KVM: x86: Tell the guest we'll warn it about tsc stability
[safe/jmp/linux-2.6] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Amit Shah    <amit.shah@qumranet.com>
14  *   Ben-Ami Yassour <benami@il.ibm.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
28
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
40 #include <linux/user-return-notifier.h>
41 #include <linux/srcu.h>
42 #include <linux/slab.h>
43 #include <linux/perf_event.h>
44 #include <trace/events/kvm.h>
45
46 #define CREATE_TRACE_POINTS
47 #include "trace.h"
48
49 #include <asm/debugreg.h>
50 #include <asm/uaccess.h>
51 #include <asm/msr.h>
52 #include <asm/desc.h>
53 #include <asm/mtrr.h>
54 #include <asm/mce.h>
55
56 #define MAX_IO_MSRS 256
57 #define CR0_RESERVED_BITS                                               \
58         (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
59                           | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
60                           | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
61 #define CR4_RESERVED_BITS                                               \
62         (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
63                           | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
64                           | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR  \
65                           | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
66
67 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
68
69 #define KVM_MAX_MCE_BANKS 32
70 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
71
72 /* EFER defaults:
73  * - enable syscall per default because its emulated by KVM
74  * - enable LME and LMA per default on 64 bit KVM
75  */
76 #ifdef CONFIG_X86_64
77 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
78 #else
79 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
80 #endif
81
82 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
83 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
84
85 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
86 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
87                                     struct kvm_cpuid_entry2 __user *entries);
88
89 struct kvm_x86_ops *kvm_x86_ops;
90 EXPORT_SYMBOL_GPL(kvm_x86_ops);
91
92 int ignore_msrs = 0;
93 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
94
95 #define KVM_NR_SHARED_MSRS 16
96
97 struct kvm_shared_msrs_global {
98         int nr;
99         u32 msrs[KVM_NR_SHARED_MSRS];
100 };
101
102 struct kvm_shared_msrs {
103         struct user_return_notifier urn;
104         bool registered;
105         struct kvm_shared_msr_values {
106                 u64 host;
107                 u64 curr;
108         } values[KVM_NR_SHARED_MSRS];
109 };
110
111 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
112 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
113
114 struct kvm_stats_debugfs_item debugfs_entries[] = {
115         { "pf_fixed", VCPU_STAT(pf_fixed) },
116         { "pf_guest", VCPU_STAT(pf_guest) },
117         { "tlb_flush", VCPU_STAT(tlb_flush) },
118         { "invlpg", VCPU_STAT(invlpg) },
119         { "exits", VCPU_STAT(exits) },
120         { "io_exits", VCPU_STAT(io_exits) },
121         { "mmio_exits", VCPU_STAT(mmio_exits) },
122         { "signal_exits", VCPU_STAT(signal_exits) },
123         { "irq_window", VCPU_STAT(irq_window_exits) },
124         { "nmi_window", VCPU_STAT(nmi_window_exits) },
125         { "halt_exits", VCPU_STAT(halt_exits) },
126         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
127         { "hypercalls", VCPU_STAT(hypercalls) },
128         { "request_irq", VCPU_STAT(request_irq_exits) },
129         { "irq_exits", VCPU_STAT(irq_exits) },
130         { "host_state_reload", VCPU_STAT(host_state_reload) },
131         { "efer_reload", VCPU_STAT(efer_reload) },
132         { "fpu_reload", VCPU_STAT(fpu_reload) },
133         { "insn_emulation", VCPU_STAT(insn_emulation) },
134         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
135         { "irq_injections", VCPU_STAT(irq_injections) },
136         { "nmi_injections", VCPU_STAT(nmi_injections) },
137         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
138         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
139         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
140         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
141         { "mmu_flooded", VM_STAT(mmu_flooded) },
142         { "mmu_recycled", VM_STAT(mmu_recycled) },
143         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
144         { "mmu_unsync", VM_STAT(mmu_unsync) },
145         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
146         { "largepages", VM_STAT(lpages) },
147         { NULL }
148 };
149
150 static void kvm_on_user_return(struct user_return_notifier *urn)
151 {
152         unsigned slot;
153         struct kvm_shared_msrs *locals
154                 = container_of(urn, struct kvm_shared_msrs, urn);
155         struct kvm_shared_msr_values *values;
156
157         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
158                 values = &locals->values[slot];
159                 if (values->host != values->curr) {
160                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
161                         values->curr = values->host;
162                 }
163         }
164         locals->registered = false;
165         user_return_notifier_unregister(urn);
166 }
167
168 static void shared_msr_update(unsigned slot, u32 msr)
169 {
170         struct kvm_shared_msrs *smsr;
171         u64 value;
172
173         smsr = &__get_cpu_var(shared_msrs);
174         /* only read, and nobody should modify it at this time,
175          * so don't need lock */
176         if (slot >= shared_msrs_global.nr) {
177                 printk(KERN_ERR "kvm: invalid MSR slot!");
178                 return;
179         }
180         rdmsrl_safe(msr, &value);
181         smsr->values[slot].host = value;
182         smsr->values[slot].curr = value;
183 }
184
185 void kvm_define_shared_msr(unsigned slot, u32 msr)
186 {
187         if (slot >= shared_msrs_global.nr)
188                 shared_msrs_global.nr = slot + 1;
189         shared_msrs_global.msrs[slot] = msr;
190         /* we need ensured the shared_msr_global have been updated */
191         smp_wmb();
192 }
193 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
194
195 static void kvm_shared_msr_cpu_online(void)
196 {
197         unsigned i;
198
199         for (i = 0; i < shared_msrs_global.nr; ++i)
200                 shared_msr_update(i, shared_msrs_global.msrs[i]);
201 }
202
203 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
204 {
205         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
206
207         if (((value ^ smsr->values[slot].curr) & mask) == 0)
208                 return;
209         smsr->values[slot].curr = value;
210         wrmsrl(shared_msrs_global.msrs[slot], value);
211         if (!smsr->registered) {
212                 smsr->urn.on_user_return = kvm_on_user_return;
213                 user_return_notifier_register(&smsr->urn);
214                 smsr->registered = true;
215         }
216 }
217 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
218
219 static void drop_user_return_notifiers(void *ignore)
220 {
221         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
222
223         if (smsr->registered)
224                 kvm_on_user_return(&smsr->urn);
225 }
226
227 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
228 {
229         if (irqchip_in_kernel(vcpu->kvm))
230                 return vcpu->arch.apic_base;
231         else
232                 return vcpu->arch.apic_base;
233 }
234 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
235
236 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
237 {
238         /* TODO: reserve bits check */
239         if (irqchip_in_kernel(vcpu->kvm))
240                 kvm_lapic_set_base(vcpu, data);
241         else
242                 vcpu->arch.apic_base = data;
243 }
244 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
245
246 #define EXCPT_BENIGN            0
247 #define EXCPT_CONTRIBUTORY      1
248 #define EXCPT_PF                2
249
250 static int exception_class(int vector)
251 {
252         switch (vector) {
253         case PF_VECTOR:
254                 return EXCPT_PF;
255         case DE_VECTOR:
256         case TS_VECTOR:
257         case NP_VECTOR:
258         case SS_VECTOR:
259         case GP_VECTOR:
260                 return EXCPT_CONTRIBUTORY;
261         default:
262                 break;
263         }
264         return EXCPT_BENIGN;
265 }
266
267 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
268                 unsigned nr, bool has_error, u32 error_code,
269                 bool reinject)
270 {
271         u32 prev_nr;
272         int class1, class2;
273
274         if (!vcpu->arch.exception.pending) {
275         queue:
276                 vcpu->arch.exception.pending = true;
277                 vcpu->arch.exception.has_error_code = has_error;
278                 vcpu->arch.exception.nr = nr;
279                 vcpu->arch.exception.error_code = error_code;
280                 vcpu->arch.exception.reinject = reinject;
281                 return;
282         }
283
284         /* to check exception */
285         prev_nr = vcpu->arch.exception.nr;
286         if (prev_nr == DF_VECTOR) {
287                 /* triple fault -> shutdown */
288                 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
289                 return;
290         }
291         class1 = exception_class(prev_nr);
292         class2 = exception_class(nr);
293         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
294                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
295                 /* generate double fault per SDM Table 5-5 */
296                 vcpu->arch.exception.pending = true;
297                 vcpu->arch.exception.has_error_code = true;
298                 vcpu->arch.exception.nr = DF_VECTOR;
299                 vcpu->arch.exception.error_code = 0;
300         } else
301                 /* replace previous exception with a new one in a hope
302                    that instruction re-execution will regenerate lost
303                    exception */
304                 goto queue;
305 }
306
307 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
308 {
309         kvm_multiple_exception(vcpu, nr, false, 0, false);
310 }
311 EXPORT_SYMBOL_GPL(kvm_queue_exception);
312
313 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
314 {
315         kvm_multiple_exception(vcpu, nr, false, 0, true);
316 }
317 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
318
319 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
320                            u32 error_code)
321 {
322         ++vcpu->stat.pf_guest;
323         vcpu->arch.cr2 = addr;
324         kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
325 }
326
327 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
328 {
329         vcpu->arch.nmi_pending = 1;
330 }
331 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
332
333 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
334 {
335         kvm_multiple_exception(vcpu, nr, true, error_code, false);
336 }
337 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
338
339 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
340 {
341         kvm_multiple_exception(vcpu, nr, true, error_code, true);
342 }
343 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
344
345 /*
346  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
347  * a #GP and return false.
348  */
349 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
350 {
351         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
352                 return true;
353         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
354         return false;
355 }
356 EXPORT_SYMBOL_GPL(kvm_require_cpl);
357
358 /*
359  * Load the pae pdptrs.  Return true is they are all valid.
360  */
361 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
362 {
363         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
364         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
365         int i;
366         int ret;
367         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
368
369         ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
370                                   offset * sizeof(u64), sizeof(pdpte));
371         if (ret < 0) {
372                 ret = 0;
373                 goto out;
374         }
375         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
376                 if (is_present_gpte(pdpte[i]) &&
377                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
378                         ret = 0;
379                         goto out;
380                 }
381         }
382         ret = 1;
383
384         memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
385         __set_bit(VCPU_EXREG_PDPTR,
386                   (unsigned long *)&vcpu->arch.regs_avail);
387         __set_bit(VCPU_EXREG_PDPTR,
388                   (unsigned long *)&vcpu->arch.regs_dirty);
389 out:
390
391         return ret;
392 }
393 EXPORT_SYMBOL_GPL(load_pdptrs);
394
395 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
396 {
397         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
398         bool changed = true;
399         int r;
400
401         if (is_long_mode(vcpu) || !is_pae(vcpu))
402                 return false;
403
404         if (!test_bit(VCPU_EXREG_PDPTR,
405                       (unsigned long *)&vcpu->arch.regs_avail))
406                 return true;
407
408         r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
409         if (r < 0)
410                 goto out;
411         changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
412 out:
413
414         return changed;
415 }
416
417 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
418 {
419         cr0 |= X86_CR0_ET;
420
421 #ifdef CONFIG_X86_64
422         if (cr0 & 0xffffffff00000000UL) {
423                 kvm_inject_gp(vcpu, 0);
424                 return;
425         }
426 #endif
427
428         cr0 &= ~CR0_RESERVED_BITS;
429
430         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
431                 kvm_inject_gp(vcpu, 0);
432                 return;
433         }
434
435         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
436                 kvm_inject_gp(vcpu, 0);
437                 return;
438         }
439
440         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
441 #ifdef CONFIG_X86_64
442                 if ((vcpu->arch.efer & EFER_LME)) {
443                         int cs_db, cs_l;
444
445                         if (!is_pae(vcpu)) {
446                                 kvm_inject_gp(vcpu, 0);
447                                 return;
448                         }
449                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
450                         if (cs_l) {
451                                 kvm_inject_gp(vcpu, 0);
452                                 return;
453
454                         }
455                 } else
456 #endif
457                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
458                         kvm_inject_gp(vcpu, 0);
459                         return;
460                 }
461
462         }
463
464         kvm_x86_ops->set_cr0(vcpu, cr0);
465
466         kvm_mmu_reset_context(vcpu);
467         return;
468 }
469 EXPORT_SYMBOL_GPL(kvm_set_cr0);
470
471 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
472 {
473         kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0ful) | (msw & 0x0f));
474 }
475 EXPORT_SYMBOL_GPL(kvm_lmsw);
476
477 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
478 {
479         unsigned long old_cr4 = kvm_read_cr4(vcpu);
480         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
481
482         if (cr4 & CR4_RESERVED_BITS) {
483                 kvm_inject_gp(vcpu, 0);
484                 return;
485         }
486
487         if (is_long_mode(vcpu)) {
488                 if (!(cr4 & X86_CR4_PAE)) {
489                         kvm_inject_gp(vcpu, 0);
490                         return;
491                 }
492         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
493                    && ((cr4 ^ old_cr4) & pdptr_bits)
494                    && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
495                 kvm_inject_gp(vcpu, 0);
496                 return;
497         }
498
499         if (cr4 & X86_CR4_VMXE) {
500                 kvm_inject_gp(vcpu, 0);
501                 return;
502         }
503         kvm_x86_ops->set_cr4(vcpu, cr4);
504         vcpu->arch.cr4 = cr4;
505         kvm_mmu_reset_context(vcpu);
506 }
507 EXPORT_SYMBOL_GPL(kvm_set_cr4);
508
509 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
510 {
511         if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
512                 kvm_mmu_sync_roots(vcpu);
513                 kvm_mmu_flush_tlb(vcpu);
514                 return;
515         }
516
517         if (is_long_mode(vcpu)) {
518                 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
519                         kvm_inject_gp(vcpu, 0);
520                         return;
521                 }
522         } else {
523                 if (is_pae(vcpu)) {
524                         if (cr3 & CR3_PAE_RESERVED_BITS) {
525                                 kvm_inject_gp(vcpu, 0);
526                                 return;
527                         }
528                         if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
529                                 kvm_inject_gp(vcpu, 0);
530                                 return;
531                         }
532                 }
533                 /*
534                  * We don't check reserved bits in nonpae mode, because
535                  * this isn't enforced, and VMware depends on this.
