_CONTINUE;
2431
2432         while (bytes) {
2433                 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2434                 unsigned offset = addr & (PAGE_SIZE-1);
2435                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
2436                 int ret;
2437
2438                 if (gpa == UNMAPPED_GVA) {
2439                         r = X86EMUL_PROPAGATE_FAULT;
2440                         goto out;
2441                 }
2442                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
2443                 if (ret < 0) {
2444                         r = X86EMUL_UNHANDLEABLE;
2445                         goto out;
2446                 }
2447
2448                 bytes -= toread;
2449                 data += toread;
2450                 addr += toread;
2451         }
2452 out:
2453         return r;
2454 }
2455
2456 static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
2457                                 struct kvm_vcpu *vcpu)
2458 {
2459         void *data = val;
2460         int r = X86EMUL_CONTINUE;
2461
2462         while (bytes) {
2463                 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2464                 unsigned offset = addr & (PAGE_SIZE-1);
2465                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
2466                 int ret;
2467
2468                 if (gpa == UNMAPPED_GVA) {
2469                         r = X86EMUL_PROPAGATE_FAULT;
2470                         goto out;
2471                 }
2472                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
2473                 if (ret < 0) {
2474                         r = X86EMUL_UNHANDLEABLE;
2475                         goto out;
2476                 }
2477
2478                 bytes -= towrite;
2479                 data += towrite;
2480                 addr += towrite;
2481         }
2482 out:
2483         return r;
2484 }
2485
2486
2487 static int emulator_read_emulated(unsigned long addr,
2488                                   void *val,
2489                                   unsigned int bytes,
2490                                   struct kvm_vcpu *vcpu)
2491 {
2492         gpa_t                 gpa;
2493
2494         if (vcpu->mmio_read_completed) {
2495                 memcpy(val, vcpu->mmio_data, bytes);
2496                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
2497                                vcpu->mmio_phys_addr, *(u64 *)val);
2498                 vcpu->mmio_read_completed = 0;
2499                 return X86EMUL_CONTINUE;
2500         }
2501
2502         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2503
2504         /* For APIC access vmexit */
2505         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2506                 goto mmio;
2507
2508         if (kvm_read_guest_virt(addr, val, bytes, vcpu)
2509                                 == X86EMUL_CONTINUE)
2510                 return X86EMUL_CONTINUE;
2511         if (gpa == UNMAPPED_GVA)
2512                 return X86EMUL_PROPAGATE_FAULT;
2513
2514 mmio:
2515         /*
2516          * Is this MMIO handled locally?
2517          */
2518         if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
2519                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
2520                 return X86EMUL_CONTINUE;
2521         }
2522
2523         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
2524
2525         vcpu->mmio_needed = 1;
2526         vcpu->mmio_phys_addr = gpa;
2527         vcpu->mmio_size = bytes;
2528         vcpu->mmio_is_write = 0;
2529
2530         return X86EMUL_UNHANDLEABLE;
2531 }
2532
2533 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2534                           const void *val, int bytes)
2535 {
2536         int ret;
2537
2538         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
2539         if (ret < 0)
2540                 return 0;
2541         kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
2542         return 1;
2543 }
2544
2545 static int emulator_write_emulated_onepage(unsigned long addr,
2546                                            const void *val,
2547                                            unsigned int bytes,
2548                                            struct kvm_vcpu *vcpu)
2549 {
2550         gpa_t                 gpa;
2551
2552         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2553
2554         if (gpa == UNMAPPED_GVA) {
2555                 kvm_inject_page_fault(vcpu, addr, 2);
2556                 return X86EMUL_PROPAGATE_FAULT;
2557         }
2558
2559         /* For APIC access vmexit */
2560         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2561                 goto mmio;
2562
2563         if (emulator_write_phys(vcpu, gpa, val, bytes))
2564                 return X86EMUL_CONTINUE;
2565
2566 mmio:
2567         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
2568         /*
2569          * Is this MMIO handled locally?
2570          */
2571         if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
2572                 return X86EMUL_CONTINUE;
2573
2574         vcpu->mmio_needed = 1;
2575         vcpu->mmio_phys_addr = gpa;
2576         vcpu->mmio_size = bytes;
2577         vcpu->mmio_is_write = 1;
2578         memcpy(vcpu->mmio_data, val, bytes);
2579
2580         return X86EMUL_CONTINUE;
2581 }
2582
2583 int emulator_write_emulated(unsigned long addr,
2584                                    const void *val,
2585                                    unsigned int bytes,
2586                                    struct kvm_vcpu *vcpu)
2587 {
2588         /* Crossing a page boundary? */
2589         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
2590                 int rc, now;
2591
2592                 now = -addr & ~PAGE_MASK;
2593                 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
2594                 if (rc != X86EMUL_CONTINUE)
2595                         return rc;
2596                 addr += now;
2597                 val += now;
2598                 bytes -= now;
2599         }
2600         return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
2601 }
2602 EXPORT_SYMBOL_GPL(emulator_write_emulated);
2603
2604 static int emulator_cmpxchg_emulated(unsigned long addr,
2605                                      const void *old,
2606                                      const void *new,
2607                                      unsigned int bytes,
2608                                      struct kvm_vcpu *vcpu)
2609 {
2610         static int reported;
2611
2612         if (!reported) {
2613                 reported = 1;
2614                 printk(KERN_WARNING "kvm: emulating exchange as write\n");
2615         }
2616 #ifndef CONFIG_X86_64
2617         /* guests cmpxchg8b have to be emulated atomically */
2618         if (bytes == 8) {
2619                 gpa_t gpa;
2620                 struct page *page;
2621                 char *kaddr;
2622                 u64 val;
2623
2624                 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2625
2626                 if (gpa == UNMAPPED_GVA ||
2627                    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2628                         goto emul_write;
2629
2630                 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
2631                         goto emul_write;
2632
2633                 val = *(u64 *)new;
2634
2635                 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2636
2637                 kaddr = kmap_atomic(page, KM_USER0);
2638                 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
2639                 kunmap_atomic(kaddr, KM_USER0);
2640                 kvm_release_page_dirty(page);
2641         }
2642 emul_write:
2643 #endif
2644
2645         return emulator_write_emulated(addr, new, bytes, vcpu);
2646 }
2647
2648 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
2649 {
2650         return kvm_x86_ops->get_segment_base(vcpu, seg);
2651 }
2652
2653 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
2654 {
2655         kvm_mmu_invlpg(vcpu, address);
2656         return X86EMUL_CONTINUE;
2657 }
2658
2659 int emulate_clts(struct kvm_vcpu *vcpu)
2660 {
2661         kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2662         return X86EMUL_CONTINUE;
2663 }
2664
2665 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
2666 {
2667         struct kvm_vcpu *vcpu = ctxt->vcpu;
2668
2669         switch (dr) {
2670         case 0 ... 3:
2671                 *dest = kvm_x86_ops->get_dr(vcpu, dr);
2672                 return X86EMUL_CONTINUE;
2673         default:
2674                 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2675                 return X86EMUL_UNHANDLEABLE;
2676         }
2677 }
2678
2679 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
2680 {
2681         unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
2682         int exception;
2683
2684         kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
2685         if (exception) {
2686                 /* FIXME: better handling */
2687                 return X86EMUL_UNHANDLEABLE;
2688         }
2689         return X86EMUL_CONTINUE;
2690 }
2691
2692 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
2693 {
2694         u8 opcodes[4];
2695         unsigned long rip = kvm_rip_read(vcpu);
2696         unsigned long rip_linear;
2697
2698         if (!printk_ratelimit())
2699                 return;
2700
2701         rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
2702
2703         kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
2704
2705         printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2706                context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
2707 }
2708 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
2709
2710 static struct x86_emulate_ops emulate_ops = {
2711         .read_std            = kvm_read_guest_virt,
2712         .read_emulated       = emulator_read_emulated,
2713         .write_emulated      = emulator_write_emulated,
2714         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
2715 };
2716
2717 static void cache_all_regs(struct kvm_vcpu *vcpu)
2718 {
2719         kvm_register_read(vcpu, VCPU_REGS_RAX);
2720         kvm_register_read(vcpu, VCPU_REGS_RSP);
2721         kvm_register_read(vcpu, VCPU_REGS_RIP);
2722         vcpu->arch.regs_dirty = ~0;
2723 }
2724
2725 int emulate_instruction(struct kvm_vcpu *vcpu,
2726                         struct kvm_run *run,
2727                         unsigned long cr2,
2728                         u16 error_code,
2729                         int emulation_type)
2730 {
2731         int r, shadow_mask;
2732         struct decode_cache *c;
2733
2734         kvm_clear_exception_queue(vcpu);
2735         vcpu->arch.mmio_fault_cr2 = cr2;
2736         /*
2737          * TODO: fix x86_emulate.c to use guest_read/write_register
2738          * instead of direct ->regs accesses, can save hundred cycles
2739          * on Intel for instructions that don't read/change RSP, for
2740          * for example.
