KVM: x86 emulator: Check IOPL level during io instruction emulation
[safe/jmp/linux-2.6] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Amit Shah    <amit.shah@qumranet.com>
14  *   Ben-Ami Yassour <benami@il.ibm.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
28
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
40 #include <linux/user-return-notifier.h>
41 #include <linux/srcu.h>
42 #include <trace/events/kvm.h>
43 #undef TRACE_INCLUDE_FILE
44 #define CREATE_TRACE_POINTS
45 #include "trace.h"
46
47 #include <asm/debugreg.h>
48 #include <asm/uaccess.h>
49 #include <asm/msr.h>
50 #include <asm/desc.h>
51 #include <asm/mtrr.h>
52 #include <asm/mce.h>
53
54 #define MAX_IO_MSRS 256
55 #define CR0_RESERVED_BITS                                               \
56         (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
57                           | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
58                           | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
59 #define CR4_RESERVED_BITS                                               \
60         (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
61                           | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
62                           | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR  \
63                           | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
64
65 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
66
67 #define KVM_MAX_MCE_BANKS 32
68 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
69
70 /* EFER defaults:
71  * - enable syscall per default because its emulated by KVM
72  * - enable LME and LMA per default on 64 bit KVM
73  */
74 #ifdef CONFIG_X86_64
75 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
76 #else
77 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
78 #endif
79
80 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
81 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
82
83 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
84 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
85                                     struct kvm_cpuid_entry2 __user *entries);
86
87 struct kvm_x86_ops *kvm_x86_ops;
88 EXPORT_SYMBOL_GPL(kvm_x86_ops);
89
90 int ignore_msrs = 0;
91 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
92
93 #define KVM_NR_SHARED_MSRS 16
94
95 struct kvm_shared_msrs_global {
96         int nr;
97         u32 msrs[KVM_NR_SHARED_MSRS];
98 };
99
100 struct kvm_shared_msrs {
101         struct user_return_notifier urn;
102         bool registered;
103         struct kvm_shared_msr_values {
104                 u64 host;
105                 u64 curr;
106         } values[KVM_NR_SHARED_MSRS];
107 };
108
109 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
110 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
111
112 struct kvm_stats_debugfs_item debugfs_entries[] = {
113         { "pf_fixed", VCPU_STAT(pf_fixed) },
114         { "pf_guest", VCPU_STAT(pf_guest) },
115         { "tlb_flush", VCPU_STAT(tlb_flush) },
116         { "invlpg", VCPU_STAT(invlpg) },
117         { "exits", VCPU_STAT(exits) },
118         { "io_exits", VCPU_STAT(io_exits) },
119         { "mmio_exits", VCPU_STAT(mmio_exits) },
120         { "signal_exits", VCPU_STAT(signal_exits) },
121         { "irq_window", VCPU_STAT(irq_window_exits) },
122         { "nmi_window", VCPU_STAT(nmi_window_exits) },
123         { "halt_exits", VCPU_STAT(halt_exits) },
124         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
125         { "hypercalls", VCPU_STAT(hypercalls) },
126         { "request_irq", VCPU_STAT(request_irq_exits) },
127         { "irq_exits", VCPU_STAT(irq_exits) },
128         { "host_state_reload", VCPU_STAT(host_state_reload) },
129         { "efer_reload", VCPU_STAT(efer_reload) },
130         { "fpu_reload", VCPU_STAT(fpu_reload) },
131         { "insn_emulation", VCPU_STAT(insn_emulation) },
132         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
133         { "irq_injections", VCPU_STAT(irq_injections) },
134         { "nmi_injections", VCPU_STAT(nmi_injections) },
135         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
136         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
137         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
138         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
139         { "mmu_flooded", VM_STAT(mmu_flooded) },
140         { "mmu_recycled", VM_STAT(mmu_recycled) },
141         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
142         { "mmu_unsync", VM_STAT(mmu_unsync) },
143         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
144         { "largepages", VM_STAT(lpages) },
145         { NULL }
146 };
147
148 static void kvm_on_user_return(struct user_return_notifier *urn)
149 {
150         unsigned slot;
151         struct kvm_shared_msrs *locals
152                 = container_of(urn, struct kvm_shared_msrs, urn);
153         struct kvm_shared_msr_values *values;
154
155         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
156                 values = &locals->values[slot];
157                 if (values->host != values->curr) {
158                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
159                         values->curr = values->host;
160                 }
161         }
162         locals->registered = false;
163         user_return_notifier_unregister(urn);
164 }
165
166 static void shared_msr_update(unsigned slot, u32 msr)
167 {
168         struct kvm_shared_msrs *smsr;
169         u64 value;
170
171         smsr = &__get_cpu_var(shared_msrs);
172         /* only read, and nobody should modify it at this time,
173          * so don't need lock */
174         if (slot >= shared_msrs_global.nr) {
175                 printk(KERN_ERR "kvm: invalid MSR slot!");
176                 return;
177         }
178         rdmsrl_safe(msr, &value);
179         smsr->values[slot].host = value;
180         smsr->values[slot].curr = value;
181 }
182
183 void kvm_define_shared_msr(unsigned slot, u32 msr)
184 {
185         if (slot >= shared_msrs_global.nr)
186                 shared_msrs_global.nr = slot + 1;
187         shared_msrs_global.msrs[slot] = msr;
188         /* we need ensured the shared_msr_global have been updated */
189         smp_wmb();
190 }
191 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
192
193 static void kvm_shared_msr_cpu_online(void)
194 {
195         unsigned i;
196
197         for (i = 0; i < shared_msrs_global.nr; ++i)
198                 shared_msr_update(i, shared_msrs_global.msrs[i]);
199 }
200
201 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
202 {
203         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
204
205         if (((value ^ smsr->values[slot].curr) & mask) == 0)
206                 return;
207         smsr->values[slot].curr = value;
208         wrmsrl(shared_msrs_global.msrs[slot], value);
209         if (!smsr->registered) {
210                 smsr->urn.on_user_return = kvm_on_user_return;
211                 user_return_notifier_register(&smsr->urn);
212                 smsr->registered = true;
213         }
214 }
215 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
216
217 static void drop_user_return_notifiers(void *ignore)
218 {
219         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
220
221         if (smsr->registered)
222                 kvm_on_user_return(&smsr->urn);
223 }
224
225 unsigned long segment_base(u16 selector)
226 {
227         struct descriptor_table gdt;
228         struct desc_struct *d;
229         unsigned long table_base;
230         unsigned long v;
231
232         if (selector == 0)
233                 return 0;
234
235         kvm_get_gdt(&gdt);
236         table_base = gdt.base;
237
238         if (selector & 4) {           /* from ldt */
239                 u16 ldt_selector = kvm_read_ldt();
240
241                 table_base = segment_base(ldt_selector);
242         }
243         d = (struct desc_struct *)(table_base + (selector & ~7));
244         v = get_desc_base(d);
245 #ifdef CONFIG_X86_64
246         if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
247                 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
248 #endif
249         return v;
250 }
251 EXPORT_SYMBOL_GPL(segment_base);
252
253 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
254 {
255         if (irqchip_in_kernel(vcpu->kvm))
256                 return vcpu->arch.apic_base;
257         else
258                 return vcpu->arch.apic_base;
259 }
260 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
261
262 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
263 {
264         /* TODO: reserve bits check */
265         if (irqchip_in_kernel(vcpu->kvm))
266                 kvm_lapic_set_base(vcpu, data);
267         else
268                 vcpu->arch.apic_base = data;
269 }
270 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
271
272 #define EXCPT_BENIGN            0
273 #define EXCPT_CONTRIBUTORY      1
274 #define EXCPT_PF                2
275
276 static int exception_class(int vector)
277 {
278         switch (vector) {
279         case PF_VECTOR:
280                 return EXCPT_PF;
281         case DE_VECTOR:
282         case TS_VECTOR:
283         case NP_VECTOR:
284         case SS_VECTOR:
285         case GP_VECTOR:
286                 return EXCPT_CONTRIBUTORY;
287         default:
288                 break;
289         }
290         return EXCPT_BENIGN;
291 }
292
293 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
294                 unsigned nr, bool has_error, u32 error_code)
295 {
296         u32 prev_nr;
297         int class1, class2;
298
299         if (!vcpu->arch.exception.pending) {
300         queue:
301                 vcpu->arch.exception.pending = true;
302                 vcpu->arch.exception.has_error_code = has_error;
303                 vcpu->arch.exception.nr = nr;
304                 vcpu->arch.exception.error_code = error_code;
305                 return;
306         }
307
308         /* to check exception */
309         prev_nr = vcpu->arch.exception.nr;
310         if (prev_nr == DF_VECTOR) {
311                 /* triple fault -> shutdown */
312                 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
313                 return;
314         }
315         class1 = exception_class(prev_nr);
316         class2 = exception_class(nr);
317         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
318                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
319                 /* generate double fault per SDM Table 5-5 */
320                 vcpu->arch.exception.pending = true;
321                 vcpu->arch.exception.has_error_code = true;
322                 vcpu->arch.exception.nr = DF_VECTOR;
323                 vcpu->arch.exception.error_code = 0;
324         } else
325                 /* replace previous exception with a new one in a hope
326                    that instruction re-execution will regenerate lost
327                    exception */
328                 goto queue;
329 }
330
331 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
332 {
333         kvm_multiple_exception(vcpu, nr, false, 0);
334 }
335 EXPORT_SYMBOL_GPL(kvm_queue_exception);
336
337 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
338                            u32 error_code)
339 {
340         ++vcpu->stat.pf_guest;
341         vcpu->arch.cr2 = addr;
342         kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
343 }
344
345 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
346 {
347         vcpu->arch.nmi_pending = 1;
348 }
349 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
350
351 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
352 {
353         kvm_multiple_exception(vcpu, nr, true, error_code);
354 }
355 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
356
357 /*
358  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
359  * a #GP and return false.
360  */
361 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
362 {
363         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
364                 return true;
365         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
366         return false;
367 }
368 EXPORT_SYMBOL_GPL(kvm_require_cpl);
369
370 /*
371  * Load the pae pdptrs.  Return true is they are all valid.
372  */
373 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
374 {
375         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
376         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
377         int i;
378         int ret;
379         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
380
381         ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
382                                   offset * sizeof(u64), sizeof(pdpte));
383         if (ret < 0) {
384                 ret = 0;
385                 goto out;
386         }
387         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
388                 if (is_present_gpte(pdpte[i]) &&
389                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
390                         ret = 0;
391                         goto out;
392                 }
393         }
394         ret = 1;
395
396         memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
397         __set_bit(VCPU_EXREG_PDPTR,
398                   (unsigned long *)&vcpu->arch.regs_avail);
399         __set_bit(VCPU_EXREG_PDPTR,
400                   (unsigned long *)&vcpu->arch.regs_dirty);
401 out:
402
403         return ret;
404 }
405 EXPORT_SYMBOL_GPL(load_pdptrs);
406
407 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
408 {
409         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
410         bool changed = true;
411         int r;
412
413         if (is_long_mode(vcpu) || !is_pae(vcpu))
414                 return false;
415
416         if (!test_bit(VCPU_EXREG_PDPTR,
417                       (unsigned long *)&vcpu->arch.regs_avail))
418                 return true;
419
420         r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
421         if (r < 0)
422                 goto out;
423         changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
424 out:
425
426         return changed;
427 }
428
429 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
430 {
431         cr0 |= X86_CR0_ET;
432
433 #ifdef CONFIG_X86_64
434         if (cr0 & 0xffffffff00000000UL) {
435                 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
436                        cr0, kvm_read_cr0(vcpu));
437                 kvm_inject_gp(vcpu, 0);
438                 return;
439         }
440 #endif
441
442         cr0 &= ~CR0_RESERVED_BITS;
443
444         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
445                 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
446                 kvm_inject_gp(vcpu, 0);
447                 return;
448         }
449
450         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
451                 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
452                        "and a clear PE flag\n");
453                 kvm_inject_gp(vcpu, 0);
454                 return;
455         }
456
457         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
458 #ifdef CONFIG_X86_64
459                 if ((vcpu->arch.efer & EFER_LME)) {
460                         int cs_db, cs_l;
461
462                         if (!is_pae(vcpu)) {
463                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
464                                        "in long mode while PAE is disabled\n");
465                                 kvm_inject_gp(vcpu, 0);
466                                 return;
467                         }
468                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
469                         if (cs_l) {
470                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
471                                        "in long mode while CS.L == 1\n");
472                                 kvm_inject_gp(vcpu, 0);
473                                 return;
474
475                         }
476                 } else
477 #endif
478                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
479                         printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
480                                "reserved bits\n");
481                         kvm_inject_gp(vcpu, 0);
482                         return;
483                 }
484
485         }
486
487         kvm_x86_ops->set_cr0(vcpu, cr0);
488         vcpu->arch.cr0 = cr0;
489
490         kvm_mmu_reset_context(vcpu);
491         return;
492 }
493 EXPORT_SYMBOL_GPL(kvm_set_cr0);
494
495 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
496 {
497         kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0ful) | (msw & 0x0f));
498 }
499 EXPORT_SYMBOL_GPL(kvm_lmsw);
500
501 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
502 {
503         unsigned long old_cr4 = kvm_read_cr4(vcpu);
504         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
505
506         if (cr4 & CR4_RESERVED_BITS) {
507                 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
508                 kvm_inject_gp(vcpu, 0);
509                 return;
510         }
511
512         if (is_long_mode(vcpu)) {
513                 if (!(cr4 & X86_CR4_PAE)) {
514                         printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
515                                "in long mode\n");
516                         kvm_inject_gp(vcpu, 0);
517                         return;
518                 }
519         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
520                    && ((cr4 ^ old_cr4) & pdptr_bits)
521                    && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
522                 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
523                 kvm_inject_gp(vcpu, 0);
524                 return;
525         }
526
527         if (cr4 & X86_CR4_VMXE) {
528                 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
529                 kvm_inject_gp(vcpu, 0);
530                 return;
531         }
532         kvm_x86_ops->set_cr4(vcpu, cr4);
533         vcpu->arch.cr4 = cr4;
534         vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
535         kvm_mmu_reset_context(vcpu);
536 }
537 EXPORT_SYMBOL_GPL(kvm_set_cr4);
538
539 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
540 {
541         if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
542                 kvm_mmu_sync_roots(vcpu);
543                 kvm_mmu_flush_tlb(vcpu);
544                 return;
545         }
546
547         if (is_long_mode(vcpu)) {
548                 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
549                         printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
550                         kvm_inject_gp(vcpu, 0);
551                         return;
552                 }
553         } else {
554                 if (is_pae(vcpu)) {
555                         if (cr3 & CR3_PAE_RESERVED_BITS) {
556                                 printk(KERN_DEBUG
557                                        "set_cr3: #GP, reserved bits\n");
558                                 kvm_inject_gp(vcpu, 0);
559                                 return;
560                         }
561                         if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
562                                 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
563                                        "reserved bits\n");
564                                 kvm_inject_gp(vcpu, 0);
565                                 return;
566                         }
567                 }
568                 /*
569                  * We don't check reserved bits in nonpae mode, because
570                  * this isn't enforced, and VMware depends on this.
571                  */
572         }
573
574         /*
575          * Does the new cr3 value map to physical memory? (Note, we
576          * catch an invalid cr3 even in real-mode, because it would
577          * cause trouble later on when we turn on paging anyway.)
578          *
579          * A real CPU would silently accept an invalid cr3 and would
580          * attempt to use it - with largely undefined (and often hard
581          * to debug) behavior on the guest side.
582          */
583         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
584                 kvm_inject_gp(vcpu, 0);
585         else {
586                 vcpu->arch.cr3 = cr3;
587                 vcpu->arch.mmu.new_cr3(vcpu);
588         }
589 }
590 EXPORT_SYMBOL_GPL(kvm_set_cr3);
591
592 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
593 {
594         if (cr8 & CR8_RESERVED_BITS) {
595                 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
596                 kvm_inject_gp(vcpu, 0);
597                 return;
598         }
599         if (irqchip_in_kernel(vcpu->kvm))
600                 kvm_lapic_set_tpr(vcpu, cr8);
601         else
602                 vcpu->arch.cr8 = cr8;
603 }
604 EXPORT_SYMBOL_GPL(kvm_set_cr8);
605
606 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
607 {
608         if (irqchip_in_kernel(vcpu->kvm))
609                 return kvm_lapic_get_cr8(vcpu);
610         else
611                 return vcpu->arch.cr8;
612 }
613 EXPORT_SYMBOL_GPL(kvm_get_cr8);
614
615 static inline u32 bit(int bitno)
616 {
617         return 1 << (bitno & 31);
618 }
619
620 /*
621  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
622  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
623  *
624  * This list is modified at module load time to reflect the
625  * capabilities of the host cpu. This capabilities test skips MSRs that are
626  * kvm-specific. Those are put in the beginning of the list.
627  */
628
629 #define KVM_SAVE_MSRS_BEGIN     5
630 static u32 msrs_to_save[] = {
631         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
632         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
633         HV_X64_MSR_APIC_ASSIST_PAGE,
634         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
635         MSR_K6_STAR,
636 #ifdef CONFIG_X86_64
637         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
638 #endif
639         MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
640 };
641
642 static unsigned num_msrs_to_save;
643
644 static u32 emulated_msrs[] = {
645         MSR_IA32_MISC_ENABLE,
646 };
647
648 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
649 {
650         if (efer & efer_reserved_bits) {
651                 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
652                        efer);
653                 kvm_inject_gp(vcpu, 0);
654                 return;
655         }
656
657         if (is_paging(vcpu)
658             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) {
659                 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
660                 kvm_inject_gp(vcpu, 0);
661                 return;
662         }
663
664         if (efer & EFER_FFXSR) {
665                 struct kvm_cpuid_entry2 *feat;
666
667                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
668                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
669                         printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
670                         kvm_inject_gp(vcpu, 0);
671                         return;
672                 }
673         }
674
675         if (efer & EFER_SVME) {
676                 struct kvm_cpuid_entry2 *feat;
677
678                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
679                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
680                         printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
681                         kvm_inject_gp(vcpu, 0);
682                         return;
683                 }
684         }
685
686         kvm_x86_ops->set_efer(vcpu, efer);
687
688         efer &= ~EFER_LMA;
689         efer |= vcpu->arch.efer & EFER_LMA;
690
691         vcpu->arch.efer = efer;
692
693         vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
694         kvm_mmu_reset_context(vcpu);
695 }
696
697 void kvm_enable_efer_bits(u64 mask)
698 {
699        efer_reserved_bits &= ~mask;
700 }
701 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
702
703
704 /*
705  * Writes msr value into into the appropriate "register".
706  * Returns 0 on success, non-0 otherwise.
707  * Assumes vcpu_load() was already called.
708  */
709 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
710 {
711         return kvm_x86_ops->set_msr(vcpu, msr_index, data);
712 }
713
714 /*
715  * Adapt set_msr() to msr_io()'s calling convention
716  */
717 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
718 {
719         return kvm_set_msr(vcpu, index, *data);
720 }
721
722 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
723 {
724         static int version;
725         struct pvclock_wall_clock wc;
726         struct timespec boot;
727
728         if (!wall_clock)
729                 return;
730
731         version++;
732
733         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
734
735         /*
736          * The guest calculates current wall clock time by adding
737          * system time (updated by kvm_write_guest_time below) to the
738          * wall clock specified here.  guest system time equals host
739          * system time for us, thus we must fill in host boot time here.
740          */
741         getboottime(&boot);
742
743         wc.sec = boot.tv_sec;
744         wc.nsec = boot.tv_nsec;
745         wc.version = version;
746
747         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
748
749         version++;
750         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
751 }
752
753 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
754 {
755         uint32_t quotient, remainder;
756
757         /* Don't try to replace with do_div(), this one calculates
758          * "(dividend << 32) / divisor" */
759         __asm__ ( "divl %4"
760                   : "=a" (quotient), "=d" (remainder)
761                   : "0" (0), "1" (dividend), "r" (divisor) );
762         return quotient;
763 }
764
765 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
766 {
767         uint64_t nsecs = 1000000000LL;
768         int32_t  shift = 0;
769         uint64_t tps64;
770         uint32_t tps32;
771
772         tps64 = tsc_khz * 1000LL;
773         while (tps64 > nsecs*2) {
774                 tps64 >>= 1;
775                 shift--;
776         }
777
778         tps32 = (uint32_t)tps64;
779         while (tps32 <= (uint32_t)nsecs) {
780                 tps32 <<= 1;
781                 shift++;
782         }
783
784         hv_clock->tsc_shift = shift;
785         hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
786
787         pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
788                  __func__, tsc_khz, hv_clock->tsc_shift,
789                  hv_clock->tsc_to_system_mul);
790 }
791
792 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
793
794 static void kvm_write_guest_time(struct kvm_vcpu *v)
795 {
796         struct timespec ts;
797         unsigned long flags;
798         struct kvm_vcpu_arch *vcpu = &v->arch;
799         void *shared_kaddr;
800         unsigned long this_tsc_khz;
801
802         if ((!vcpu->time_page))
803                 return;
804
805         this_tsc_khz = get_cpu_var(cpu_tsc_khz);
806         if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
807                 kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
808                 vcpu->hv_clock_tsc_khz = this_tsc_khz;
809         }
810         put_cpu_var(cpu_tsc_khz);
811
812         /* Keep irq disabled to prevent changes to the clock */
813         local_irq_save(flags);
814         kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
815         ktime_get_ts(&ts);
816         monotonic_to_bootbased(&ts);
817         local_irq_restore(flags);
818
819         /* With all the info we got, fill in the values */
820
821         vcpu->hv_clock.system_time = ts.tv_nsec +
822                                      (NSEC_PER_SEC * (u64)ts.tv_sec) + v->kvm->arch.kvmclock_offset;
823
824         /*
825          * The interface expects us to write an even number signaling that the
826          * update is finished. Since the guest won't see the intermediate
827          * state, we just increase by 2 at the end.