536                  */
537         }
538
539         /*
540          * Does the new cr3 value map to physical memory? (Note, we
541          * catch an invalid cr3 even in real-mode, because it would
542          * cause trouble later on when we turn on paging anyway.)
543          *
544          * A real CPU would silently accept an invalid cr3 and would
545          * attempt to use it - with largely undefined (and often hard
546          * to debug) behavior on the guest side.
547          */
548         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
549                 kvm_inject_gp(vcpu, 0);
550         else {
551                 vcpu->arch.cr3 = cr3;
552                 vcpu->arch.mmu.new_cr3(vcpu);
553         }
554 }
555 EXPORT_SYMBOL_GPL(kvm_set_cr3);
556
557 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
558 {
559         if (cr8 & CR8_RESERVED_BITS) {
560                 kvm_inject_gp(vcpu, 0);
561                 return;
562         }
563         if (irqchip_in_kernel(vcpu->kvm))
564                 kvm_lapic_set_tpr(vcpu, cr8);
565         else
566                 vcpu->arch.cr8 = cr8;
567 }
568 EXPORT_SYMBOL_GPL(kvm_set_cr8);
569
570 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
571 {
572         if (irqchip_in_kernel(vcpu->kvm))
573                 return kvm_lapic_get_cr8(vcpu);
574         else
575                 return vcpu->arch.cr8;
576 }
577 EXPORT_SYMBOL_GPL(kvm_get_cr8);
578
579 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
580 {
581         switch (dr) {
582         case 0 ... 3:
583                 vcpu->arch.db[dr] = val;
584                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
585                         vcpu->arch.eff_db[dr] = val;
586                 break;
587         case 4:
588                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) {
589                         kvm_queue_exception(vcpu, UD_VECTOR);
590                         return 1;
591                 }
592                 /* fall through */
593         case 6:
594                 if (val & 0xffffffff00000000ULL) {
595                         kvm_inject_gp(vcpu, 0);
596                         return 1;
597                 }
598                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
599                 break;
600         case 5:
601                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) {
602                         kvm_queue_exception(vcpu, UD_VECTOR);
603                         return 1;
604                 }
605                 /* fall through */
606         default: /* 7 */
607                 if (val & 0xffffffff00000000ULL) {
608                         kvm_inject_gp(vcpu, 0);
609                         return 1;
610                 }
611                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
612                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
613                         kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
614                         vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
615                 }
616                 break;
617         }
618
619         return 0;
620 }
621 EXPORT_SYMBOL_GPL(kvm_set_dr);
622
623 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
624 {
625         switch (dr) {
626         case 0 ... 3:
627                 *val = vcpu->arch.db[dr];
628                 break;
629         case 4:
630                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) {
631                         kvm_queue_exception(vcpu, UD_VECTOR);
632                         return 1;
633                 }
634                 /* fall through */
635         case 6:
636                 *val = vcpu->arch.dr6;
637                 break;
638         case 5:
639                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) {
640                         kvm_queue_exception(vcpu, UD_VECTOR);
641                         return 1;
642                 }
643                 /* fall through */
644         default: /* 7 */
645                 *val = vcpu->arch.dr7;
646                 break;
647         }
648
649         return 0;
650 }
651 EXPORT_SYMBOL_GPL(kvm_get_dr);
652
653 static inline u32 bit(int bitno)
654 {
655         return 1 << (bitno & 31);
656 }
657
658 /*
659  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
660  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
661  *
662  * This list is modified at module load time to reflect the
663  * capabilities of the host cpu. This capabilities test skips MSRs that are
664  * kvm-specific. Those are put in the beginning of the list.
665  */
666
667 #define KVM_SAVE_MSRS_BEGIN     7
668 static u32 msrs_to_save[] = {
669         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
670         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
671         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
672         HV_X64_MSR_APIC_ASSIST_PAGE,
673         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
674         MSR_K6_STAR,
675 #ifdef CONFIG_X86_64
676         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
677 #endif
678         MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
679 };
680
681 static unsigned num_msrs_to_save;
682
683 static u32 emulated_msrs[] = {
684         MSR_IA32_MISC_ENABLE,
685 };
686
687 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
688 {
689         if (efer & efer_reserved_bits)
690                 return 1;
691
692         if (is_paging(vcpu)
693             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
694                 return 1;
695
696         if (efer & EFER_FFXSR) {
697                 struct kvm_cpuid_entry2 *feat;
698
699                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
700                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
701                         return 1;
702         }
703
704         if (efer & EFER_SVME) {
705                 struct kvm_cpuid_entry2 *feat;
706
707                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
708                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
709                         return 1;
710         }
711
712         kvm_x86_ops->set_efer(vcpu, efer);
713
714         efer &= ~EFER_LMA;
715         efer |= vcpu->arch.efer & EFER_LMA;
716
717         vcpu->arch.efer = efer;
718
719         vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
720         kvm_mmu_reset_context(vcpu);
721
722         return 0;
723 }
724
725 void kvm_enable_efer_bits(u64 mask)
726 {
727        efer_reserved_bits &= ~mask;
728 }
729 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
730
731
732 /*
733  * Writes msr value into into the appropriate "register".
734  * Returns 0 on success, non-0 otherwise.
735  * Assumes vcpu_load() was already called.
736  */
737 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
738 {
739         return kvm_x86_ops->set_msr(vcpu, msr_index, data);
740 }
741
742 /*
743  * Adapt set_msr() to msr_io()'s calling convention
744  */
745 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
746 {
747         return kvm_set_msr(vcpu, index, *data);
748 }
749
750 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
751 {
752         int version;
753         int r;
754         struct pvclock_wall_clock wc;
755         struct timespec boot;
756
757         if (!wall_clock)
758                 return;
759
760         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
761         if (r)
762                 return;
763
764         if (version & 1)
765                 ++version;  /* first time write, random junk */
766
767         ++version;
768
769         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
770
771         /*
772          * The guest calculates current wall clock time by adding
773          * system time (updated by kvm_write_guest_time below) to the
774          * wall clock specified here.  guest system time equals host
775          * system time for us, thus we must fill in host boot time here.
776          */
777         getboottime(&boot);
778
779         wc.sec = boot.tv_sec;
780         wc.nsec = boot.tv_nsec;
781         wc.version = version;
782
783         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
784
785         version++;
786         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
787 }
788
789 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
790 {
791         uint32_t quotient, remainder;
792
793         /* Don't try to replace with do_div(), this one calculates
794          * "(dividend << 32) / divisor" */
795         __asm__ ( "divl %4"
796                   : "=a" (quotient), "=d" (remainder)
797                   : "0" (0), "1" (dividend), "r" (divisor) );
798         return quotient;
799 }
800
801 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
802 {
803         uint64_t nsecs = 1000000000LL;
804         int32_t  shift = 0;
805         uint64_t tps64;
806         uint32_t tps32;
807
808         tps64 = tsc_khz * 1000LL;
809         while (tps64 > nsecs*2) {
810                 tps64 >>= 1;
811                 shift--;
812         }
813
814         tps32 = (uint32_t)tps64;
815         while (tps32 <= (uint32_t)nsecs) {
816                 tps32 <<= 1;
817                 shift++;
818         }
819
820         hv_clock->tsc_shift = shift;
821         hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
822
823         pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
824                  __func__, tsc_khz, hv_clock->tsc_shift,
825                  hv_clock->tsc_to_system_mul);
826 }
827
828 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
829
830 static void kvm_write_guest_time(struct kvm_vcpu *v)
831 {
832         struct timespec ts;
833         unsigned long flags;
834         struct kvm_vcpu_arch *vcpu = &v->arch;
835         void *shared_kaddr;
836         unsigned long this_tsc_khz;
837
838         if ((!vcpu->time_page))
839                 return;
840
841         this_tsc_khz = get_cpu_var(cpu_tsc_khz);
842         if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
843                 kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
844                 vcpu->hv_clock_tsc_khz = this_tsc_khz;
845         }
846         put_cpu_var(cpu_tsc_khz);
847
848         /* Keep irq disabled to prevent changes to the clock */
849         local_irq_save(flags);
850         kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
851         ktime_get_ts(&ts);
852         monotonic_to_bootbased(&ts);
853         local_irq_restore(flags);
854
855         /* With all the info we got, fill in the values */
856
857         vcpu->hv_clock.system_time = ts.tv_nsec +
858                                      (NSEC_PER_SEC * (u64)ts.tv_sec) + v->kvm->arch.kvmclock_offset;
859
860         vcpu->hv_clock.flags = 0;
861
862         /*
863          * The interface expects us to write an even number signaling that the
864          * update is finished. Since the guest won't see the intermediate
865          * state, we just increase by 2 at the end.
866          */
867         vcpu->hv_clock.version += 2;
868
869         shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
870
871         memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
872                sizeof(vcpu->hv_clock));
873
874         kunmap_atomic(shared_kaddr, KM_USER0);
875
876         mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
877 }
878
879 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
880 {
881         struct kvm_vcpu_arch *vcpu = &v->arch;
882
883         if (!vcpu->time_page)
884                 return 0;
885         set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
886         return 1;
887 }
888
889 static bool msr_mtrr_valid(unsigned msr)
890 {
891         switch (msr) {
892         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
893         case MSR_MTRRfix64K_00000:
894         case MSR_MTRRfix16K_80000:
895         case MSR_MTRRfix16K_A0000:
896         case MSR_MTRRfix4K_C0000:
897         case MSR_MTRRfix4K_C8000:
898         case MSR_MTRRfix4K_D0000:
899         case MSR_MTRRfix4K_D8000:
900         case MSR_MTRRfix4K_E0000:
901         case MSR_MTRRfix4K_E8000:
902         case MSR_MTRRfix4K_F0000:
903         case MSR_MTRRfix4K_F8000:
904         case MSR_MTRRdefType:
905         case MSR_IA32_CR_PAT:
906                 return true;
907         case 0x2f8:
908                 return true;
909         }
910         return false;
911 }
912
913 static bool valid_pat_type(unsigned t)
914 {
915         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
916 }
917
918 static bool valid_mtrr_type(unsigned t)
919 {
920         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
921 }
922
923 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
924 {
925         int i;
926
927         if (!msr_mtrr_valid(msr))
928                 return false;
929
930         if (msr == MSR_IA32_CR_PAT) {
931                 for (i = 0; i < 8; i++)
932                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
933                                 return false;
934                 return true;
935         } else if (msr == MSR_MTRRdefType) {
936                 if (data & ~0xcff)
937                         return false;
938                 return valid_mtrr_type(data & 0xff);
939         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
940                 for (i = 0; i < 8 ; i++)
941                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
942                                 return false;
943                 return true;
944         }
945
946         /* variable MTRRs */
947         return valid_mtrr_type(data & 0xff);
948 }
949
950 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
951 {
952         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
953
954         if (!mtrr_valid(vcpu, msr, data))
955                 return 1;
956
957         if (msr == MSR_MTRRdefType) {
958                 vcpu->arch.mtrr_state.def_type = data;
959                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
960         } else if (msr == MSR_MTRRfix64K_00000)
961                 p[0] = data;
962         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
963                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
964         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
965                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
966         else if (msr == MSR_IA32_CR_PAT)
967                 vcpu->arch.pat = data;
968         else {  /* Variable MTRRs */
969                 int idx, is_mtrr_mask;
970                 u64 *pt;
971
972                 idx = (msr - 0x200) / 2;
973                 is_mtrr_mask = msr - 0x200 - 2 * idx;
974                 if (!is_mtrr_mask)
975                         pt =
976                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
977                 else
978                         pt =
979                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
980                 *pt = data;
981         }
982
983         kvm_mmu_reset_context(vcpu);
984         return 0;
985 }
986
987 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
988 {
989         u64 mcg_cap = vcpu->arch.mcg_cap;
990         unsigned bank_num = mcg_cap & 0xff;
991
992         switch (msr) {
993         case MSR_IA32_MCG_STATUS:
994                 vcpu->arch.mcg_status = data;
995                 break;
996         case MSR_IA32_MCG_CTL:
997                 if (!(mcg_cap & MCG_CTL_P))
998                         return 1;
999                 if (data != 0 && data != ~(u64)0)
1000                         return -1;
1001                 vcpu->arch.mcg_ctl = data;
1002                 break;
1003         default:
1004                 if (msr >= MSR_IA32_MC0_CTL &&
1005                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1006                         u32 offset = msr - MSR_IA32_MC0_CTL;
1007                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1008                          * some Linux kernels though clear bit 10 in bank 4 to
1009                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1010                          * this to avoid an uncatched #GP in the guest
1011                          */
1012                         if ((offset & 0x3) == 0 &&
1013                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1014                                 return -1;
1015                         vcpu->arch.mce_banks[offset] = data;
1016                         break;
1017                 }
1018                 return 1;
1019         }
1020         return 0;
1021 }
1022
1023 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1024 {
1025         struct kvm *kvm = vcpu->kvm;
1026         int lm = is_long_mode(vcpu);
1027         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1028                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1029         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1030                 : kvm->arch.xen_hvm_config.blob_size_32;
1031         u32 page_num = data & ~PAGE_MASK;
1032         u64 page_addr = data & PAGE_MASK;
1033         u8 *page;
1034         int r;
1035
1036         r = -E2BIG;
1037         if (page_num >= blob_size)
1038                 goto out;
1039         r = -ENOMEM;
1040         page = kzalloc(PAGE_SIZE, GFP_KERNEL);
1041         if (!page)
1042                 goto out;
1043         r = -EFAULT;
1044         if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
1045                 goto out_free;
1046         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1047                 goto out_free;
1048         r = 0;
1049 out_free:
1050         kfree(page);
1051 out:
1052         return r;
1053 }
1054
1055 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1056 {
1057         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1058 }
1059
1060 static bool kvm_hv_msr_partition_wide(u32 msr)
1061 {
1062         bool r = false;
1063         switch (msr) {