2741          */
2742         cache_all_regs(vcpu);
2743
2744         vcpu->mmio_is_write = 0;
2745         vcpu->arch.pio.string = 0;
2746
2747         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2748                 int cs_db, cs_l;
2749                 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2750
2751                 vcpu->arch.emulate_ctxt.vcpu = vcpu;
2752                 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
2753                 vcpu->arch.emulate_ctxt.mode =
2754                         (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2755                         ? X86EMUL_MODE_REAL : cs_l
2756                         ? X86EMUL_MODE_PROT64 : cs_db
2757                         ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2758
2759                 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2760
2761                 /* Only allow emulation of specific instructions on #UD
2762                  * (namely VMMCALL, sysenter, sysexit, syscall)*/
2763                 c = &vcpu->arch.emulate_ctxt.decode;
2764                 if (emulation_type & EMULTYPE_TRAP_UD) {
2765                         if (!c->twobyte)
2766                                 return EMULATE_FAIL;
2767                         switch (c->b) {
2768                         case 0x01: /* VMMCALL */
2769                                 if (c->modrm_mod != 3 || c->modrm_rm != 1)
2770                                         return EMULATE_FAIL;
2771                                 break;
2772                         case 0x34: /* sysenter */
2773                         case 0x35: /* sysexit */
2774                                 if (c->modrm_mod != 0 || c->modrm_rm != 0)
2775                                         return EMULATE_FAIL;
2776                                 break;
2777                         case 0x05: /* syscall */
2778                                 if (c->modrm_mod != 0 || c->modrm_rm != 0)
2779                                         return EMULATE_FAIL;
2780                                 break;
2781                         default:
2782                                 return EMULATE_FAIL;
2783                         }
2784
2785                         if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
2786                                 return EMULATE_FAIL;
2787                 }
2788
2789                 ++vcpu->stat.insn_emulation;
2790                 if (r)  {
2791                         ++vcpu->stat.insn_emulation_fail;
2792                         if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2793                                 return EMULATE_DONE;
2794                         return EMULATE_FAIL;
2795                 }
2796         }
2797
2798         if (emulation_type & EMULTYPE_SKIP) {
2799                 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
2800                 return EMULATE_DONE;
2801         }
2802
2803         r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2804         shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
2805
2806         if (r == 0)
2807                 kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
2808
2809         if (vcpu->arch.pio.string)
2810                 return EMULATE_DO_MMIO;
2811
2812         if ((r || vcpu->mmio_is_write) && run) {
2813                 run->exit_reason = KVM_EXIT_MMIO;
2814                 run->mmio.phys_addr = vcpu->mmio_phys_addr;
2815                 memcpy(run->mmio.data, vcpu->mmio_data, 8);
2816                 run->mmio.len = vcpu->mmio_size;
2817                 run->mmio.is_write = vcpu->mmio_is_write;
2818         }
2819
2820         if (r) {
2821                 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2822                         return EMULATE_DONE;
2823                 if (!vcpu->mmio_needed) {
2824                         kvm_report_emulation_failure(vcpu, "mmio");
2825                         return EMULATE_FAIL;
2826                 }
2827                 return EMULATE_DO_MMIO;
2828         }
2829
2830         kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2831
2832         if (vcpu->mmio_is_write) {
2833                 vcpu->mmio_needed = 0;
2834                 return EMULATE_DO_MMIO;
2835         }
2836
2837         return EMULATE_DONE;
2838 }
2839 EXPORT_SYMBOL_GPL(emulate_instruction);
2840
2841 static int pio_copy_data(struct kvm_vcpu *vcpu)
2842 {
2843         void *p = vcpu->arch.pio_data;
2844         gva_t q = vcpu->arch.pio.guest_gva;
2845         unsigned bytes;
2846         int ret;
2847
2848         bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2849         if (vcpu->arch.pio.in)
2850                 ret = kvm_write_guest_virt(q, p, bytes, vcpu);
2851         else
2852                 ret = kvm_read_guest_virt(q, p, bytes, vcpu);
2853         return ret;
2854 }
2855
2856 int complete_pio(struct kvm_vcpu *vcpu)
2857 {
2858         struct kvm_pio_request *io = &vcpu->arch.pio;
2859         long delta;
2860         int r;
2861         unsigned long val;
2862
2863         if (!io->string) {
2864                 if (io->in) {
2865                         val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2866                         memcpy(&val, vcpu->arch.pio_data, io->size);
2867                         kvm_register_write(vcpu, VCPU_REGS_RAX, val);
2868                 }
2869         } else {
2870                 if (io->in) {
2871                         r = pio_copy_data(vcpu);
2872                         if (r)
2873                                 return r;
2874                 }
2875
2876                 delta = 1;
2877                 if (io->rep) {
2878                         delta *= io->cur_count;
2879                         /*
2880                          * The size of the register should really depend on
2881                          * current address size.
2882                          */
2883                         val = kvm_register_read(vcpu, VCPU_REGS_RCX);
2884                         val -= delta;
2885                         kvm_register_write(vcpu, VCPU_REGS_RCX, val);
2886                 }
2887                 if (io->down)
2888                         delta = -delta;
2889                 delta *= io->size;
2890                 if (io->in) {
2891                         val = kvm_register_read(vcpu, VCPU_REGS_RDI);
2892                         val += delta;
2893                         kvm_register_write(vcpu, VCPU_REGS_RDI, val);
2894                 } else {
2895                         val = kvm_register_read(vcpu, VCPU_REGS_RSI);
2896                         val += delta;
2897                         kvm_register_write(vcpu, VCPU_REGS_RSI, val);
2898                 }
2899         }
2900
2901         io->count -= io->cur_count;
2902         io->cur_count = 0;
2903
2904         return 0;
2905 }
2906
2907 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
2908 {
2909         /* TODO: String I/O for in kernel device */
2910         int r;
2911
2912         if (vcpu->arch.pio.in)
2913                 r = kvm_io_bus_read(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
2914                                     vcpu->arch.pio.size, pd);
2915         else
2916                 r = kvm_io_bus_write(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
2917                                      vcpu->arch.pio.size, pd);
2918         return r;
2919 }
2920
2921 static int pio_string_write(struct kvm_vcpu *vcpu)
2922 {
2923         struct kvm_pio_request *io = &vcpu->arch.pio;
2924         void *pd = vcpu->arch.pio_data;
2925         int i, r = 0;
2926
2927         for (i = 0; i < io->cur_count; i++) {
2928                 if (kvm_io_bus_write(&vcpu->kvm->pio_bus,
2929                                      io->port, io->size, pd)) {
2930                         r = -EOPNOTSUPP;
2931                         break;
2932                 }
2933                 pd += io->size;
2934         }
2935         return r;
2936 }
2937
2938 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2939                   int size, unsigned port)
2940 {
2941         unsigned long val;
2942
2943         vcpu->run->exit_reason = KVM_EXIT_IO;
2944         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2945         vcpu->run->io.size = vcpu->arch.pio.size = size;
2946         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2947         vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2948         vcpu->run->io.port = vcpu->arch.pio.port = port;
2949         vcpu->arch.pio.in = in;
2950         vcpu->arch.pio.string = 0;
2951         vcpu->arch.pio.down = 0;
2952         vcpu->arch.pio.rep = 0;
2953
2954         trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
2955                       size, 1);
2956
2957         val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2958         memcpy(vcpu->arch.pio_data, &val, 4);
2959
2960         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
2961                 complete_pio(vcpu);
2962                 return 1;
2963         }
2964         return 0;
2965 }
2966 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2967
2968 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2969                   int size, unsigned long count, int down,
2970                   gva_t address, int rep, unsigned port)
2971 {
2972         unsigned now, in_page;
2973         int ret = 0;
2974
2975         vcpu->run->exit_reason = KVM_EXIT_IO;
2976         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2977         vcpu->run->io.size = vcpu->arch.pio.size = size;
2978         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2979         vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
2980         vcpu->run->io.port = vcpu->arch.pio.port = port;
2981         vcpu->arch.pio.in = in;
2982         vcpu->arch.pio.string = 1;
2983         vcpu->arch.pio.down = down;
2984         vcpu->arch.pio.rep = rep;
2985
2986         trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
2987                       size, count);
2988
2989         if (!count) {
2990                 kvm_x86_ops->skip_emulated_instruction(vcpu);
2991                 return 1;
2992         }
2993
2994         if (!down)
2995                 in_page = PAGE_SIZE - offset_in_page(address);
2996         else
2997                 in_page = offset_in_page(address) + size;
2998         now = min(count, (unsigned long)in_page / size);
2999         if (!now)
3000                 now = 1;
3001         if (down) {
3002                 /*
3003                  * String I/O in reverse.  Yuck.  Kill the guest, fix later.