828          */
829         vcpu->hv_clock.version += 2;
830
831         shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
832
833         memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
834                sizeof(vcpu->hv_clock));
835
836         kunmap_atomic(shared_kaddr, KM_USER0);
837
838         mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
839 }
840
841 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
842 {
843         struct kvm_vcpu_arch *vcpu = &v->arch;
844
845         if (!vcpu->time_page)
846                 return 0;
847         set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
848         return 1;
849 }
850
851 static bool msr_mtrr_valid(unsigned msr)
852 {
853         switch (msr) {
854         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
855         case MSR_MTRRfix64K_00000:
856         case MSR_MTRRfix16K_80000:
857         case MSR_MTRRfix16K_A0000:
858         case MSR_MTRRfix4K_C0000:
859         case MSR_MTRRfix4K_C8000:
860         case MSR_MTRRfix4K_D0000:
861         case MSR_MTRRfix4K_D8000:
862         case MSR_MTRRfix4K_E0000:
863         case MSR_MTRRfix4K_E8000:
864         case MSR_MTRRfix4K_F0000:
865         case MSR_MTRRfix4K_F8000:
866         case MSR_MTRRdefType:
867         case MSR_IA32_CR_PAT:
868                 return true;
869         case 0x2f8:
870                 return true;
871         }
872         return false;
873 }
874
875 static bool valid_pat_type(unsigned t)
876 {
877         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
878 }
879
880 static bool valid_mtrr_type(unsigned t)
881 {
882         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
883 }
884
885 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
886 {
887         int i;
888
889         if (!msr_mtrr_valid(msr))
890                 return false;
891
892         if (msr == MSR_IA32_CR_PAT) {
893                 for (i = 0; i < 8; i++)
894                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
895                                 return false;
896                 return true;
897         } else if (msr == MSR_MTRRdefType) {
898                 if (data & ~0xcff)
899                         return false;
900                 return valid_mtrr_type(data & 0xff);
901         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
902                 for (i = 0; i < 8 ; i++)
903                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
904                                 return false;
905                 return true;
906         }
907
908         /* variable MTRRs */
909         return valid_mtrr_type(data & 0xff);
910 }
911
912 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
913 {
914         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
915
916         if (!mtrr_valid(vcpu, msr, data))
917                 return 1;
918
919         if (msr == MSR_MTRRdefType) {
920                 vcpu->arch.mtrr_state.def_type = data;
921                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
922         } else if (msr == MSR_MTRRfix64K_00000)
923                 p[0] = data;
924         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
925                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
926         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
927                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
928         else if (msr == MSR_IA32_CR_PAT)
929                 vcpu->arch.pat = data;
930         else {  /* Variable MTRRs */
931                 int idx, is_mtrr_mask;
932                 u64 *pt;
933
934                 idx = (msr - 0x200) / 2;
935                 is_mtrr_mask = msr - 0x200 - 2 * idx;
936                 if (!is_mtrr_mask)
937                         pt =
938                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
939                 else
940                         pt =
941                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
942                 *pt = data;
943         }
944
945         kvm_mmu_reset_context(vcpu);
946         return 0;
947 }
948
949 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
950 {
951         u64 mcg_cap = vcpu->arch.mcg_cap;
952         unsigned bank_num = mcg_cap & 0xff;
953
954         switch (msr) {
955         case MSR_IA32_MCG_STATUS:
956                 vcpu->arch.mcg_status = data;
957                 break;
958         case MSR_IA32_MCG_CTL:
959                 if (!(mcg_cap & MCG_CTL_P))
960                         return 1;
961                 if (data != 0 && data != ~(u64)0)
962                         return -1;
963                 vcpu->arch.mcg_ctl = data;
964                 break;
965         default:
966                 if (msr >= MSR_IA32_MC0_CTL &&
967                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
968                         u32 offset = msr - MSR_IA32_MC0_CTL;
969                         /* only 0 or all 1s can be written to IA32_MCi_CTL */
970                         if ((offset & 0x3) == 0 &&
971                             data != 0 && data != ~(u64)0)
972                                 return -1;
973                         vcpu->arch.mce_banks[offset] = data;
974                         break;
975                 }
976                 return 1;
977         }
978         return 0;
979 }
980
981 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
982 {
983         struct kvm *kvm = vcpu->kvm;
984         int lm = is_long_mode(vcpu);
985         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
986                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
987         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
988                 : kvm->arch.xen_hvm_config.blob_size_32;
989         u32 page_num = data & ~PAGE_MASK;
990         u64 page_addr = data & PAGE_MASK;
991         u8 *page;
992         int r;
993
994         r = -E2BIG;
995         if (page_num >= blob_size)
996                 goto out;
997         r = -ENOMEM;
998         page = kzalloc(PAGE_SIZE, GFP_KERNEL);
999         if (!page)
1000                 goto out;
1001         r = -EFAULT;
1002         if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
1003                 goto out_free;
1004         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1005                 goto out_free;
1006         r = 0;
1007 out_free:
1008         kfree(page);
1009 out:
1010         return r;
1011 }
1012
1013 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1014 {
1015         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1016 }
1017
1018 static bool kvm_hv_msr_partition_wide(u32 msr)
1019 {
1020         bool r = false;
1021         switch (msr) {
1022         case HV_X64_MSR_GUEST_OS_ID:
1023         case HV_X64_MSR_HYPERCALL:
1024                 r = true;
1025                 break;
1026         }
1027
1028         return r;
1029 }
1030
1031 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1032 {
1033         struct kvm *kvm = vcpu->kvm;
1034
1035         switch (msr) {
1036         case HV_X64_MSR_GUEST_OS_ID:
1037                 kvm->arch.hv_guest_os_id = data;
1038                 /* setting guest os id to zero disables hypercall page */
1039                 if (!kvm->arch.hv_guest_os_id)
1040                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1041                 break;
1042         case HV_X64_MSR_HYPERCALL: {
1043                 u64 gfn;
1044                 unsigned long addr;
1045                 u8 instructions[4];
1046
1047                 /* if guest os id is not set hypercall should remain disabled */
1048                 if (!kvm->arch.hv_guest_os_id)
1049                         break;
1050                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1051                         kvm->arch.hv_hypercall = data;
1052                         break;
1053                 }
1054                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1055                 addr = gfn_to_hva(kvm, gfn);
1056                 if (kvm_is_error_hva(addr))
1057                         return 1;
1058                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1059                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1060                 if (copy_to_user((void __user *)addr, instructions, 4))
1061                         return 1;
1062                 kvm->arch.hv_hypercall = data;
1063                 break;
1064         }
1065         default:
1066                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1067                           "data 0x%llx\n", msr, data);
1068                 return 1;
1069         }
1070         return 0;
1071 }
1072
1073 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1074 {
1075         switch (msr) {
1076         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1077                 unsigned long addr;
1078
1079                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1080                         vcpu->arch.hv_vapic = data;
1081                         break;
1082                 }
1083                 addr = gfn_to_hva(vcpu->kvm, data >>
1084                                   HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1085                 if (kvm_is_error_hva(addr))
1086                         return 1;
1087                 if (clear_user((void __user *)addr, PAGE_SIZE))
1088                         return 1;
1089                 vcpu->arch.hv_vapic = data;
1090                 break;
1091         }
1092         case HV_X64_MSR_EOI:
1093                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1094         case HV_X64_MSR_ICR:
1095                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1096         case HV_X64_MSR_TPR:
1097                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1098         default:
1099                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1100                           "data 0x%llx\n", msr, data);
1101                 return 1;
1102         }
1103
1104         return 0;
1105 }
1106
1107 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1108 {
1109         switch (msr) {
1110         case MSR_EFER:
1111                 set_efer(vcpu, data);
1112                 break;
1113         case MSR_K7_HWCR:
1114                 data &= ~(u64)0x40;     /* ignore flush filter disable */
1115                 if (data != 0) {
1116                         pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1117                                 data);
1118                         return 1;
1119                 }
1120                 break;
1121         case MSR_FAM10H_MMIO_CONF_BASE:
1122                 if (data != 0) {
1123                         pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1124                                 "0x%llx\n", data);
1125                         return 1;
1126                 }
1127                 break;
1128         case MSR_AMD64_NB_CFG:
1129                 break;
1130         case MSR_IA32_DEBUGCTLMSR:
1131                 if (!data) {
1132                         /* We support the non-activated case already */
1133                         break;
1134                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1135                         /* Values other than LBR and BTF are vendor-specific,
1136                            thus reserved and should throw a #GP */
1137                         return 1;
1138                 }
1139                 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1140                         __func__, data);
1141                 break;
1142         case MSR_IA32_UCODE_REV:
1143         case MSR_IA32_UCODE_WRITE:
1144         case MSR_VM_HSAVE_PA:
1145         case MSR_AMD64_PATCH_LOADER:
1146                 break;
1147         case 0x200 ... 0x2ff:
1148                 return set_msr_mtrr(vcpu, msr, data);
1149         case MSR_IA32_APICBASE:
1150                 kvm_set_apic_base(vcpu, data);
1151                 break;
1152         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1153                 return kvm_x2apic_msr_write(vcpu, msr, data);
1154         case MSR_IA32_MISC_ENABLE:
1155                 vcpu->arch.ia32_misc_enable_msr = data;
1156                 break;
1157         case MSR_KVM_WALL_CLOCK:
1158                 vcpu->kvm->arch.wall_clock = data;
1159                 kvm_write_wall_clock(vcpu->kvm, data);
1160                 break;
1161         case MSR_KVM_SYSTEM_TIME: {
1162                 if (vcpu->arch.time_page) {
1163                         kvm_release_page_dirty(vcpu->arch.time_page);
1164                         vcpu->arch.time_page = NULL;
1165                 }
1166
1167                 vcpu->arch.time = data;
1168
1169                 /* we verify if the enable bit is set... */
1170                 if (!(data & 1))
1171                         break;
1172
1173                 /* ...but clean it before doing the actual write */
1174                 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1175
1176                 vcpu->arch.time_page =
1177                                 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1178
1179                 if (is_error_page(vcpu->arch.time_page)) {
1180                         kvm_release_page_clean(vcpu->arch.time_page);
1181                         vcpu->arch.time_page = NULL;
1182                 }
1183
1184                 kvm_request_guest_time_update(vcpu);
1185                 break;
1186         }
1187         case MSR_IA32_MCG_CTL:
1188         case MSR_IA32_MCG_STATUS:
1189         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1190                 return set_msr_mce(vcpu, msr, data);
1191
1192         /* Performance counters are not protected by a CPUID bit,
1193          * so we should check all of them in the generic path for the sake of
1194          * cross vendor migration.
1195          * Writing a zero into the event select MSRs disables them,
1196          * which we perfectly emulate ;-). Any other value should be at least
1197          * reported, some guests depend on them.
1198          */
1199         case MSR_P6_EVNTSEL0:
1200         case MSR_P6_EVNTSEL1:
1201         case MSR_K7_EVNTSEL0:
1202         case MSR_K7_EVNTSEL1:
1203         case MSR_K7_EVNTSEL2:
1204         case MSR_K7_EVNTSEL3:
1205                 if (data != 0)
1206                         pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1207                                 "0x%x data 0x%llx\n", msr, data);
1208                 break;
1209         /* at least RHEL 4 unconditionally writes to the perfctr registers,
1210          * so we ignore writes to make it happy.
1211          */
1212         case MSR_P6_PERFCTR0:
1213         case MSR_P6_PERFCTR1:
1214         case MSR_K7_PERFCTR0:
1215         case MSR_K7_PERFCTR1:
1216         case MSR_K7_PERFCTR2:
1217         case MSR_K7_PERFCTR3:
1218                 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1219                         "0x%x data 0x%llx\n", msr, data);
1220                 break;
1221         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1222                 if (kvm_hv_msr_partition_wide(msr)) {
1223                         int r;
1224                         mutex_lock(&vcpu->kvm->lock);
1225                         r = set_msr_hyperv_pw(vcpu, msr, data);
1226                         mutex_unlock(&vcpu->kvm->lock);
1227                         return r;
1228                 } else
1229                         return set_msr_hyperv(vcpu, msr, data);
1230                 break;
1231         default:
1232                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1233                         return xen_hvm_config(vcpu, data);
1234                 if (!ignore_msrs) {
1235                         pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1236                                 msr, data);
1237                         return 1;
1238                 } else {
1239                         pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1240                                 msr, data);
1241                         break;
1242                 }
1243         }
1244         return 0;
1245 }
1246 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1247
1248
1249 /*
1250  * Reads an msr value (of 'msr_index') into 'pdata'.
1251  * Returns 0 on success, non-0 otherwise.
1252  * Assumes vcpu_load() was already called.
1253  */
1254 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1255 {
1256         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1257 }
1258
1259 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1260 {
1261         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1262
1263         if (!msr_mtrr_valid(msr))
1264                 return 1;
1265
1266         if (msr == MSR_MTRRdefType)
1267                 *pdata = vcpu->arch.mtrr_state.def_type +
1268                          (vcpu->arch.mtrr_state.enabled << 10);
1269         else if (msr == MSR_MTRRfix64K_00000)
1270                 *pdata = p[0];
1271         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1272                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1273         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1274                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1275         else if (msr == MSR_IA32_CR_PAT)
1276                 *pdata = vcpu->arch.pat;
1277         else {  /* Variable MTRRs */
1278                 int idx, is_mtrr_mask;
1279                 u64 *pt;
1280
1281                 idx = (msr - 0x200) / 2;
1282                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1283                 if (!is_mtrr_mask)
1284                         pt =
1285                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1286                 else
1287                         pt =
1288                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1289                 *pdata = *pt;
1290         }
1291
1292         return 0;
1293 }
1294
1295 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1296 {
1297         u64 data;
1298         u64 mcg_cap = vcpu->arch.mcg_cap;
1299         unsigned bank_num = mcg_cap & 0xff;
1300
1301         switch (msr) {
1302         case MSR_IA32_P5_MC_ADDR:
1303         case MSR_IA32_P5_MC_TYPE:
1304                 data = 0;
1305                 break;
1306         case MSR_IA32_MCG_CAP:
1307                 data = vcpu->arch.mcg_cap;
1308                 break;
1309         case MSR_IA32_MCG_CTL:
1310                 if (!(mcg_cap & MCG_CTL_P))
1311                         return 1;
1312                 data = vcpu->arch.mcg_ctl;
1313                 break;
1314         case MSR_IA32_MCG_STATUS:
1315                 data = vcpu->arch.mcg_status;
1316                 break;
1317         default:
1318                 if (msr >= MSR_IA32_MC0_CTL &&
1319                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1320                         u32 offset = msr - MSR_IA32_MC0_CTL;
1321                         data = vcpu->arch.mce_banks[offset];
1322                         break;
1323                 }
1324                 return 1;
1325         }
1326         *pdata = data;
1327         return 0;
1328 }
1329
1330 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1331 {
1332         u64 data = 0;
1333         struct kvm *kvm = vcpu->kvm;
1334
1335         switch (msr) {
1336         case HV_X64_MSR_GUEST_OS_ID:
1337                 data = kvm->arch.hv_guest_os_id;
1338                 break;
1339         case HV_X64_MSR_HYPERCALL:
1340                 data = kvm->arch.hv_hypercall;
1341                 break;
1342         default:
1343                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1344                 return 1;
1345         }
1346
1347         *pdata = data;
1348         return 0;
1349 }
1350
1351 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1352 {
1353         u64 data = 0;
1354
1355         switch (msr) {
1356         case HV_X64_MSR_VP_INDEX: {
1357                 int r;
1358                 struct kvm_vcpu *v;
1359                 kvm_for_each_vcpu(r, v, vcpu->kvm)
1360                         if (v == vcpu)
1361                                 data = r;
1362                 break;
1363         }
1364         case HV_X64_MSR_EOI:
1365                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1366         case HV_X64_MSR_ICR:
1367                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1368         case HV_X64_MSR_TPR:
1369                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1370         default:
1371                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1372                 return 1;
1373         }
1374         *pdata = data;
1375         return 0;
1376 }
1377
1378 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1379 {
1380         u64 data;
1381
1382         switch (msr) {
1383         case MSR_IA32_PLATFORM_ID:
1384         case MSR_IA32_UCODE_REV:
1385         case MSR_IA32_EBL_CR_POWERON:
1386         case MSR_IA32_DEBUGCTLMSR:
1387         case MSR_IA32_LASTBRANCHFROMIP:
1388         case MSR_IA32_LASTBRANCHTOIP:
1389         case MSR_IA32_LASTINTFROMIP:
1390         case MSR_IA32_LASTINTTOIP:
1391         case MSR_K8_SYSCFG:
1392         case MSR_K7_HWCR:
1393         case MSR_VM_HSAVE_PA:
1394         case MSR_P6_PERFCTR0:
1395         case MSR_P6_PERFCTR1:
1396         case MSR_P6_EVNTSEL0:
1397         case MSR_P6_EVNTSEL1:
1398         case MSR_K7_EVNTSEL0:
1399         case MSR_K7_PERFCTR0:
1400         case MSR_K8_INT_PENDING_MSG:
1401         case MSR_AMD64_NB_CFG:
1402         case MSR_FAM10H_MMIO_CONF_BASE:
1403                 data = 0;
1404                 break;
1405         case MSR_MTRRcap:
1406                 data = 0x500 | KVM_NR_VAR_MTRR;
1407                 break;
1408         case 0x200 ... 0x2ff:
1409                 return get_msr_mtrr(vcpu, msr, pdata);
1410         case 0xcd: /* fsb frequency */
1411                 data = 3;
1412                 break;
1413         case MSR_IA32_APICBASE:
1414                 data = kvm_get_apic_base(vcpu);
1415                 break;
1416         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1417                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1418                 break;
1419         case MSR_IA32_MISC_ENABLE:
1420                 data = vcpu->arch.ia32_misc_enable_msr;
1421                 break;
1422         case MSR_IA32_PERF_STATUS:
1423                 /* TSC increment by tick */
1424                 data = 1000ULL;
1425                 /* CPU multiplier */
1426                 data |= (((uint64_t)4ULL) << 40);
1427                 break;
1428         case MSR_EFER:
1429                 data = vcpu->arch.efer;
1430                 break;
1431         case MSR_KVM_WALL_CLOCK:
1432                 data = vcpu->kvm->arch.wall_clock;
1433                 break;
1434         case MSR_KVM_SYSTEM_TIME:
1435                 data = vcpu->arch.time;
1436                 break;
1437         case MSR_IA32_P5_MC_ADDR:
1438         case MSR_IA32_P5_MC_TYPE:
1439         case MSR_IA32_MCG_CAP:
1440         case MSR_IA32_MCG_CTL:
1441         case MSR_IA32_MCG_STATUS:
1442         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1443                 return get_msr_mce(vcpu, msr, pdata);
1444         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1445                 if (kvm_hv_msr_partition_wide(msr)) {
1446                         int r;
1447                         mutex_lock(&vcpu->kvm->lock);
1448                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
1449                         mutex_unlock(&vcpu->kvm->lock);
1450                         return r;
1451                 } else
1452                         return get_msr_hyperv(vcpu, msr, pdata);
1453                 break;
1454         default:
1455                 if (!ignore_msrs) {
1456                         pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1457                         return 1;
1458                 } else {
1459                         pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1460                         data = 0;
1461                 }
1462                 break;
1463         }
1464         *pdata = data;
1465         return 0;
1466 }
1467 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1468
1469 /*
1470  * Read or write a bunch of msrs. All parameters are kernel addresses.
1471  *
1472  * @return number of msrs set successfully.