1064         case HV_X64_MSR_GUEST_OS_ID:
1065         case HV_X64_MSR_HYPERCALL:
1066                 r = true;
1067                 break;
1068         }
1069
1070         return r;
1071 }
1072
1073 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1074 {
1075         struct kvm *kvm = vcpu->kvm;
1076
1077         switch (msr) {
1078         case HV_X64_MSR_GUEST_OS_ID:
1079                 kvm->arch.hv_guest_os_id = data;
1080                 /* setting guest os id to zero disables hypercall page */
1081                 if (!kvm->arch.hv_guest_os_id)
1082                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1083                 break;
1084         case HV_X64_MSR_HYPERCALL: {
1085                 u64 gfn;
1086                 unsigned long addr;
1087                 u8 instructions[4];
1088
1089                 /* if guest os id is not set hypercall should remain disabled */
1090                 if (!kvm->arch.hv_guest_os_id)
1091                         break;
1092                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1093                         kvm->arch.hv_hypercall = data;
1094                         break;
1095                 }
1096                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1097                 addr = gfn_to_hva(kvm, gfn);
1098                 if (kvm_is_error_hva(addr))
1099                         return 1;
1100                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1101                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1102                 if (copy_to_user((void __user *)addr, instructions, 4))
1103                         return 1;
1104                 kvm->arch.hv_hypercall = data;
1105                 break;
1106         }
1107         default:
1108                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1109                           "data 0x%llx\n", msr, data);
1110                 return 1;
1111         }
1112         return 0;
1113 }
1114
1115 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1116 {
1117         switch (msr) {
1118         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1119                 unsigned long addr;
1120
1121                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1122                         vcpu->arch.hv_vapic = data;
1123                         break;
1124                 }
1125                 addr = gfn_to_hva(vcpu->kvm, data >>
1126                                   HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1127                 if (kvm_is_error_hva(addr))
1128                         return 1;
1129                 if (clear_user((void __user *)addr, PAGE_SIZE))
1130                         return 1;
1131                 vcpu->arch.hv_vapic = data;
1132                 break;
1133         }
1134         case HV_X64_MSR_EOI:
1135                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1136         case HV_X64_MSR_ICR:
1137                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1138         case HV_X64_MSR_TPR:
1139                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1140         default:
1141                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1142                           "data 0x%llx\n", msr, data);
1143                 return 1;
1144         }
1145
1146         return 0;
1147 }
1148
1149 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1150 {
1151         switch (msr) {
1152         case MSR_EFER:
1153                 return set_efer(vcpu, data);
1154         case MSR_K7_HWCR:
1155                 data &= ~(u64)0x40;     /* ignore flush filter disable */
1156                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
1157                 if (data != 0) {
1158                         pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1159                                 data);
1160                         return 1;
1161                 }
1162                 break;
1163         case MSR_FAM10H_MMIO_CONF_BASE:
1164                 if (data != 0) {
1165                         pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1166                                 "0x%llx\n", data);
1167                         return 1;
1168                 }
1169                 break;
1170         case MSR_AMD64_NB_CFG:
1171                 break;
1172         case MSR_IA32_DEBUGCTLMSR:
1173                 if (!data) {
1174                         /* We support the non-activated case already */
1175                         break;
1176                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1177                         /* Values other than LBR and BTF are vendor-specific,
1178                            thus reserved and should throw a #GP */
1179                         return 1;
1180                 }
1181                 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1182                         __func__, data);
1183                 break;
1184         case MSR_IA32_UCODE_REV:
1185         case MSR_IA32_UCODE_WRITE:
1186         case MSR_VM_HSAVE_PA:
1187         case MSR_AMD64_PATCH_LOADER:
1188                 break;
1189         case 0x200 ... 0x2ff:
1190                 return set_msr_mtrr(vcpu, msr, data);
1191         case MSR_IA32_APICBASE:
1192                 kvm_set_apic_base(vcpu, data);
1193                 break;
1194         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1195                 return kvm_x2apic_msr_write(vcpu, msr, data);
1196         case MSR_IA32_MISC_ENABLE:
1197                 vcpu->arch.ia32_misc_enable_msr = data;
1198                 break;
1199         case MSR_KVM_WALL_CLOCK_NEW:
1200         case MSR_KVM_WALL_CLOCK:
1201                 vcpu->kvm->arch.wall_clock = data;
1202                 kvm_write_wall_clock(vcpu->kvm, data);
1203                 break;
1204         case MSR_KVM_SYSTEM_TIME_NEW:
1205         case MSR_KVM_SYSTEM_TIME: {
1206                 if (vcpu->arch.time_page) {
1207                         kvm_release_page_dirty(vcpu->arch.time_page);
1208                         vcpu->arch.time_page = NULL;
1209                 }
1210
1211                 vcpu->arch.time = data;
1212
1213                 /* we verify if the enable bit is set... */
1214                 if (!(data & 1))
1215                         break;
1216
1217                 /* ...but clean it before doing the actual write */
1218                 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1219
1220                 vcpu->arch.time_page =
1221                                 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1222
1223                 if (is_error_page(vcpu->arch.time_page)) {
1224                         kvm_release_page_clean(vcpu->arch.time_page);
1225                         vcpu->arch.time_page = NULL;
1226                 }
1227
1228                 kvm_request_guest_time_update(vcpu);
1229                 break;
1230         }
1231         case MSR_IA32_MCG_CTL:
1232         case MSR_IA32_MCG_STATUS:
1233         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1234                 return set_msr_mce(vcpu, msr, data);
1235
1236         /* Performance counters are not protected by a CPUID bit,
1237          * so we should check all of them in the generic path for the sake of
1238          * cross vendor migration.
1239          * Writing a zero into the event select MSRs disables them,
1240          * which we perfectly emulate ;-). Any other value should be at least
1241          * reported, some guests depend on them.
1242          */
1243         case MSR_P6_EVNTSEL0:
1244         case MSR_P6_EVNTSEL1:
1245         case MSR_K7_EVNTSEL0:
1246         case MSR_K7_EVNTSEL1:
1247         case MSR_K7_EVNTSEL2:
1248         case MSR_K7_EVNTSEL3:
1249                 if (data != 0)
1250                         pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1251                                 "0x%x data 0x%llx\n", msr, data);
1252                 break;
1253         /* at least RHEL 4 unconditionally writes to the perfctr registers,
1254          * so we ignore writes to make it happy.
1255          */
1256         case MSR_P6_PERFCTR0:
1257         case MSR_P6_PERFCTR1:
1258         case MSR_K7_PERFCTR0:
1259         case MSR_K7_PERFCTR1:
1260         case MSR_K7_PERFCTR2:
1261         case MSR_K7_PERFCTR3:
1262                 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1263                         "0x%x data 0x%llx\n", msr, data);
1264                 break;
1265         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1266                 if (kvm_hv_msr_partition_wide(msr)) {
1267                         int r;
1268                         mutex_lock(&vcpu->kvm->lock);
1269                         r = set_msr_hyperv_pw(vcpu, msr, data);
1270                         mutex_unlock(&vcpu->kvm->lock);
1271                         return r;
1272                 } else
1273                         return set_msr_hyperv(vcpu, msr, data);
1274                 break;
1275         default:
1276                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1277                         return xen_hvm_config(vcpu, data);
1278                 if (!ignore_msrs) {
1279                         pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1280                                 msr, data);
1281                         return 1;
1282                 } else {
1283                         pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1284                                 msr, data);
1285                         break;
1286                 }
1287         }
1288         return 0;
1289 }
1290 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1291
1292
1293 /*
1294  * Reads an msr value (of 'msr_index') into 'pdata'.
1295  * Returns 0 on success, non-0 otherwise.
1296  * Assumes vcpu_load() was already called.
1297  */
1298 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1299 {
1300         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1301 }
1302
1303 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1304 {
1305         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1306
1307         if (!msr_mtrr_valid(msr))
1308                 return 1;
1309
1310         if (msr == MSR_MTRRdefType)
1311                 *pdata = vcpu->arch.mtrr_state.def_type +
1312                          (vcpu->arch.mtrr_state.enabled << 10);
1313         else if (msr == MSR_MTRRfix64K_00000)
1314                 *pdata = p[0];
1315         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1316                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1317         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1318                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1319         else if (msr == MSR_IA32_CR_PAT)
1320                 *pdata = vcpu->arch.pat;
1321         else {  /* Variable MTRRs */
1322                 int idx, is_mtrr_mask;
1323                 u64 *pt;
1324
1325                 idx = (msr - 0x200) / 2;
1326                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1327                 if (!is_mtrr_mask)
1328                         pt =
1329                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1330                 else
1331                         pt =
1332                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1333                 *pdata = *pt;
1334         }
1335
1336         return 0;
1337 }
1338
1339 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1340 {
1341         u64 data;
1342         u64 mcg_cap = vcpu->arch.mcg_cap;
1343         unsigned bank_num = mcg_cap & 0xff;
1344
1345         switch (msr) {
1346         case MSR_IA32_P5_MC_ADDR:
1347         case MSR_IA32_P5_MC_TYPE:
1348                 data = 0;
1349                 break;
1350         case MSR_IA32_MCG_CAP:
1351                 data = vcpu->arch.mcg_cap;
1352                 break;
1353         case MSR_IA32_MCG_CTL:
1354                 if (!(mcg_cap & MCG_CTL_P))
1355                         return 1;
1356                 data = vcpu->arch.mcg_ctl;
1357                 break;
1358         case MSR_IA32_MCG_STATUS:
1359                 data = vcpu->arch.mcg_status;
1360                 break;
1361         default:
1362                 if (msr >= MSR_IA32_MC0_CTL &&
1363                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1364                         u32 offset = msr - MSR_IA32_MC0_CTL;
1365                         data = vcpu->arch.mce_banks[offset];
1366                         break;
1367                 }
1368                 return 1;
1369         }
1370         *pdata = data;
1371         return 0;
1372 }
1373
1374 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1375 {
1376         u64 data = 0;
1377         struct kvm *kvm = vcpu->kvm;
1378
1379         switch (msr) {
1380         case HV_X64_MSR_GUEST_OS_ID:
1381                 data = kvm->arch.hv_guest_os_id;
1382                 break;
1383         case HV_X64_MSR_HYPERCALL:
1384                 data = kvm->arch.hv_hypercall;
1385                 break;
1386         default:
1387                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1388                 return 1;
1389         }
1390
1391         *pdata = data;
1392         return 0;
1393 }
1394
1395 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1396 {
1397         u64 data = 0;
1398
1399         switch (msr) {
1400         case HV_X64_MSR_VP_INDEX: {
1401                 int r;
1402                 struct kvm_vcpu *v;
1403                 kvm_for_each_vcpu(r, v, vcpu->kvm)
1404                         if (v == vcpu)
1405                                 data = r;
1406                 break;
1407         }
1408         case HV_X64_MSR_EOI:
1409                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1410         case HV_X64_MSR_ICR:
1411                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1412         case HV_X64_MSR_TPR:
1413                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1414         default:
1415                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1416                 return 1;
1417         }
1418         *pdata = data;
1419         return 0;
1420 }
1421
1422 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1423 {
1424         u64 data;
1425
1426         switch (msr) {
1427         case MSR_IA32_PLATFORM_ID:
1428         case MSR_IA32_UCODE_REV:
1429         case MSR_IA32_EBL_CR_POWERON:
1430         case MSR_IA32_DEBUGCTLMSR:
1431         case MSR_IA32_LASTBRANCHFROMIP:
1432         case MSR_IA32_LASTBRANCHTOIP:
1433         case MSR_IA32_LASTINTFROMIP:
1434         case MSR_IA32_LASTINTTOIP:
1435         case MSR_K8_SYSCFG:
1436         case MSR_K7_HWCR:
1437         case MSR_VM_HSAVE_PA:
1438         case MSR_P6_PERFCTR0:
1439         case MSR_P6_PERFCTR1:
1440         case MSR_P6_EVNTSEL0:
1441         case MSR_P6_EVNTSEL1:
1442         case MSR_K7_EVNTSEL0:
1443         case MSR_K7_PERFCTR0:
1444         case MSR_K8_INT_PENDING_MSG:
1445         case MSR_AMD64_NB_CFG:
1446         case MSR_FAM10H_MMIO_CONF_BASE:
1447                 data = 0;
1448                 break;
1449         case MSR_MTRRcap:
1450                 data = 0x500 | KVM_NR_VAR_MTRR;
1451                 break;
1452         case 0x200 ... 0x2ff:
1453                 return get_msr_mtrr(vcpu, msr, pdata);
1454         case 0xcd: /* fsb frequency */
1455                 data = 3;
1456                 break;
1457         case MSR_IA32_APICBASE:
1458                 data = kvm_get_apic_base(vcpu);
1459                 break;
1460         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1461                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1462                 break;
1463         case MSR_IA32_MISC_ENABLE:
1464                 data = vcpu->arch.ia32_misc_enable_msr;
1465                 break;
1466         case MSR_IA32_PERF_STATUS:
1467                 /* TSC increment by tick */
1468                 data = 1000ULL;
1469                 /* CPU multiplier */
1470                 data |= (((uint64_t)4ULL) << 40);
1471                 break;
1472         case MSR_EFER:
1473                 data = vcpu->arch.efer;
1474                 break;
1475         case MSR_KVM_WALL_CLOCK:
1476         case MSR_KVM_WALL_CLOCK_NEW:
1477                 data = vcpu->kvm->arch.wall_clock;
1478                 break;
1479         case MSR_KVM_SYSTEM_TIME:
1480         case MSR_KVM_SYSTEM_TIME_NEW:
1481                 data = vcpu->arch.time;
1482                 break;
1483         case MSR_IA32_P5_MC_ADDR:
1484         case MSR_IA32_P5_MC_TYPE:
1485         case MSR_IA32_MCG_CAP:
1486         case MSR_IA32_MCG_CTL:
1487         case MSR_IA32_MCG_STATUS:
1488         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1489                 return get_msr_mce(vcpu, msr, pdata);
1490         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1491                 if (kvm_hv_msr_partition_wide(msr)) {
1492                         int r;
1493                         mutex_lock(&vcpu->kvm->lock);
1494                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
1495                         mutex_unlock(&vcpu->kvm->lock);
1496                         return r;
1497                 } else
1498                         return get_msr_hyperv(vcpu, msr, pdata);
1499                 break;
1500         default:
1501                 if (!ignore_msrs) {
1502                         pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1503                         return 1;
1504                 } else {
1505                         pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1506                         data = 0;
1507                 }
1508                 break;
1509         }
1510         *pdata = data;
1511         return 0;
1512 }
1513 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1514
1515 /*
1516  * Read or write a bunch of msrs. All parameters are kernel addresses.