3004                  */
3005                 pr_unimpl(vcpu, "guest string pio down\n");
3006                 kvm_inject_gp(vcpu, 0);
3007                 return 1;
3008         }
3009         vcpu->run->io.count = now;
3010         vcpu->arch.pio.cur_count = now;
3011
3012         if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
3013                 kvm_x86_ops->skip_emulated_instruction(vcpu);
3014
3015         vcpu->arch.pio.guest_gva = address;
3016
3017         if (!vcpu->arch.pio.in) {
3018                 /* string PIO write */
3019                 ret = pio_copy_data(vcpu);
3020                 if (ret == X86EMUL_PROPAGATE_FAULT) {
3021                         kvm_inject_gp(vcpu, 0);
3022                         return 1;
3023                 }
3024                 if (ret == 0 && !pio_string_write(vcpu)) {
3025                         complete_pio(vcpu);
3026                         if (vcpu->arch.pio.count == 0)
3027                                 ret = 1;
3028                 }
3029         }
3030         /* no string PIO read support yet */
3031
3032         return ret;
3033 }
3034 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
3035
3036 static void bounce_off(void *info)
3037 {
3038         /* nothing */
3039 }
3040
3041 static unsigned int  ref_freq;
3042 static unsigned long tsc_khz_ref;
3043
3044 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
3045                                      void *data)
3046 {
3047         struct cpufreq_freqs *freq = data;
3048         struct kvm *kvm;
3049         struct kvm_vcpu *vcpu;
3050         int i, send_ipi = 0;
3051
3052         if (!ref_freq)
3053                 ref_freq = freq->old;
3054
3055         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
3056                 return 0;
3057         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
3058                 return 0;
3059         per_cpu(cpu_tsc_khz, freq->cpu) = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
3060
3061         spin_lock(&kvm_lock);
3062         list_for_each_entry(kvm, &vm_list, vm_list) {
3063                 kvm_for_each_vcpu(i, vcpu, kvm) {
3064                         if (vcpu->cpu != freq->cpu)
3065                                 continue;
3066                         if (!kvm_request_guest_time_update(vcpu))
3067                                 continue;
3068                         if (vcpu->cpu != smp_processor_id())
3069                                 send_ipi++;
3070                 }
3071         }
3072         spin_unlock(&kvm_lock);
3073
3074         if (freq->old < freq->new && send_ipi) {
3075                 /*
3076                  * We upscale the frequency.  Must make the guest
3077                  * doesn't see old kvmclock values while running with
3078                  * the new frequency, otherwise we risk the guest sees
3079                  * time go backwards.
3080                  *
3081                  * In case we update the frequency for another cpu
3082                  * (which might be in guest context) send an interrupt
3083                  * to kick the cpu out of guest context.  Next time
3084                  * guest context is entered kvmclock will be updated,
3085                  * so the guest will not see stale values.
3086                  */
3087                 smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
3088         }
3089         return 0;
3090 }
3091
3092 static struct notifier_block kvmclock_cpufreq_notifier_block = {
3093         .notifier_call  = kvmclock_cpufreq_notifier
3094 };
3095
3096 int kvm_arch_init(void *opaque)
3097 {
3098         int r, cpu;
3099         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
3100
3101         if (kvm_x86_ops) {
3102                 printk(KERN_ERR "kvm: already loaded the other module\n");
3103                 r = -EEXIST;
3104                 goto out;
3105         }
3106
3107         if (!ops->cpu_has_kvm_support()) {
3108                 printk(KERN_ERR "kvm: no hardware support\n");
3109                 r = -EOPNOTSUPP;
3110                 goto out;
3111         }
3112         if (ops->disabled_by_bios()) {
3113                 printk(KERN_ERR "kvm: disabled by bios\n");
3114                 r = -EOPNOTSUPP;
3115                 goto out;
3116         }
3117
3118         r = kvm_mmu_module_init();
3119         if (r)
3120                 goto out;
3121
3122         kvm_init_msr_list();
3123
3124         kvm_x86_ops = ops;
3125         kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
3126         kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
3127         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
3128                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
3129
3130         for_each_possible_cpu(cpu)
3131                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
3132         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
3133                 tsc_khz_ref = tsc_khz;
3134                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
3135                                           CPUFREQ_TRANSITION_NOTIFIER);
3136         }
3137
3138         return 0;
3139
3140 out:
3141         return r;
3142 }
3143
3144 void kvm_arch_exit(void)
3145 {
3146         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
3147                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
3148                                             CPUFREQ_TRANSITION_NOTIFIER);
3149         kvm_x86_ops = NULL;
3150         kvm_mmu_module_exit();
3151 }
3152
3153 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
3154 {
3155         ++vcpu->stat.halt_exits;
3156         if (irqchip_in_kernel(vcpu->kvm)) {
3157                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
3158                 return 1;
3159         } else {
3160                 vcpu->run->exit_reason = KVM_EXIT_HLT;
3161                 return 0;
3162         }
3163 }
3164 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
3165
3166 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
3167                            unsigned long a1)
3168 {
3169         if (is_long_mode(vcpu))
3170                 return a0;
3171         else
3172                 return a0 | ((gpa_t)a1 << 32);
3173 }
3174
3175 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
3176 {
3177         unsigned long nr, a0, a1, a2, a3, ret;
3178         int r = 1;
3179
3180         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
3181         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
3182         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
3183         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
3184         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
3185
3186         trace_kvm_hypercall(nr, a0, a1, a2, a3);
3187
3188         if (!is_long_mode(vcpu)) {
3189                 nr &= 0xFFFFFFFF;
3190                 a0 &= 0xFFFFFFFF;
3191                 a1 &= 0xFFFFFFFF;
3192                 a2 &= 0xFFFFFFFF;
3193                 a3 &= 0xFFFFFFFF;
3194         }
3195
3196         switch (nr) {
3197         case KVM_HC_VAPIC_POLL_IRQ:
3198                 ret = 0;
3199                 break;
3200         case KVM_HC_MMU_OP:
3201                 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
3202                 break;
3203         default:
3204                 ret = -KVM_ENOSYS;
3205                 break;
3206         }
3207         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
3208         ++vcpu->stat.hypercalls;
3209         return r;
3210 }
3211 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
3212
3213 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
3214 {
3215         char instruction[3];
3216         int ret = 0;
3217         unsigned long rip = kvm_rip_read(vcpu);
3218
3219
3220         /*
3221          * Blow out the MMU to ensure that no other VCPU has an active mapping
3222          * to ensure that the updated hypercall appears atomically across all
3223          * VCPUs.
3224          */
3225         kvm_mmu_zap_all(vcpu->kvm);
3226
3227         kvm_x86_ops->patch_hypercall(vcpu, instruction);
3228         if (emulator_write_emulated(rip, instruction, 3, vcpu)
3229             != X86EMUL_CONTINUE)
3230                 ret = -EFAULT;
3231
3232         return ret;
3233 }
3234
3235 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
3236 {
3237         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
3238 }
3239
3240 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3241 {
3242         struct descriptor_table dt = { limit, base };
3243
3244         kvm_x86_ops->set_gdt(vcpu, &dt);
3245 }
3246
3247 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3248 {
3249         struct descriptor_table dt = { limit, base };
3250
3251         kvm_x86_ops->set_idt(vcpu, &dt);
3252 }
3253
3254 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
3255                    unsigned long *rflags)
3256 {
3257         kvm_lmsw(vcpu, msw);
3258         *rflags = kvm_x86_ops->get_rflags(vcpu);
3259 }
3260
3261 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
3262 {
3263         unsigned long value;
3264
3265         kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3266         switch (cr) {
3267         case 0:
3268                 value = vcpu->arch.cr0;
3269                 break;
3270         case 2:
3271                 value = vcpu->arch.cr2;
3272                 break;
3273         case 3:
3274                 value = vcpu->arch.cr3;
3275                 break;
3276         case 4:
3277                 value = vcpu->arch.cr4;
3278                 break;
3279         case 8:
3280                 value = kvm_get_cr8(vcpu);
3281                 break;
3282         default:
3283                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3284                 return 0;
3285         }
3286
3287         return value;
3288 }
3289
3290 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
3291                      unsigned long *rflags)
3292 {
3293         switch (cr) {
3294         case 0:
3295                 kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
3296                 *rflags = kvm_x86_ops->get_rflags(vcpu);
3297                 break;
3298         case 2:
3299                 vcpu->arch.cr2 = val;
3300                 break;
3301         case 3:
3302                 kvm_set_cr3(vcpu, val);
3303                 break;
3304         case 4:
3305                 kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
3306                 break;
3307         case 8:
3308                 kvm_set_cr8(vcpu, val & 0xfUL);
3309                 break;
3310         default:
3311                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3312         }
3313 }
3314
3315 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
3316 {
3317         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
3318         int j, nent = vcpu->arch.cpuid_nent;
3319
3320         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
3321         /* when no next entry is found, the current entry[i] is reselected */
3322         for (j = i + 1; ; j = (j + 1) % nent) {
3323                 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
3324                 if (ej->function == e->function) {
3325                         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
3326                         return j;
3327                 }
3328         }
3329         return 0; /* silence gcc, even though control never reaches here */
3330 }
3331
3332 /* find an entry with matching function, matching index (if needed), and that
3333  * should be read next (if it's stateful) */
3334 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
3335         u32 function, u32 index)
3336 {
3337         if (e->function != function)
3338                 return 0;
3339         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
3340                 return 0;
3341         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
3342             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
3343                 return 0;
3344         return 1;
3345 }
3346
3347 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
3348                                               u32 function, u32 index)
3349 {
3350         int i;
3351         struct kvm_cpuid_entry2 *best = NULL;
3352
3353         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
3354                 struct kvm_cpuid_entry2 *e;
3355
3356                 e = &vcpu->arch.cpuid_entries[i];
3357                 if (is_matching_cpuid_entry(e, function, index)) {
3358                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
3359                                 move_to_next_stateful_cpuid_entry(vcpu, i);
3360                         best = e;
3361                         break;
3362                 }
3363                 /*
3364                  * Both basic or both extended?