1473  */
1474 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1475                     struct kvm_msr_entry *entries,
1476                     int (*do_msr)(struct kvm_vcpu *vcpu,
1477                                   unsigned index, u64 *data))
1478 {
1479         int i, idx;
1480
1481         vcpu_load(vcpu);
1482
1483         idx = srcu_read_lock(&vcpu->kvm->srcu);
1484         for (i = 0; i < msrs->nmsrs; ++i)
1485                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1486                         break;
1487         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1488
1489         vcpu_put(vcpu);
1490
1491         return i;
1492 }
1493
1494 /*
1495  * Read or write a bunch of msrs. Parameters are user addresses.
1496  *
1497  * @return number of msrs set successfully.
1498  */
1499 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1500                   int (*do_msr)(struct kvm_vcpu *vcpu,
1501                                 unsigned index, u64 *data),
1502                   int writeback)
1503 {
1504         struct kvm_msrs msrs;
1505         struct kvm_msr_entry *entries;
1506         int r, n;
1507         unsigned size;
1508
1509         r = -EFAULT;
1510         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1511                 goto out;
1512
1513         r = -E2BIG;
1514         if (msrs.nmsrs >= MAX_IO_MSRS)
1515                 goto out;
1516
1517         r = -ENOMEM;
1518         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1519         entries = vmalloc(size);
1520         if (!entries)
1521                 goto out;
1522
1523         r = -EFAULT;
1524         if (copy_from_user(entries, user_msrs->entries, size))
1525                 goto out_free;
1526
1527         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1528         if (r < 0)
1529                 goto out_free;
1530
1531         r = -EFAULT;
1532         if (writeback && copy_to_user(user_msrs->entries, entries, size))
1533                 goto out_free;
1534
1535         r = n;
1536
1537 out_free:
1538         vfree(entries);
1539 out:
1540         return r;
1541 }
1542
1543 int kvm_dev_ioctl_check_extension(long ext)
1544 {
1545         int r;
1546
1547         switch (ext) {
1548         case KVM_CAP_IRQCHIP:
1549         case KVM_CAP_HLT:
1550         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1551         case KVM_CAP_SET_TSS_ADDR:
1552         case KVM_CAP_EXT_CPUID:
1553         case KVM_CAP_CLOCKSOURCE:
1554         case KVM_CAP_PIT:
1555         case KVM_CAP_NOP_IO_DELAY:
1556         case KVM_CAP_MP_STATE:
1557         case KVM_CAP_SYNC_MMU:
1558         case KVM_CAP_REINJECT_CONTROL:
1559         case KVM_CAP_IRQ_INJECT_STATUS:
1560         case KVM_CAP_ASSIGN_DEV_IRQ:
1561         case KVM_CAP_IRQFD:
1562         case KVM_CAP_IOEVENTFD:
1563         case KVM_CAP_PIT2:
1564         case KVM_CAP_PIT_STATE2:
1565         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1566         case KVM_CAP_XEN_HVM:
1567         case KVM_CAP_ADJUST_CLOCK:
1568         case KVM_CAP_VCPU_EVENTS:
1569         case KVM_CAP_HYPERV:
1570         case KVM_CAP_HYPERV_VAPIC:
1571         case KVM_CAP_HYPERV_SPIN:
1572         case KVM_CAP_PCI_SEGMENT:
1573                 r = 1;
1574                 break;
1575         case KVM_CAP_COALESCED_MMIO:
1576                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1577                 break;
1578         case KVM_CAP_VAPIC:
1579                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1580                 break;
1581         case KVM_CAP_NR_VCPUS:
1582                 r = KVM_MAX_VCPUS;
1583                 break;
1584         case KVM_CAP_NR_MEMSLOTS:
1585                 r = KVM_MEMORY_SLOTS;
1586                 break;
1587         case KVM_CAP_PV_MMU:    /* obsolete */
1588                 r = 0;
1589                 break;
1590         case KVM_CAP_IOMMU:
1591                 r = iommu_found();
1592                 break;
1593         case KVM_CAP_MCE:
1594                 r = KVM_MAX_MCE_BANKS;
1595                 break;
1596         default:
1597                 r = 0;
1598                 break;
1599         }
1600         return r;
1601
1602 }
1603
1604 long kvm_arch_dev_ioctl(struct file *filp,
1605                         unsigned int ioctl, unsigned long arg)
1606 {
1607         void __user *argp = (void __user *)arg;
1608         long r;
1609
1610         switch (ioctl) {
1611         case KVM_GET_MSR_INDEX_LIST: {
1612                 struct kvm_msr_list __user *user_msr_list = argp;
1613                 struct kvm_msr_list msr_list;
1614                 unsigned n;
1615
1616                 r = -EFAULT;
1617                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1618                         goto out;
1619                 n = msr_list.nmsrs;
1620                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1621                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1622                         goto out;
1623                 r = -E2BIG;
1624                 if (n < msr_list.nmsrs)
1625                         goto out;
1626                 r = -EFAULT;
1627                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1628                                  num_msrs_to_save * sizeof(u32)))
1629                         goto out;
1630                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1631                                  &emulated_msrs,
1632                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1633                         goto out;
1634                 r = 0;
1635                 break;
1636         }
1637         case KVM_GET_SUPPORTED_CPUID: {
1638                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1639                 struct kvm_cpuid2 cpuid;
1640
1641                 r = -EFAULT;
1642                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1643                         goto out;
1644                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1645                                                       cpuid_arg->entries);
1646                 if (r)
1647                         goto out;
1648
1649                 r = -EFAULT;
1650                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1651                         goto out;
1652                 r = 0;
1653                 break;
1654         }
1655         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
1656                 u64 mce_cap;
1657
1658                 mce_cap = KVM_MCE_CAP_SUPPORTED;
1659                 r = -EFAULT;
1660                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
1661                         goto out;
1662                 r = 0;
1663                 break;
1664         }
1665         default:
1666                 r = -EINVAL;
1667         }
1668 out:
1669         return r;
1670 }
1671
1672 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1673 {
1674         kvm_x86_ops->vcpu_load(vcpu, cpu);
1675         if (unlikely(per_cpu(cpu_tsc_khz, cpu) == 0)) {
1676                 unsigned long khz = cpufreq_quick_get(cpu);
1677                 if (!khz)
1678                         khz = tsc_khz;
1679                 per_cpu(cpu_tsc_khz, cpu) = khz;
1680         }
1681         kvm_request_guest_time_update(vcpu);
1682 }
1683
1684 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1685 {
1686         kvm_put_guest_fpu(vcpu);
1687         kvm_x86_ops->vcpu_put(vcpu);
1688 }
1689
1690 static int is_efer_nx(void)
1691 {
1692         unsigned long long efer = 0;
1693
1694         rdmsrl_safe(MSR_EFER, &efer);
1695         return efer & EFER_NX;
1696 }
1697
1698 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1699 {
1700         int i;
1701         struct kvm_cpuid_entry2 *e, *entry;
1702
1703         entry = NULL;
1704         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1705                 e = &vcpu->arch.cpuid_entries[i];
1706                 if (e->function == 0x80000001) {
1707                         entry = e;
1708                         break;
1709                 }
1710         }
1711         if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1712                 entry->edx &= ~(1 << 20);
1713                 printk(KERN_INFO "kvm: guest NX capability removed\n");
1714         }
1715 }
1716
1717 /* when an old userspace process fills a new kernel module */
1718 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1719                                     struct kvm_cpuid *cpuid,
1720                                     struct kvm_cpuid_entry __user *entries)
1721 {
1722         int r, i;
1723         struct kvm_cpuid_entry *cpuid_entries;
1724
1725         r = -E2BIG;
1726         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1727                 goto out;
1728         r = -ENOMEM;
1729         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1730         if (!cpuid_entries)
1731                 goto out;
1732         r = -EFAULT;
1733         if (copy_from_user(cpuid_entries, entries,
1734                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1735                 goto out_free;
1736         for (i = 0; i < cpuid->nent; i++) {
1737                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1738                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1739                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1740                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1741                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1742                 vcpu->arch.cpuid_entries[i].index = 0;
1743                 vcpu->arch.cpuid_entries[i].flags = 0;
1744                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1745                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1746                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1747         }
1748         vcpu->arch.cpuid_nent = cpuid->nent;
1749         cpuid_fix_nx_cap(vcpu);
1750         r = 0;
1751         kvm_apic_set_version(vcpu);
1752         kvm_x86_ops->cpuid_update(vcpu);
1753
1754 out_free:
1755         vfree(cpuid_entries);
1756 out:
1757         return r;
1758 }
1759
1760 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1761                                      struct kvm_cpuid2 *cpuid,
1762                                      struct kvm_cpuid_entry2 __user *entries)
1763 {
1764         int r;
1765
1766         r = -E2BIG;
1767         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1768                 goto out;
1769         r = -EFAULT;
1770         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1771                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1772                 goto out;
1773         vcpu->arch.cpuid_nent = cpuid->nent;
1774         kvm_apic_set_version(vcpu);
1775         kvm_x86_ops->cpuid_update(vcpu);
1776         return 0;
1777
1778 out:
1779         return r;
1780 }
1781
1782 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1783                                      struct kvm_cpuid2 *cpuid,
1784                                      struct kvm_cpuid_entry2 __user *entries)
1785 {
1786         int r;
1787
1788         r = -E2BIG;
1789         if (cpuid->nent < vcpu->arch.cpuid_nent)
1790                 goto out;
1791         r = -EFAULT;
1792         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1793                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1794                 goto out;
1795         return 0;
1796
1797 out:
1798         cpuid->nent = vcpu->arch.cpuid_nent;
1799         return r;
1800 }
1801
1802 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1803                            u32 index)
1804 {
1805         entry->function = function;
1806         entry->index = index;
1807         cpuid_count(entry->function, entry->index,
1808                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1809         entry->flags = 0;
1810 }
1811
1812 #define F(x) bit(X86_FEATURE_##x)
1813
1814 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1815                          u32 index, int *nent, int maxnent)
1816 {
1817         unsigned f_nx = is_efer_nx() ? F(NX) : 0;
1818 #ifdef CONFIG_X86_64
1819         unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
1820                                 ? F(GBPAGES) : 0;
1821         unsigned f_lm = F(LM);
1822 #else
1823         unsigned f_gbpages = 0;
1824         unsigned f_lm = 0;
1825 #endif
1826         unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
1827
1828         /* cpuid 1.edx */
1829         const u32 kvm_supported_word0_x86_features =
1830                 F(FPU) | F(VME) | F(DE) | F(PSE) |
1831                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1832                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
1833                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1834                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
1835                 0 /* Reserved, DS, ACPI */ | F(MMX) |
1836                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
1837                 0 /* HTT, TM, Reserved, PBE */;
1838         /* cpuid 0x80000001.edx */
1839         const u32 kvm_supported_word1_x86_features =
1840                 F(FPU) | F(VME) | F(DE) | F(PSE) |
1841                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1842                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
1843                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1844                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
1845                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
1846                 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
1847                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
1848         /* cpuid 1.ecx */
1849         const u32 kvm_supported_word4_x86_features =
1850                 F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
1851                 0 /* DS-CPL, VMX, SMX, EST */ |
1852                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
1853                 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
1854                 0 /* Reserved, DCA */ | F(XMM4_1) |
1855                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
1856                 0 /* Reserved, XSAVE, OSXSAVE */;
1857         /* cpuid 0x80000001.ecx */
1858         const u32 kvm_supported_word6_x86_features =
1859                 F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
1860                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
1861                 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
1862                 0 /* SKINIT */ | 0 /* WDT */;
1863
1864         /* all calls to cpuid_count() should be made on the same cpu */
1865         get_cpu();
1866         do_cpuid_1_ent(entry, function, index);
1867         ++*nent;
1868
1869         switch (function) {
1870         case 0:
1871                 entry->eax = min(entry->eax, (u32)0xb);
1872                 break;
1873         case 1:
1874                 entry->edx &= kvm_supported_word0_x86_features;
1875                 entry->ecx &= kvm_supported_word4_x86_features;
1876                 /* we support x2apic emulation even if host does not support
1877                  * it since we emulate x2apic in software */
1878                 entry->ecx |= F(X2APIC);
1879                 break;
1880         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1881          * may return different values. This forces us to get_cpu() before
1882          * issuing the first command, and also to emulate this annoying behavior
1883          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1884         case 2: {
1885                 int t, times = entry->eax & 0xff;
1886
1887                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1888                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
1889                 for (t = 1; t < times && *nent < maxnent; ++t) {
1890                         do_cpuid_1_ent(&entry[t], function, 0);
1891                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1892                         ++*nent;
1893                 }
1894                 break;
1895         }
1896         /* function 4 and 0xb have additional index. */
1897         case 4: {
1898                 int i, cache_type;
1899
1900                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1901                 /* read more entries until cache_type is zero */
1902                 for (i = 1; *nent < maxnent; ++i) {
1903                         cache_type = entry[i - 1].eax & 0x1f;
1904                         if (!cache_type)
1905                                 break;
1906                         do_cpuid_1_ent(&entry[i], function, i);
1907                         entry[i].flags |=
1908                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1909                         ++*nent;
1910                 }
1911                 break;
1912         }
1913         case 0xb: {
1914                 int i, level_type;
1915
1916                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1917                 /* read more entries until level_type is zero */
1918                 for (i = 1; *nent < maxnent; ++i) {
1919                         level_type = entry[i - 1].ecx & 0xff00;
1920                         if (!level_type)
1921                                 break;
1922                         do_cpuid_1_ent(&entry[i], function, i);
1923                         entry[i].flags |=
1924                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1925                         ++*nent;
1926                 }
1927                 break;
1928         }
1929         case 0x80000000:
1930                 entry->eax = min(entry->eax, 0x8000001a);
1931                 break;
1932         case 0x80000001:
1933                 entry->edx &= kvm_supported_word1_x86_features;
1934                 entry->ecx &= kvm_supported_word6_x86_features;
1935                 break;
1936         }
1937         put_cpu();
1938 }
1939
1940 #undef F
1941
1942 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1943                                      struct kvm_cpuid_entry2 __user *entries)
1944 {
1945         struct kvm_cpuid_entry2 *cpuid_entries;
1946         int limit, nent = 0, r = -E2BIG;
1947         u32 func;
1948
1949         if (cpuid->nent < 1)
1950                 goto out;
1951         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1952                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1953         r = -ENOMEM;
1954         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1955         if (!cpuid_entries)
1956                 goto out;
1957
1958         do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1959         limit = cpuid_entries[0].eax;
1960         for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1961                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1962                              &nent, cpuid->nent);
1963         r = -E2BIG;
1964         if (nent >= cpuid->nent)
1965                 goto out_free;
1966
1967         do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1968         limit = cpuid_entries[nent - 1].eax;
1969         for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1970                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1971                              &nent, cpuid->nent);
1972         r = -E2BIG;
1973         if (nent >= cpuid->nent)
1974                 goto out_free;
1975
1976         r = -EFAULT;
1977         if (copy_to_user(entries, cpuid_entries,
1978                          nent * sizeof(struct kvm_cpuid_entry2)))
1979                 goto out_free;
1980         cpuid->nent = nent;
1981         r = 0;
1982
1983 out_free:
1984         vfree(cpuid_entries);
1985 out:
1986         return r;
1987 }
1988
1989 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1990                                     struct kvm_lapic_state *s)
1991 {
1992         vcpu_load(vcpu);
1993         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1994         vcpu_put(vcpu);
1995
1996         return 0;
1997 }
1998
1999 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2000                                     struct kvm_lapic_state *s)
2001 {
2002         vcpu_load(vcpu);
2003         memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2004         kvm_apic_post_state_restore(vcpu);
2005         update_cr8_intercept(vcpu);
2006         vcpu_put(vcpu);
2007
2008         return 0;
2009 }
2010
2011 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2012                                     struct kvm_interrupt *irq)
2013 {
2014         if (irq->irq < 0 || irq->irq >= 256)
2015                 return -EINVAL;
2016         if (irqchip_in_kernel(vcpu->kvm))
2017                 return -ENXIO;
2018         vcpu_load(vcpu);
2019
2020         kvm_queue_interrupt(vcpu, irq->irq, false);
2021
2022         vcpu_put(vcpu);
2023
2024         return 0;
2025 }
2026
2027 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2028 {
2029         vcpu_load(vcpu);
2030         kvm_inject_nmi(vcpu);
2031         vcpu_put(vcpu);
2032
2033         return 0;
2034 }
2035
2036 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2037                                            struct kvm_tpr_access_ctl *tac)
2038 {
2039         if (tac->flags)
2040                 return -EINVAL;
2041         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2042         return 0;
2043 }
2044
2045 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2046                                         u64 mcg_cap)
2047 {
2048         int r;
2049         unsigned bank_num = mcg_cap & 0xff, bank;
2050
2051         r = -EINVAL;
2052         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2053                 goto out;
2054         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2055                 goto out;
2056         r = 0;
2057         vcpu->arch.mcg_cap = mcg_cap;
2058         /* Init IA32_MCG_CTL to all 1s */
2059         if (mcg_cap & MCG_CTL_P)
2060                 vcpu->arch.mcg_ctl = ~(u64)0;
2061         /* Init IA32_MCi_CTL to all 1s */
2062         for (bank = 0; bank < bank_num; bank++)
2063                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2064 out:
2065         return r;
2066 }
2067
2068 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2069                                       struct kvm_x86_mce *mce)
2070 {
2071         u64 mcg_cap = vcpu->arch.mcg_cap;
2072         unsigned bank_num = mcg_cap & 0xff;
2073         u64 *banks = vcpu->arch.mce_banks;
2074
2075         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2076                 return -EINVAL;
2077         /*
2078          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2079          * reporting is disabled
2080          */
2081         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2082             vcpu->arch.mcg_ctl != ~(u64)0)
2083                 return 0;
2084         banks += 4 * mce->bank;
2085         /*
2086          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2087          * reporting is disabled for the bank
2088          */