1517  *
1518  * @return number of msrs set successfully.
1519  */
1520 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1521                     struct kvm_msr_entry *entries,
1522                     int (*do_msr)(struct kvm_vcpu *vcpu,
1523                                   unsigned index, u64 *data))
1524 {
1525         int i, idx;
1526
1527         vcpu_load(vcpu);
1528
1529         idx = srcu_read_lock(&vcpu->kvm->srcu);
1530         for (i = 0; i < msrs->nmsrs; ++i)
1531                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1532                         break;
1533         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1534
1535         vcpu_put(vcpu);
1536
1537         return i;
1538 }
1539
1540 /*
1541  * Read or write a bunch of msrs. Parameters are user addresses.
1542  *
1543  * @return number of msrs set successfully.
1544  */
1545 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1546                   int (*do_msr)(struct kvm_vcpu *vcpu,
1547                                 unsigned index, u64 *data),
1548                   int writeback)
1549 {
1550         struct kvm_msrs msrs;
1551         struct kvm_msr_entry *entries;
1552         int r, n;
1553         unsigned size;
1554
1555         r = -EFAULT;
1556         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1557                 goto out;
1558
1559         r = -E2BIG;
1560         if (msrs.nmsrs >= MAX_IO_MSRS)
1561                 goto out;
1562
1563         r = -ENOMEM;
1564         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1565         entries = vmalloc(size);
1566         if (!entries)
1567                 goto out;
1568
1569         r = -EFAULT;
1570         if (copy_from_user(entries, user_msrs->entries, size))
1571                 goto out_free;
1572
1573         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1574         if (r < 0)
1575                 goto out_free;
1576
1577         r = -EFAULT;
1578         if (writeback && copy_to_user(user_msrs->entries, entries, size))
1579                 goto out_free;
1580
1581         r = n;
1582
1583 out_free:
1584         vfree(entries);
1585 out:
1586         return r;
1587 }
1588
1589 int kvm_dev_ioctl_check_extension(long ext)
1590 {
1591         int r;
1592
1593         switch (ext) {
1594         case KVM_CAP_IRQCHIP:
1595         case KVM_CAP_HLT:
1596         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1597         case KVM_CAP_SET_TSS_ADDR:
1598         case KVM_CAP_EXT_CPUID:
1599         case KVM_CAP_CLOCKSOURCE:
1600         case KVM_CAP_PIT:
1601         case KVM_CAP_NOP_IO_DELAY:
1602         case KVM_CAP_MP_STATE:
1603         case KVM_CAP_SYNC_MMU:
1604         case KVM_CAP_REINJECT_CONTROL:
1605         case KVM_CAP_IRQ_INJECT_STATUS:
1606         case KVM_CAP_ASSIGN_DEV_IRQ:
1607         case KVM_CAP_IRQFD:
1608         case KVM_CAP_IOEVENTFD:
1609         case KVM_CAP_PIT2:
1610         case KVM_CAP_PIT_STATE2:
1611         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1612         case KVM_CAP_XEN_HVM:
1613         case KVM_CAP_ADJUST_CLOCK:
1614         case KVM_CAP_VCPU_EVENTS:
1615         case KVM_CAP_HYPERV:
1616         case KVM_CAP_HYPERV_VAPIC:
1617         case KVM_CAP_HYPERV_SPIN:
1618         case KVM_CAP_PCI_SEGMENT:
1619         case KVM_CAP_DEBUGREGS:
1620         case KVM_CAP_X86_ROBUST_SINGLESTEP:
1621                 r = 1;
1622                 break;
1623         case KVM_CAP_COALESCED_MMIO:
1624                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1625                 break;
1626         case KVM_CAP_VAPIC:
1627                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1628                 break;
1629         case KVM_CAP_NR_VCPUS:
1630                 r = KVM_MAX_VCPUS;
1631                 break;
1632         case KVM_CAP_NR_MEMSLOTS:
1633                 r = KVM_MEMORY_SLOTS;
1634                 break;
1635         case KVM_CAP_PV_MMU:    /* obsolete */
1636                 r = 0;
1637                 break;
1638         case KVM_CAP_IOMMU:
1639                 r = iommu_found();
1640                 break;
1641         case KVM_CAP_MCE:
1642                 r = KVM_MAX_MCE_BANKS;
1643                 break;
1644         default:
1645                 r = 0;
1646                 break;
1647         }
1648         return r;
1649
1650 }
1651
1652 long kvm_arch_dev_ioctl(struct file *filp,
1653                         unsigned int ioctl, unsigned long arg)
1654 {
1655         void __user *argp = (void __user *)arg;
1656         long r;
1657
1658         switch (ioctl) {
1659         case KVM_GET_MSR_INDEX_LIST: {
1660                 struct kvm_msr_list __user *user_msr_list = argp;
1661                 struct kvm_msr_list msr_list;
1662                 unsigned n;
1663
1664                 r = -EFAULT;
1665                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1666                         goto out;
1667                 n = msr_list.nmsrs;
1668                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1669                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1670                         goto out;
1671                 r = -E2BIG;
1672                 if (n < msr_list.nmsrs)
1673                         goto out;
1674                 r = -EFAULT;
1675                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1676                                  num_msrs_to_save * sizeof(u32)))
1677                         goto out;
1678                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1679                                  &emulated_msrs,
1680                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1681                         goto out;
1682                 r = 0;
1683                 break;
1684         }
1685         case KVM_GET_SUPPORTED_CPUID: {
1686                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1687                 struct kvm_cpuid2 cpuid;
1688
1689                 r = -EFAULT;
1690                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1691                         goto out;
1692                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1693                                                       cpuid_arg->entries);
1694                 if (r)
1695                         goto out;
1696
1697                 r = -EFAULT;
1698                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1699                         goto out;
1700                 r = 0;
1701                 break;
1702         }
1703         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
1704                 u64 mce_cap;
1705
1706                 mce_cap = KVM_MCE_CAP_SUPPORTED;
1707                 r = -EFAULT;
1708                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
1709                         goto out;
1710                 r = 0;
1711                 break;
1712         }
1713         default:
1714                 r = -EINVAL;
1715         }
1716 out:
1717         return r;
1718 }
1719
1720 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1721 {
1722         kvm_x86_ops->vcpu_load(vcpu, cpu);
1723         if (unlikely(per_cpu(cpu_tsc_khz, cpu) == 0)) {
1724                 unsigned long khz = cpufreq_quick_get(cpu);
1725                 if (!khz)
1726                         khz = tsc_khz;
1727                 per_cpu(cpu_tsc_khz, cpu) = khz;
1728         }
1729         kvm_request_guest_time_update(vcpu);
1730 }
1731
1732 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1733 {
1734         kvm_put_guest_fpu(vcpu);
1735         kvm_x86_ops->vcpu_put(vcpu);
1736 }
1737
1738 static int is_efer_nx(void)
1739 {
1740         unsigned long long efer = 0;
1741
1742         rdmsrl_safe(MSR_EFER, &efer);
1743         return efer & EFER_NX;
1744 }
1745
1746 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1747 {
1748         int i;
1749         struct kvm_cpuid_entry2 *e, *entry;
1750
1751         entry = NULL;
1752         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1753                 e = &vcpu->arch.cpuid_entries[i];
1754                 if (e->function == 0x80000001) {
1755                         entry = e;
1756                         break;
1757                 }
1758         }
1759         if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1760                 entry->edx &= ~(1 << 20);
1761                 printk(KERN_INFO "kvm: guest NX capability removed\n");
1762         }
1763 }
1764
1765 /* when an old userspace process fills a new kernel module */
1766 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1767                                     struct kvm_cpuid *cpuid,
1768                                     struct kvm_cpuid_entry __user *entries)
1769 {
1770         int r, i;
1771         struct kvm_cpuid_entry *cpuid_entries;
1772
1773         r = -E2BIG;
1774         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1775                 goto out;
1776         r = -ENOMEM;
1777         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1778         if (!cpuid_entries)
1779                 goto out;
1780         r = -EFAULT;
1781         if (copy_from_user(cpuid_entries, entries,
1782                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1783                 goto out_free;
1784         for (i = 0; i < cpuid->nent; i++) {
1785                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1786                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1787                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1788                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1789                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1790                 vcpu->arch.cpuid_entries[i].index = 0;
1791                 vcpu->arch.cpuid_entries[i].flags = 0;
1792                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1793                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1794                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1795         }
1796         vcpu->arch.cpuid_nent = cpuid->nent;
1797         cpuid_fix_nx_cap(vcpu);
1798         r = 0;
1799         kvm_apic_set_version(vcpu);
1800         kvm_x86_ops->cpuid_update(vcpu);
1801
1802 out_free:
1803         vfree(cpuid_entries);
1804 out:
1805         return r;
1806 }
1807
1808 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1809                                      struct kvm_cpuid2 *cpuid,
1810                                      struct kvm_cpuid_entry2 __user *entries)
1811 {
1812         int r;
1813
1814         r = -E2BIG;
1815         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1816                 goto out;
1817         r = -EFAULT;
1818         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1819                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1820                 goto out;
1821         vcpu->arch.cpuid_nent = cpuid->nent;
1822         kvm_apic_set_version(vcpu);
1823         kvm_x86_ops->cpuid_update(vcpu);
1824         return 0;
1825
1826 out:
1827         return r;
1828 }
1829
1830 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1831                                      struct kvm_cpuid2 *cpuid,
1832                                      struct kvm_cpuid_entry2 __user *entries)
1833 {
1834         int r;
1835
1836         r = -E2BIG;
1837         if (cpuid->nent < vcpu->arch.cpuid_nent)
1838                 goto out;
1839         r = -EFAULT;
1840         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1841                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1842                 goto out;
1843         return 0;
1844
1845 out:
1846         cpuid->nent = vcpu->arch.cpuid_nent;
1847         return r;
1848 }
1849
1850 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1851                            u32 index)
1852 {
1853         entry->function = function;
1854         entry->index = index;
1855         cpuid_count(entry->function, entry->index,
1856                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1857         entry->flags = 0;
1858 }
1859
1860 #define F(x) bit(X86_FEATURE_##x)
1861
1862 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1863                          u32 index, int *nent, int maxnent)
1864 {
1865         unsigned f_nx = is_efer_nx() ? F(NX) : 0;
1866 #ifdef CONFIG_X86_64
1867         unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
1868                                 ? F(GBPAGES) : 0;
1869         unsigned f_lm = F(LM);
1870 #else
1871         unsigned f_gbpages = 0;
1872         unsigned f_lm = 0;
1873 #endif
1874         unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
1875
1876         /* cpuid 1.edx */
1877         const u32 kvm_supported_word0_x86_features =
1878                 F(FPU) | F(VME) | F(DE) | F(PSE) |
1879                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1880                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
1881                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1882                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
1883                 0 /* Reserved, DS, ACPI */ | F(MMX) |
1884                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
1885                 0 /* HTT, TM, Reserved, PBE */;
1886         /* cpuid 0x80000001.edx */
1887         const u32 kvm_supported_word1_x86_features =
1888                 F(FPU) | F(VME) | F(DE) | F(PSE) |
1889                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1890                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
1891                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1892                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
1893                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
1894                 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
1895                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
1896         /* cpuid 1.ecx */
1897         const u32 kvm_supported_word4_x86_features =
1898                 F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
1899                 0 /* DS-CPL, VMX, SMX, EST */ |
1900                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
1901                 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
1902                 0 /* Reserved, DCA */ | F(XMM4_1) |
1903                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
1904                 0 /* Reserved, XSAVE, OSXSAVE */;
1905         /* cpuid 0x80000001.ecx */
1906         const u32 kvm_supported_word6_x86_features =
1907                 F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
1908                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
1909                 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
1910                 0 /* SKINIT */ | 0 /* WDT */;
1911
1912         /* all calls to cpuid_count() should be made on the same cpu */
1913         get_cpu();
1914         do_cpuid_1_ent(entry, function, index);
1915         ++*nent;
1916
1917         switch (function) {
1918         case 0:
1919                 entry->eax = min(entry->eax, (u32)0xb);
1920                 break;
1921         case 1:
1922                 entry->edx &= kvm_supported_word0_x86_features;
1923                 entry->ecx &= kvm_supported_word4_x86_features;
1924                 /* we support x2apic emulation even if host does not support
1925                  * it since we emulate x2apic in software */
1926                 entry->ecx |= F(X2APIC);
1927                 break;
1928         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1929          * may return different values. This forces us to get_cpu() before
1930          * issuing the first command, and also to emulate this annoying behavior
1931          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1932         case 2: {
1933                 int t, times = entry->eax & 0xff;
1934
1935                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1936                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
1937                 for (t = 1; t < times && *nent < maxnent; ++t) {
1938                         do_cpuid_1_ent(&entry[t], function, 0);
1939                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1940                         ++*nent;
1941                 }
1942                 break;
1943         }
1944         /* function 4 and 0xb have additional index. */
1945         case 4: {
1946                 int i, cache_type;
1947
1948                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1949                 /* read more entries until cache_type is zero */
1950                 for (i = 1; *nent < maxnent; ++i) {
1951                         cache_type = entry[i - 1].eax & 0x1f;
1952                         if (!cache_type)
1953                                 break;
1954                         do_cpuid_1_ent(&entry[i], function, i);
1955                         entry[i].flags |=
1956                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1957                         ++*nent;
1958                 }
1959                 break;
1960         }
1961         case 0xb: {
1962                 int i, level_type;
1963
1964                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1965                 /* read more entries until level_type is zero */
1966                 for (i = 1; *nent < maxnent; ++i) {
1967                         level_type = entry[i - 1].ecx & 0xff00;
1968                         if (!level_type)
1969                                 break;
1970                         do_cpuid_1_ent(&entry[i], function, i);
1971                         entry[i].flags |=
1972                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1973                         ++*nent;
1974                 }
1975                 break;
1976         }
1977         case KVM_CPUID_SIGNATURE: {
1978                 char signature[12] = "KVMKVMKVM\0\0";
1979                 u32 *sigptr = (u32 *)signature;
1980                 entry->eax = 0;
1981                 entry->ebx = sigptr[0];
1982                 entry->ecx = sigptr[1];
1983                 entry->edx = sigptr[2];
1984                 break;
1985         }
1986         case KVM_CPUID_FEATURES:
1987                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
1988                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
1989                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
1990                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
1991                 entry->ebx = 0;
1992                 entry->ecx = 0;
1993                 entry->edx = 0;
1994                 break;
1995         case 0x80000000:
1996                 entry->eax = min(entry->eax, 0x8000001a);
1997                 break;
1998         case 0x80000001:
1999                 entry->edx &= kvm_supported_word1_x86_features;
2000                 entry->ecx &= kvm_supported_word6_x86_features;
2001                 break;
2002         }
2003
2004         kvm_x86_ops->set_supported_cpuid(function, entry);
2005
2006         put_cpu();
2007 }
2008
2009 #undef F
2010
2011 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
2012                                      struct kvm_cpuid_entry2 __user *entries)
2013 {
2014         struct kvm_cpuid_entry2 *cpuid_entries;
2015         int limit, nent = 0, r = -E2BIG;
2016         u32 func;
2017
2018         if (cpuid->nent < 1)
2019                 goto out;
2020         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2021                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
2022         r = -ENOMEM;
2023         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
2024         if (!cpuid_entries)
2025                 goto out;
2026
2027         do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
2028         limit = cpuid_entries[0].eax;
2029         for (func = 1; func <= limit && nent < cpuid->nent; ++func)
2030                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2031                              &nent, cpuid->nent);
2032         r = -E2BIG;
2033         if (nent >= cpuid->nent)
2034                 goto out_free;
2035
2036         do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
2037         limit = cpuid_entries[nent - 1].eax;
2038         for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