3365                  */
3366                 if (((e->function ^ function) & 0x80000000) == 0)
3367                         if (!best || e->function > best->function)
3368                                 best = e;
3369         }
3370         return best;
3371 }
3372
3373 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
3374 {
3375         struct kvm_cpuid_entry2 *best;
3376
3377         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
3378         if (best)
3379                 return best->eax & 0xff;
3380         return 36;
3381 }
3382
3383 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
3384 {
3385         u32 function, index;
3386         struct kvm_cpuid_entry2 *best;
3387
3388         function = kvm_register_read(vcpu, VCPU_REGS_RAX);
3389         index = kvm_register_read(vcpu, VCPU_REGS_RCX);
3390         kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
3391         kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
3392         kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
3393         kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
3394         best = kvm_find_cpuid_entry(vcpu, function, index);
3395         if (best) {
3396                 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
3397                 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
3398                 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
3399                 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
3400         }
3401         kvm_x86_ops->skip_emulated_instruction(vcpu);
3402         trace_kvm_cpuid(function,
3403                         kvm_register_read(vcpu, VCPU_REGS_RAX),
3404                         kvm_register_read(vcpu, VCPU_REGS_RBX),
3405                         kvm_register_read(vcpu, VCPU_REGS_RCX),
3406                         kvm_register_read(vcpu, VCPU_REGS_RDX));
3407 }
3408 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
3409
3410 /*
3411  * Check if userspace requested an interrupt window, and that the
3412  * interrupt window is open.
3413  *
3414  * No need to exit to userspace if we already have an interrupt queued.
3415  */
3416 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
3417                                           struct kvm_run *kvm_run)
3418 {
3419         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
3420                 kvm_run->request_interrupt_window &&
3421                 kvm_arch_interrupt_allowed(vcpu));
3422 }
3423
3424 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
3425                               struct kvm_run *kvm_run)
3426 {
3427         kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
3428         kvm_run->cr8 = kvm_get_cr8(vcpu);
3429         kvm_run->apic_base = kvm_get_apic_base(vcpu);
3430         if (irqchip_in_kernel(vcpu->kvm))
3431                 kvm_run->ready_for_interrupt_injection = 1;
3432         else
3433                 kvm_run->ready_for_interrupt_injection =
3434                         kvm_arch_interrupt_allowed(vcpu) &&
3435                         !kvm_cpu_has_interrupt(vcpu) &&
3436                         !kvm_event_needs_reinjection(vcpu);
3437 }
3438
3439 static void vapic_enter(struct kvm_vcpu *vcpu)
3440 {
3441         struct kvm_lapic *apic = vcpu->arch.apic;
3442         struct page *page;
3443
3444         if (!apic || !apic->vapic_addr)
3445                 return;
3446
3447         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3448
3449         vcpu->arch.apic->vapic_page = page;
3450 }
3451
3452 static void vapic_exit(struct kvm_vcpu *vcpu)
3453 {
3454         struct kvm_lapic *apic = vcpu->arch.apic;
3455
3456         if (!apic || !apic->vapic_addr)
3457                 return;
3458
3459         down_read(&vcpu->kvm->slots_lock);
3460         kvm_release_page_dirty(apic->vapic_page);
3461         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3462         up_read(&vcpu->kvm->slots_lock);
3463 }
3464
3465 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
3466 {
3467         int max_irr, tpr;
3468
3469         if (!kvm_x86_ops->update_cr8_intercept)
3470                 return;
3471
3472         if (!vcpu->arch.apic->vapic_addr)
3473                 max_irr = kvm_lapic_find_highest_irr(vcpu);
3474         else
3475                 max_irr = -1;
3476
3477         if (max_irr != -1)
3478                 max_irr >>= 4;
3479
3480         tpr = kvm_lapic_get_cr8(vcpu);
3481
3482         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
3483 }
3484
3485 static void inject_pending_event(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3486 {
3487         /* try to reinject previous events if any */
3488         if (vcpu->arch.exception.pending) {
3489                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
3490                                           vcpu->arch.exception.has_error_code,
3491                                           vcpu->arch.exception.error_code);
3492                 return;
3493         }
3494
3495         if (vcpu->arch.nmi_injected) {
3496                 kvm_x86_ops->set_nmi(vcpu);
3497                 return;
3498         }
3499
3500         if (vcpu->arch.interrupt.pending) {
3501                 kvm_x86_ops->set_irq(vcpu);
3502                 return;
3503         }
3504
3505         /* try to inject new event if pending */
3506         if (vcpu->arch.nmi_pending) {
3507                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
3508                         vcpu->arch.nmi_pending = false;
3509                         vcpu->arch.nmi_injected = true;
3510                         kvm_x86_ops->set_nmi(vcpu);
3511                 }
3512         } else if (kvm_cpu_has_interrupt(vcpu)) {
3513                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
3514                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
3515                                             false);
3516                         kvm_x86_ops->set_irq(vcpu);
3517                 }
3518         }
3519 }
3520
3521 static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3522 {
3523         int r;
3524         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
3525                 kvm_run->request_interrupt_window;
3526
3527         if (vcpu->requests)
3528                 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
3529                         kvm_mmu_unload(vcpu);
3530
3531         r = kvm_mmu_reload(vcpu);
3532         if (unlikely(r))
3533                 goto out;
3534
3535         if (vcpu->requests) {
3536                 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
3537                         __kvm_migrate_timers(vcpu);
3538                 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
3539                         kvm_write_guest_time(vcpu);
3540                 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
3541                         kvm_mmu_sync_roots(vcpu);
3542                 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
3543                         kvm_x86_ops->tlb_flush(vcpu);
3544                 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
3545                                        &vcpu->requests)) {
3546                         kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
3547                         r = 0;
3548                         goto out;
3549                 }
3550                 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
3551                         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
3552                         r = 0;
3553                         goto out;
3554                 }
3555         }
3556
3557         preempt_disable();
3558
3559         kvm_x86_ops->prepare_guest_switch(vcpu);
3560         kvm_load_guest_fpu(vcpu);
3561
3562         local_irq_disable();
3563
3564         clear_bit(KVM_REQ_KICK, &vcpu->requests);
3565         smp_mb__after_clear_bit();
3566
3567         if (vcpu->requests || need_resched() || signal_pending(current)) {
3568                 set_bit(KVM_REQ_KICK, &vcpu->requests);
3569                 local_irq_enable();
3570                 preempt_enable();
3571                 r = 1;
3572                 goto out;
3573         }
3574
3575         inject_pending_event(vcpu, kvm_run);
3576
3577         /* enable NMI/IRQ window open exits if needed */
3578         if (vcpu->arch.nmi_pending)
3579                 kvm_x86_ops->enable_nmi_window(vcpu);
3580         else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
3581                 kvm_x86_ops->enable_irq_window(vcpu);
3582
3583         if (kvm_lapic_enabled(vcpu)) {
3584                 update_cr8_intercept(vcpu);
3585                 kvm_lapic_sync_to_vapic(vcpu);
3586         }
3587
3588         up_read(&vcpu->kvm->slots_lock);
3589
3590         kvm_guest_enter();
3591
3592         get_debugreg(vcpu->arch.host_dr6, 6);
3593         get_debugreg(vcpu->arch.host_dr7, 7);
3594         if (unlikely(vcpu->arch.switch_db_regs)) {
3595                 get_debugreg(vcpu->arch.host_db[0], 0);
3596                 get_debugreg(vcpu->arch.host_db[1], 1);
3597                 get_debugreg(vcpu->arch.host_db[2], 2);
3598                 get_debugreg(vcpu->arch.host_db[3], 3);
3599
3600                 set_debugreg(0, 7);
3601                 set_debugreg(vcpu->arch.eff_db[0], 0);
3602                 set_debugreg(vcpu->arch.eff_db[1], 1);
3603                 set_debugreg(vcpu->arch.eff_db[2], 2);
3604                 set_debugreg(vcpu->arch.eff_db[3], 3);
3605         }
3606
3607         trace_kvm_entry(vcpu->vcpu_id);
3608         kvm_x86_ops->run(vcpu, kvm_run);
3609
3610         if (unlikely(vcpu->arch.switch_db_regs)) {
3611                 set_debugreg(0, 7);
3612                 set_debugreg(vcpu->arch.host_db[0], 0);
3613                 set_debugreg(vcpu->arch.host_db[1], 1);
3614                 set_debugreg(vcpu->arch.host_db[2], 2);
3615                 set_debugreg(vcpu->arch.host_db[3], 3);
3616         }
3617         set_debugreg(vcpu->arch.host_dr6, 6);
3618         set_debugreg(vcpu->arch.host_dr7, 7);
3619
3620         set_bit(KVM_REQ_KICK, &vcpu->requests);
3621         local_irq_enable();
3622
3623         ++vcpu->stat.exits;
3624
3625         /*
3626          * We must have an instruction between local_irq_enable() and
3627          * kvm_guest_exit(), so the timer interrupt isn't delayed by
3628          * the interrupt shadow.  The stat.exits increment will do nicely.