2089         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2090                 return 0;
2091         if (mce->status & MCI_STATUS_UC) {
2092                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2093                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2094                         printk(KERN_DEBUG "kvm: set_mce: "
2095                                "injects mce exception while "
2096                                "previous one is in progress!\n");
2097                         set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
2098                         return 0;
2099                 }
2100                 if (banks[1] & MCI_STATUS_VAL)
2101                         mce->status |= MCI_STATUS_OVER;
2102                 banks[2] = mce->addr;
2103                 banks[3] = mce->misc;
2104                 vcpu->arch.mcg_status = mce->mcg_status;
2105                 banks[1] = mce->status;
2106                 kvm_queue_exception(vcpu, MC_VECTOR);
2107         } else if (!(banks[1] & MCI_STATUS_VAL)
2108                    || !(banks[1] & MCI_STATUS_UC)) {
2109                 if (banks[1] & MCI_STATUS_VAL)
2110                         mce->status |= MCI_STATUS_OVER;
2111                 banks[2] = mce->addr;
2112                 banks[3] = mce->misc;
2113                 banks[1] = mce->status;
2114         } else
2115                 banks[1] |= MCI_STATUS_OVER;
2116         return 0;
2117 }
2118
2119 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2120                                                struct kvm_vcpu_events *events)
2121 {
2122         vcpu_load(vcpu);
2123
2124         events->exception.injected = vcpu->arch.exception.pending;
2125         events->exception.nr = vcpu->arch.exception.nr;
2126         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2127         events->exception.error_code = vcpu->arch.exception.error_code;
2128
2129         events->interrupt.injected = vcpu->arch.interrupt.pending;
2130         events->interrupt.nr = vcpu->arch.interrupt.nr;
2131         events->interrupt.soft = vcpu->arch.interrupt.soft;
2132
2133         events->nmi.injected = vcpu->arch.nmi_injected;
2134         events->nmi.pending = vcpu->arch.nmi_pending;
2135         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2136
2137         events->sipi_vector = vcpu->arch.sipi_vector;
2138
2139         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2140                          | KVM_VCPUEVENT_VALID_SIPI_VECTOR);
2141
2142         vcpu_put(vcpu);
2143 }
2144
2145 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2146                                               struct kvm_vcpu_events *events)
2147 {
2148         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2149                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR))
2150                 return -EINVAL;
2151
2152         vcpu_load(vcpu);
2153
2154         vcpu->arch.exception.pending = events->exception.injected;
2155         vcpu->arch.exception.nr = events->exception.nr;
2156         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2157         vcpu->arch.exception.error_code = events->exception.error_code;
2158
2159         vcpu->arch.interrupt.pending = events->interrupt.injected;
2160         vcpu->arch.interrupt.nr = events->interrupt.nr;
2161         vcpu->arch.interrupt.soft = events->interrupt.soft;
2162         if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
2163                 kvm_pic_clear_isr_ack(vcpu->kvm);
2164
2165         vcpu->arch.nmi_injected = events->nmi.injected;
2166         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2167                 vcpu->arch.nmi_pending = events->nmi.pending;
2168         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2169
2170         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2171                 vcpu->arch.sipi_vector = events->sipi_vector;
2172
2173         vcpu_put(vcpu);
2174
2175         return 0;
2176 }
2177
2178 long kvm_arch_vcpu_ioctl(struct file *filp,
2179                          unsigned int ioctl, unsigned long arg)
2180 {
2181         struct kvm_vcpu *vcpu = filp->private_data;
2182         void __user *argp = (void __user *)arg;
2183         int r;
2184         struct kvm_lapic_state *lapic = NULL;
2185
2186         switch (ioctl) {
2187         case KVM_GET_LAPIC: {
2188                 r = -EINVAL;
2189                 if (!vcpu->arch.apic)
2190                         goto out;
2191                 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2192
2193                 r = -ENOMEM;
2194                 if (!lapic)
2195                         goto out;
2196                 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
2197                 if (r)
2198                         goto out;
2199                 r = -EFAULT;
2200                 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
2201                         goto out;
2202                 r = 0;
2203                 break;
2204         }
2205         case KVM_SET_LAPIC: {
2206                 r = -EINVAL;
2207                 if (!vcpu->arch.apic)
2208                         goto out;
2209                 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2210                 r = -ENOMEM;
2211                 if (!lapic)
2212                         goto out;
2213                 r = -EFAULT;
2214                 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
2215                         goto out;
2216                 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
2217                 if (r)
2218                         goto out;
2219                 r = 0;
2220                 break;
2221         }
2222         case KVM_INTERRUPT: {
2223                 struct kvm_interrupt irq;
2224
2225                 r = -EFAULT;
2226                 if (copy_from_user(&irq, argp, sizeof irq))
2227                         goto out;
2228                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2229                 if (r)
2230                         goto out;
2231                 r = 0;
2232                 break;
2233         }
2234         case KVM_NMI: {
2235                 r = kvm_vcpu_ioctl_nmi(vcpu);
2236                 if (r)
2237                         goto out;
2238                 r = 0;
2239                 break;
2240         }
2241         case KVM_SET_CPUID: {
2242                 struct kvm_cpuid __user *cpuid_arg = argp;
2243                 struct kvm_cpuid cpuid;
2244
2245                 r = -EFAULT;
2246                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2247                         goto out;
2248                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2249                 if (r)
2250                         goto out;
2251                 break;
2252         }
2253         case KVM_SET_CPUID2: {
2254                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2255                 struct kvm_cpuid2 cpuid;
2256
2257                 r = -EFAULT;
2258                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2259                         goto out;
2260                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2261                                               cpuid_arg->entries);
2262                 if (r)
2263                         goto out;
2264                 break;
2265         }
2266         case KVM_GET_CPUID2: {
2267                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2268                 struct kvm_cpuid2 cpuid;
2269
2270                 r = -EFAULT;
2271                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2272                         goto out;
2273                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2274                                               cpuid_arg->entries);
2275                 if (r)
2276                         goto out;
2277                 r = -EFAULT;
2278                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2279                         goto out;
2280                 r = 0;
2281                 break;
2282         }
2283         case KVM_GET_MSRS:
2284                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2285                 break;
2286         case KVM_SET_MSRS:
2287                 r = msr_io(vcpu, argp, do_set_msr, 0);
2288                 break;
2289         case KVM_TPR_ACCESS_REPORTING: {
2290                 struct kvm_tpr_access_ctl tac;
2291
2292                 r = -EFAULT;
2293                 if (copy_from_user(&tac, argp, sizeof tac))
2294                         goto out;
2295                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2296                 if (r)
2297                         goto out;
2298                 r = -EFAULT;
2299                 if (copy_to_user(argp, &tac, sizeof tac))
2300                         goto out;
2301                 r = 0;
2302                 break;
2303         };
2304         case KVM_SET_VAPIC_ADDR: {
2305                 struct kvm_vapic_addr va;
2306
2307                 r = -EINVAL;
2308                 if (!irqchip_in_kernel(vcpu->kvm))
2309                         goto out;
2310                 r = -EFAULT;
2311                 if (copy_from_user(&va, argp, sizeof va))
2312                         goto out;
2313                 r = 0;
2314                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2315                 break;
2316         }
2317         case KVM_X86_SETUP_MCE: {
2318                 u64 mcg_cap;
2319
2320                 r = -EFAULT;
2321                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2322                         goto out;
2323                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2324                 break;
2325         }
2326         case KVM_X86_SET_MCE: {
2327                 struct kvm_x86_mce mce;
2328
2329                 r = -EFAULT;
2330                 if (copy_from_user(&mce, argp, sizeof mce))
2331                         goto out;
2332                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2333                 break;
2334         }
2335         case KVM_GET_VCPU_EVENTS: {
2336                 struct kvm_vcpu_events events;
2337
2338                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2339
2340                 r = -EFAULT;
2341                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2342                         break;
2343                 r = 0;
2344                 break;
2345         }
2346         case KVM_SET_VCPU_EVENTS: {
2347                 struct kvm_vcpu_events events;
2348
2349                 r = -EFAULT;
2350                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2351                         break;
2352
2353                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2354                 break;
2355         }
2356         default:
2357                 r = -EINVAL;
2358         }
2359 out:
2360         kfree(lapic);
2361         return r;
2362 }
2363
2364 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2365 {
2366         int ret;
2367
2368         if (addr > (unsigned int)(-3 * PAGE_SIZE))
2369                 return -1;
2370         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2371         return ret;
2372 }
2373
2374 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2375                                               u64 ident_addr)
2376 {
2377         kvm->arch.ept_identity_map_addr = ident_addr;
2378         return 0;
2379 }
2380
2381 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2382                                           u32 kvm_nr_mmu_pages)
2383 {
2384         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2385                 return -EINVAL;
2386
2387         mutex_lock(&kvm->slots_lock);
2388         spin_lock(&kvm->mmu_lock);
2389
2390         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2391         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2392
2393         spin_unlock(&kvm->mmu_lock);
2394         mutex_unlock(&kvm->slots_lock);
2395         return 0;
2396 }
2397
2398 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2399 {
2400         return kvm->arch.n_alloc_mmu_pages;
2401 }
2402
2403 gfn_t unalias_gfn_instantiation(struct kvm *kvm, gfn_t gfn)
2404 {
2405         int i;
2406         struct kvm_mem_alias *alias;
2407         struct kvm_mem_aliases *aliases;
2408
2409         aliases = rcu_dereference(kvm->arch.aliases);
2410
2411         for (i = 0; i < aliases->naliases; ++i) {
2412                 alias = &aliases->aliases[i];
2413                 if (alias->flags & KVM_ALIAS_INVALID)
2414                         continue;
2415                 if (gfn >= alias->base_gfn
2416                     && gfn < alias->base_gfn + alias->npages)
2417                         return alias->target_gfn + gfn - alias->base_gfn;
2418         }
2419         return gfn;
2420 }
2421
2422 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
2423 {
2424         int i;
2425         struct kvm_mem_alias *alias;
2426         struct kvm_mem_aliases *aliases;
2427
2428         aliases = rcu_dereference(kvm->arch.aliases);
2429
2430         for (i = 0; i < aliases->naliases; ++i) {
2431                 alias = &aliases->aliases[i];
2432                 if (gfn >= alias->base_gfn
2433                     && gfn < alias->base_gfn + alias->npages)
2434                         return alias->target_gfn + gfn - alias->base_gfn;
2435         }
2436         return gfn;
2437 }
2438
2439 /*
2440  * Set a new alias region.  Aliases map a portion of physical memory into
2441  * another portion.  This is useful for memory windows, for example the PC
2442  * VGA region.
2443  */
2444 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
2445                                          struct kvm_memory_alias *alias)
2446 {
2447         int r, n;
2448         struct kvm_mem_alias *p;
2449         struct kvm_mem_aliases *aliases, *old_aliases;
2450
2451         r = -EINVAL;
2452         /* General sanity checks */
2453         if (alias->memory_size & (PAGE_SIZE - 1))
2454                 goto out;
2455         if (alias->guest_phys_addr & (PAGE_SIZE - 1))
2456                 goto out;
2457         if (alias->slot >= KVM_ALIAS_SLOTS)
2458                 goto out;
2459         if (alias->guest_phys_addr + alias->memory_size
2460             < alias->guest_phys_addr)
2461                 goto out;
2462         if (alias->target_phys_addr + alias->memory_size
2463             < alias->target_phys_addr)
2464                 goto out;
2465
2466         r = -ENOMEM;
2467         aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
2468         if (!aliases)
2469                 goto out;
2470
2471         mutex_lock(&kvm->slots_lock);
2472
2473         /* invalidate any gfn reference in case of deletion/shrinking */
2474         memcpy(aliases, kvm->arch.aliases, sizeof(struct kvm_mem_aliases));
2475         aliases->aliases[alias->slot].flags |= KVM_ALIAS_INVALID;
2476         old_aliases = kvm->arch.aliases;
2477         rcu_assign_pointer(kvm->arch.aliases, aliases);
2478         synchronize_srcu_expedited(&kvm->srcu);
2479         kvm_mmu_zap_all(kvm);
2480         kfree(old_aliases);
2481
2482         r = -ENOMEM;
2483         aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
2484         if (!aliases)
2485                 goto out_unlock;
2486
2487         memcpy(aliases, kvm->arch.aliases, sizeof(struct kvm_mem_aliases));
2488
2489         p = &aliases->aliases[alias->slot];
2490         p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
2491         p->npages = alias->memory_size >> PAGE_SHIFT;
2492         p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
2493         p->flags &= ~(KVM_ALIAS_INVALID);
2494
2495         for (n = KVM_ALIAS_SLOTS; n > 0; --n)
2496                 if (aliases->aliases[n - 1].npages)
2497                         break;
2498         aliases->naliases = n;
2499
2500         old_aliases = kvm->arch.aliases;
2501         rcu_assign_pointer(kvm->arch.aliases, aliases);
2502         synchronize_srcu_expedited(&kvm->srcu);
2503         kfree(old_aliases);
2504         r = 0;
2505
2506 out_unlock:
2507         mutex_unlock(&kvm->slots_lock);
2508 out:
2509         return r;
2510 }
2511
2512 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2513 {
2514         int r;
2515
2516         r = 0;
2517         switch (chip->chip_id) {
2518         case KVM_IRQCHIP_PIC_MASTER:
2519                 memcpy(&chip->chip.pic,
2520                         &pic_irqchip(kvm)->pics[0],
2521                         sizeof(struct kvm_pic_state));
2522                 break;
2523         case KVM_IRQCHIP_PIC_SLAVE:
2524                 memcpy(&chip->chip.pic,
2525                         &pic_irqchip(kvm)->pics[1],
2526                         sizeof(struct kvm_pic_state));
2527                 break;
2528         case KVM_IRQCHIP_IOAPIC:
2529                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
2530                 break;
2531         default:
2532                 r = -EINVAL;
2533                 break;
2534         }
2535         return r;
2536 }
2537
2538 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2539 {
2540         int r;
2541
2542         r = 0;
2543         switch (chip->chip_id) {
2544         case KVM_IRQCHIP_PIC_MASTER:
2545                 spin_lock(&pic_irqchip(kvm)->lock);
2546                 memcpy(&pic_irqchip(kvm)->pics[0],
2547                         &chip->chip.pic,
2548                         sizeof(struct kvm_pic_state));
2549                 spin_unlock(&pic_irqchip(kvm)->lock);
2550                 break;
2551         case KVM_IRQCHIP_PIC_SLAVE:
2552                 spin_lock(&pic_irqchip(kvm)->lock);
2553                 memcpy(&pic_irqchip(kvm)->pics[1],
2554                         &chip->chip.pic,
2555                         sizeof(struct kvm_pic_state));
2556                 spin_unlock(&pic_irqchip(kvm)->lock);
2557                 break;
2558         case KVM_IRQCHIP_IOAPIC:
2559                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
2560                 break;
2561         default:
2562                 r = -EINVAL;
2563                 break;
2564         }
2565         kvm_pic_update_irq(pic_irqchip(kvm));
2566         return r;
2567 }
2568
2569 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2570 {
2571         int r = 0;
2572
2573         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2574         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2575         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2576         return r;
2577 }
2578
2579 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2580 {
2581         int r = 0;
2582
2583         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2584         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2585         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
2586         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2587         return r;
2588 }
2589
2590 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2591 {
2592         int r = 0;
2593
2594         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2595         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
2596                 sizeof(ps->channels));
2597         ps->flags = kvm->arch.vpit->pit_state.flags;
2598         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2599         return r;
2600 }
2601
2602 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2603 {
2604         int r = 0, start = 0;
2605         u32 prev_legacy, cur_legacy;
2606         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2607         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
2608         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
2609         if (!prev_legacy && cur_legacy)
2610                 start = 1;
2611         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
2612                sizeof(kvm->arch.vpit->pit_state.channels));
2613         kvm->arch.vpit->pit_state.flags = ps->flags;
2614         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
2615         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2616         return r;
2617 }
2618
2619 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
2620                                  struct kvm_reinject_control *control)
2621 {
2622         if (!kvm->arch.vpit)
2623                 return -ENXIO;
2624         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2625         kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
2626         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2627         return 0;
2628 }
2629
2630 /*
2631  * Get (and clear) the dirty memory log for a memory slot.
2632  */
2633 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2634                                       struct kvm_dirty_log *log)
2635 {
2636         int r, n, i;
2637         struct kvm_memory_slot *memslot;
2638         unsigned long is_dirty = 0;
2639         unsigned long *dirty_bitmap = NULL;
2640
2641         mutex_lock(&kvm->slots_lock);
2642
2643         r = -EINVAL;
2644         if (log->slot >= KVM_MEMORY_SLOTS)
2645                 goto out;
2646
2647         memslot = &kvm->memslots->memslots[log->slot];
2648         r = -ENOENT;
2649         if (!memslot->dirty_bitmap)
2650                 goto out;
2651
2652         n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
2653
2654         r = -ENOMEM;
2655         dirty_bitmap = vmalloc(n);
2656         if (!dirty_bitmap)
2657                 goto out;
2658         memset(dirty_bitmap, 0, n);
2659
2660         for (i = 0; !is_dirty && i < n/sizeof(long); i++)
2661                 is_dirty = memslot->dirty_bitmap[i];
2662
2663         /* If nothing is dirty, don't bother messing with page tables. */
2664         if (is_dirty) {
2665                 struct kvm_memslots *slots, *old_slots;
2666
2667                 spin_lock(&kvm->mmu_lock);
2668                 kvm_mmu_slot_remove_write_access(kvm, log->slot);
2669                 spin_unlock(&kvm->mmu_lock);
2670
2671                 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
2672                 if (!slots)
2673                         goto out_free;
2674
2675                 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
2676                 slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
2677
2678                 old_slots = kvm->memslots;
2679                 rcu_assign_pointer(kvm->memslots, slots);
2680                 synchronize_srcu_expedited(&kvm->srcu);
2681                 dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
2682                 kfree(old_slots);
2683         }
2684
2685         r = 0;
2686         if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
2687                 r = -EFAULT;
2688 out_free:
2689         vfree(dirty_bitmap);
2690 out:
2691         mutex_unlock(&kvm->slots_lock);
2692         return r;
2693 }
2694
2695 long kvm_arch_vm_ioctl(struct file *filp,
2696                        unsigned int ioctl, unsigned long arg)
2697 {
2698         struct kvm *kvm = filp->private_data;
2699         void __user *argp = (void __user *)arg;
2700         int r = -ENOTTY;
2701         /*
2702          * This union makes it completely explicit to gcc-3.x
2703          * that these two variables' stack usage should be
2704          * combined, not added together.