2039                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2040                              &nent, cpuid->nent);
2041
2042
2043
2044         r = -E2BIG;
2045         if (nent >= cpuid->nent)
2046                 goto out_free;
2047
2048         do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
2049                      cpuid->nent);
2050
2051         r = -E2BIG;
2052         if (nent >= cpuid->nent)
2053                 goto out_free;
2054
2055         do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
2056                      cpuid->nent);
2057
2058         r = -E2BIG;
2059         if (nent >= cpuid->nent)
2060                 goto out_free;
2061
2062         r = -EFAULT;
2063         if (copy_to_user(entries, cpuid_entries,
2064                          nent * sizeof(struct kvm_cpuid_entry2)))
2065                 goto out_free;
2066         cpuid->nent = nent;
2067         r = 0;
2068
2069 out_free:
2070         vfree(cpuid_entries);
2071 out:
2072         return r;
2073 }
2074
2075 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2076                                     struct kvm_lapic_state *s)
2077 {
2078         vcpu_load(vcpu);
2079         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2080         vcpu_put(vcpu);
2081
2082         return 0;
2083 }
2084
2085 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2086                                     struct kvm_lapic_state *s)
2087 {
2088         vcpu_load(vcpu);
2089         memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2090         kvm_apic_post_state_restore(vcpu);
2091         update_cr8_intercept(vcpu);
2092         vcpu_put(vcpu);
2093
2094         return 0;
2095 }
2096
2097 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2098                                     struct kvm_interrupt *irq)
2099 {
2100         if (irq->irq < 0 || irq->irq >= 256)
2101                 return -EINVAL;
2102         if (irqchip_in_kernel(vcpu->kvm))
2103                 return -ENXIO;
2104         vcpu_load(vcpu);
2105
2106         kvm_queue_interrupt(vcpu, irq->irq, false);
2107
2108         vcpu_put(vcpu);
2109
2110         return 0;
2111 }
2112
2113 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2114 {
2115         vcpu_load(vcpu);
2116         kvm_inject_nmi(vcpu);
2117         vcpu_put(vcpu);
2118
2119         return 0;
2120 }
2121
2122 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2123                                            struct kvm_tpr_access_ctl *tac)
2124 {
2125         if (tac->flags)
2126                 return -EINVAL;
2127         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2128         return 0;
2129 }
2130
2131 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2132                                         u64 mcg_cap)
2133 {
2134         int r;
2135         unsigned bank_num = mcg_cap & 0xff, bank;
2136
2137         r = -EINVAL;
2138         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2139                 goto out;
2140         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2141                 goto out;
2142         r = 0;
2143         vcpu->arch.mcg_cap = mcg_cap;
2144         /* Init IA32_MCG_CTL to all 1s */
2145         if (mcg_cap & MCG_CTL_P)
2146                 vcpu->arch.mcg_ctl = ~(u64)0;
2147         /* Init IA32_MCi_CTL to all 1s */
2148         for (bank = 0; bank < bank_num; bank++)
2149                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2150 out:
2151         return r;
2152 }
2153
2154 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2155                                       struct kvm_x86_mce *mce)
2156 {
2157         u64 mcg_cap = vcpu->arch.mcg_cap;
2158         unsigned bank_num = mcg_cap & 0xff;
2159         u64 *banks = vcpu->arch.mce_banks;
2160
2161         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2162                 return -EINVAL;
2163         /*
2164          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2165          * reporting is disabled
2166          */
2167         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2168             vcpu->arch.mcg_ctl != ~(u64)0)
2169                 return 0;
2170         banks += 4 * mce->bank;
2171         /*
2172          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2173          * reporting is disabled for the bank
2174          */
2175         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2176                 return 0;
2177         if (mce->status & MCI_STATUS_UC) {
2178                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2179                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2180                         printk(KERN_DEBUG "kvm: set_mce: "
2181                                "injects mce exception while "
2182                                "previous one is in progress!\n");
2183                         set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
2184                         return 0;
2185                 }
2186                 if (banks[1] & MCI_STATUS_VAL)
2187                         mce->status |= MCI_STATUS_OVER;
2188                 banks[2] = mce->addr;
2189                 banks[3] = mce->misc;
2190                 vcpu->arch.mcg_status = mce->mcg_status;
2191                 banks[1] = mce->status;
2192                 kvm_queue_exception(vcpu, MC_VECTOR);
2193         } else if (!(banks[1] & MCI_STATUS_VAL)
2194                    || !(banks[1] & MCI_STATUS_UC)) {
2195                 if (banks[1] & MCI_STATUS_VAL)
2196                         mce->status |= MCI_STATUS_OVER;
2197                 banks[2] = mce->addr;
2198                 banks[3] = mce->misc;
2199                 banks[1] = mce->status;
2200         } else
2201                 banks[1] |= MCI_STATUS_OVER;
2202         return 0;
2203 }
2204
2205 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2206                                                struct kvm_vcpu_events *events)
2207 {
2208         vcpu_load(vcpu);
2209
2210         events->exception.injected =
2211                 vcpu->arch.exception.pending &&
2212                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2213         events->exception.nr = vcpu->arch.exception.nr;
2214         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2215         events->exception.error_code = vcpu->arch.exception.error_code;
2216
2217         events->interrupt.injected =
2218                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2219         events->interrupt.nr = vcpu->arch.interrupt.nr;
2220         events->interrupt.soft = 0;
2221         events->interrupt.shadow =
2222                 kvm_x86_ops->get_interrupt_shadow(vcpu,
2223                         KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2224
2225         events->nmi.injected = vcpu->arch.nmi_injected;
2226         events->nmi.pending = vcpu->arch.nmi_pending;
2227         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2228
2229         events->sipi_vector = vcpu->arch.sipi_vector;
2230
2231         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2232                          | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2233                          | KVM_VCPUEVENT_VALID_SHADOW);
2234
2235         vcpu_put(vcpu);
2236 }
2237
2238 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2239                                               struct kvm_vcpu_events *events)
2240 {
2241         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2242                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2243                               | KVM_VCPUEVENT_VALID_SHADOW))
2244                 return -EINVAL;
2245
2246         vcpu_load(vcpu);
2247
2248         vcpu->arch.exception.pending = events->exception.injected;
2249         vcpu->arch.exception.nr = events->exception.nr;
2250         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2251         vcpu->arch.exception.error_code = events->exception.error_code;
2252
2253         vcpu->arch.interrupt.pending = events->interrupt.injected;
2254         vcpu->arch.interrupt.nr = events->interrupt.nr;
2255         vcpu->arch.interrupt.soft = events->interrupt.soft;
2256         if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
2257                 kvm_pic_clear_isr_ack(vcpu->kvm);
2258         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2259                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2260                                                   events->interrupt.shadow);
2261
2262         vcpu->arch.nmi_injected = events->nmi.injected;
2263         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2264                 vcpu->arch.nmi_pending = events->nmi.pending;
2265         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2266
2267         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2268                 vcpu->arch.sipi_vector = events->sipi_vector;
2269
2270         vcpu_put(vcpu);
2271
2272         return 0;
2273 }
2274
2275 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2276                                              struct kvm_debugregs *dbgregs)
2277 {
2278         vcpu_load(vcpu);
2279
2280         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2281         dbgregs->dr6 = vcpu->arch.dr6;
2282         dbgregs->dr7 = vcpu->arch.dr7;
2283         dbgregs->flags = 0;
2284
2285         vcpu_put(vcpu);
2286 }
2287
2288 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2289                                             struct kvm_debugregs *dbgregs)
2290 {
2291         if (dbgregs->flags)
2292                 return -EINVAL;
2293
2294         vcpu_load(vcpu);
2295
2296         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2297         vcpu->arch.dr6 = dbgregs->dr6;
2298         vcpu->arch.dr7 = dbgregs->dr7;
2299
2300         vcpu_put(vcpu);
2301
2302         return 0;
2303 }
2304
2305 long kvm_arch_vcpu_ioctl(struct file *filp,
2306                          unsigned int ioctl, unsigned long arg)
2307 {
2308         struct kvm_vcpu *vcpu = filp->private_data;
2309         void __user *argp = (void __user *)arg;
2310         int r;
2311         struct kvm_lapic_state *lapic = NULL;
2312
2313         switch (ioctl) {
2314         case KVM_GET_LAPIC: {
2315                 r = -EINVAL;
2316                 if (!vcpu->arch.apic)
2317                         goto out;
2318                 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2319
2320                 r = -ENOMEM;
2321                 if (!lapic)
2322                         goto out;
2323                 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
2324                 if (r)
2325                         goto out;
2326                 r = -EFAULT;
2327                 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
2328                         goto out;
2329                 r = 0;
2330                 break;
2331         }
2332         case KVM_SET_LAPIC: {
2333                 r = -EINVAL;
2334                 if (!vcpu->arch.apic)
2335                         goto out;
2336                 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2337                 r = -ENOMEM;
2338                 if (!lapic)
2339                         goto out;
2340                 r = -EFAULT;
2341                 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
2342                         goto out;
2343                 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
2344                 if (r)
2345                         goto out;
2346                 r = 0;
2347                 break;
2348         }
2349         case KVM_INTERRUPT: {
2350                 struct kvm_interrupt irq;
2351
2352                 r = -EFAULT;
2353                 if (copy_from_user(&irq, argp, sizeof irq))
2354                         goto out;
2355                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2356                 if (r)
2357                         goto out;
2358                 r = 0;
2359                 break;
2360         }
2361         case KVM_NMI: {
2362                 r = kvm_vcpu_ioctl_nmi(vcpu);
2363                 if (r)
2364                         goto out;
2365                 r = 0;
2366                 break;
2367         }
2368         case KVM_SET_CPUID: {
2369                 struct kvm_cpuid __user *cpuid_arg = argp;
2370                 struct kvm_cpuid cpuid;
2371
2372                 r = -EFAULT;
2373                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2374                         goto out;
2375                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2376                 if (r)
2377                         goto out;
2378                 break;
2379         }
2380         case KVM_SET_CPUID2: {
2381                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2382                 struct kvm_cpuid2 cpuid;
2383
2384                 r = -EFAULT;
2385                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2386                         goto out;
2387                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2388                                               cpuid_arg->entries);
2389                 if (r)
2390                         goto out;
2391                 break;
2392         }
2393         case KVM_GET_CPUID2: {
2394                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2395                 struct kvm_cpuid2 cpuid;
2396
2397                 r = -EFAULT;
2398                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2399                         goto out;
2400                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2401                                               cpuid_arg->entries);
2402                 if (r)
2403                         goto out;
2404                 r = -EFAULT;
2405                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2406                         goto out;
2407                 r = 0;
2408                 break;
2409         }
2410         case KVM_GET_MSRS:
2411                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2412                 break;
2413         case KVM_SET_MSRS:
2414                 r = msr_io(vcpu, argp, do_set_msr, 0);
2415                 break;
2416         case KVM_TPR_ACCESS_REPORTING: {
2417                 struct kvm_tpr_access_ctl tac;
2418
2419                 r = -EFAULT;
2420                 if (copy_from_user(&tac, argp, sizeof tac))
2421                         goto out;
2422                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2423                 if (r)
2424                         goto out;
2425                 r = -EFAULT;
2426                 if (copy_to_user(argp, &tac, sizeof tac))
2427                         goto out;
2428                 r = 0;
2429                 break;
2430         };
2431         case KVM_SET_VAPIC_ADDR: {
2432                 struct kvm_vapic_addr va;
2433
2434                 r = -EINVAL;
2435                 if (!irqchip_in_kernel(vcpu->kvm))
2436                         goto out;
2437                 r = -EFAULT;
2438                 if (copy_from_user(&va, argp, sizeof va))
2439                         goto out;
2440                 r = 0;
2441                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2442                 break;
2443         }
2444         case KVM_X86_SETUP_MCE: {
2445                 u64 mcg_cap;
2446
2447                 r = -EFAULT;
2448                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2449                         goto out;
2450                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2451                 break;
2452         }
2453         case KVM_X86_SET_MCE: {
2454                 struct kvm_x86_mce mce;
2455
2456                 r = -EFAULT;
2457                 if (copy_from_user(&mce, argp, sizeof mce))
2458                         goto out;
2459                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2460                 break;
2461         }
2462         case KVM_GET_VCPU_EVENTS: {
2463                 struct kvm_vcpu_events events;
2464
2465                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2466
2467                 r = -EFAULT;
2468                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2469                         break;
2470                 r = 0;
2471                 break;
2472         }
2473         case KVM_SET_VCPU_EVENTS: {
2474                 struct kvm_vcpu_events events;
2475
2476                 r = -EFAULT;
2477                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2478                         break;
2479
2480                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2481                 break;
2482         }
2483         case KVM_GET_DEBUGREGS: {
2484                 struct kvm_debugregs dbgregs;
2485
2486                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2487
2488                 r = -EFAULT;
2489                 if (copy_to_user(argp, &dbgregs,
2490                                  sizeof(struct kvm_debugregs)))
2491                         break;
2492                 r = 0;
2493                 break;
2494         }
2495         case KVM_SET_DEBUGREGS: {
2496                 struct kvm_debugregs dbgregs;
2497
2498                 r = -EFAULT;
2499                 if (copy_from_user(&dbgregs, argp,
2500                                    sizeof(struct kvm_debugregs)))
2501                         break;
2502
2503                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2504                 break;
2505         }
2506         default:
2507                 r = -EINVAL;
2508         }
2509 out:
2510         kfree(lapic);
2511         return r;
2512 }
2513
2514 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2515 {
2516         int ret;
2517
2518         if (addr > (unsigned int)(-3 * PAGE_SIZE))
2519                 return -1;
2520         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2521         return ret;
2522 }
2523
2524 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2525                                               u64 ident_addr)
2526 {
2527         kvm->arch.ept_identity_map_addr = ident_addr;
2528         return 0;
2529 }
2530
2531 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2532                                           u32 kvm_nr_mmu_pages)
2533 {
2534         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2535                 return -EINVAL;
2536
2537         mutex_lock(&kvm->slots_lock);
2538         spin_lock(&kvm->mmu_lock);
2539
2540         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2541         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2542
2543         spin_unlock(&kvm->mmu_lock);
2544         mutex_unlock(&kvm->slots_lock);
2545         return 0;
2546 }
2547
2548 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2549 {
2550         return kvm->arch.n_alloc_mmu_pages;
2551 }
2552
2553 gfn_t unalias_gfn_instantiation(struct kvm *kvm, gfn_t gfn)
2554 {
2555         int i;
2556         struct kvm_mem_alias *alias;
2557         struct kvm_mem_aliases *aliases;
2558
2559         aliases = kvm_aliases(kvm);
2560
2561         for (i = 0; i < aliases->naliases; ++i) {
2562                 alias = &aliases->aliases[i];
2563                 if (alias->flags & KVM_ALIAS_INVALID)
2564                         continue;
2565                 if (gfn >= alias->base_gfn
2566                     && gfn < alias->base_gfn + alias->npages)
2567                         return alias->target_gfn + gfn - alias->base_gfn;
2568         }
2569         return gfn;
2570 }
2571
2572 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
2573 {
2574         int i;
2575         struct kvm_mem_alias *alias;
2576         struct kvm_mem_aliases *aliases;
2577
2578         aliases = kvm_aliases(kvm);
2579
2580         for (i = 0; i < aliases->naliases; ++i) {
2581                 alias = &aliases->aliases[i];
2582                 if (gfn >= alias->base_gfn
2583                     && gfn < alias->base_gfn + alias->npages)
2584                         return alias->target_gfn + gfn - alias->base_gfn;
2585         }
2586         return gfn;
2587 }
2588
2589 /*
2590  * Set a new alias region.  Aliases map a portion of physical memory into
2591  * another portion.  This is useful for memory windows, for example the PC
2592  * VGA region.