3629          * But we need to prevent reordering, hence this barrier():
3630          */
3631         barrier();
3632
3633         kvm_guest_exit();
3634
3635         preempt_enable();
3636
3637         down_read(&vcpu->kvm->slots_lock);
3638
3639         /*
3640          * Profile KVM exit RIPs:
3641          */
3642         if (unlikely(prof_on == KVM_PROFILING)) {
3643                 unsigned long rip = kvm_rip_read(vcpu);
3644                 profile_hit(KVM_PROFILING, (void *)rip);
3645         }
3646
3647
3648         kvm_lapic_sync_from_vapic(vcpu);
3649
3650         r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
3651 out:
3652         return r;
3653 }
3654
3655
3656 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3657 {
3658         int r;
3659
3660         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
3661                 pr_debug("vcpu %d received sipi with vector # %x\n",
3662                          vcpu->vcpu_id, vcpu->arch.sipi_vector);
3663                 kvm_lapic_reset(vcpu);
3664                 r = kvm_arch_vcpu_reset(vcpu);
3665                 if (r)
3666                         return r;
3667                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3668         }
3669
3670         down_read(&vcpu->kvm->slots_lock);
3671         vapic_enter(vcpu);
3672
3673         r = 1;
3674         while (r > 0) {
3675                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
3676                         r = vcpu_enter_guest(vcpu, kvm_run);
3677                 else {
3678                         up_read(&vcpu->kvm->slots_lock);
3679                         kvm_vcpu_block(vcpu);
3680                         down_read(&vcpu->kvm->slots_lock);
3681                         if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
3682                         {
3683                                 switch(vcpu->arch.mp_state) {
3684                                 case KVM_MP_STATE_HALTED:
3685                                         vcpu->arch.mp_state =
3686                                                 KVM_MP_STATE_RUNNABLE;
3687                                 case KVM_MP_STATE_RUNNABLE:
3688                                         break;
3689                                 case KVM_MP_STATE_SIPI_RECEIVED:
3690                                 default:
3691                                         r = -EINTR;
3692                                         break;
3693                                 }
3694                         }
3695                 }
3696
3697                 if (r <= 0)
3698                         break;
3699
3700                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
3701                 if (kvm_cpu_has_pending_timer(vcpu))
3702                         kvm_inject_pending_timer_irqs(vcpu);
3703
3704                 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
3705                         r = -EINTR;
3706                         kvm_run->exit_reason = KVM_EXIT_INTR;
3707                         ++vcpu->stat.request_irq_exits;
3708                 }
3709                 if (signal_pending(current)) {
3710                         r = -EINTR;
3711                         kvm_run->exit_reason = KVM_EXIT_INTR;
3712                         ++vcpu->stat.signal_exits;
3713                 }
3714                 if (need_resched()) {
3715                         up_read(&vcpu->kvm->slots_lock);
3716                         kvm_resched(vcpu);
3717                         down_read(&vcpu->kvm->slots_lock);
3718                 }
3719         }
3720
3721         up_read(&vcpu->kvm->slots_lock);
3722         post_kvm_run_save(vcpu, kvm_run);
3723
3724         vapic_exit(vcpu);
3725
3726         return r;
3727 }
3728
3729 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3730 {
3731         int r;
3732         sigset_t sigsaved;
3733
3734         vcpu_load(vcpu);
3735
3736         if (vcpu->sigset_active)
3737                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
3738
3739         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
3740                 kvm_vcpu_block(vcpu);
3741                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
3742                 r = -EAGAIN;
3743                 goto out;
3744         }
3745
3746         /* re-sync apic's tpr */
3747         if (!irqchip_in_kernel(vcpu->kvm))
3748                 kvm_set_cr8(vcpu, kvm_run->cr8);
3749
3750         if (vcpu->arch.pio.cur_count) {
3751                 r = complete_pio(vcpu);
3752                 if (r)
3753                         goto out;
3754         }
3755 #if CONFIG_HAS_IOMEM
3756         if (vcpu->mmio_needed) {
3757                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
3758                 vcpu->mmio_read_completed = 1;
3759                 vcpu->mmio_needed = 0;
3760
3761                 down_read(&vcpu->kvm->slots_lock);
3762                 r = emulate_instruction(vcpu, kvm_run,
3763                                         vcpu->arch.mmio_fault_cr2, 0,
3764                                         EMULTYPE_NO_DECODE);
3765                 up_read(&vcpu->kvm->slots_lock);
3766                 if (r == EMULATE_DO_MMIO) {
3767                         /*
3768                          * Read-modify-write.  Back to userspace.
3769                          */
3770                         r = 0;
3771                         goto out;
3772                 }
3773         }
3774 #endif
3775         if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
3776                 kvm_register_write(vcpu, VCPU_REGS_RAX,
3777                                      kvm_run->hypercall.ret);
3778
3779         r = __vcpu_run(vcpu, kvm_run);
3780
3781 out:
3782         if (vcpu->sigset_active)
3783                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
3784
3785         vcpu_put(vcpu);
3786         return r;
3787 }
3788
3789 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3790 {
3791         vcpu_load(vcpu);
3792
3793         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3794         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3795         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3796         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3797         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3798         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3799         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3800         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3801 #ifdef CONFIG_X86_64
3802         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
3803         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
3804         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
3805         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
3806         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
3807         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
3808         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
3809         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
3810 #endif
3811
3812         regs->rip = kvm_rip_read(vcpu);
3813         regs->rflags = kvm_x86_ops->get_rflags(vcpu);
3814
3815         /*
3816          * Don't leak debug flags in case they were set for guest debugging
3817          */
3818         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3819                 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
3820
3821         vcpu_put(vcpu);
3822
3823         return 0;
3824 }
3825
3826 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3827 {
3828         vcpu_load(vcpu);
3829
3830         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
3831         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
3832         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
3833         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
3834         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
3835         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
3836         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
3837         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
3838 #ifdef CONFIG_X86_64
3839         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
3840         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
3841         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
3842         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
3843         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
3844         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
3845         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
3846         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
3847
3848 #endif
3849
3850         kvm_rip_write(vcpu, regs->rip);
3851         kvm_x86_ops->set_rflags(vcpu, regs->rflags);
3852
3853
3854         vcpu->arch.exception.pending = false;
3855
3856         vcpu_put(vcpu);
3857
3858         return 0;
3859 }
3860
3861 void kvm_get_segment(struct kvm_vcpu *vcpu,
3862                      struct kvm_segment *var, int seg)
3863 {
3864         kvm_x86_ops->get_segment(vcpu, var, seg);
3865 }
3866
3867 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3868 {
3869         struct kvm_segment cs;
3870
3871         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
3872         *db = cs.db;
3873         *l = cs.l;
3874 }
3875 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
3876
3877 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
3878                                   struct kvm_sregs *sregs)
3879 {
3880         struct descriptor_table dt;
3881
3882         vcpu_load(vcpu);
3883
3884         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3885         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3886         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3887         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3888         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3889         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3890
3891         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3892         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3893
3894         kvm_x86_ops->get_idt(vcpu, &dt);
3895         sregs->idt.limit = dt.limit;
3896         sregs->idt.base = dt.base;
3897         kvm_x86_ops->get_gdt(vcpu, &dt);
3898         sregs->gdt.limit = dt.limit;
3899         sregs->gdt.base = dt.base;
3900
3901         kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3902         sregs->cr0 = vcpu->arch.cr0;
3903         sregs->cr2 = vcpu->arch.cr2;
3904         sregs->cr3 = vcpu->arch.cr3;
3905         sregs->cr4 = vcpu->arch.cr4;
3906         sregs->cr8 = kvm_get_cr8(vcpu);
3907         sregs->efer = vcpu->arch.shadow_efer;
3908         sregs->apic_base = kvm_get_apic_base(vcpu);
3909
3910         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
3911
3912         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
3913                 set_bit(vcpu->arch.interrupt.nr,
3914                         (unsigned long *)sregs->interrupt_bitmap);
3915
3916         vcpu_put(vcpu);
3917
3918         return 0;
3919 }
3920
3921 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
3922                                     struct kvm_mp_state *mp_state)
3923 {
3924         vcpu_load(vcpu);
3925         mp_state->mp_state = vcpu->arch.mp_state;
3926         vcpu_put(vcpu);
3927         return 0;
3928 }
3929
3930 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
3931                                     struct kvm_mp_state *mp_state)
3932 {
3933         vcpu_load(vcpu);
3934         vcpu->arch.mp_state = mp_state->mp_state;
3935         vcpu_put(vcpu);
3936         return 0;
3937 }
3938
3939 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3940                         struct kvm_segment *var, int seg)
3941 {
3942         kvm_x86_ops->set_segment(vcpu, var, seg);
3943 }
3944
3945 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
3946                                    struct kvm_segment *kvm_desct)
3947 {
3948         kvm_desct->base = get_desc_base(seg_desc);
3949         kvm_desct->limit = get_desc_limit(seg_desc);
3950         if (seg_desc->g) {
3951                 kvm_desct->limit <<= 12;
3952                 kvm_desct->limit |= 0xfff;
3953         }
3954         kvm_desct->selector = selector;
3955         kvm_desct->type = seg_desc->type;
3956         kvm_desct->present = seg_desc->p;
3957         kvm_desct->dpl = seg_desc->dpl;
3958         kvm_desct->db = seg_desc->d;
3959         kvm_desct->s = seg_desc->s;
3960         kvm_desct->l = seg_desc->l;
3961         kvm_desct->g = seg_desc->g;
3962         kvm_desct->avl = seg_desc->avl;
3963         if (!selector)
3964                 kvm_desct->unusable = 1;
3965         else
3966                 kvm_desct->unusable = 0;
3967         kvm_desct->padding = 0;
3968 }
3969
3970 static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
3971                                           u16 selector,