2705          */
2706         union {
2707                 struct kvm_pit_state ps;
2708                 struct kvm_pit_state2 ps2;
2709                 struct kvm_memory_alias alias;
2710                 struct kvm_pit_config pit_config;
2711         } u;
2712
2713         switch (ioctl) {
2714         case KVM_SET_TSS_ADDR:
2715                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
2716                 if (r < 0)
2717                         goto out;
2718                 break;
2719         case KVM_SET_IDENTITY_MAP_ADDR: {
2720                 u64 ident_addr;
2721
2722                 r = -EFAULT;
2723                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
2724                         goto out;
2725                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
2726                 if (r < 0)
2727                         goto out;
2728                 break;
2729         }
2730         case KVM_SET_MEMORY_REGION: {
2731                 struct kvm_memory_region kvm_mem;
2732                 struct kvm_userspace_memory_region kvm_userspace_mem;
2733
2734                 r = -EFAULT;
2735                 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2736                         goto out;
2737                 kvm_userspace_mem.slot = kvm_mem.slot;
2738                 kvm_userspace_mem.flags = kvm_mem.flags;
2739                 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
2740                 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
2741                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
2742                 if (r)
2743                         goto out;
2744                 break;
2745         }
2746         case KVM_SET_NR_MMU_PAGES:
2747                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
2748                 if (r)
2749                         goto out;
2750                 break;
2751         case KVM_GET_NR_MMU_PAGES:
2752                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
2753                 break;
2754         case KVM_SET_MEMORY_ALIAS:
2755                 r = -EFAULT;
2756                 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
2757                         goto out;
2758                 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
2759                 if (r)
2760                         goto out;
2761                 break;
2762         case KVM_CREATE_IRQCHIP: {
2763                 struct kvm_pic *vpic;
2764
2765                 mutex_lock(&kvm->lock);
2766                 r = -EEXIST;
2767                 if (kvm->arch.vpic)
2768                         goto create_irqchip_unlock;
2769                 r = -ENOMEM;
2770                 vpic = kvm_create_pic(kvm);
2771                 if (vpic) {
2772                         r = kvm_ioapic_init(kvm);
2773                         if (r) {
2774                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
2775                                                           &vpic->dev);
2776                                 kfree(vpic);
2777                                 goto create_irqchip_unlock;
2778                         }
2779                 } else
2780                         goto create_irqchip_unlock;
2781                 smp_wmb();
2782                 kvm->arch.vpic = vpic;
2783                 smp_wmb();
2784                 r = kvm_setup_default_irq_routing(kvm);
2785                 if (r) {
2786                         mutex_lock(&kvm->irq_lock);
2787                         kvm_ioapic_destroy(kvm);
2788                         kvm_destroy_pic(kvm);
2789                         mutex_unlock(&kvm->irq_lock);
2790                 }
2791         create_irqchip_unlock:
2792                 mutex_unlock(&kvm->lock);
2793                 break;
2794         }
2795         case KVM_CREATE_PIT:
2796                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
2797                 goto create_pit;
2798         case KVM_CREATE_PIT2:
2799                 r = -EFAULT;
2800                 if (copy_from_user(&u.pit_config, argp,
2801                                    sizeof(struct kvm_pit_config)))
2802                         goto out;
2803         create_pit:
2804                 mutex_lock(&kvm->slots_lock);
2805                 r = -EEXIST;
2806                 if (kvm->arch.vpit)
2807                         goto create_pit_unlock;
2808                 r = -ENOMEM;
2809                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
2810                 if (kvm->arch.vpit)
2811                         r = 0;
2812         create_pit_unlock:
2813                 mutex_unlock(&kvm->slots_lock);
2814                 break;
2815         case KVM_IRQ_LINE_STATUS:
2816         case KVM_IRQ_LINE: {
2817                 struct kvm_irq_level irq_event;
2818
2819                 r = -EFAULT;
2820                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2821                         goto out;
2822                 if (irqchip_in_kernel(kvm)) {
2823                         __s32 status;
2824                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2825                                         irq_event.irq, irq_event.level);
2826                         if (ioctl == KVM_IRQ_LINE_STATUS) {
2827                                 irq_event.status = status;
2828                                 if (copy_to_user(argp, &irq_event,
2829                                                         sizeof irq_event))
2830                                         goto out;
2831                         }
2832                         r = 0;
2833                 }
2834                 break;
2835         }
2836         case KVM_GET_IRQCHIP: {
2837                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2838                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2839
2840                 r = -ENOMEM;
2841                 if (!chip)
2842                         goto out;
2843                 r = -EFAULT;
2844                 if (copy_from_user(chip, argp, sizeof *chip))
2845                         goto get_irqchip_out;
2846                 r = -ENXIO;
2847                 if (!irqchip_in_kernel(kvm))
2848                         goto get_irqchip_out;
2849                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
2850                 if (r)
2851                         goto get_irqchip_out;
2852                 r = -EFAULT;
2853                 if (copy_to_user(argp, chip, sizeof *chip))
2854                         goto get_irqchip_out;
2855                 r = 0;
2856         get_irqchip_out:
2857                 kfree(chip);
2858                 if (r)
2859                         goto out;
2860                 break;
2861         }
2862         case KVM_SET_IRQCHIP: {
2863                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2864                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2865
2866                 r = -ENOMEM;
2867                 if (!chip)
2868                         goto out;
2869                 r = -EFAULT;
2870                 if (copy_from_user(chip, argp, sizeof *chip))
2871                         goto set_irqchip_out;
2872                 r = -ENXIO;
2873                 if (!irqchip_in_kernel(kvm))
2874                         goto set_irqchip_out;
2875                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
2876                 if (r)
2877                         goto set_irqchip_out;
2878                 r = 0;
2879         set_irqchip_out:
2880                 kfree(chip);
2881                 if (r)
2882                         goto out;
2883                 break;
2884         }
2885         case KVM_GET_PIT: {
2886                 r = -EFAULT;
2887                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
2888                         goto out;
2889                 r = -ENXIO;
2890                 if (!kvm->arch.vpit)
2891                         goto out;
2892                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
2893                 if (r)
2894                         goto out;
2895                 r = -EFAULT;
2896                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
2897                         goto out;
2898                 r = 0;
2899                 break;
2900         }
2901         case KVM_SET_PIT: {
2902                 r = -EFAULT;
2903                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
2904                         goto out;
2905                 r = -ENXIO;
2906                 if (!kvm->arch.vpit)
2907                         goto out;
2908                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
2909                 if (r)
2910                         goto out;
2911                 r = 0;
2912                 break;
2913         }
2914         case KVM_GET_PIT2: {
2915                 r = -ENXIO;
2916                 if (!kvm->arch.vpit)
2917                         goto out;
2918                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
2919                 if (r)
2920                         goto out;
2921                 r = -EFAULT;
2922                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
2923                         goto out;
2924                 r = 0;
2925                 break;
2926         }
2927         case KVM_SET_PIT2: {
2928                 r = -EFAULT;
2929                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
2930                         goto out;
2931                 r = -ENXIO;
2932                 if (!kvm->arch.vpit)
2933                         goto out;
2934                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
2935                 if (r)
2936                         goto out;
2937                 r = 0;
2938                 break;
2939         }
2940         case KVM_REINJECT_CONTROL: {
2941                 struct kvm_reinject_control control;
2942                 r =  -EFAULT;
2943                 if (copy_from_user(&control, argp, sizeof(control)))
2944                         goto out;
2945                 r = kvm_vm_ioctl_reinject(kvm, &control);
2946                 if (r)
2947                         goto out;
2948                 r = 0;
2949                 break;
2950         }
2951         case KVM_XEN_HVM_CONFIG: {
2952                 r = -EFAULT;
2953                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
2954                                    sizeof(struct kvm_xen_hvm_config)))
2955                         goto out;
2956                 r = -EINVAL;
2957                 if (kvm->arch.xen_hvm_config.flags)
2958                         goto out;
2959                 r = 0;
2960                 break;
2961         }
2962         case KVM_SET_CLOCK: {
2963                 struct timespec now;
2964                 struct kvm_clock_data user_ns;
2965                 u64 now_ns;
2966                 s64 delta;
2967
2968                 r = -EFAULT;
2969                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
2970                         goto out;
2971
2972                 r = -EINVAL;
2973                 if (user_ns.flags)
2974                         goto out;
2975
2976                 r = 0;
2977                 ktime_get_ts(&now);
2978                 now_ns = timespec_to_ns(&now);
2979                 delta = user_ns.clock - now_ns;
2980                 kvm->arch.kvmclock_offset = delta;
2981                 break;
2982         }
2983         case KVM_GET_CLOCK: {
2984                 struct timespec now;
2985                 struct kvm_clock_data user_ns;
2986                 u64 now_ns;
2987
2988                 ktime_get_ts(&now);
2989                 now_ns = timespec_to_ns(&now);
2990                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
2991                 user_ns.flags = 0;
2992
2993                 r = -EFAULT;
2994                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
2995                         goto out;
2996                 r = 0;
2997                 break;
2998         }
2999
3000         default:
3001                 ;
3002         }
3003 out:
3004         return r;
3005 }
3006
3007 static void kvm_init_msr_list(void)
3008 {
3009         u32 dummy[2];
3010         unsigned i, j;
3011
3012         /* skip the first msrs in the list. KVM-specific */
3013         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3014                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3015                         continue;
3016                 if (j < i)
3017                         msrs_to_save[j] = msrs_to_save[i];
3018                 j++;
3019         }
3020         num_msrs_to_save = j;
3021 }
3022
3023 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3024                            const void *v)
3025 {
3026         if (vcpu->arch.apic &&
3027             !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
3028                 return 0;
3029
3030         return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3031 }
3032
3033 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3034 {
3035         if (vcpu->arch.apic &&
3036             !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
3037                 return 0;
3038
3039         return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3040 }
3041
3042 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3043 {
3044         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3045         return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3046 }
3047
3048  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3049 {
3050         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3051         access |= PFERR_FETCH_MASK;
3052         return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3053 }
3054
3055 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3056 {
3057         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3058         access |= PFERR_WRITE_MASK;
3059         return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3060 }
3061
3062 /* uses this to access any guest's mapped memory without checking CPL */
3063 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3064 {
3065         return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, 0, error);
3066 }
3067
3068 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3069                                       struct kvm_vcpu *vcpu, u32 access,
3070                                       u32 *error)
3071 {
3072         void *data = val;
3073         int r = X86EMUL_CONTINUE;
3074
3075         while (bytes) {
3076                 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr, access, error);
3077                 unsigned offset = addr & (PAGE_SIZE-1);
3078                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3079                 int ret;
3080
3081                 if (gpa == UNMAPPED_GVA) {
3082                         r = X86EMUL_PROPAGATE_FAULT;
3083                         goto out;
3084                 }
3085                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3086                 if (ret < 0) {
3087                         r = X86EMUL_UNHANDLEABLE;
3088                         goto out;
3089                 }
3090
3091                 bytes -= toread;
3092                 data += toread;
3093                 addr += toread;
3094         }
3095 out:
3096         return r;
3097 }
3098
3099 /* used for instruction fetching */
3100 static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
3101                                 struct kvm_vcpu *vcpu, u32 *error)
3102 {
3103         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3104         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3105                                           access | PFERR_FETCH_MASK, error);
3106 }
3107
3108 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
3109                                struct kvm_vcpu *vcpu, u32 *error)
3110 {
3111         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3112         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3113                                           error);
3114 }
3115
3116 static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
3117                                struct kvm_vcpu *vcpu, u32 *error)
3118 {
3119         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, error);
3120 }
3121
3122 static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
3123                                 struct kvm_vcpu *vcpu, u32 *error)
3124 {
3125         void *data = val;
3126         int r = X86EMUL_CONTINUE;
3127
3128         while (bytes) {
3129                 gpa_t gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, error);
3130                 unsigned offset = addr & (PAGE_SIZE-1);
3131                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3132                 int ret;
3133
3134                 if (gpa == UNMAPPED_GVA) {
3135                         r = X86EMUL_PROPAGATE_FAULT;
3136                         goto out;
3137                 }
3138                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3139                 if (ret < 0) {
3140                         r = X86EMUL_UNHANDLEABLE;
3141                         goto out;
3142                 }
3143
3144                 bytes -= towrite;
3145                 data += towrite;
3146                 addr += towrite;
3147         }
3148 out:
3149         return r;
3150 }
3151
3152
3153 static int emulator_read_emulated(unsigned long addr,
3154                                   void *val,
3155                                   unsigned int bytes,
3156                                   struct kvm_vcpu *vcpu)
3157 {
3158         gpa_t                 gpa;
3159         u32 error_code;
3160
3161         if (vcpu->mmio_read_completed) {
3162                 memcpy(val, vcpu->mmio_data, bytes);
3163                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3164                                vcpu->mmio_phys_addr, *(u64 *)val);
3165                 vcpu->mmio_read_completed = 0;
3166                 return X86EMUL_CONTINUE;
3167         }
3168
3169         gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, &error_code);
3170
3171         if (gpa == UNMAPPED_GVA) {
3172                 kvm_inject_page_fault(vcpu, addr, error_code);
3173                 return X86EMUL_PROPAGATE_FAULT;
3174         }
3175
3176         /* For APIC access vmexit */
3177         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3178                 goto mmio;
3179
3180         if (kvm_read_guest_virt(addr, val, bytes, vcpu, NULL)
3181                                 == X86EMUL_CONTINUE)
3182                 return X86EMUL_CONTINUE;
3183
3184 mmio:
3185         /*
3186          * Is this MMIO handled locally?
3187          */
3188         if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
3189                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
3190                 return X86EMUL_CONTINUE;
3191         }
3192
3193         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3194
3195         vcpu->mmio_needed = 1;
3196         vcpu->mmio_phys_addr = gpa;
3197         vcpu->mmio_size = bytes;
3198         vcpu->mmio_is_write = 0;
3199
3200         return X86EMUL_UNHANDLEABLE;
3201 }
3202
3203 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3204                           const void *val, int bytes)
3205 {
3206         int ret;
3207
3208         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3209         if (ret < 0)
3210                 return 0;
3211         kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
3212         return 1;
3213 }
3214
3215 static int emulator_write_emulated_onepage(unsigned long addr,
3216                                            const void *val,
3217                                            unsigned int bytes,
3218                                            struct kvm_vcpu *vcpu)
3219 {
3220         gpa_t                 gpa;
3221         u32 error_code;
3222
3223         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, &error_code);
3224
3225         if (gpa == UNMAPPED_GVA) {
3226                 kvm_inject_page_fault(vcpu, addr, error_code);
3227                 return X86EMUL_PROPAGATE_FAULT;
3228         }
3229
3230         /* For APIC access vmexit */
3231         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3232                 goto mmio;
3233
3234         if (emulator_write_phys(vcpu, gpa, val, bytes))
3235                 return X86EMUL_CONTINUE;
3236
3237 mmio:
3238         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3239         /*
3240          * Is this MMIO handled locally?
3241          */
3242         if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
3243                 return X86EMUL_CONTINUE;
3244
3245         vcpu->mmio_needed = 1;
3246         vcpu->mmio_phys_addr = gpa;
3247         vcpu->mmio_size = bytes;
3248         vcpu->mmio_is_write = 1;
3249         memcpy(vcpu->mmio_data, val, bytes);
3250
3251         return X86EMUL_CONTINUE;
3252 }
3253
3254 int emulator_write_emulated(unsigned long addr,
3255                                    const void *val,
3256                                    unsigned int bytes,
3257                                    struct kvm_vcpu *vcpu)
3258 {
3259         /* Crossing a page boundary? */
3260         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3261                 int rc, now;
3262
3263                 now = -addr & ~PAGE_MASK;
3264                 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
3265                 if (rc != X86EMUL_CONTINUE)
3266                         return rc;
3267                 addr += now;
3268                 val += now;
3269                 bytes -= now;
3270         }
3271         return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
3272 }
3273 EXPORT_SYMBOL_GPL(emulator_write_emulated);
3274
3275 static int emulator_cmpxchg_emulated(unsigned long addr,
3276                                      const void *old,
3277                                      const void *new,
3278                                      unsigned int bytes,
3279                                      struct kvm_vcpu *vcpu)
3280 {
3281         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3282 #ifndef CONFIG_X86_64
3283         /* guests cmpxchg8b have to be emulated atomically */
3284         if (bytes == 8) {
3285                 gpa_t gpa;
3286                 struct page *page;
3287                 char *kaddr;
3288                 u64 val;
3289
3290                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3291
3292                 if (gpa == UNMAPPED_GVA ||
3293                    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3294                         goto emul_write;
3295
3296                 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3297                         goto emul_write;
3298
3299                 val = *(u64 *)new;
3300
3301                 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3302
3303                 kaddr = kmap_atomic(page, KM_USER0);
3304                 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
3305                 kunmap_atomic(kaddr, KM_USER0);
3306                 kvm_release_page_dirty(page);
3307         }
3308 emul_write:
3309 #endif
3310
3311         return emulator_write_emulated(addr, new, bytes, vcpu);
3312 }
3313
3314 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
3315 {
3316         return kvm_x86_ops->get_segment_base(vcpu, seg);
3317 }
3318
3319 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
3320 {
3321         kvm_mmu_invlpg(vcpu, address);
3322         return X86EMUL_CONTINUE;
3323 }
3324
3325 int emulate_clts(struct kvm_vcpu *vcpu)
3326 {
3327         kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
3328         kvm_x86_ops->fpu_activate(vcpu);
3329         return X86EMUL_CONTINUE;
3330 }
3331
3332 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
3333 {
3334         return kvm_x86_ops->get_dr(ctxt->vcpu, dr, dest);
3335 }
3336
3337 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
3338 {
3339         unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
3340
3341         return kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask);
3342 }
3343
3344 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
3345 {
3346         u8 opcodes[4];
3347         unsigned long rip = kvm_rip_read(vcpu);
3348         unsigned long rip_linear;
3349
3350         if (!printk_ratelimit())
3351                 return;
3352
3353         rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
3354
3355         kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu, NULL);
3356
3357         printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
3358                context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
3359 }
3360 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
3361
3362 static struct x86_emulate_ops emulate_ops = {
3363         .read_std            = kvm_read_guest_virt_system,
3364         .fetch               = kvm_fetch_guest_virt,
3365         .read_emulated       = emulator_read_emulated,
3366         .write_emulated      = emulator_write_emulated,
3367         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
3368 };
3369
3370 static void cache_all_regs(struct kvm_vcpu *vcpu)
3371 {
3372         kvm_register_read(vcpu, VCPU_REGS_RAX);
3373         kvm_register_read(vcpu, VCPU_REGS_RSP);
3374         kvm_register_read(vcpu, VCPU_REGS_RIP);
3375         vcpu->arch.regs_dirty = ~0;
3376 }
3377
3378 int emulate_instruction(struct kvm_vcpu *vcpu,
3379                         unsigned long cr2,
3380                         u16 error_code,
3381                         int emulation_type)
3382 {
3383         int r, shadow_mask;
3384         struct decode_cache *c;
3385         struct kvm_run *run = vcpu->run;
3386
3387         kvm_clear_exception_queue(vcpu);
3388         vcpu->arch.mmio_fault_cr2 = cr2;
3389         /*
3390          * TODO: fix emulate.c to use guest_read/write_register
3391          * instead of direct ->regs accesses, can save hundred cycles
3392          * on Intel for instructions that don't read/change RSP, for
3393          * for example.
3394          */
3395         cache_all_regs(vcpu);
3396
3397         vcpu->mmio_is_write = 0;
3398         vcpu->arch.pio.string = 0;
3399
3400         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
3401                 int cs_db, cs_l;
3402                 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
3403
3404                 vcpu->arch.emulate_ctxt.vcpu = vcpu;
3405                 vcpu->arch.emulate_ctxt.eflags = kvm_get_rflags(vcpu);
3406                 vcpu->arch.emulate_ctxt.mode =
3407                         (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
3408                         (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
3409                         ? X86EMUL_MODE_VM86 : cs_l
3410                         ? X86EMUL_MODE_PROT64 : cs_db
3411                         ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
3412
3413                 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
3414
3415                 /* Only allow emulation of specific instructions on #UD
3416                  * (namely VMMCALL, sysenter, sysexit, syscall)*/
3417                 c = &vcpu->arch.emulate_ctxt.decode;
3418                 if (emulation_type & EMULTYPE_TRAP_UD) {
3419                         if (!c->twobyte)
3420                                 return EMULATE_FAIL;
3421                         switch (c->b) {
3422                         case 0x01: /* VMMCALL */
3423                                 if (c->modrm_mod != 3 || c->modrm_rm != 1)
3424                                         return EMULATE_FAIL;
3425                                 break;
3426                         case 0x34: /* sysenter */
3427                         case 0x35: /* sysexit */
3428                                 if (c->modrm_mod != 0 || c->modrm_rm != 0)
3429                                         return EMULATE_FAIL;
3430                                 break;
3431                         case 0x05: /* syscall */
3432                                 if (c->modrm_mod != 0 || c->modrm_rm != 0)
3433                                         return EMULATE_FAIL;
3434                                 break;
3435                         default:
3436                                 return EMULATE_FAIL;
3437                         }
3438
3439                         if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
3440                                 return EMULATE_FAIL;
3441                 }
3442
3443                 ++vcpu->stat.insn_emulation;
3444                 if (r)  {
3445                         ++vcpu->stat.insn_emulation_fail;
3446                         if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
3447                                 return EMULATE_DONE;
3448                         return EMULATE_FAIL;
3449                 }
3450         }
3451
3452         if (emulation_type & EMULTYPE_SKIP) {
3453                 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
3454                 return EMULATE_DONE;
3455         }
3456
3457         r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
3458         shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
3459
3460         if (r == 0)
3461                 kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
3462
3463         if (vcpu->arch.pio.string)
3464                 return EMULATE_DO_MMIO;
3465
3466         if ((r || vcpu->mmio_is_write) && run) {
3467                 run->exit_reason = KVM_EXIT_MMIO;
3468                 run->mmio.phys_addr = vcpu->mmio_phys_addr;
3469                 memcpy(run->mmio.data, vcpu->mmio_data, 8);
3470                 run->mmio.len = vcpu->mmio_size;
3471                 run->mmio.is_write = vcpu->mmio_is_write;
3472         }
3473
3474         if (r) {
3475                 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
3476                         return EMULATE_DONE;
3477                 if (!vcpu->mmio_needed) {
3478                         kvm_report_emulation_failure(vcpu, "mmio");
3479                         return EMULATE_FAIL;
3480                 }
3481                 return EMULATE_DO_MMIO;
3482         }
3483
3484         kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
3485
3486         if (vcpu->mmio_is_write) {
3487                 vcpu->mmio_needed = 0;
3488                 return EMULATE_DO_MMIO;
3489         }
3490
3491         return EMULATE_DONE;
3492 }
3493 EXPORT_SYMBOL_GPL(emulate_instruction);
3494
3495 static int pio_copy_data(struct kvm_vcpu *vcpu)
3496 {
3497         void *p = vcpu->arch.pio_data;
3498         gva_t q = vcpu->arch.pio.guest_gva;
3499         unsigned bytes;
3500         int ret;
3501         u32 error_code;
3502
3503         bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
3504         if (vcpu->arch.pio.in)
3505                 ret = kvm_write_guest_virt(q, p, bytes, vcpu, &error_code);
3506         else
3507                 ret = kvm_read_guest_virt(q, p, bytes, vcpu, &error_code);
3508
3509         if (ret == X86EMUL_PROPAGATE_FAULT)
3510                 kvm_inject_page_fault(vcpu, q, error_code);
3511
3512         return ret;
3513 }
3514
3515 int complete_pio(struct kvm_vcpu *vcpu)
3516 {
3517         struct kvm_pio_request *io = &vcpu->arch.pio;
3518         long delta;
3519         int r;
3520         unsigned long val;
3521
3522         if (!io->string) {
3523                 if (io->in) {
3524                         val = kvm_register_read(vcpu, VCPU_REGS_RAX);
3525                         memcpy(&val, vcpu->arch.pio_data, io->size);
3526                         kvm_register_write(vcpu, VCPU_REGS_RAX, val);
3527                 }
3528         } else {
3529                 if (io->in) {
3530                         r = pio_copy_data(vcpu);
3531                         if (r)
3532                                 goto out;
3533                 }
3534
3535                 delta = 1;
3536                 if (io->rep) {
3537                         delta *= io->cur_count;
3538                         /*
3539                          * The size of the register should really depend on
3540                          * current address size.