2593  */
2594 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
2595                                          struct kvm_memory_alias *alias)
2596 {
2597         int r, n;
2598         struct kvm_mem_alias *p;
2599         struct kvm_mem_aliases *aliases, *old_aliases;
2600
2601         r = -EINVAL;
2602         /* General sanity checks */
2603         if (alias->memory_size & (PAGE_SIZE - 1))
2604                 goto out;
2605         if (alias->guest_phys_addr & (PAGE_SIZE - 1))
2606                 goto out;
2607         if (alias->slot >= KVM_ALIAS_SLOTS)
2608                 goto out;
2609         if (alias->guest_phys_addr + alias->memory_size
2610             < alias->guest_phys_addr)
2611                 goto out;
2612         if (alias->target_phys_addr + alias->memory_size
2613             < alias->target_phys_addr)
2614                 goto out;
2615
2616         r = -ENOMEM;
2617         aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
2618         if (!aliases)
2619                 goto out;
2620
2621         mutex_lock(&kvm->slots_lock);
2622
2623         /* invalidate any gfn reference in case of deletion/shrinking */
2624         memcpy(aliases, kvm->arch.aliases, sizeof(struct kvm_mem_aliases));
2625         aliases->aliases[alias->slot].flags |= KVM_ALIAS_INVALID;
2626         old_aliases = kvm->arch.aliases;
2627         rcu_assign_pointer(kvm->arch.aliases, aliases);
2628         synchronize_srcu_expedited(&kvm->srcu);
2629         kvm_mmu_zap_all(kvm);
2630         kfree(old_aliases);
2631
2632         r = -ENOMEM;
2633         aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
2634         if (!aliases)
2635                 goto out_unlock;
2636
2637         memcpy(aliases, kvm->arch.aliases, sizeof(struct kvm_mem_aliases));
2638
2639         p = &aliases->aliases[alias->slot];
2640         p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
2641         p->npages = alias->memory_size >> PAGE_SHIFT;
2642         p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
2643         p->flags &= ~(KVM_ALIAS_INVALID);
2644
2645         for (n = KVM_ALIAS_SLOTS; n > 0; --n)
2646                 if (aliases->aliases[n - 1].npages)
2647                         break;
2648         aliases->naliases = n;
2649
2650         old_aliases = kvm->arch.aliases;
2651         rcu_assign_pointer(kvm->arch.aliases, aliases);
2652         synchronize_srcu_expedited(&kvm->srcu);
2653         kfree(old_aliases);
2654         r = 0;
2655
2656 out_unlock:
2657         mutex_unlock(&kvm->slots_lock);
2658 out:
2659         return r;
2660 }
2661
2662 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2663 {
2664         int r;
2665
2666         r = 0;
2667         switch (chip->chip_id) {
2668         case KVM_IRQCHIP_PIC_MASTER:
2669                 memcpy(&chip->chip.pic,
2670                         &pic_irqchip(kvm)->pics[0],
2671                         sizeof(struct kvm_pic_state));
2672                 break;
2673         case KVM_IRQCHIP_PIC_SLAVE:
2674                 memcpy(&chip->chip.pic,
2675                         &pic_irqchip(kvm)->pics[1],
2676                         sizeof(struct kvm_pic_state));
2677                 break;
2678         case KVM_IRQCHIP_IOAPIC:
2679                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
2680                 break;
2681         default:
2682                 r = -EINVAL;
2683                 break;
2684         }
2685         return r;
2686 }
2687
2688 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2689 {
2690         int r;
2691
2692         r = 0;
2693         switch (chip->chip_id) {
2694         case KVM_IRQCHIP_PIC_MASTER:
2695                 raw_spin_lock(&pic_irqchip(kvm)->lock);
2696                 memcpy(&pic_irqchip(kvm)->pics[0],
2697                         &chip->chip.pic,
2698                         sizeof(struct kvm_pic_state));
2699                 raw_spin_unlock(&pic_irqchip(kvm)->lock);
2700                 break;
2701         case KVM_IRQCHIP_PIC_SLAVE:
2702                 raw_spin_lock(&pic_irqchip(kvm)->lock);
2703                 memcpy(&pic_irqchip(kvm)->pics[1],
2704                         &chip->chip.pic,
2705                         sizeof(struct kvm_pic_state));
2706                 raw_spin_unlock(&pic_irqchip(kvm)->lock);
2707                 break;
2708         case KVM_IRQCHIP_IOAPIC:
2709                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
2710                 break;
2711         default:
2712                 r = -EINVAL;
2713                 break;
2714         }
2715         kvm_pic_update_irq(pic_irqchip(kvm));
2716         return r;
2717 }
2718
2719 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2720 {
2721         int r = 0;
2722
2723         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2724         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2725         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2726         return r;
2727 }
2728
2729 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2730 {
2731         int r = 0;
2732
2733         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2734         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2735         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
2736         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2737         return r;
2738 }
2739
2740 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2741 {
2742         int r = 0;
2743
2744         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2745         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
2746                 sizeof(ps->channels));
2747         ps->flags = kvm->arch.vpit->pit_state.flags;
2748         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2749         return r;
2750 }
2751
2752 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2753 {
2754         int r = 0, start = 0;
2755         u32 prev_legacy, cur_legacy;
2756         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2757         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
2758         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
2759         if (!prev_legacy && cur_legacy)
2760                 start = 1;
2761         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
2762                sizeof(kvm->arch.vpit->pit_state.channels));
2763         kvm->arch.vpit->pit_state.flags = ps->flags;
2764         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
2765         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2766         return r;
2767 }
2768
2769 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
2770                                  struct kvm_reinject_control *control)
2771 {
2772         if (!kvm->arch.vpit)
2773                 return -ENXIO;
2774         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2775         kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
2776         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2777         return 0;
2778 }
2779
2780 /*
2781  * Get (and clear) the dirty memory log for a memory slot.
2782  */
2783 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2784                                       struct kvm_dirty_log *log)
2785 {
2786         int r, i;
2787         struct kvm_memory_slot *memslot;
2788         unsigned long n;
2789         unsigned long is_dirty = 0;
2790         unsigned long *dirty_bitmap = NULL;
2791
2792         mutex_lock(&kvm->slots_lock);
2793
2794         r = -EINVAL;
2795         if (log->slot >= KVM_MEMORY_SLOTS)
2796                 goto out;
2797
2798         memslot = &kvm->memslots->memslots[log->slot];
2799         r = -ENOENT;
2800         if (!memslot->dirty_bitmap)
2801                 goto out;
2802
2803         n = kvm_dirty_bitmap_bytes(memslot);
2804
2805         r = -ENOMEM;
2806         dirty_bitmap = vmalloc(n);
2807         if (!dirty_bitmap)
2808                 goto out;
2809         memset(dirty_bitmap, 0, n);
2810
2811         for (i = 0; !is_dirty && i < n/sizeof(long); i++)
2812                 is_dirty = memslot->dirty_bitmap[i];
2813
2814         /* If nothing is dirty, don't bother messing with page tables. */
2815         if (is_dirty) {
2816                 struct kvm_memslots *slots, *old_slots;
2817
2818                 spin_lock(&kvm->mmu_lock);
2819                 kvm_mmu_slot_remove_write_access(kvm, log->slot);
2820                 spin_unlock(&kvm->mmu_lock);
2821
2822                 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
2823                 if (!slots)
2824                         goto out_free;
2825
2826                 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
2827                 slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
2828
2829                 old_slots = kvm->memslots;
2830                 rcu_assign_pointer(kvm->memslots, slots);
2831                 synchronize_srcu_expedited(&kvm->srcu);
2832                 dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
2833                 kfree(old_slots);
2834         }
2835
2836         r = 0;
2837         if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
2838                 r = -EFAULT;
2839 out_free:
2840         vfree(dirty_bitmap);
2841 out:
2842         mutex_unlock(&kvm->slots_lock);
2843         return r;
2844 }
2845
2846 long kvm_arch_vm_ioctl(struct file *filp,
2847                        unsigned int ioctl, unsigned long arg)
2848 {
2849         struct kvm *kvm = filp->private_data;
2850         void __user *argp = (void __user *)arg;
2851         int r = -ENOTTY;
2852         /*
2853          * This union makes it completely explicit to gcc-3.x
2854          * that these two variables' stack usage should be
2855          * combined, not added together.