3972                                           struct descriptor_table *dtable)
3973 {
3974         if (selector & 1 << 2) {
3975                 struct kvm_segment kvm_seg;
3976
3977                 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
3978
3979                 if (kvm_seg.unusable)
3980                         dtable->limit = 0;
3981                 else
3982                         dtable->limit = kvm_seg.limit;
3983                 dtable->base = kvm_seg.base;
3984         }
3985         else
3986                 kvm_x86_ops->get_gdt(vcpu, dtable);
3987 }
3988
3989 /* allowed just for 8 bytes segments */
3990 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3991                                          struct desc_struct *seg_desc)
3992 {
3993         gpa_t gpa;
3994         struct descriptor_table dtable;
3995         u16 index = selector >> 3;
3996
3997         get_segment_descriptor_dtable(vcpu, selector, &dtable);
3998
3999         if (dtable.limit < index * 8 + 7) {
4000                 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
4001                 return 1;
4002         }
4003         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
4004         gpa += index * 8;
4005         return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
4006 }
4007
4008 /* allowed just for 8 bytes segments */
4009 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4010                                          struct desc_struct *seg_desc)
4011 {
4012         gpa_t gpa;
4013         struct descriptor_table dtable;
4014         u16 index = selector >> 3;
4015
4016         get_segment_descriptor_dtable(vcpu, selector, &dtable);
4017
4018         if (dtable.limit < index * 8 + 7)
4019                 return 1;
4020         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
4021         gpa += index * 8;
4022         return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
4023 }
4024
4025 static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
4026                              struct desc_struct *seg_desc)
4027 {
4028         u32 base_addr = get_desc_base(seg_desc);
4029
4030         return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
4031 }
4032
4033 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
4034 {
4035         struct kvm_segment kvm_seg;
4036
4037         kvm_get_segment(vcpu, &kvm_seg, seg);
4038         return kvm_seg.selector;
4039 }
4040
4041 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
4042                                                 u16 selector,
4043                                                 struct kvm_segment *kvm_seg)
4044 {
4045         struct desc_struct seg_desc;
4046
4047         if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
4048                 return 1;
4049         seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
4050         return 0;
4051 }
4052
4053 static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
4054 {
4055         struct kvm_segment segvar = {
4056                 .base = selector << 4,
4057                 .limit = 0xffff,
4058                 .selector = selector,
4059                 .type = 3,
4060                 .present = 1,
4061                 .dpl = 3,
4062                 .db = 0,
4063                 .s = 1,
4064                 .l = 0,
4065                 .g = 0,
4066                 .avl = 0,
4067                 .unusable = 0,
4068         };
4069         kvm_x86_ops->set_segment(vcpu, &segvar, seg);
4070         return 0;
4071 }
4072
4073 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4074                                 int type_bits, int seg)
4075 {
4076         struct kvm_segment kvm_seg;
4077
4078         if (!(vcpu->arch.cr0 & X86_CR0_PE))
4079                 return kvm_load_realmode_segment(vcpu, selector, seg);
4080         if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
4081                 return 1;
4082         kvm_seg.type |= type_bits;
4083
4084         if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
4085             seg != VCPU_SREG_LDTR)
4086                 if (!kvm_seg.s)
4087                         kvm_seg.unusable = 1;
4088
4089         kvm_set_segment(vcpu, &kvm_seg, seg);
4090         return 0;
4091 }
4092
4093 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
4094                                 struct tss_segment_32 *tss)
4095 {
4096         tss->cr3 = vcpu->arch.cr3;
4097         tss->eip = kvm_rip_read(vcpu);
4098         tss->eflags = kvm_x86_ops->get_rflags(vcpu);
4099         tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4100         tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4101         tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4102         tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4103         tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4104         tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4105         tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4106         tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4107         tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4108         tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4109         tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4110         tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4111         tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
4112         tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
4113         tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4114 }
4115
4116 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
4117                                   struct tss_segment_32 *tss)
4118 {
4119         kvm_set_cr3(vcpu, tss->cr3);
4120
4121         kvm_rip_write(vcpu, tss->eip);
4122         kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
4123
4124         kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
4125         kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
4126         kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
4127         kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
4128         kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
4129         kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
4130         kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
4131         kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
4132
4133         if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
4134                 return 1;
4135
4136         if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
4137                 return 1;
4138
4139         if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
4140                 return 1;
4141
4142         if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
4143                 return 1;
4144
4145         if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
4146                 return 1;
4147
4148         if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
4149                 return 1;
4150
4151         if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
4152                 return 1;
4153         return 0;
4154 }
4155
4156 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
4157                                 struct tss_segment_16 *tss)
4158 {
4159         tss->ip = kvm_rip_read(vcpu);
4160         tss->flag = kvm_x86_ops->get_rflags(vcpu);
4161         tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4162         tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4163         tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4164         tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4165         tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4166         tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4167         tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
4168         tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
4169
4170         tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4171         tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4172         tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4173         tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4174         tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4175         tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
4176 }
4177
4178 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
4179                                  struct tss_segment_16 *tss)
4180 {
4181         kvm_rip_write(vcpu, tss->ip);
4182         kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
4183         kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
4184         kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
4185         kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
4186         kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
4187         kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
4188         kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
4189         kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
4190         kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
4191
4192         if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
4193                 return 1;
4194
4195         if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
4196                 return 1;
4197
4198         if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
4199                 return 1;
4200
4201         if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
4202                 return 1;
4203
4204         if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
4205                 return 1;
4206         return 0;
4207 }
4208
4209 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
4210                               u16 old_tss_sel, u32 old_tss_base,
4211                               struct desc_struct *nseg_desc)
4212 {
4213         struct tss_segment_16 tss_segment_16;
4214         int ret = 0;
4215
4216         if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4217                            sizeof tss_segment_16))
4218                 goto out;
4219
4220         save_state_to_tss16(vcpu, &tss_segment_16);
4221
4222         if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4223                             sizeof tss_segment_16))
4224                 goto out;
4225
4226         if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
4227                            &tss_segment_16, sizeof tss_segment_16))
4228                 goto out;
4229
4230         if (old_tss_sel != 0xffff) {
4231                 tss_segment_16.prev_task_link = old_tss_sel;
4232
4233                 if (kvm_write_guest(vcpu->kvm,
4234                                     get_tss_base_addr(vcpu, nseg_desc),
4235                                     &tss_segment_16.prev_task_link,
4236                                     sizeof tss_segment_16.prev_task_link))
4237                         goto out;
4238         }
4239
4240         if (load_state_from_tss16(vcpu, &tss_segment_16))
4241                 goto out;
4242
4243         ret = 1;
4244 out:
4245         return ret;
4246 }
4247
4248 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
4249                        u16 old_tss_sel, u32 old_tss_base,
4250                        struct desc_struct *nseg_desc)
4251 {
4252         struct tss_segment_32 tss_segment_32;
4253         int ret = 0;
4254
4255         if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
4256                            sizeof tss_segment_32))
4257                 goto out;
4258
4259         save_state_to_tss32(vcpu, &tss_segment_32);
4260
4261         if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
4262                             sizeof tss_segment_32))
4263                 goto out;
4264
4265         if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
4266                            &tss_segment_32, sizeof tss_segment_32))
4267                 goto out;
4268
4269         if (old_tss_sel != 0xffff) {
4270                 tss_segment_32.prev_task_link = old_tss_sel;
4271
4272                 if (kvm_write_guest(vcpu->kvm,
4273                                     get_tss_base_addr(vcpu, nseg_desc),
4274                                     &tss_segment_32.prev_task_link,
4275                                     sizeof tss_segment_32.prev_task_link))
4276                         goto out;
4277         }
4278
4279         if (load_state_from_tss32(vcpu, &tss_segment_32))
4280                 goto out;
4281
4282         ret = 1;
4283 out:
4284         return ret;
4285 }
4286
4287 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
4288 {
4289         struct kvm_segment tr_seg;
4290         struct desc_struct cseg_desc;
4291         struct desc_struct nseg_desc;
4292         int ret = 0;
4293         u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
4294         u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
4295
4296         old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
4297
4298         /* FIXME: Handle errors. Failure to read either TSS or their
4299          * descriptors should generate a pagefault.