3541                          */
3542                         val = kvm_register_read(vcpu, VCPU_REGS_RCX);
3543                         val -= delta;
3544                         kvm_register_write(vcpu, VCPU_REGS_RCX, val);
3545                 }
3546                 if (io->down)
3547                         delta = -delta;
3548                 delta *= io->size;
3549                 if (io->in) {
3550                         val = kvm_register_read(vcpu, VCPU_REGS_RDI);
3551                         val += delta;
3552                         kvm_register_write(vcpu, VCPU_REGS_RDI, val);
3553                 } else {
3554                         val = kvm_register_read(vcpu, VCPU_REGS_RSI);
3555                         val += delta;
3556                         kvm_register_write(vcpu, VCPU_REGS_RSI, val);
3557                 }
3558         }
3559 out:
3560         io->count -= io->cur_count;
3561         io->cur_count = 0;
3562
3563         return 0;
3564 }
3565
3566 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3567 {
3568         /* TODO: String I/O for in kernel device */
3569         int r;
3570
3571         if (vcpu->arch.pio.in)
3572                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3573                                     vcpu->arch.pio.size, pd);
3574         else
3575                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3576                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
3577                                      pd);
3578         return r;
3579 }
3580
3581 static int pio_string_write(struct kvm_vcpu *vcpu)
3582 {
3583         struct kvm_pio_request *io = &vcpu->arch.pio;
3584         void *pd = vcpu->arch.pio_data;
3585         int i, r = 0;
3586
3587         for (i = 0; i < io->cur_count; i++) {
3588                 if (kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3589                                      io->port, io->size, pd)) {
3590                         r = -EOPNOTSUPP;
3591                         break;
3592                 }
3593                 pd += io->size;
3594         }
3595         return r;
3596 }
3597
3598 int kvm_emulate_pio(struct kvm_vcpu *vcpu, int in, int size, unsigned port)
3599 {
3600         unsigned long val;
3601
3602         trace_kvm_pio(!in, port, size, 1);
3603
3604         vcpu->run->exit_reason = KVM_EXIT_IO;
3605         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
3606         vcpu->run->io.size = vcpu->arch.pio.size = size;
3607         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3608         vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
3609         vcpu->run->io.port = vcpu->arch.pio.port = port;
3610         vcpu->arch.pio.in = in;
3611         vcpu->arch.pio.string = 0;
3612         vcpu->arch.pio.down = 0;
3613         vcpu->arch.pio.rep = 0;
3614
3615         if (!vcpu->arch.pio.in) {
3616                 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
3617                 memcpy(vcpu->arch.pio_data, &val, 4);
3618         }
3619
3620         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3621                 complete_pio(vcpu);
3622                 return 1;
3623         }
3624         return 0;
3625 }
3626 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
3627
3628 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, int in,
3629                   int size, unsigned long count, int down,
3630                   gva_t address, int rep, unsigned port)
3631 {
3632         unsigned now, in_page;
3633         int ret = 0;
3634
3635         trace_kvm_pio(!in, port, size, count);
3636
3637         vcpu->run->exit_reason = KVM_EXIT_IO;
3638         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
3639         vcpu->run->io.size = vcpu->arch.pio.size = size;
3640         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3641         vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
3642         vcpu->run->io.port = vcpu->arch.pio.port = port;
3643         vcpu->arch.pio.in = in;
3644         vcpu->arch.pio.string = 1;
3645         vcpu->arch.pio.down = down;
3646         vcpu->arch.pio.rep = rep;
3647
3648         if (!count) {
3649                 kvm_x86_ops->skip_emulated_instruction(vcpu);
3650                 return 1;
3651         }
3652
3653         if (!down)
3654                 in_page = PAGE_SIZE - offset_in_page(address);
3655         else
3656                 in_page = offset_in_page(address) + size;
3657         now = min(count, (unsigned long)in_page / size);
3658         if (!now)
3659                 now = 1;
3660         if (down) {
3661                 /*
3662                  * String I/O in reverse.  Yuck.  Kill the guest, fix later.
3663                  */
3664                 pr_unimpl(vcpu, "guest string pio down\n");
3665                 kvm_inject_gp(vcpu, 0);
3666                 return 1;
3667         }
3668         vcpu->run->io.count = now;
3669         vcpu->arch.pio.cur_count = now;
3670
3671         if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
3672                 kvm_x86_ops->skip_emulated_instruction(vcpu);
3673
3674         vcpu->arch.pio.guest_gva = address;
3675
3676         if (!vcpu->arch.pio.in) {
3677                 /* string PIO write */
3678                 ret = pio_copy_data(vcpu);
3679                 if (ret == X86EMUL_PROPAGATE_FAULT)
3680                         return 1;
3681                 if (ret == 0 && !pio_string_write(vcpu)) {
3682                         complete_pio(vcpu);
3683                         if (vcpu->arch.pio.count == 0)
3684                                 ret = 1;
3685                 }
3686         }
3687         /* no string PIO read support yet */
3688
3689         return ret;
3690 }
3691 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
3692
3693 static void bounce_off(void *info)
3694 {
3695         /* nothing */
3696 }
3697
3698 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
3699                                      void *data)
3700 {
3701         struct cpufreq_freqs *freq = data;
3702         struct kvm *kvm;
3703         struct kvm_vcpu *vcpu;
3704         int i, send_ipi = 0;
3705
3706         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
3707                 return 0;
3708         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
3709                 return 0;
3710         per_cpu(cpu_tsc_khz, freq->cpu) = freq->new;
3711
3712         spin_lock(&kvm_lock);
3713         list_for_each_entry(kvm, &vm_list, vm_list) {
3714                 kvm_for_each_vcpu(i, vcpu, kvm) {
3715                         if (vcpu->cpu != freq->cpu)
3716                                 continue;
3717                         if (!kvm_request_guest_time_update(vcpu))
3718                                 continue;
3719                         if (vcpu->cpu != smp_processor_id())
3720                                 send_ipi++;
3721                 }
3722         }
3723         spin_unlock(&kvm_lock);
3724
3725         if (freq->old < freq->new && send_ipi) {
3726                 /*
3727                  * We upscale the frequency.  Must make the guest
3728                  * doesn't see old kvmclock values while running with
3729                  * the new frequency, otherwise we risk the guest sees
3730                  * time go backwards.
3731                  *
3732                  * In case we update the frequency for another cpu
3733                  * (which might be in guest context) send an interrupt
3734                  * to kick the cpu out of guest context.  Next time
3735                  * guest context is entered kvmclock will be updated,
3736                  * so the guest will not see stale values.
3737                  */
3738                 smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
3739         }
3740         return 0;
3741 }
3742
3743 static struct notifier_block kvmclock_cpufreq_notifier_block = {
3744         .notifier_call  = kvmclock_cpufreq_notifier
3745 };
3746
3747 static void kvm_timer_init(void)
3748 {
3749         int cpu;
3750
3751         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
3752                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
3753                                           CPUFREQ_TRANSITION_NOTIFIER);
3754                 for_each_online_cpu(cpu) {
3755                         unsigned long khz = cpufreq_get(cpu);
3756                         if (!khz)
3757                                 khz = tsc_khz;
3758                         per_cpu(cpu_tsc_khz, cpu) = khz;
3759                 }
3760         } else {
3761                 for_each_possible_cpu(cpu)
3762                         per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
3763         }
3764 }
3765
3766 int kvm_arch_init(void *opaque)
3767 {
3768         int r;
3769         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
3770
3771         if (kvm_x86_ops) {
3772                 printk(KERN_ERR "kvm: already loaded the other module\n");
3773                 r = -EEXIST;
3774                 goto out;
3775         }
3776
3777         if (!ops->cpu_has_kvm_support()) {
3778                 printk(KERN_ERR "kvm: no hardware support\n");
3779                 r = -EOPNOTSUPP;
3780                 goto out;
3781         }
3782         if (ops->disabled_by_bios()) {
3783                 printk(KERN_ERR "kvm: disabled by bios\n");
3784                 r = -EOPNOTSUPP;
3785                 goto out;
3786         }
3787
3788         r = kvm_mmu_module_init();
3789         if (r)
3790                 goto out;
3791
3792         kvm_init_msr_list();
3793
3794         kvm_x86_ops = ops;
3795         kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
3796         kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
3797         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
3798                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
3799
3800         kvm_timer_init();
3801
3802         return 0;
3803
3804 out:
3805         return r;
3806 }
3807
3808 void kvm_arch_exit(void)
3809 {
3810         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
3811                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
3812                                             CPUFREQ_TRANSITION_NOTIFIER);
3813         kvm_x86_ops = NULL;
3814         kvm_mmu_module_exit();
3815 }
3816
3817 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
3818 {
3819         ++vcpu->stat.halt_exits;
3820         if (irqchip_in_kernel(vcpu->kvm)) {
3821                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
3822                 return 1;
3823         } else {
3824                 vcpu->run->exit_reason = KVM_EXIT_HLT;
3825                 return 0;
3826         }
3827 }
3828 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
3829
3830 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
3831                            unsigned long a1)
3832 {
3833         if (is_long_mode(vcpu))
3834                 return a0;
3835         else
3836                 return a0 | ((gpa_t)a1 << 32);
3837 }
3838
3839 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
3840 {
3841         u64 param, ingpa, outgpa, ret;
3842         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
3843         bool fast, longmode;
3844         int cs_db, cs_l;
3845
3846         /*
3847          * hypercall generates UD from non zero cpl and real mode
3848          * per HYPER-V spec
3849          */
3850         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
3851                 kvm_queue_exception(vcpu, UD_VECTOR);
3852                 return 0;
3853         }
3854
3855         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
3856         longmode = is_long_mode(vcpu) && cs_l == 1;
3857
3858         if (!longmode) {
3859                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
3860                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
3861                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
3862                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
3863                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
3864                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
3865         }
3866 #ifdef CONFIG_X86_64
3867         else {
3868                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
3869                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
3870                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
3871         }
3872 #endif
3873
3874         code = param & 0xffff;
3875         fast = (param >> 16) & 0x1;
3876         rep_cnt = (param >> 32) & 0xfff;
3877         rep_idx = (param >> 48) & 0xfff;
3878
3879         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
3880
3881         switch (code) {
3882         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
3883                 kvm_vcpu_on_spin(vcpu);
3884                 break;
3885         default:
3886                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
3887                 break;
3888         }
3889
3890         ret = res | (((u64)rep_done & 0xfff) << 32);
3891         if (longmode) {
3892                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
3893         } else {
3894                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
3895                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
3896         }
3897
3898         return 1;
3899 }
3900
3901 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
3902 {
3903         unsigned long nr, a0, a1, a2, a3, ret;
3904         int r = 1;
3905
3906         if (kvm_hv_hypercall_enabled(vcpu->kvm))
3907                 return kvm_hv_hypercall(vcpu);
3908
3909         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
3910         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
3911         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
3912         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
3913         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
3914
3915         trace_kvm_hypercall(nr, a0, a1, a2, a3);
3916
3917         if (!is_long_mode(vcpu)) {
3918                 nr &= 0xFFFFFFFF;
3919                 a0 &= 0xFFFFFFFF;
3920                 a1 &= 0xFFFFFFFF;
3921                 a2 &= 0xFFFFFFFF;
3922                 a3 &= 0xFFFFFFFF;
3923         }
3924
3925         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
3926                 ret = -KVM_EPERM;
3927                 goto out;
3928         }
3929
3930         switch (nr) {
3931         case KVM_HC_VAPIC_POLL_IRQ:
3932                 ret = 0;
3933                 break;
3934         case KVM_HC_MMU_OP:
3935                 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
3936                 break;
3937         default:
3938                 ret = -KVM_ENOSYS;
3939                 break;
3940         }
3941 out:
3942         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
3943         ++vcpu->stat.hypercalls;
3944         return r;
3945 }
3946 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
3947
3948 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
3949 {
3950         char instruction[3];
3951         unsigned long rip = kvm_rip_read(vcpu);
3952
3953         /*
3954          * Blow out the MMU to ensure that no other VCPU has an active mapping
3955          * to ensure that the updated hypercall appears atomically across all
3956          * VCPUs.
3957          */
3958         kvm_mmu_zap_all(vcpu->kvm);
3959
3960         kvm_x86_ops->patch_hypercall(vcpu, instruction);
3961
3962         return emulator_write_emulated(rip, instruction, 3, vcpu);
3963 }
3964
3965 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
3966 {
3967         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
3968 }
3969
3970 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3971 {
3972         struct descriptor_table dt = { limit, base };
3973
3974         kvm_x86_ops->set_gdt(vcpu, &dt);
3975 }
3976
3977 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3978 {
3979         struct descriptor_table dt = { limit, base };
3980
3981         kvm_x86_ops->set_idt(vcpu, &dt);
3982 }
3983
3984 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
3985                    unsigned long *rflags)
3986 {
3987         kvm_lmsw(vcpu, msw);
3988         *rflags = kvm_get_rflags(vcpu);
3989 }
3990
3991 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
3992 {
3993         unsigned long value;
3994
3995         switch (cr) {
3996         case 0:
3997                 value = kvm_read_cr0(vcpu);
3998                 break;
3999         case 2:
4000                 value = vcpu->arch.cr2;
4001                 break;
4002         case 3:
4003                 value = vcpu->arch.cr3;
4004                 break;
4005         case 4:
4006                 value = kvm_read_cr4(vcpu);
4007                 break;
4008         case 8:
4009                 value = kvm_get_cr8(vcpu);
4010                 break;
4011         default:
4012                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4013                 return 0;
4014         }
4015
4016         return value;
4017 }
4018
4019 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
4020                      unsigned long *rflags)
4021 {
4022         switch (cr) {
4023         case 0:
4024                 kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4025                 *rflags = kvm_get_rflags(vcpu);
4026                 break;
4027         case 2:
4028                 vcpu->arch.cr2 = val;
4029                 break;
4030         case 3:
4031                 kvm_set_cr3(vcpu, val);
4032                 break;
4033         case 4:
4034                 kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4035                 break;
4036         case 8:
4037                 kvm_set_cr8(vcpu, val & 0xfUL);
4038                 break;
4039         default:
4040                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4041         }
4042 }
4043
4044 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
4045 {
4046         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
4047         int j, nent = vcpu->arch.cpuid_nent;
4048
4049         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
4050         /* when no next entry is found, the current entry[i] is reselected */
4051         for (j = i + 1; ; j = (j + 1) % nent) {
4052                 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
4053                 if (ej->function == e->function) {
4054                         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
4055                         return j;
4056                 }
4057         }
4058         return 0; /* silence gcc, even though control never reaches here */
4059 }
4060
4061 /* find an entry with matching function, matching index (if needed), and that
4062  * should be read next (if it's stateful) */
4063 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
4064         u32 function, u32 index)
4065 {
4066         if (e->function != function)
4067                 return 0;
4068         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
4069                 return 0;
4070         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
4071             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
4072                 return 0;
4073         return 1;
4074 }
4075
4076 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
4077                                               u32 function, u32 index)
4078 {
4079         int i;
4080         struct kvm_cpuid_entry2 *best = NULL;
4081
4082         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
4083                 struct kvm_cpuid_entry2 *e;
4084
4085                 e = &vcpu->arch.cpuid_entries[i];
4086                 if (is_matching_cpuid_entry(e, function, index)) {
4087                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
4088                                 move_to_next_stateful_cpuid_entry(vcpu, i);
4089                         best = e;
4090                         break;
4091                 }
4092                 /*
4093                  * Both basic or both extended?
4094                  */
4095                 if (((e->function ^ function) & 0x80000000) == 0)
4096                         if (!best || e->function > best->function)
4097                                 best = e;
4098         }
4099         return best;
4100 }
4101 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
4102
4103 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
4104 {
4105         struct kvm_cpuid_entry2 *best;
4106
4107         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
4108         if (best)
4109                 return best->eax & 0xff;
4110         return 36;
4111 }
4112
4113 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
4114 {
4115         u32 function, index;
4116         struct kvm_cpuid_entry2 *best;
4117
4118         function = kvm_register_read(vcpu, VCPU_REGS_RAX);
4119         index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4120         kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
4121         kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
4122         kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
4123         kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
4124         best = kvm_find_cpuid_entry(vcpu, function, index);
4125         if (best) {
4126                 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
4127                 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
4128                 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
4129                 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
4130         }
4131         kvm_x86_ops->skip_emulated_instruction(vcpu);
4132         trace_kvm_cpuid(function,
4133                         kvm_register_read(vcpu, VCPU_REGS_RAX),
4134                         kvm_register_read(vcpu, VCPU_REGS_RBX),
4135                         kvm_register_read(vcpu, VCPU_REGS_RCX),
4136                         kvm_register_read(vcpu, VCPU_REGS_RDX));
4137 }
4138 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
4139
4140 /*
4141  * Check if userspace requested an interrupt window, and that the
4142  * interrupt window is open.
4143  *
4144  * No need to exit to userspace if we already have an interrupt queued.
4145  */
4146 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
4147 {
4148         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
4149                 vcpu->run->request_interrupt_window &&
4150                 kvm_arch_interrupt_allowed(vcpu));
4151 }
4152
4153 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
4154 {
4155         struct kvm_run *kvm_run = vcpu->run;
4156
4157         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
4158         kvm_run->cr8 = kvm_get_cr8(vcpu);
4159         kvm_run->apic_base = kvm_get_apic_base(vcpu);
4160         if (irqchip_in_kernel(vcpu->kvm))
4161                 kvm_run->ready_for_interrupt_injection = 1;
4162         else
4163                 kvm_run->ready_for_interrupt_injection =
4164                         kvm_arch_interrupt_allowed(vcpu) &&
4165                         !kvm_cpu_has_interrupt(vcpu) &&
4166                         !kvm_event_needs_reinjection(vcpu);
4167 }
4168
4169 static void vapic_enter(struct kvm_vcpu *vcpu)
4170 {
4171         struct kvm_lapic *apic = vcpu->arch.apic;
4172         struct page *page;
4173
4174         if (!apic || !apic->vapic_addr)
4175                 return;
4176
4177         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4178
4179         vcpu->arch.apic->vapic_page = page;
4180 }
4181
4182 static void vapic_exit(struct kvm_vcpu *vcpu)
4183 {
4184         struct kvm_lapic *apic = vcpu->arch.apic;
4185         int idx;
4186
4187         if (!apic || !apic->vapic_addr)
4188                 return;
4189
4190         idx = srcu_read_lock(&vcpu->kvm->srcu);
4191         kvm_release_page_dirty(apic->vapic_page);
4192         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4193         srcu_read_unlock(&vcpu->kvm->srcu, idx);
4194 }
4195
4196 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
4197 {
4198         int max_irr, tpr;
4199
4200         if (!kvm_x86_ops->update_cr8_intercept)
4201                 return;
4202
4203         if (!vcpu->arch.apic)
4204                 return;
4205
4206         if (!vcpu->arch.apic->vapic_addr)
4207                 max_irr = kvm_lapic_find_highest_irr(vcpu);
4208         else
4209                 max_irr = -1;
4210
4211         if (max_irr != -1)
4212                 max_irr >>= 4;
4213
4214         tpr = kvm_lapic_get_cr8(vcpu);
4215
4216         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
4217 }
4218
4219 static void inject_pending_event(struct kvm_vcpu *vcpu)
4220 {
4221         /* try to reinject previous events if any */
4222         if (vcpu->arch.exception.pending) {
4223                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
4224                                           vcpu->arch.exception.has_error_code,
4225                                           vcpu->arch.exception.error_code);
4226                 return;
4227         }
4228
4229         if (vcpu->arch.nmi_injected) {
4230                 kvm_x86_ops->set_nmi(vcpu);
4231                 return;
4232         }
4233
4234         if (vcpu->arch.interrupt.pending) {
4235                 kvm_x86_ops->set_irq(vcpu);
4236                 return;
4237         }
4238
4239         /* try to inject new event if pending */
4240         if (vcpu->arch.nmi_pending) {
4241                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
4242                         vcpu->arch.nmi_pending = false;
4243                         vcpu->arch.nmi_injected = true;
4244                         kvm_x86_ops->set_nmi(vcpu);
4245                 }
4246         } else if (kvm_cpu_has_interrupt(vcpu)) {
4247                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
4248                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
4249                                             false);
4250                         kvm_x86_ops->set_irq(vcpu);
4251                 }
4252         }
4253 }
4254
4255 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
4256 {
4257         int r;
4258         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
4259                 vcpu->run->request_interrupt_window;
4260
4261         if (vcpu->requests)
4262                 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
4263                         kvm_mmu_unload(vcpu);
4264
4265         r = kvm_mmu_reload(vcpu);
4266         if (unlikely(r))
4267                 goto out;
4268
4269         if (vcpu->requests) {
4270                 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
4271                         __kvm_migrate_timers(vcpu);
4272                 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
4273                         kvm_write_guest_time(vcpu);
4274                 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
4275                         kvm_mmu_sync_roots(vcpu);
4276                 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
4277                         kvm_x86_ops->tlb_flush(vcpu);
4278                 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
4279                                        &vcpu->requests)) {
4280                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
4281                         r = 0;
4282                         goto out;
4283                 }
4284                 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
4285                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4286                         r = 0;
4287                         goto out;
4288                 }
4289                 if (test_and_clear_bit(KVM_REQ_DEACTIVATE_FPU, &vcpu->requests)) {
4290                         vcpu->fpu_active = 0;
4291                         kvm_x86_ops->fpu_deactivate(vcpu);
4292                 }
4293         }
4294
4295         preempt_disable();
4296
4297         kvm_x86_ops->prepare_guest_switch(vcpu);
4298         if (vcpu->fpu_active)
4299                 kvm_load_guest_fpu(vcpu);
4300
4301         local_irq_disable();
4302
4303         clear_bit(KVM_REQ_KICK, &vcpu->requests);
4304         smp_mb__after_clear_bit();
4305
4306         if (vcpu->requests || need_resched() || signal_pending(current)) {
4307                 set_bit(KVM_REQ_KICK, &vcpu->requests);
4308                 local_irq_enable();
4309                 preempt_enable();
4310                 r = 1;
4311                 goto out;
4312         }
4313
4314         inject_pending_event(vcpu);
4315
4316         /* enable NMI/IRQ window open exits if needed */
4317         if (vcpu->arch.nmi_pending)
4318                 kvm_x86_ops->enable_nmi_window(vcpu);
4319         else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
4320                 kvm_x86_ops->enable_irq_window(vcpu);
4321
4322         if (kvm_lapic_enabled(vcpu)) {
4323                 update_cr8_intercept(vcpu);
4324                 kvm_lapic_sync_to_vapic(vcpu);
4325         }
4326
4327         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4328
4329         kvm_guest_enter();
4330
4331         if (unlikely(vcpu->arch.switch_db_regs)) {
4332                 set_debugreg(0, 7);
4333                 set_debugreg(vcpu->arch.eff_db[0], 0);
4334                 set_debugreg(vcpu->arch.eff_db[1], 1);
4335                 set_debugreg(vcpu->arch.eff_db[2], 2);
4336                 set_debugreg(vcpu->arch.eff_db[3], 3);
4337         }
4338
4339         trace_kvm_entry(vcpu->vcpu_id);
4340         kvm_x86_ops->run(vcpu);
4341
4342         /*
4343          * If the guest has used debug registers, at least dr7
4344          * will be disabled while returning to the host.