2856          */
2857         union {
2858                 struct kvm_pit_state ps;
2859                 struct kvm_pit_state2 ps2;
2860                 struct kvm_memory_alias alias;
2861                 struct kvm_pit_config pit_config;
2862         } u;
2863
2864         switch (ioctl) {
2865         case KVM_SET_TSS_ADDR:
2866                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
2867                 if (r < 0)
2868                         goto out;
2869                 break;
2870         case KVM_SET_IDENTITY_MAP_ADDR: {
2871                 u64 ident_addr;
2872
2873                 r = -EFAULT;
2874                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
2875                         goto out;
2876                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
2877                 if (r < 0)
2878                         goto out;
2879                 break;
2880         }
2881         case KVM_SET_MEMORY_REGION: {
2882                 struct kvm_memory_region kvm_mem;
2883                 struct kvm_userspace_memory_region kvm_userspace_mem;
2884
2885                 r = -EFAULT;
2886                 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2887                         goto out;
2888                 kvm_userspace_mem.slot = kvm_mem.slot;
2889                 kvm_userspace_mem.flags = kvm_mem.flags;
2890                 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
2891                 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
2892                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
2893                 if (r)
2894                         goto out;
2895                 break;
2896         }
2897         case KVM_SET_NR_MMU_PAGES:
2898                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
2899                 if (r)
2900                         goto out;
2901                 break;
2902         case KVM_GET_NR_MMU_PAGES:
2903                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
2904                 break;
2905         case KVM_SET_MEMORY_ALIAS:
2906                 r = -EFAULT;
2907                 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
2908                         goto out;
2909                 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
2910                 if (r)
2911                         goto out;
2912                 break;
2913         case KVM_CREATE_IRQCHIP: {
2914                 struct kvm_pic *vpic;
2915
2916                 mutex_lock(&kvm->lock);
2917                 r = -EEXIST;
2918                 if (kvm->arch.vpic)
2919                         goto create_irqchip_unlock;
2920                 r = -ENOMEM;
2921                 vpic = kvm_create_pic(kvm);
2922                 if (vpic) {
2923                         r = kvm_ioapic_init(kvm);
2924                         if (r) {
2925                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
2926                                                           &vpic->dev);
2927                                 kfree(vpic);
2928                                 goto create_irqchip_unlock;
2929                         }
2930                 } else
2931                         goto create_irqchip_unlock;
2932                 smp_wmb();
2933                 kvm->arch.vpic = vpic;
2934                 smp_wmb();
2935                 r = kvm_setup_default_irq_routing(kvm);
2936                 if (r) {
2937                         mutex_lock(&kvm->irq_lock);
2938                         kvm_ioapic_destroy(kvm);
2939                         kvm_destroy_pic(kvm);
2940                         mutex_unlock(&kvm->irq_lock);
2941                 }
2942         create_irqchip_unlock:
2943                 mutex_unlock(&kvm->lock);
2944                 break;
2945         }
2946         case KVM_CREATE_PIT:
2947                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
2948                 goto create_pit;
2949         case KVM_CREATE_PIT2:
2950                 r = -EFAULT;
2951                 if (copy_from_user(&u.pit_config, argp,
2952                                    sizeof(struct kvm_pit_config)))
2953                         goto out;
2954         create_pit:
2955                 mutex_lock(&kvm->slots_lock);
2956                 r = -EEXIST;
2957                 if (kvm->arch.vpit)
2958                         goto create_pit_unlock;
2959                 r = -ENOMEM;
2960                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
2961                 if (kvm->arch.vpit)
2962                         r = 0;
2963         create_pit_unlock:
2964                 mutex_unlock(&kvm->slots_lock);
2965                 break;
2966         case KVM_IRQ_LINE_STATUS:
2967         case KVM_IRQ_LINE: {
2968                 struct kvm_irq_level irq_event;
2969
2970                 r = -EFAULT;
2971                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2972                         goto out;
2973                 r = -ENXIO;
2974                 if (irqchip_in_kernel(kvm)) {
2975                         __s32 status;
2976                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2977                                         irq_event.irq, irq_event.level);
2978                         if (ioctl == KVM_IRQ_LINE_STATUS) {
2979                                 r = -EFAULT;
2980                                 irq_event.status = status;
2981                                 if (copy_to_user(argp, &irq_event,
2982                                                         sizeof irq_event))
2983                                         goto out;
2984                         }
2985                         r = 0;
2986                 }
2987                 break;
2988         }
2989         case KVM_GET_IRQCHIP: {
2990                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2991                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2992
2993                 r = -ENOMEM;
2994                 if (!chip)
2995                         goto out;
2996                 r = -EFAULT;
2997                 if (copy_from_user(chip, argp, sizeof *chip))
2998                         goto get_irqchip_out;
2999                 r = -ENXIO;
3000                 if (!irqchip_in_kernel(kvm))
3001                         goto get_irqchip_out;
3002                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3003                 if (r)
3004                         goto get_irqchip_out;
3005                 r = -EFAULT;
3006                 if (copy_to_user(argp, chip, sizeof *chip))
3007                         goto get_irqchip_out;
3008                 r = 0;
3009         get_irqchip_out:
3010                 kfree(chip);
3011                 if (r)
3012                         goto out;
3013                 break;
3014         }
3015         case KVM_SET_IRQCHIP: {
3016                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3017                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3018
3019                 r = -ENOMEM;
3020                 if (!chip)
3021                         goto out;
3022                 r = -EFAULT;
3023                 if (copy_from_user(chip, argp, sizeof *chip))
3024                         goto set_irqchip_out;
3025                 r = -ENXIO;
3026                 if (!irqchip_in_kernel(kvm))
3027                         goto set_irqchip_out;
3028                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3029                 if (r)
3030                         goto set_irqchip_out;
3031                 r = 0;
3032         set_irqchip_out:
3033                 kfree(chip);
3034                 if (r)
3035                         goto out;
3036                 break;
3037         }
3038         case KVM_GET_PIT: {
3039                 r = -EFAULT;
3040                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3041                         goto out;
3042                 r = -ENXIO;
3043                 if (!kvm->arch.vpit)
3044                         goto out;
3045                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3046                 if (r)
3047                         goto out;
3048                 r = -EFAULT;
3049                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3050                         goto out;
3051                 r = 0;
3052                 break;
3053         }
3054         case KVM_SET_PIT: {
3055                 r = -EFAULT;
3056                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3057                         goto out;
3058                 r = -ENXIO;
3059                 if (!kvm->arch.vpit)
3060                         goto out;
3061                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3062                 if (r)
3063                         goto out;
3064                 r = 0;
3065                 break;
3066         }
3067         case KVM_GET_PIT2: {
3068                 r = -ENXIO;
3069                 if (!kvm->arch.vpit)
3070                         goto out;
3071                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3072                 if (r)
3073                         goto out;
3074                 r = -EFAULT;
3075                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3076                         goto out;
3077                 r = 0;
3078                 break;
3079         }
3080         case KVM_SET_PIT2: {
3081                 r = -EFAULT;
3082                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3083                         goto out;
3084                 r = -ENXIO;
3085                 if (!kvm->arch.vpit)
3086                         goto out;
3087                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3088                 if (r)
3089                         goto out;
3090                 r = 0;
3091                 break;
3092         }
3093         case KVM_REINJECT_CONTROL: {
3094                 struct kvm_reinject_control control;
3095                 r =  -EFAULT;
3096                 if (copy_from_user(&control, argp, sizeof(control)))
3097                         goto out;
3098                 r = kvm_vm_ioctl_reinject(kvm, &control);
3099                 if (r)
3100                         goto out;
3101                 r = 0;
3102                 break;
3103         }
3104         case KVM_XEN_HVM_CONFIG: {
3105                 r = -EFAULT;
3106                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3107                                    sizeof(struct kvm_xen_hvm_config)))
3108                         goto out;
3109                 r = -EINVAL;
3110                 if (kvm->arch.xen_hvm_config.flags)
3111                         goto out;
3112                 r = 0;
3113                 break;
3114         }
3115         case KVM_SET_CLOCK: {
3116                 struct timespec now;
3117                 struct kvm_clock_data user_ns;
3118                 u64 now_ns;
3119                 s64 delta;
3120
3121                 r = -EFAULT;
3122                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3123                         goto out;
3124
3125                 r = -EINVAL;
3126                 if (user_ns.flags)
3127                         goto out;
3128
3129                 r = 0;
3130                 ktime_get_ts(&now);
3131                 now_ns = timespec_to_ns(&now);
3132                 delta = user_ns.clock - now_ns;
3133                 kvm->arch.kvmclock_offset = delta;
3134                 break;
3135         }
3136         case KVM_GET_CLOCK: {
3137                 struct timespec now;
3138                 struct kvm_clock_data user_ns;
3139                 u64 now_ns;
3140
3141                 ktime_get_ts(&now);
3142                 now_ns = timespec_to_ns(&now);
3143                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3144                 user_ns.flags = 0;
3145
3146                 r = -EFAULT;
3147                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3148                         goto out;
3149                 r = 0;
3150                 break;
3151         }
3152
3153         default:
3154                 ;
3155         }
3156 out:
3157         return r;
3158 }
3159
3160 static void kvm_init_msr_list(void)
3161 {
3162         u32 dummy[2];
3163         unsigned i, j;
3164
3165         /* skip the first msrs in the list. KVM-specific */
3166         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3167                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3168                         continue;
3169                 if (j < i)
3170                         msrs_to_save[j] = msrs_to_save[i];
3171                 j++;
3172         }
3173         num_msrs_to_save = j;
3174 }
3175
3176 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3177                            const void *v)
3178 {
3179         if (vcpu->arch.apic &&
3180             !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
3181                 return 0;
3182
3183         return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3184 }
3185
3186 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3187 {
3188         if (vcpu->arch.apic &&
3189             !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
3190                 return 0;
3191
3192         return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3193 }
3194
3195 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3196                         struct kvm_segment *var, int seg)
3197 {
3198         kvm_x86_ops->set_segment(vcpu, var, seg);
3199 }
3200
3201 void kvm_get_segment(struct kvm_vcpu *vcpu,
3202                      struct kvm_segment *var, int seg)
3203 {
3204         kvm_x86_ops->get_segment(vcpu, var, seg);
3205 }
3206
3207 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3208 {
3209         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3210         return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3211 }
3212
3213  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3214 {
3215         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3216         access |= PFERR_FETCH_MASK;
3217         return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3218 }
3219
3220 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3221 {
3222         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3223         access |= PFERR_WRITE_MASK;
3224         return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3225 }
3226
3227 /* uses this to access any guest's mapped memory without checking CPL */
3228 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3229 {
3230         return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, 0, error);
3231 }
3232
3233 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3234                                       struct kvm_vcpu *vcpu, u32 access,
3235                                       u32 *error)
3236 {
3237         void *data = val;
3238         int r = X86EMUL_CONTINUE;
3239
3240         while (bytes) {
3241                 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr, access, error);
3242                 unsigned offset = addr & (PAGE_SIZE-1);
3243                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3244                 int ret;
3245
3246                 if (gpa == UNMAPPED_GVA) {
3247                         r = X86EMUL_PROPAGATE_FAULT;
3248                         goto out;
3249                 }
3250                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3251                 if (ret < 0) {
3252                         r = X86EMUL_UNHANDLEABLE;
3253                         goto out;
3254                 }
3255
3256                 bytes -= toread;
3257                 data += toread;
3258                 addr += toread;
3259         }
3260 out:
3261         return r;
3262 }
3263
3264 /* used for instruction fetching */
3265 static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
3266                                 struct kvm_vcpu *vcpu, u32 *error)
3267 {
3268         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3269         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3270                                           access | PFERR_FETCH_MASK, error);
3271 }
3272
3273 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
3274                                struct kvm_vcpu *vcpu, u32 *error)
3275 {
3276         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3277         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3278                                           error);
3279 }
3280
3281 static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
3282                                struct kvm_vcpu *vcpu, u32 *error)
3283 {
3284         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, error);
3285 }
3286
3287 static int kvm_write_guest_virt_system(gva_t addr, void *val,
3288                                        unsigned int bytes,
3289                                        struct kvm_vcpu *vcpu,
3290                                        u32 *error)
3291 {
3292         void *data = val;
3293         int r = X86EMUL_CONTINUE;
3294
3295         while (bytes) {
3296                 gpa_t gpa =  vcpu->arch.mmu.gva_to_gpa(vcpu, addr,
3297                                                        PFERR_WRITE_MASK, error);
3298                 unsigned offset = addr & (PAGE_SIZE-1);
3299                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3300                 int ret;
3301
3302                 if (gpa == UNMAPPED_GVA) {
3303                         r = X86EMUL_PROPAGATE_FAULT;
3304                         goto out;
3305                 }
3306                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3307                 if (ret < 0) {
3308                         r = X86EMUL_UNHANDLEABLE;
3309                         goto out;
3310                 }
3311
3312                 bytes -= towrite;
3313                 data += towrite;
3314                 addr += towrite;
3315         }
3316 out:
3317         return r;
3318 }
3319
3320 static int emulator_read_emulated(unsigned long addr,
3321                                   void *val,
3322                                   unsigned int bytes,
3323                                   struct kvm_vcpu *vcpu)
3324 {
3325         gpa_t                 gpa;
3326         u32 error_code;
3327
3328         if (vcpu->mmio_read_completed) {
3329                 memcpy(val, vcpu->mmio_data, bytes);
3330                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3331                                vcpu->mmio_phys_addr, *(u64 *)val);
3332                 vcpu->mmio_read_completed = 0;
3333                 return X86EMUL_CONTINUE;
3334         }
3335
3336         gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, &error_code);
3337
3338         if (gpa == UNMAPPED_GVA) {
3339                 kvm_inject_page_fault(vcpu, addr, error_code);
3340                 return X86EMUL_PROPAGATE_FAULT;
3341         }
3342
3343         /* For APIC access vmexit */
3344         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3345                 goto mmio;
3346
3347         if (kvm_read_guest_virt(addr, val, bytes, vcpu, NULL)
3348                                 == X86EMUL_CONTINUE)
3349                 return X86EMUL_CONTINUE;
3350
3351 mmio:
3352         /*
3353          * Is this MMIO handled locally?
3354          */
3355         if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
3356                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
3357                 return X86EMUL_CONTINUE;
3358         }
3359
3360         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3361
3362         vcpu->mmio_needed = 1;
3363         vcpu->mmio_phys_addr = gpa;
3364         vcpu->mmio_size = bytes;
3365         vcpu->mmio_is_write = 0;
3366
3367         return X86EMUL_UNHANDLEABLE;
3368 }
3369
3370 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3371                           const void *val, int bytes)
3372 {
3373         int ret;
3374
3375         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3376         if (ret < 0)
3377                 return 0;
3378         kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
3379         return 1;
3380 }
3381
3382 static int emulator_write_emulated_onepage(unsigned long addr,
3383                                            const void *val,
3384                                            unsigned int bytes,
3385                                            struct kvm_vcpu *vcpu)
3386 {
3387         gpa_t                 gpa;
3388         u32 error_code;
3389
3390         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, &error_code);
3391
3392         if (gpa == UNMAPPED_GVA) {
3393                 kvm_inject_page_fault(vcpu, addr, error_code);
3394                 return X86EMUL_PROPAGATE_FAULT;
3395         }
3396
3397         /* For APIC access vmexit */
3398         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3399                 goto mmio;
3400
3401         if (emulator_write_phys(vcpu, gpa, val, bytes))
3402                 return X86EMUL_CONTINUE;
3403
3404 mmio:
3405         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3406         /*
3407          * Is this MMIO handled locally?