4300          */
4301         if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
4302                 goto out;
4303
4304         if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
4305                 goto out;
4306
4307         if (reason != TASK_SWITCH_IRET) {
4308                 int cpl;
4309
4310                 cpl = kvm_x86_ops->get_cpl(vcpu);
4311                 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
4312                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4313                         return 1;
4314                 }
4315         }
4316
4317         if (!nseg_desc.p || get_desc_limit(&nseg_desc) < 0x67) {
4318                 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
4319                 return 1;
4320         }
4321
4322         if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
4323                 cseg_desc.type &= ~(1 << 1); //clear the B flag
4324                 save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
4325         }
4326
4327         if (reason == TASK_SWITCH_IRET) {
4328                 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
4329                 kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
4330         }
4331
4332         /* set back link to prev task only if NT bit is set in eflags
4333            note that old_tss_sel is not used afetr this point */
4334         if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
4335                 old_tss_sel = 0xffff;
4336
4337         /* set back link to prev task only if NT bit is set in eflags
4338            note that old_tss_sel is not used afetr this point */
4339         if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
4340                 old_tss_sel = 0xffff;
4341
4342         if (nseg_desc.type & 8)
4343                 ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
4344                                          old_tss_base, &nseg_desc);
4345         else
4346                 ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
4347                                          old_tss_base, &nseg_desc);
4348
4349         if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
4350                 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
4351                 kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
4352         }
4353
4354         if (reason != TASK_SWITCH_IRET) {
4355                 nseg_desc.type |= (1 << 1);
4356                 save_guest_segment_descriptor(vcpu, tss_selector,
4357                                               &nseg_desc);
4358         }
4359
4360         kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
4361         seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
4362         tr_seg.type = 11;
4363         kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
4364 out:
4365         return ret;
4366 }
4367 EXPORT_SYMBOL_GPL(kvm_task_switch);
4368
4369 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
4370                                   struct kvm_sregs *sregs)
4371 {
4372         int mmu_reset_needed = 0;
4373         int pending_vec, max_bits;
4374         struct descriptor_table dt;
4375
4376         vcpu_load(vcpu);
4377
4378         dt.limit = sregs->idt.limit;
4379         dt.base = sregs->idt.base;
4380         kvm_x86_ops->set_idt(vcpu, &dt);
4381         dt.limit = sregs->gdt.limit;
4382         dt.base = sregs->gdt.base;
4383         kvm_x86_ops->set_gdt(vcpu, &dt);
4384
4385         vcpu->arch.cr2 = sregs->cr2;
4386         mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
4387         vcpu->arch.cr3 = sregs->cr3;
4388
4389         kvm_set_cr8(vcpu, sregs->cr8);
4390
4391         mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
4392         kvm_x86_ops->set_efer(vcpu, sregs->efer);
4393         kvm_set_apic_base(vcpu, sregs->apic_base);
4394
4395         kvm_x86_ops->decache_cr4_guest_bits(vcpu);
4396
4397         mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
4398         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
4399         vcpu->arch.cr0 = sregs->cr0;
4400
4401         mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
4402         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
4403         if (!is_long_mode(vcpu) && is_pae(vcpu))
4404                 load_pdptrs(vcpu, vcpu->arch.cr3);
4405
4406         if (mmu_reset_needed)
4407                 kvm_mmu_reset_context(vcpu);
4408
4409         max_bits = (sizeof sregs->interrupt_bitmap) << 3;
4410         pending_vec = find_first_bit(
4411                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
4412         if (pending_vec < max_bits) {
4413                 kvm_queue_interrupt(vcpu, pending_vec, false);
4414                 pr_debug("Set back pending irq %d\n", pending_vec);
4415                 if (irqchip_in_kernel(vcpu->kvm))
4416                         kvm_pic_clear_isr_ack(vcpu->kvm);
4417         }
4418
4419         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4420         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4421         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4422         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4423         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4424         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4425
4426         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4427         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4428
4429         /* Older userspace won't unhalt the vcpu on reset. */
4430         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
4431             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
4432             !(vcpu->arch.cr0 & X86_CR0_PE))
4433                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4434
4435         vcpu_put(vcpu);
4436
4437         return 0;
4438 }
4439
4440 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
4441                                         struct kvm_guest_debug *dbg)
4442 {
4443         int i, r;
4444
4445         vcpu_load(vcpu);
4446
4447         if ((dbg->control & (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) ==
4448             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) {
4449                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
4450                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
4451                 vcpu->arch.switch_db_regs =
4452                         (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
4453         } else {
4454                 for (i = 0; i < KVM_NR_DB_REGS; i++)
4455                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
4456                 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
4457         }
4458
4459         r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
4460
4461         if (dbg->control & KVM_GUESTDBG_INJECT_DB)
4462                 kvm_queue_exception(vcpu, DB_VECTOR);
4463         else if (dbg->control & KVM_GUESTDBG_INJECT_BP)
4464                 kvm_queue_exception(vcpu, BP_VECTOR);
4465
4466         vcpu_put(vcpu);
4467
4468         return r;
4469 }
4470
4471 /*
4472  * fxsave fpu state.  Taken from x86_64/processor.h.  To be killed when
4473  * we have asm/x86/processor.h
4474  */
4475 struct fxsave {
4476         u16     cwd;
4477         u16     swd;
4478         u16     twd;
4479         u16     fop;
4480         u64     rip;
4481         u64     rdp;
4482         u32     mxcsr;
4483         u32     mxcsr_mask;
4484         u32     st_space[32];   /* 8*16 bytes for each FP-reg = 128 bytes */
4485 #ifdef CONFIG_X86_64
4486         u32     xmm_space[64];  /* 16*16 bytes for each XMM-reg = 256 bytes */
4487 #else
4488         u32     xmm_space[32];  /* 8*16 bytes for each XMM-reg = 128 bytes */
4489 #endif
4490 };
4491
4492 /*
4493  * Translate a guest virtual address to a guest physical address.
4494  */
4495 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
4496                                     struct kvm_translation *tr)
4497 {
4498         unsigned long vaddr = tr->linear_address;
4499         gpa_t gpa;
4500
4501         vcpu_load(vcpu);
4502         down_read(&vcpu->kvm->slots_lock);
4503         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
4504         up_read(&vcpu->kvm->slots_lock);
4505         tr->physical_address = gpa;
4506         tr->valid = gpa != UNMAPPED_GVA;
4507         tr->writeable = 1;
4508         tr->usermode = 0;
4509         vcpu_put(vcpu);
4510
4511         return 0;
4512 }
4513
4514 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4515 {
4516         struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4517
4518         vcpu_load(vcpu);
4519
4520         memcpy(fpu->fpr, fxsave->st_space, 128);
4521         fpu->fcw = fxsave->cwd;
4522         fpu->fsw = fxsave->swd;
4523         fpu->ftwx = fxsave->twd;
4524         fpu->last_opcode = fxsave->fop;
4525         fpu->last_ip = fxsave->rip;
4526         fpu->last_dp = fxsave->rdp;
4527         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
4528
4529         vcpu_put(vcpu);
4530
4531         return 0;
4532 }
4533
4534 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4535 {
4536         struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4537
4538         vcpu_load(vcpu);
4539
4540         memcpy(fxsave->st_space, fpu->fpr, 128);
4541         fxsave->cwd = fpu->fcw;
4542         fxsave->swd = fpu->fsw;
4543         fxsave->twd = fpu->ftwx;
4544         fxsave->fop = fpu->last_opcode;
4545         fxsave->rip = fpu->last_ip;
4546         fxsave->rdp = fpu->last_dp;
4547         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
4548
4549         vcpu_put(vcpu);
4550
4551         return 0;
4552 }
4553
4554 void fx_init(struct kvm_vcpu *vcpu)
4555 {
4556         unsigned after_mxcsr_mask;
4557
4558         /*
4559          * Touch the fpu the first time in non atomic context as if
4560          * this is the first fpu instruction the exception handler
4561          * will fire before the instruction returns and it'll have to
4562          * allocate ram with GFP_KERNEL.