4345          * If we don't have active breakpoints in the host, we don't
4346          * care about the messed up debug address registers. But if
4347          * we have some of them active, restore the old state.
4348          */
4349         if (hw_breakpoint_active())
4350                 hw_breakpoint_restore();
4351
4352         set_bit(KVM_REQ_KICK, &vcpu->requests);
4353         local_irq_enable();
4354
4355         ++vcpu->stat.exits;
4356
4357         /*
4358          * We must have an instruction between local_irq_enable() and
4359          * kvm_guest_exit(), so the timer interrupt isn't delayed by
4360          * the interrupt shadow.  The stat.exits increment will do nicely.
4361          * But we need to prevent reordering, hence this barrier():
4362          */
4363         barrier();
4364
4365         kvm_guest_exit();
4366
4367         preempt_enable();
4368
4369         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4370
4371         /*
4372          * Profile KVM exit RIPs:
4373          */
4374         if (unlikely(prof_on == KVM_PROFILING)) {
4375                 unsigned long rip = kvm_rip_read(vcpu);
4376                 profile_hit(KVM_PROFILING, (void *)rip);
4377         }
4378
4379
4380         kvm_lapic_sync_from_vapic(vcpu);
4381
4382         r = kvm_x86_ops->handle_exit(vcpu);
4383 out:
4384         return r;
4385 }
4386
4387
4388 static int __vcpu_run(struct kvm_vcpu *vcpu)
4389 {
4390         int r;
4391         struct kvm *kvm = vcpu->kvm;
4392
4393         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
4394                 pr_debug("vcpu %d received sipi with vector # %x\n",
4395                          vcpu->vcpu_id, vcpu->arch.sipi_vector);
4396                 kvm_lapic_reset(vcpu);
4397                 r = kvm_arch_vcpu_reset(vcpu);
4398                 if (r)
4399                         return r;
4400                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4401         }
4402
4403         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4404         vapic_enter(vcpu);
4405
4406         r = 1;
4407         while (r > 0) {
4408                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
4409                         r = vcpu_enter_guest(vcpu);
4410                 else {
4411                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4412                         kvm_vcpu_block(vcpu);
4413                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4414                         if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
4415                         {
4416                                 switch(vcpu->arch.mp_state) {
4417                                 case KVM_MP_STATE_HALTED:
4418                                         vcpu->arch.mp_state =
4419                                                 KVM_MP_STATE_RUNNABLE;
4420                                 case KVM_MP_STATE_RUNNABLE:
4421                                         break;
4422                                 case KVM_MP_STATE_SIPI_RECEIVED:
4423                                 default:
4424                                         r = -EINTR;
4425                                         break;
4426                                 }
4427                         }
4428                 }
4429
4430                 if (r <= 0)
4431                         break;
4432
4433                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
4434                 if (kvm_cpu_has_pending_timer(vcpu))
4435                         kvm_inject_pending_timer_irqs(vcpu);
4436
4437                 if (dm_request_for_irq_injection(vcpu)) {
4438                         r = -EINTR;
4439                         vcpu->run->exit_reason = KVM_EXIT_INTR;
4440                         ++vcpu->stat.request_irq_exits;
4441                 }
4442                 if (signal_pending(current)) {
4443                         r = -EINTR;
4444                         vcpu->run->exit_reason = KVM_EXIT_INTR;
4445                         ++vcpu->stat.signal_exits;
4446                 }
4447                 if (need_resched()) {
4448                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4449                         kvm_resched(vcpu);
4450                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4451                 }
4452         }
4453
4454         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4455         post_kvm_run_save(vcpu);
4456
4457         vapic_exit(vcpu);
4458
4459         return r;
4460 }
4461
4462 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
4463 {
4464         int r;
4465         sigset_t sigsaved;
4466
4467         vcpu_load(vcpu);
4468
4469         if (vcpu->sigset_active)
4470                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
4471
4472         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
4473                 kvm_vcpu_block(vcpu);
4474                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
4475                 r = -EAGAIN;
4476                 goto out;
4477         }
4478
4479         /* re-sync apic's tpr */
4480         if (!irqchip_in_kernel(vcpu->kvm))
4481                 kvm_set_cr8(vcpu, kvm_run->cr8);
4482
4483         if (vcpu->arch.pio.cur_count) {
4484                 r = complete_pio(vcpu);
4485                 if (r)
4486                         goto out;
4487         }
4488         if (vcpu->mmio_needed) {
4489                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
4490                 vcpu->mmio_read_completed = 1;
4491                 vcpu->mmio_needed = 0;
4492
4493                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4494                 r = emulate_instruction(vcpu, vcpu->arch.mmio_fault_cr2, 0,
4495                                         EMULTYPE_NO_DECODE);
4496                 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4497                 if (r == EMULATE_DO_MMIO) {
4498                         /*
4499                          * Read-modify-write.  Back to userspace.
4500                          */
4501                         r = 0;
4502                         goto out;
4503                 }
4504         }
4505         if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
4506                 kvm_register_write(vcpu, VCPU_REGS_RAX,
4507                                      kvm_run->hypercall.ret);
4508
4509         r = __vcpu_run(vcpu);
4510
4511 out:
4512         if (vcpu->sigset_active)
4513                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
4514
4515         vcpu_put(vcpu);
4516         return r;
4517 }
4518
4519 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4520 {
4521         vcpu_load(vcpu);
4522
4523         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4524         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4525         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4526         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4527         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4528         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4529         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4530         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4531 #ifdef CONFIG_X86_64
4532         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
4533         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
4534         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
4535         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
4536         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
4537         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
4538         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
4539         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
4540 #endif
4541
4542         regs->rip = kvm_rip_read(vcpu);
4543         regs->rflags = kvm_get_rflags(vcpu);
4544
4545         vcpu_put(vcpu);
4546
4547         return 0;
4548 }
4549
4550 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4551 {
4552         vcpu_load(vcpu);
4553
4554         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
4555         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
4556         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
4557         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
4558         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
4559         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
4560         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
4561         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
4562 #ifdef CONFIG_X86_64
4563         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
4564         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
4565         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
4566         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
4567         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
4568         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
4569         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
4570         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
4571 #endif
4572
4573         kvm_rip_write(vcpu, regs->rip);
4574         kvm_set_rflags(vcpu, regs->rflags);
4575
4576         vcpu->arch.exception.pending = false;
4577
4578         vcpu_put(vcpu);
4579
4580         return 0;
4581 }
4582
4583 void kvm_get_segment(struct kvm_vcpu *vcpu,
4584                      struct kvm_segment *var, int seg)
4585 {
4586         kvm_x86_ops->get_segment(vcpu, var, seg);
4587 }
4588
4589 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4590 {
4591         struct kvm_segment cs;
4592
4593         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
4594         *db = cs.db;
4595         *l = cs.l;
4596 }
4597 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
4598
4599 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
4600                                   struct kvm_sregs *sregs)
4601 {
4602         struct descriptor_table dt;
4603
4604         vcpu_load(vcpu);
4605
4606         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4607         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4608         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4609         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4610         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4611         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4612
4613         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4614         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4615
4616         kvm_x86_ops->get_idt(vcpu, &dt);
4617         sregs->idt.limit = dt.limit;
4618         sregs->idt.base = dt.base;
4619         kvm_x86_ops->get_gdt(vcpu, &dt);
4620         sregs->gdt.limit = dt.limit;
4621         sregs->gdt.base = dt.base;
4622
4623         sregs->cr0 = kvm_read_cr0(vcpu);
4624         sregs->cr2 = vcpu->arch.cr2;
4625         sregs->cr3 = vcpu->arch.cr3;
4626         sregs->cr4 = kvm_read_cr4(vcpu);
4627         sregs->cr8 = kvm_get_cr8(vcpu);
4628         sregs->efer = vcpu->arch.efer;
4629         sregs->apic_base = kvm_get_apic_base(vcpu);
4630
4631         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
4632
4633         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
4634                 set_bit(vcpu->arch.interrupt.nr,
4635                         (unsigned long *)sregs->interrupt_bitmap);
4636
4637         vcpu_put(vcpu);
4638
4639         return 0;
4640 }
4641
4642 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
4643                                     struct kvm_mp_state *mp_state)
4644 {
4645         vcpu_load(vcpu);
4646         mp_state->mp_state = vcpu->arch.mp_state;
4647         vcpu_put(vcpu);
4648         return 0;
4649 }
4650
4651 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
4652                                     struct kvm_mp_state *mp_state)
4653 {
4654         vcpu_load(vcpu);
4655         vcpu->arch.mp_state = mp_state->mp_state;
4656         vcpu_put(vcpu);
4657         return 0;
4658 }
4659
4660 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4661                         struct kvm_segment *var, int seg)
4662 {
4663         kvm_x86_ops->set_segment(vcpu, var, seg);
4664 }
4665
4666 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
4667                                    struct kvm_segment *kvm_desct)
4668 {
4669         kvm_desct->base = get_desc_base(seg_desc);
4670         kvm_desct->limit = get_desc_limit(seg_desc);
4671         if (seg_desc->g) {
4672                 kvm_desct->limit <<= 12;
4673                 kvm_desct->limit |= 0xfff;
4674         }
4675         kvm_desct->selector = selector;
4676         kvm_desct->type = seg_desc->type;
4677         kvm_desct->present = seg_desc->p;
4678         kvm_desct->dpl = seg_desc->dpl;
4679         kvm_desct->db = seg_desc->d;
4680         kvm_desct->s = seg_desc->s;
4681         kvm_desct->l = seg_desc->l;
4682         kvm_desct->g = seg_desc->g;
4683         kvm_desct->avl = seg_desc->avl;
4684         if (!selector)
4685                 kvm_desct->unusable = 1;
4686         else
4687                 kvm_desct->unusable = 0;
4688         kvm_desct->padding = 0;
4689 }
4690
4691 static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
4692                                           u16 selector,
4693                                           struct descriptor_table *dtable)
4694 {
4695         if (selector & 1 << 2) {
4696                 struct kvm_segment kvm_seg;
4697
4698                 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
4699
4700                 if (kvm_seg.unusable)
4701                         dtable->limit = 0;
4702                 else
4703                         dtable->limit = kvm_seg.limit;
4704                 dtable->base = kvm_seg.base;
4705         }
4706         else
4707                 kvm_x86_ops->get_gdt(vcpu, dtable);
4708 }
4709
4710 /* allowed just for 8 bytes segments */
4711 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4712                                          struct desc_struct *seg_desc)
4713 {
4714         struct descriptor_table dtable;
4715         u16 index = selector >> 3;
4716
4717         get_segment_descriptor_dtable(vcpu, selector, &dtable);
4718
4719         if (dtable.limit < index * 8 + 7) {
4720                 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
4721                 return X86EMUL_PROPAGATE_FAULT;
4722         }
4723         return kvm_read_guest_virt_system(dtable.base + index*8,
4724                                           seg_desc, sizeof(*seg_desc),
4725                                           vcpu, NULL);
4726 }
4727
4728 /* allowed just for 8 bytes segments */
4729 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4730                                          struct desc_struct *seg_desc)
4731 {
4732         struct descriptor_table dtable;
4733         u16 index = selector >> 3;
4734
4735         get_segment_descriptor_dtable(vcpu, selector, &dtable);
4736
4737         if (dtable.limit < index * 8 + 7)
4738                 return 1;
4739         return kvm_write_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu, NULL);
4740 }
4741
4742 static gpa_t get_tss_base_addr_write(struct kvm_vcpu *vcpu,
4743                                struct desc_struct *seg_desc)
4744 {
4745         u32 base_addr = get_desc_base(seg_desc);
4746
4747         return kvm_mmu_gva_to_gpa_write(vcpu, base_addr, NULL);
4748 }
4749
4750 static gpa_t get_tss_base_addr_read(struct kvm_vcpu *vcpu,
4751                              struct desc_struct *seg_desc)
4752 {
4753         u32 base_addr = get_desc_base(seg_desc);
4754
4755         return kvm_mmu_gva_to_gpa_read(vcpu, base_addr, NULL);
4756 }
4757
4758 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
4759 {
4760         struct kvm_segment kvm_seg;
4761
4762         kvm_get_segment(vcpu, &kvm_seg, seg);
4763         return kvm_seg.selector;
4764 }
4765
4766 static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
4767 {
4768         struct kvm_segment segvar = {
4769                 .base = selector << 4,
4770                 .limit = 0xffff,
4771                 .selector = selector,
4772                 .type = 3,
4773                 .present = 1,
4774                 .dpl = 3,
4775                 .db = 0,
4776                 .s = 1,
4777                 .l = 0,
4778                 .g = 0,
4779                 .avl = 0,
4780                 .unusable = 0,
4781         };
4782         kvm_x86_ops->set_segment(vcpu, &segvar, seg);
4783         return 0;
4784 }
4785
4786 static int is_vm86_segment(struct kvm_vcpu *vcpu, int seg)
4787 {
4788         return (seg != VCPU_SREG_LDTR) &&
4789                 (seg != VCPU_SREG_TR) &&
4790                 (kvm_get_rflags(vcpu) & X86_EFLAGS_VM);
4791 }
4792
4793 static void kvm_check_segment_descriptor(struct kvm_vcpu *vcpu, int seg,
4794                                          u16 selector)
4795 {
4796         /* NULL selector is not valid for CS and SS */
4797         if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
4798                 if (!selector)
4799                         kvm_queue_exception_e(vcpu, TS_VECTOR, selector >> 3);
4800 }
4801
4802 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4803                                 int type_bits, int seg)
4804 {
4805         struct kvm_segment kvm_seg;
4806         struct desc_struct seg_desc;
4807
4808         if (is_vm86_segment(vcpu, seg) || !is_protmode(vcpu))
4809                 return kvm_load_realmode_segment(vcpu, selector, seg);
4810
4811         if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
4812                 return 1;
4813         seg_desct_to_kvm_desct(&seg_desc, selector, &kvm_seg);
4814
4815         kvm_check_segment_descriptor(vcpu, seg, selector);
4816         kvm_seg.type |= type_bits;
4817
4818         if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
4819             seg != VCPU_SREG_LDTR)
4820                 if (!kvm_seg.s)
4821                         kvm_seg.unusable = 1;
4822
4823         kvm_set_segment(vcpu, &kvm_seg, seg);
4824         if (selector && !kvm_seg.unusable && kvm_seg.s) {
4825                 /* mark segment as accessed */
4826                 seg_desc.type |= 1;
4827                 save_guest_segment_descriptor(vcpu, selector, &seg_desc);
4828         }
4829         return 0;
4830 }
4831
4832 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
4833                                 struct tss_segment_32 *tss)
4834 {
4835         tss->cr3 = vcpu->arch.cr3;
4836         tss->eip = kvm_rip_read(vcpu);
4837         tss->eflags = kvm_get_rflags(vcpu);
4838         tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4839         tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4840         tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4841         tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4842         tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4843         tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4844         tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4845         tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4846         tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4847         tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4848         tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4849         tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4850         tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
4851         tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
4852         tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4853 }
4854
4855 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
4856                                   struct tss_segment_32 *tss)
4857 {
4858         kvm_set_cr3(vcpu, tss->cr3);
4859
4860         kvm_rip_write(vcpu, tss->eip);
4861         kvm_set_rflags(vcpu, tss->eflags | 2);
4862
4863         kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
4864         kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
4865         kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
4866         kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
4867         kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
4868         kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
4869         kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
4870         kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
4871
4872         if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
4873                 return 1;
4874
4875         if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
4876                 return 1;
4877
4878         if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
4879                 return 1;
4880
4881         if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
4882                 return 1;
4883
4884         if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
4885                 return 1;
4886
4887         if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
4888                 return 1;
4889
4890         if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
4891                 return 1;
4892         return 0;
4893 }
4894
4895 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
4896                                 struct tss_segment_16 *tss)
4897 {
4898         tss->ip = kvm_rip_read(vcpu);
4899         tss->flag = kvm_get_rflags(vcpu);
4900         tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4901         tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4902         tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4903         tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4904         tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4905         tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4906         tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
4907         tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
4908
4909         tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4910         tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4911         tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4912         tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4913         tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4914 }
4915
4916 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
4917                                  struct tss_segment_16 *tss)
4918 {
4919         kvm_rip_write(vcpu, tss->ip);
4920         kvm_set_rflags(vcpu, tss->flag | 2);
4921         kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
4922         kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
4923         kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
4924         kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
4925         kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
4926         kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
4927         kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
4928         kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
4929
4930         if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
4931                 return 1;
4932
4933         if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
4934                 return 1;
4935
4936         if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
4937                 return 1;
4938
4939         if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
4940                 return 1;
4941
4942         if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
4943                 return 1;
4944         return 0;
4945 }
4946
4947 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
4948                               u16 old_tss_sel, u32 old_tss_base,
4949                               struct desc_struct *nseg_desc)
4950 {
4951         struct tss_segment_16 tss_segment_16;
4952         int ret = 0;
4953
4954         if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4955                            sizeof tss_segment_16))
4956                 goto out;
4957
4958         save_state_to_tss16(vcpu, &tss_segment_16);
4959
4960         if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4961                             sizeof tss_segment_16))
4962                 goto out;
4963
4964         if (kvm_read_guest(vcpu->kvm, get_tss_base_addr_read(vcpu, nseg_desc),
4965                            &tss_segment_16, sizeof tss_segment_16))
4966                 goto out;
4967
4968         if (old_tss_sel != 0xffff) {
4969                 tss_segment_16.prev_task_link = old_tss_sel;
4970
4971                 if (kvm_write_guest(vcpu->kvm,
4972                                     get_tss_base_addr_write(vcpu, nseg_desc),
4973                                     &tss_segment_16.prev_task_link,
4974                                     sizeof tss_segment_16.prev_task_link))
4975                         goto out;
4976         }
4977
4978         if (load_state_from_tss16(vcpu, &tss_segment_16))
4979                 goto out;
4980
4981         ret = 1;
4982 out:
4983         return ret;
4984 }
4985
4986 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
4987                        u16 old_tss_sel, u32 old_tss_base,
4988                        struct desc_struct *nseg_desc)
4989 {
4990         struct tss_segment_32 tss_segment_32;
4991         int ret = 0;
4992
4993         if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
4994                            sizeof tss_segment_32))
4995                 goto out;
4996
4997         save_state_to_tss32(vcpu, &tss_segment_32);
4998
4999         if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
5000                             sizeof tss_segment_32))
5001                 goto out;
5002
5003         if (kvm_read_guest(vcpu->kvm, get_tss_base_addr_read(vcpu, nseg_desc),
5004                            &tss_segment_32, sizeof tss_segment_32))
5005                 goto out;
5006
5007         if (old_tss_sel != 0xffff) {
5008                 tss_segment_32.prev_task_link = old_tss_sel;
5009
5010                 if (kvm_write_guest(vcpu->kvm,
5011                                     get_tss_base_addr_write(vcpu, nseg_desc),
5012                                     &tss_segment_32.prev_task_link,
5013                                     sizeof tss_segment_32.prev_task_link))
5014                         goto out;
5015         }
5016
5017         if (load_state_from_tss32(vcpu, &tss_segment_32))
5018                 goto out;
5019
5020         ret = 1;
5021 out:
5022         return ret;
5023 }
5024
5025 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
5026 {
5027         struct kvm_segment tr_seg;
5028         struct desc_struct cseg_desc;
5029         struct desc_struct nseg_desc;
5030         int ret = 0;
5031         u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
5032         u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
5033
5034         old_tss_base = kvm_mmu_gva_to_gpa_write(vcpu, old_tss_base, NULL);
5035
5036         /* FIXME: Handle errors. Failure to read either TSS or their
5037          * descriptors should generate a pagefault.