4563          */
4564         if (!used_math())
4565                 kvm_fx_save(&vcpu->arch.host_fx_image);
4566
4567         /* Initialize guest FPU by resetting ours and saving into guest's */
4568         preempt_disable();
4569         kvm_fx_save(&vcpu->arch.host_fx_image);
4570         kvm_fx_finit();
4571         kvm_fx_save(&vcpu->arch.guest_fx_image);
4572         kvm_fx_restore(&vcpu->arch.host_fx_image);
4573         preempt_enable();
4574
4575         vcpu->arch.cr0 |= X86_CR0_ET;
4576         after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
4577         vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
4578         memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
4579                0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
4580 }
4581 EXPORT_SYMBOL_GPL(fx_init);
4582
4583 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
4584 {
4585         if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
4586                 return;
4587
4588         vcpu->guest_fpu_loaded = 1;
4589         kvm_fx_save(&vcpu->arch.host_fx_image);
4590         kvm_fx_restore(&vcpu->arch.guest_fx_image);
4591 }
4592 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
4593
4594 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
4595 {
4596         if (!vcpu->guest_fpu_loaded)
4597                 return;
4598
4599         vcpu->guest_fpu_loaded = 0;
4600         kvm_fx_save(&vcpu->arch.guest_fx_image);
4601         kvm_fx_restore(&vcpu->arch.host_fx_image);
4602         ++vcpu->stat.fpu_reload;
4603 }
4604 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
4605
4606 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
4607 {
4608         if (vcpu->arch.time_page) {
4609                 kvm_release_page_dirty(vcpu->arch.time_page);
4610                 vcpu->arch.time_page = NULL;
4611         }
4612
4613         kvm_x86_ops->vcpu_free(vcpu);
4614 }
4615
4616 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
4617                                                 unsigned int id)
4618 {
4619         return kvm_x86_ops->vcpu_create(kvm, id);
4620 }
4621
4622 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
4623 {
4624         int r;
4625
4626         /* We do fxsave: this must be aligned. */
4627         BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
4628
4629         vcpu->arch.mtrr_state.have_fixed = 1;
4630         vcpu_load(vcpu);
4631         r = kvm_arch_vcpu_reset(vcpu);
4632         if (r == 0)
4633                 r = kvm_mmu_setup(vcpu);
4634         vcpu_put(vcpu);
4635         if (r < 0)
4636                 goto free_vcpu;
4637
4638         return 0;
4639 free_vcpu:
4640         kvm_x86_ops->vcpu_free(vcpu);
4641         return r;
4642 }
4643
4644 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
4645 {
4646         vcpu_load(vcpu);
4647         kvm_mmu_unload(vcpu);
4648         vcpu_put(vcpu);
4649
4650         kvm_x86_ops->vcpu_free(vcpu);
4651 }
4652
4653 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
4654 {
4655         vcpu->arch.nmi_pending = false;
4656         vcpu->arch.nmi_injected = false;
4657
4658         vcpu->arch.switch_db_regs = 0;
4659         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
4660         vcpu->arch.dr6 = DR6_FIXED_1;
4661         vcpu->arch.dr7 = DR7_FIXED_1;
4662
4663         return kvm_x86_ops->vcpu_reset(vcpu);
4664 }
4665
4666 void kvm_arch_hardware_enable(void *garbage)
4667 {
4668         kvm_x86_ops->hardware_enable(garbage);
4669 }
4670
4671 void kvm_arch_hardware_disable(void *garbage)
4672 {
4673         kvm_x86_ops->hardware_disable(garbage);
4674 }
4675
4676 int kvm_arch_hardware_setup(void)
4677 {
4678         return kvm_x86_ops->hardware_setup();
4679 }
4680
4681 void kvm_arch_hardware_unsetup(void)
4682 {
4683         kvm_x86_ops->hardware_unsetup();
4684 }
4685
4686 void kvm_arch_check_processor_compat(void *rtn)
4687 {
4688         kvm_x86_ops->check_processor_compatibility(rtn);
4689 }
4690
4691 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
4692 {
4693         struct page *page;
4694         struct kvm *kvm;
4695         int r;
4696
4697         BUG_ON(vcpu->kvm == NULL);
4698         kvm = vcpu->kvm;
4699
4700         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4701         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
4702                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4703         else
4704                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
4705
4706         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
4707         if (!page) {
4708                 r = -ENOMEM;
4709                 goto fail;
4710         }
4711         vcpu->arch.pio_data = page_address(page);
4712
4713         r = kvm_mmu_create(vcpu);
4714         if (r < 0)
4715                 goto fail_free_pio_data;
4716
4717         if (irqchip_in_kernel(kvm)) {
4718                 r = kvm_create_lapic(vcpu);
4719                 if (r < 0)
4720                         goto fail_mmu_destroy;
4721         }
4722
4723         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
4724                                        GFP_KERNEL);
4725         if (!vcpu->arch.mce_banks) {
4726                 r = -ENOMEM;
4727                 goto fail_mmu_destroy;
4728         }
4729         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
4730
4731         return 0;
4732
4733 fail_mmu_destroy:
4734         kvm_mmu_destroy(vcpu);
4735 fail_free_pio_data:
4736         free_page((unsigned long)vcpu->arch.pio_data);
4737 fail:
4738         return r;
4739 }
4740
4741 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
4742 {
4743         kvm_free_lapic(vcpu);
4744         down_read(&vcpu->kvm->slots_lock);
4745         kvm_mmu_destroy(vcpu);
4746         up_read(&vcpu->kvm->slots_lock);
4747         free_page((unsigned long)vcpu->arch.pio_data);
4748 }
4749
4750 struct  kvm *kvm_arch_create_vm(void)
4751 {
4752         struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
4753
4754         if (!kvm)
4755                 return ERR_PTR(-ENOMEM);
4756
4757         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
4758         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
4759
4760         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
4761         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
4762
4763         rdtscll(kvm->arch.vm_init_tsc);
4764
4765         return kvm;
4766 }
4767
4768 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
4769 {
4770         vcpu_load(vcpu);
4771         kvm_mmu_unload(vcpu);
4772         vcpu_put(vcpu);
4773 }
4774
4775 static void kvm_free_vcpus(struct kvm *kvm)
4776 {
4777         unsigned int i;
4778         struct kvm_vcpu *vcpu;
4779
4780         /*
4781          * Unpin any mmu pages first.
4782          */
4783         kvm_for_each_vcpu(i, vcpu, kvm)
4784                 kvm_unload_vcpu_mmu(vcpu);
4785         kvm_for_each_vcpu(i, vcpu, kvm)
4786                 kvm_arch_vcpu_free(vcpu);
4787
4788         mutex_lock(&kvm->lock);
4789         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
4790                 kvm->vcpus[i] = NULL;
4791
4792         atomic_set(&kvm->online_vcpus, 0);
4793         mutex_unlock(&kvm->lock);
4794 }
4795
4796 void kvm_arch_sync_events(struct kvm *kvm)
4797 {
4798         kvm_free_all_assigned_devices(kvm);
4799 }
4800
4801 void kvm_arch_destroy_vm(struct kvm *kvm)
4802 {
4803         kvm_iommu_unmap_guest(kvm);
4804         kvm_free_pit(kvm);
4805         kfree(kvm->arch.vpic);
4806         kfree(kvm->arch.vioapic);
4807         kvm_free_vcpus(kvm);
4808         kvm_free_physmem(kvm);
4809         if (kvm->arch.apic_access_page)
4810                 put_page(kvm->arch.apic_access_page);
4811         if (kvm->arch.ept_identity_pagetable)
4812                 put_page(kvm->arch.ept_identity_pagetable);
4813         kfree(kvm);
4814 }
4815
4816 int kvm_arch_set_memory_region(struct kvm *kvm,
4817                                 struct kvm_userspace_memory_region *mem,
4818                                 struct kvm_memory_slot old,
4819                                 int user_alloc)
4820 {
4821         int npages = mem->memory_size >> PAGE_SHIFT;
4822         struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
4823
4824         /*To keep backward compatibility with older userspace,
4825          *x86 needs to hanlde !user_alloc case.
4826          */
4827         if (!user_alloc) {
4828                 if (npages && !old.rmap) {
4829                         unsigned long userspace_addr;
4830
4831                         down_write(&current->mm->mmap_sem);
4832                         userspace_addr = do_mmap(NULL, 0,
4833                                                  npages * PAGE_SIZE,
4834                                                  PROT_READ | PROT_WRITE,
4835                                                  MAP_PRIVATE | MAP_ANONYMOUS,
4836                                                  0);
4837                         up_write(&current->mm->mmap_sem);
4838
4839                         if (IS_ERR((void *)userspace_addr))
4840                                 return PTR_ERR((void *)userspace_addr);
4841
4842                         /* set userspace_addr atomically for kvm_hva_to_rmapp */
4843                         spin_lock(&kvm->mmu_lock);
4844                         memslot->userspace_addr = userspace_addr;
4845                         spin_unlock(&kvm->mmu_lock);
4846                 } else {
4847                         if (!old.user_alloc && old.rmap) {
4848                                 int ret;
4849
4850                                 down_write(&current->mm->mmap_sem);
4851                                 ret = do_munmap(current->mm, old.userspace_addr,
4852                                                 old.npages * PAGE_SIZE);
4853                                 up_write(&current->mm->mmap_sem);
4854                                 if (ret < 0)
4855                                         printk(KERN_WARNING
4856                                        "kvm_vm_ioctl_set_memory_region: "
4857                                        "failed to munmap memory\n");
4858                         }
4859                 }
4860         }
4861
4862         spin_lock(&kvm->mmu_lock);
4863         if (!kvm->arch.n_requested_mmu_pages) {
4864                 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
4865                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
4866         }
4867
4868         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
4869         spin_unlock(&kvm->mmu_lock);
4870         kvm_flush_remote_tlbs(kvm);
4871
4872         return 0;
4873 }
4874
4875 void kvm_arch_flush_shadow(struct kvm *kvm)
4876 {
4877         kvm_mmu_zap_all(kvm);
4878         kvm_reload_remote_mmus(kvm);
4879 }
4880
4881 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
4882 {
4883         return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
4884                 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
4885                 || vcpu->arch.nmi_pending ||
4886                 (kvm_arch_interrupt_allowed(vcpu) &&
4887                  kvm_cpu_has_interrupt(vcpu));
4888 }
4889
4890 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
4891 {
4892         int me;
4893         int cpu = vcpu->cpu;
4894
4895         if (waitqueue_active(&vcpu->wq)) {
4896                 wake_up_interruptible(&vcpu->wq);
4897                 ++vcpu->stat.halt_wakeup;
4898         }
4899
4900         me = get_cpu();
4901         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
4902                 if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
4903                         smp_send_reschedule(cpu);
4904         put_cpu();
4905 }
4906
4907 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
4908 {
4909         return kvm_x86_ops->interrupt_allowed(vcpu);
4910 }
4911
4912 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
4913 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
4914 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
4915 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
4916 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);