5038          */
5039         if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
5040                 goto out;
5041
5042         if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
5043                 goto out;
5044
5045         if (reason != TASK_SWITCH_IRET) {
5046                 int cpl;
5047
5048                 cpl = kvm_x86_ops->get_cpl(vcpu);
5049                 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
5050                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
5051                         return 1;
5052                 }
5053         }
5054
5055         if (!nseg_desc.p || get_desc_limit(&nseg_desc) < 0x67) {
5056                 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
5057                 return 1;
5058         }
5059
5060         if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
5061                 cseg_desc.type &= ~(1 << 1); //clear the B flag
5062                 save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
5063         }
5064
5065         if (reason == TASK_SWITCH_IRET) {
5066                 u32 eflags = kvm_get_rflags(vcpu);
5067                 kvm_set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
5068         }
5069
5070         /* set back link to prev task only if NT bit is set in eflags
5071            note that old_tss_sel is not used afetr this point */
5072         if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
5073                 old_tss_sel = 0xffff;
5074
5075         if (nseg_desc.type & 8)
5076                 ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
5077                                          old_tss_base, &nseg_desc);
5078         else
5079                 ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
5080                                          old_tss_base, &nseg_desc);
5081
5082         if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
5083                 u32 eflags = kvm_get_rflags(vcpu);
5084                 kvm_set_rflags(vcpu, eflags | X86_EFLAGS_NT);
5085         }
5086
5087         if (reason != TASK_SWITCH_IRET) {
5088                 nseg_desc.type |= (1 << 1);
5089                 save_guest_segment_descriptor(vcpu, tss_selector,
5090                                               &nseg_desc);
5091         }
5092
5093         kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0(vcpu) | X86_CR0_TS);
5094         seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
5095         tr_seg.type = 11;
5096         kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
5097 out:
5098         return ret;
5099 }
5100 EXPORT_SYMBOL_GPL(kvm_task_switch);
5101
5102 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5103                                   struct kvm_sregs *sregs)
5104 {
5105         int mmu_reset_needed = 0;
5106         int pending_vec, max_bits;
5107         struct descriptor_table dt;
5108
5109         vcpu_load(vcpu);
5110
5111         dt.limit = sregs->idt.limit;
5112         dt.base = sregs->idt.base;
5113         kvm_x86_ops->set_idt(vcpu, &dt);
5114         dt.limit = sregs->gdt.limit;
5115         dt.base = sregs->gdt.base;
5116         kvm_x86_ops->set_gdt(vcpu, &dt);
5117
5118         vcpu->arch.cr2 = sregs->cr2;
5119         mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
5120         vcpu->arch.cr3 = sregs->cr3;
5121
5122         kvm_set_cr8(vcpu, sregs->cr8);
5123
5124         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5125         kvm_x86_ops->set_efer(vcpu, sregs->efer);
5126         kvm_set_apic_base(vcpu, sregs->apic_base);
5127
5128         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5129         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5130         vcpu->arch.cr0 = sregs->cr0;
5131
5132         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5133         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5134         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5135                 load_pdptrs(vcpu, vcpu->arch.cr3);
5136                 mmu_reset_needed = 1;
5137         }
5138
5139         if (mmu_reset_needed)
5140                 kvm_mmu_reset_context(vcpu);
5141
5142         max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5143         pending_vec = find_first_bit(
5144                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5145         if (pending_vec < max_bits) {
5146                 kvm_queue_interrupt(vcpu, pending_vec, false);
5147                 pr_debug("Set back pending irq %d\n", pending_vec);
5148                 if (irqchip_in_kernel(vcpu->kvm))
5149                         kvm_pic_clear_isr_ack(vcpu->kvm);
5150         }
5151
5152         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5153         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5154         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5155         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5156         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5157         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5158
5159         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5160         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5161
5162         update_cr8_intercept(vcpu);
5163
5164         /* Older userspace won't unhalt the vcpu on reset. */
5165         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5166             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5167             !is_protmode(vcpu))
5168                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5169
5170         vcpu_put(vcpu);
5171
5172         return 0;
5173 }
5174
5175 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5176                                         struct kvm_guest_debug *dbg)
5177 {
5178         unsigned long rflags;
5179         int i, r;
5180
5181         vcpu_load(vcpu);
5182
5183         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5184                 r = -EBUSY;
5185                 if (vcpu->arch.exception.pending)
5186                         goto unlock_out;
5187                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5188                         kvm_queue_exception(vcpu, DB_VECTOR);
5189                 else
5190                         kvm_queue_exception(vcpu, BP_VECTOR);
5191         }
5192
5193         /*
5194          * Read rflags as long as potentially injected trace flags are still
5195          * filtered out.
5196          */
5197         rflags = kvm_get_rflags(vcpu);
5198
5199         vcpu->guest_debug = dbg->control;
5200         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5201                 vcpu->guest_debug = 0;
5202
5203         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5204                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5205                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5206                 vcpu->arch.switch_db_regs =
5207                         (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5208         } else {
5209                 for (i = 0; i < KVM_NR_DB_REGS; i++)
5210                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5211                 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5212         }
5213
5214         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5215                 vcpu->arch.singlestep_cs =
5216                         get_segment_selector(vcpu, VCPU_SREG_CS);
5217                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu);
5218         }
5219
5220         /*
5221          * Trigger an rflags update that will inject or remove the trace
5222          * flags.
5223          */
5224         kvm_set_rflags(vcpu, rflags);
5225
5226         kvm_x86_ops->set_guest_debug(vcpu, dbg);
5227
5228         r = 0;
5229
5230 unlock_out:
5231         vcpu_put(vcpu);
5232
5233         return r;
5234 }
5235
5236 /*
5237  * fxsave fpu state.  Taken from x86_64/processor.h.  To be killed when
5238  * we have asm/x86/processor.h
5239  */
5240 struct fxsave {
5241         u16     cwd;
5242         u16     swd;
5243         u16     twd;
5244         u16     fop;
5245         u64     rip;
5246         u64     rdp;
5247         u32     mxcsr;
5248         u32     mxcsr_mask;
5249         u32     st_space[32];   /* 8*16 bytes for each FP-reg = 128 bytes */
5250 #ifdef CONFIG_X86_64
5251         u32     xmm_space[64];  /* 16*16 bytes for each XMM-reg = 256 bytes */
5252 #else
5253         u32     xmm_space[32];  /* 8*16 bytes for each XMM-reg = 128 bytes */
5254 #endif
5255 };
5256
5257 /*
5258  * Translate a guest virtual address to a guest physical address.
5259  */
5260 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5261                                     struct kvm_translation *tr)
5262 {
5263         unsigned long vaddr = tr->linear_address;
5264         gpa_t gpa;
5265         int idx;
5266
5267         vcpu_load(vcpu);
5268         idx = srcu_read_lock(&vcpu->kvm->srcu);
5269         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5270         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5271         tr->physical_address = gpa;
5272         tr->valid = gpa != UNMAPPED_GVA;
5273         tr->writeable = 1;
5274         tr->usermode = 0;
5275         vcpu_put(vcpu);
5276
5277         return 0;
5278 }
5279
5280 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5281 {
5282         struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
5283
5284         vcpu_load(vcpu);
5285
5286         memcpy(fpu->fpr, fxsave->st_space, 128);
5287         fpu->fcw = fxsave->cwd;
5288         fpu->fsw = fxsave->swd;
5289         fpu->ftwx = fxsave->twd;
5290         fpu->last_opcode = fxsave->fop;
5291         fpu->last_ip = fxsave->rip;
5292         fpu->last_dp = fxsave->rdp;
5293         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5294
5295         vcpu_put(vcpu);
5296
5297         return 0;
5298 }
5299
5300 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5301 {
5302         struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
5303
5304         vcpu_load(vcpu);
5305
5306         memcpy(fxsave->st_space, fpu->fpr, 128);
5307         fxsave->cwd = fpu->fcw;
5308         fxsave->swd = fpu->fsw;
5309         fxsave->twd = fpu->ftwx;
5310         fxsave->fop = fpu->last_opcode;
5311         fxsave->rip = fpu->last_ip;
5312         fxsave->rdp = fpu->last_dp;
5313         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5314
5315         vcpu_put(vcpu);
5316
5317         return 0;
5318 }
5319
5320 void fx_init(struct kvm_vcpu *vcpu)
5321 {
5322         unsigned after_mxcsr_mask;
5323
5324         /*
5325          * Touch the fpu the first time in non atomic context as if
5326          * this is the first fpu instruction the exception handler
5327          * will fire before the instruction returns and it'll have to
5328          * allocate ram with GFP_KERNEL.
5329          */
5330         if (!used_math())
5331                 kvm_fx_save(&vcpu->arch.host_fx_image);
5332
5333         /* Initialize guest FPU by resetting ours and saving into guest's */
5334         preempt_disable();
5335         kvm_fx_save(&vcpu->arch.host_fx_image);
5336         kvm_fx_finit();
5337         kvm_fx_save(&vcpu->arch.guest_fx_image);
5338         kvm_fx_restore(&vcpu->arch.host_fx_image);
5339         preempt_enable();
5340
5341         vcpu->arch.cr0 |= X86_CR0_ET;
5342         after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
5343         vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
5344         memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
5345                0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
5346 }
5347 EXPORT_SYMBOL_GPL(fx_init);
5348
5349 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5350 {
5351         if (vcpu->guest_fpu_loaded)
5352                 return;
5353
5354         vcpu->guest_fpu_loaded = 1;
5355         kvm_fx_save(&vcpu->arch.host_fx_image);
5356         kvm_fx_restore(&vcpu->arch.guest_fx_image);
5357         trace_kvm_fpu(1);
5358 }
5359
5360 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5361 {
5362         if (!vcpu->guest_fpu_loaded)
5363                 return;
5364
5365         vcpu->guest_fpu_loaded = 0;
5366         kvm_fx_save(&vcpu->arch.guest_fx_image);
5367         kvm_fx_restore(&vcpu->arch.host_fx_image);
5368         ++vcpu->stat.fpu_reload;
5369         set_bit(KVM_REQ_DEACTIVATE_FPU, &vcpu->requests);
5370         trace_kvm_fpu(0);
5371 }
5372
5373 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5374 {
5375         if (vcpu->arch.time_page) {
5376                 kvm_release_page_dirty(vcpu->arch.time_page);
5377                 vcpu->arch.time_page = NULL;
5378         }
5379
5380         kvm_x86_ops->vcpu_free(vcpu);
5381 }
5382
5383 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5384                                                 unsigned int id)
5385 {
5386         return kvm_x86_ops->vcpu_create(kvm, id);
5387 }
5388
5389 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5390 {
5391         int r;
5392
5393         /* We do fxsave: this must be aligned. */
5394         BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
5395
5396         vcpu->arch.mtrr_state.have_fixed = 1;
5397         vcpu_load(vcpu);
5398         r = kvm_arch_vcpu_reset(vcpu);
5399         if (r == 0)
5400                 r = kvm_mmu_setup(vcpu);
5401         vcpu_put(vcpu);
5402         if (r < 0)
5403                 goto free_vcpu;
5404
5405         return 0;
5406 free_vcpu:
5407         kvm_x86_ops->vcpu_free(vcpu);
5408         return r;
5409 }
5410
5411 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5412 {
5413         vcpu_load(vcpu);
5414         kvm_mmu_unload(vcpu);
5415         vcpu_put(vcpu);
5416
5417         kvm_x86_ops->vcpu_free(vcpu);
5418 }
5419
5420 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5421 {
5422         vcpu->arch.nmi_pending = false;
5423         vcpu->arch.nmi_injected = false;
5424
5425         vcpu->arch.switch_db_regs = 0;
5426         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5427         vcpu->arch.dr6 = DR6_FIXED_1;
5428         vcpu->arch.dr7 = DR7_FIXED_1;
5429
5430         return kvm_x86_ops->vcpu_reset(vcpu);
5431 }
5432
5433 int kvm_arch_hardware_enable(void *garbage)
5434 {
5435         /*
5436          * Since this may be called from a hotplug notifcation,
5437          * we can't get the CPU frequency directly.
5438          */
5439         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5440                 int cpu = raw_smp_processor_id();
5441                 per_cpu(cpu_tsc_khz, cpu) = 0;
5442         }
5443
5444         kvm_shared_msr_cpu_online();
5445
5446         return kvm_x86_ops->hardware_enable(garbage);
5447 }
5448
5449 void kvm_arch_hardware_disable(void *garbage)
5450 {
5451         kvm_x86_ops->hardware_disable(garbage);
5452         drop_user_return_notifiers(garbage);
5453 }
5454
5455 int kvm_arch_hardware_setup(void)
5456 {
5457         return kvm_x86_ops->hardware_setup();
5458 }
5459
5460 void kvm_arch_hardware_unsetup(void)
5461 {
5462         kvm_x86_ops->hardware_unsetup();
5463 }
5464
5465 void kvm_arch_check_processor_compat(void *rtn)
5466 {
5467         kvm_x86_ops->check_processor_compatibility(rtn);
5468 }
5469
5470 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
5471 {
5472         struct page *page;
5473         struct kvm *kvm;
5474         int r;
5475
5476         BUG_ON(vcpu->kvm == NULL);
5477         kvm = vcpu->kvm;
5478
5479         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5480         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
5481                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5482         else
5483                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
5484
5485         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
5486         if (!page) {
5487                 r = -ENOMEM;
5488                 goto fail;
5489         }
5490         vcpu->arch.pio_data = page_address(page);
5491
5492         r = kvm_mmu_create(vcpu);
5493         if (r < 0)
5494                 goto fail_free_pio_data;
5495
5496         if (irqchip_in_kernel(kvm)) {
5497                 r = kvm_create_lapic(vcpu);
5498                 if (r < 0)
5499                         goto fail_mmu_destroy;
5500         }
5501
5502         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
5503                                        GFP_KERNEL);
5504         if (!vcpu->arch.mce_banks) {
5505                 r = -ENOMEM;
5506                 goto fail_free_lapic;
5507         }
5508         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
5509
5510         return 0;
5511 fail_free_lapic:
5512         kvm_free_lapic(vcpu);
5513 fail_mmu_destroy:
5514         kvm_mmu_destroy(vcpu);
5515 fail_free_pio_data:
5516         free_page((unsigned long)vcpu->arch.pio_data);
5517 fail:
5518         return r;
5519 }
5520
5521 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
5522 {
5523         int idx;
5524
5525         kfree(vcpu->arch.mce_banks);
5526         kvm_free_lapic(vcpu);
5527         idx = srcu_read_lock(&vcpu->kvm->srcu);
5528         kvm_mmu_destroy(vcpu);
5529         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5530         free_page((unsigned long)vcpu->arch.pio_data);
5531 }
5532
5533 struct  kvm *kvm_arch_create_vm(void)
5534 {
5535         struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
5536
5537         if (!kvm)
5538                 return ERR_PTR(-ENOMEM);
5539
5540         kvm->arch.aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
5541         if (!kvm->arch.aliases) {
5542                 kfree(kvm);
5543                 return ERR_PTR(-ENOMEM);
5544         }
5545
5546         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
5547         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
5548
5549         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
5550         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
5551
5552         rdtscll(kvm->arch.vm_init_tsc);
5553
5554         return kvm;
5555 }
5556
5557 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
5558 {
5559         vcpu_load(vcpu);
5560         kvm_mmu_unload(vcpu);
5561         vcpu_put(vcpu);
5562 }
5563
5564 static void kvm_free_vcpus(struct kvm *kvm)
5565 {
5566         unsigned int i;
5567         struct kvm_vcpu *vcpu;
5568
5569         /*
5570          * Unpin any mmu pages first.
5571          */
5572         kvm_for_each_vcpu(i, vcpu, kvm)
5573                 kvm_unload_vcpu_mmu(vcpu);
5574         kvm_for_each_vcpu(i, vcpu, kvm)
5575                 kvm_arch_vcpu_free(vcpu);
5576
5577         mutex_lock(&kvm->lock);
5578         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
5579                 kvm->vcpus[i] = NULL;
5580
5581         atomic_set(&kvm->online_vcpus, 0);
5582         mutex_unlock(&kvm->lock);
5583 }
5584
5585 void kvm_arch_sync_events(struct kvm *kvm)
5586 {
5587         kvm_free_all_assigned_devices(kvm);
5588 }
5589
5590 void kvm_arch_destroy_vm(struct kvm *kvm)
5591 {
5592         kvm_iommu_unmap_guest(kvm);
5593         kvm_free_pit(kvm);
5594         kfree(kvm->arch.vpic);
5595         kfree(kvm->arch.vioapic);
5596         kvm_free_vcpus(kvm);
5597         kvm_free_physmem(kvm);
5598         if (kvm->arch.apic_access_page)
5599                 put_page(kvm->arch.apic_access_page);
5600         if (kvm->arch.ept_identity_pagetable)
5601                 put_page(kvm->arch.ept_identity_pagetable);
5602         cleanup_srcu_struct(&kvm->srcu);
5603         kfree(kvm->arch.aliases);
5604         kfree(kvm);
5605 }
5606
5607 int kvm_arch_prepare_memory_region(struct kvm *kvm,
5608                                 struct kvm_memory_slot *memslot,
5609                                 struct kvm_memory_slot old,
5610                                 struct kvm_userspace_memory_region *mem,
5611                                 int user_alloc)
5612 {
5613         int npages = memslot->npages;
5614
5615         /*To keep backward compatibility with older userspace,
5616          *x86 needs to hanlde !user_alloc case.
5617          */
5618         if (!user_alloc) {
5619                 if (npages && !old.rmap) {
5620                         unsigned long userspace_addr;
5621
5622                         down_write(&current->mm->mmap_sem);
5623                         userspace_addr = do_mmap(NULL, 0,
5624                                                  npages * PAGE_SIZE,
5625                                                  PROT_READ | PROT_WRITE,
5626                                                  MAP_PRIVATE | MAP_ANONYMOUS,
5627                                                  0);
5628                         up_write(&current->mm->mmap_sem);
5629
5630                         if (IS_ERR((void *)userspace_addr))
5631                                 return PTR_ERR((void *)userspace_addr);
5632
5633                         memslot->userspace_addr = userspace_addr;
5634                 }
5635         }
5636
5637
5638         return 0;
5639 }
5640
5641 void kvm_arch_commit_memory_region(struct kvm *kvm,
5642                                 struct kvm_userspace_memory_region *mem,
5643                                 struct kvm_memory_slot old,
5644                                 int user_alloc)
5645 {
5646
5647         int npages = mem->memory_size >> PAGE_SHIFT;
5648
5649         if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
5650                 int ret;
5651
5652                 down_write(&current->mm->mmap_sem);
5653                 ret = do_munmap(current->mm, old.userspace_addr,
5654                                 old.npages * PAGE_SIZE);
5655                 up_write(&current->mm->mmap_sem);
5656                 if (ret < 0)
5657                         printk(KERN_WARNING
5658                                "kvm_vm_ioctl_set_memory_region: "
5659                                "failed to munmap memory\n");
5660         }
5661
5662         spin_lock(&kvm->mmu_lock);
5663         if (!kvm->arch.n_requested_mmu_pages) {
5664                 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
5665                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
5666         }
5667
5668         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
5669         spin_unlock(&kvm->mmu_lock);
5670 }
5671
5672 void kvm_arch_flush_shadow(struct kvm *kvm)
5673 {
5674         kvm_mmu_zap_all(kvm);
5675         kvm_reload_remote_mmus(kvm);
5676 }
5677
5678 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
5679 {
5680         return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
5681                 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
5682                 || vcpu->arch.nmi_pending ||
5683                 (kvm_arch_interrupt_allowed(vcpu) &&
5684                  kvm_cpu_has_interrupt(vcpu));
5685 }
5686
5687 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
5688 {
5689         int me;
5690         int cpu = vcpu->cpu;
5691
5692         if (waitqueue_active(&vcpu->wq)) {
5693                 wake_up_interruptible(&vcpu->wq);
5694                 ++vcpu->stat.halt_wakeup;
5695         }
5696
5697         me = get_cpu();
5698         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
5699                 if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
5700                         smp_send_reschedule(cpu);
5701         put_cpu();
5702 }
5703
5704 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
5705 {
5706         return kvm_x86_ops->interrupt_allowed(vcpu);
5707 }
5708
5709 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
5710 {
5711         unsigned long rflags;
5712
5713         rflags = kvm_x86_ops->get_rflags(vcpu);
5714         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5715                 rflags &= ~(unsigned long)(X86_EFLAGS_TF | X86_EFLAGS_RF);
5716         return rflags;
5717 }
5718 EXPORT_SYMBOL_GPL(kvm_get_rflags);
5719
5720 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
5721 {
5722         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
5723             vcpu->arch.singlestep_cs ==
5724                         get_segment_selector(vcpu, VCPU_SREG_CS) &&
5725             vcpu->arch.singlestep_rip == kvm_rip_read(vcpu))
5726                 rflags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
5727         kvm_x86_ops->set_rflags(vcpu, rflags);
5728 }
5729 EXPORT_SYMBOL_GPL(kvm_set_rflags);
5730
5731 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
5732 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
5733 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
5734 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
5735 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
5736 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
5737 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
5738 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
5739 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
5740 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
5741 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);