3408          */
3409         if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
3410                 return X86EMUL_CONTINUE;
3411
3412         vcpu->mmio_needed = 1;
3413         vcpu->mmio_phys_addr = gpa;
3414         vcpu->mmio_size = bytes;
3415         vcpu->mmio_is_write = 1;
3416         memcpy(vcpu->mmio_data, val, bytes);
3417
3418         return X86EMUL_CONTINUE;
3419 }
3420
3421 int emulator_write_emulated(unsigned long addr,
3422                             const void *val,
3423                             unsigned int bytes,
3424                             struct kvm_vcpu *vcpu)
3425 {
3426         /* Crossing a page boundary? */
3427         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3428                 int rc, now;
3429
3430                 now = -addr & ~PAGE_MASK;
3431                 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
3432                 if (rc != X86EMUL_CONTINUE)
3433                         return rc;
3434                 addr += now;
3435                 val += now;
3436                 bytes -= now;
3437         }
3438         return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
3439 }
3440 EXPORT_SYMBOL_GPL(emulator_write_emulated);
3441
3442 #define CMPXCHG_TYPE(t, ptr, old, new) \
3443         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3444
3445 #ifdef CONFIG_X86_64
3446 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3447 #else
3448 #  define CMPXCHG64(ptr, old, new) \
3449         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3450 #endif
3451
3452 static int emulator_cmpxchg_emulated(unsigned long addr,
3453                                      const void *old,
3454                                      const void *new,
3455                                      unsigned int bytes,
3456                                      struct kvm_vcpu *vcpu)
3457 {
3458         gpa_t gpa;
3459         struct page *page;
3460         char *kaddr;
3461         bool exchanged;
3462
3463         /* guests cmpxchg8b have to be emulated atomically */
3464         if (bytes > 8 || (bytes & (bytes - 1)))
3465                 goto emul_write;
3466
3467         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3468
3469         if (gpa == UNMAPPED_GVA ||
3470             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3471                 goto emul_write;
3472
3473         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3474                 goto emul_write;
3475
3476         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3477
3478         kaddr = kmap_atomic(page, KM_USER0);
3479         kaddr += offset_in_page(gpa);
3480         switch (bytes) {
3481         case 1:
3482                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3483                 break;
3484         case 2:
3485                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3486                 break;
3487         case 4:
3488                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3489                 break;
3490         case 8:
3491                 exchanged = CMPXCHG64(kaddr, old, new);
3492                 break;
3493         default:
3494                 BUG();
3495         }
3496         kunmap_atomic(kaddr, KM_USER0);
3497         kvm_release_page_dirty(page);
3498
3499         if (!exchanged)
3500                 return X86EMUL_CMPXCHG_FAILED;
3501
3502         kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
3503
3504         return X86EMUL_CONTINUE;
3505
3506 emul_write:
3507         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3508
3509         return emulator_write_emulated(addr, new, bytes, vcpu);
3510 }
3511
3512 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3513 {
3514         /* TODO: String I/O for in kernel device */
3515         int r;
3516
3517         if (vcpu->arch.pio.in)
3518                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3519                                     vcpu->arch.pio.size, pd);
3520         else
3521                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3522                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
3523                                      pd);
3524         return r;
3525 }
3526
3527
3528 static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
3529                              unsigned int count, struct kvm_vcpu *vcpu)
3530 {
3531         if (vcpu->arch.pio.count)
3532                 goto data_avail;
3533
3534         trace_kvm_pio(1, port, size, 1);
3535
3536         vcpu->arch.pio.port = port;
3537         vcpu->arch.pio.in = 1;
3538         vcpu->arch.pio.count  = count;
3539         vcpu->arch.pio.size = size;
3540
3541         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3542         data_avail:
3543                 memcpy(val, vcpu->arch.pio_data, size * count);
3544                 vcpu->arch.pio.count = 0;
3545                 return 1;
3546         }
3547
3548         vcpu->run->exit_reason = KVM_EXIT_IO;
3549         vcpu->run->io.direction = KVM_EXIT_IO_IN;
3550         vcpu->run->io.size = size;
3551         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3552         vcpu->run->io.count = count;
3553         vcpu->run->io.port = port;
3554
3555         return 0;
3556 }
3557
3558 static int emulator_pio_out_emulated(int size, unsigned short port,
3559                               const void *val, unsigned int count,
3560                               struct kvm_vcpu *vcpu)
3561 {
3562         trace_kvm_pio(0, port, size, 1);
3563
3564         vcpu->arch.pio.port = port;
3565         vcpu->arch.pio.in = 0;
3566         vcpu->arch.pio.count = count;
3567         vcpu->arch.pio.size = size;
3568
3569         memcpy(vcpu->arch.pio_data, val, size * count);
3570
3571         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3572                 vcpu->arch.pio.count = 0;
3573                 return 1;
3574         }
3575
3576         vcpu->run->exit_reason = KVM_EXIT_IO;
3577         vcpu->run->io.direction = KVM_EXIT_IO_OUT;
3578         vcpu->run->io.size = size;
3579         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3580         vcpu->run->io.count = count;
3581         vcpu->run->io.port = port;
3582
3583         return 0;
3584 }
3585
3586 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
3587 {
3588         return kvm_x86_ops->get_segment_base(vcpu, seg);
3589 }
3590
3591 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
3592 {
3593         kvm_mmu_invlpg(vcpu, address);
3594         return X86EMUL_CONTINUE;
3595 }
3596
3597 int emulate_clts(struct kvm_vcpu *vcpu)
3598 {
3599         kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
3600         kvm_x86_ops->fpu_activate(vcpu);
3601         return X86EMUL_CONTINUE;
3602 }
3603
3604 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
3605 {
3606         return kvm_get_dr(ctxt->vcpu, dr, dest);
3607 }
3608
3609 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
3610 {
3611         unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
3612
3613         return kvm_set_dr(ctxt->vcpu, dr, value & mask);
3614 }
3615
3616 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
3617 {
3618         u8 opcodes[4];
3619         unsigned long rip = kvm_rip_read(vcpu);
3620         unsigned long rip_linear;
3621
3622         if (!printk_ratelimit())
3623                 return;
3624
3625         rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
3626
3627         kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu, NULL);
3628
3629         printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
3630                context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
3631 }
3632 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
3633
3634 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
3635 {
3636         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
3637 }
3638
3639 static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
3640 {
3641         unsigned long value;
3642
3643         switch (cr) {
3644         case 0:
3645                 value = kvm_read_cr0(vcpu);
3646                 break;
3647         case 2:
3648                 value = vcpu->arch.cr2;
3649                 break;
3650         case 3:
3651                 value = vcpu->arch.cr3;
3652                 break;
3653         case 4:
3654                 value = kvm_read_cr4(vcpu);
3655                 break;
3656         case 8:
3657                 value = kvm_get_cr8(vcpu);
3658                 break;
3659         default:
3660                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3661                 return 0;
3662         }
3663
3664         return value;
3665 }
3666
3667 static void emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
3668 {
3669         switch (cr) {
3670         case 0:
3671                 kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
3672                 break;
3673         case 2:
3674                 vcpu->arch.cr2 = val;
3675                 break;
3676         case 3:
3677                 kvm_set_cr3(vcpu, val);
3678                 break;
3679         case 4:
3680                 kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
3681                 break;
3682         case 8:
3683                 kvm_set_cr8(vcpu, val & 0xfUL);
3684                 break;
3685         default:
3686                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3687         }
3688 }
3689
3690 static int emulator_get_cpl(struct kvm_vcpu *vcpu)
3691 {
3692         return kvm_x86_ops->get_cpl(vcpu);
3693 }
3694
3695 static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
3696 {
3697         kvm_x86_ops->get_gdt(vcpu, dt);
3698 }
3699
3700 static bool emulator_get_cached_descriptor(struct desc_struct *desc, int seg,
3701                                            struct kvm_vcpu *vcpu)
3702 {
3703         struct kvm_segment var;
3704
3705         kvm_get_segment(vcpu, &var, seg);
3706
3707         if (var.unusable)
3708                 return false;
3709
3710         if (var.g)
3711                 var.limit >>= 12;
3712         set_desc_limit(desc, var.limit);
3713         set_desc_base(desc, (unsigned long)var.base);
3714         desc->type = var.type;
3715         desc->s = var.s;
3716         desc->dpl = var.dpl;
3717         desc->p = var.present;
3718         desc->avl = var.avl;
3719         desc->l = var.l;
3720         desc->d = var.db;
3721         desc->g = var.g;
3722
3723         return true;
3724 }
3725
3726 static void emulator_set_cached_descriptor(struct desc_struct *desc, int seg,
3727                                            struct kvm_vcpu *vcpu)
3728 {
3729         struct kvm_segment var;
3730
3731         /* needed to preserve selector */
3732         kvm_get_segment(vcpu, &var, seg);
3733
3734         var.base = get_desc_base(desc);
3735         var.limit = get_desc_limit(desc);
3736         if (desc->g)
3737                 var.limit = (var.limit << 12) | 0xfff;
3738         var.type = desc->type;
3739         var.present = desc->p;
3740         var.dpl = desc->dpl;
3741         var.db = desc->d;
3742         var.s = desc->s;
3743         var.l = desc->l;
3744         var.g = desc->g;
3745         var.avl = desc->avl;
3746         var.present = desc->p;
3747         var.unusable = !var.present;
3748         var.padding = 0;
3749
3750         kvm_set_segment(vcpu, &var, seg);
3751         return;
3752 }
3753
3754 static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
3755 {
3756         struct kvm_segment kvm_seg;
3757
3758         kvm_get_segment(vcpu, &kvm_seg, seg);
3759         return kvm_seg.selector;
3760 }
3761
3762 static void emulator_set_segment_selector(u16 sel, int seg,
3763                                           struct kvm_vcpu *vcpu)
3764 {
3765         struct kvm_segment kvm_seg;
3766
3767         kvm_get_segment(vcpu, &kvm_seg, seg);
3768         kvm_seg.selector = sel;
3769         kvm_set_segment(vcpu, &kvm_seg, seg);
3770 }
3771
3772 static void emulator_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
3773 {
3774         kvm_x86_ops->set_rflags(vcpu, rflags);
3775 }
3776
3777 static struct x86_emulate_ops emulate_ops = {
3778         .read_std            = kvm_read_guest_virt_system,
3779         .write_std           = kvm_write_guest_virt_system,
3780         .fetch               = kvm_fetch_guest_virt,
3781         .read_emulated       = emulator_read_emulated,
3782         .write_emulated      = emulator_write_emulated,
3783         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
3784         .pio_in_emulated     = emulator_pio_in_emulated,
3785         .pio_out_emulated    = emulator_pio_out_emulated,
3786         .get_cached_descriptor = emulator_get_cached_descriptor,
3787         .set_cached_descriptor = emulator_set_cached_descriptor,
3788         .get_segment_selector = emulator_get_segment_selector,
3789         .set_segment_selector = emulator_set_segment_selector,
3790         .get_gdt             = emulator_get_gdt,
3791         .get_cr              = emulator_get_cr,
3792         .set_cr              = emulator_set_cr,
3793         .cpl                 = emulator_get_cpl,
3794         .set_rflags          = emulator_set_rflags,
3795 };
3796
3797 static void cache_all_regs(struct kvm_vcpu *vcpu)
3798 {
3799         kvm_register_read(vcpu, VCPU_REGS_RAX);
3800         kvm_register_read(vcpu, VCPU_REGS_RSP);
3801         kvm_register_read(vcpu, VCPU_REGS_RIP);
3802         vcpu->arch.regs_dirty = ~0;
3803 }
3804
3805 int emulate_instruction(struct kvm_vcpu *vcpu,
3806                         unsigned long cr2,
3807                         u16 error_code,
3808                         int emulation_type)
3809 {
3810         int r, shadow_mask;
3811         struct decode_cache *c;
3812         struct kvm_run *run = vcpu->run;
3813
3814         kvm_clear_exception_queue(vcpu);
3815         vcpu->arch.mmio_fault_cr2 = cr2;
3816         /*
3817          * TODO: fix emulate.c to use guest_read/write_register
3818          * instead of direct ->regs accesses, can save hundred cycles
3819          * on Intel for instructions that don't read/change RSP, for
3820          * for example.
3821          */
3822         cache_all_regs(vcpu);
3823
3824         vcpu->mmio_is_write = 0;
3825
3826         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
3827                 int cs_db, cs_l;
3828                 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
3829
3830                 vcpu->arch.emulate_ctxt.vcpu = vcpu;
3831                 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
3832                 vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
3833                 vcpu->arch.emulate_ctxt.mode =
3834                         (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
3835                         (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
3836                         ? X86EMUL_MODE_VM86 : cs_l
3837                         ? X86EMUL_MODE_PROT64 : cs_db
3838                         ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
3839
3840                 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
3841                 trace_kvm_emulate_insn_start(vcpu);
3842
3843                 /* Only allow emulation of specific instructions on #UD
3844                  * (namely VMMCALL, sysenter, sysexit, syscall)*/
3845                 c = &vcpu->arch.emulate_ctxt.decode;
3846                 if (emulation_type & EMULTYPE_TRAP_UD) {
3847                         if (!c->twobyte)
3848                                 return EMULATE_FAIL;
3849                         switch (c->b) {
3850                         case 0x01: /* VMMCALL */
3851                                 if (c->modrm_mod != 3 || c->modrm_rm != 1)
3852                                         return EMULATE_FAIL;
3853                                 break;
3854                         case 0x34: /* sysenter */
3855                         case 0x35: /* sysexit */
3856                                 if (c->modrm_mod != 0 || c->modrm_rm != 0)
3857                                         return EMULATE_FAIL;
3858                                 break;
3859                         case 0x05: /* syscall */
3860                                 if (c->modrm_mod != 0 || c->modrm_rm != 0)
3861                                         return EMULATE_FAIL;
3862                                 break;
3863                         default:
3864                                 return EMULATE_FAIL;
3865                         }
3866
3867                         if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
3868                                 return EMULATE_FAIL;
3869                 }
3870
3871                 ++vcpu->stat.insn_emulation;
3872                 if (r)  {
3873                         ++vcpu->stat.insn_emulation_fail;
3874                         trace_kvm_emulate_insn_failed(vcpu);
3875                         if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
3876                                 return EMULATE_DONE;
3877                         return EMULATE_FAIL;
3878                 }
3879         }
3880
3881         if (emulation_type & EMULTYPE_SKIP) {
3882                 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
3883                 return EMULATE_DONE;
3884         }
3885
3886 restart:
3887         r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
3888         shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
3889
3890         if (r == 0)
3891                 kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
3892
3893         if (vcpu->arch.pio.count) {
3894                 if (!vcpu->arch.pio.in)
3895                         vcpu->arch.pio.count = 0;
3896                 return EMULATE_DO_MMIO;
3897         }
3898
3899         if (r || vcpu->mmio_is_write) {
3900                 run->exit_reason = KVM_EXIT_MMIO;
3901                 run->mmio.phys_addr = vcpu->mmio_phys_addr;
3902                 memcpy(run->mmio.data, vcpu->mmio_data, 8);
3903                 run->mmio.len = vcpu->mmio_size;
3904                 run->mmio.is_write = vcpu->mmio_is_write;
3905         }
3906
3907         if (r) {
3908                 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
3909                         goto done;
3910                 if (!vcpu->mmio_needed) {
3911                         ++vcpu->stat.insn_emulation_fail;
3912                         trace_kvm_emulate_insn_failed(vcpu);
3913                         kvm_report_emulation_failure(vcpu, "mmio");
3914                         return EMULATE_FAIL;
3915                 }
3916                 return EMULATE_DO_MMIO;
3917         }
3918
3919         if (vcpu->mmio_is_write) {
3920                 vcpu->mmio_needed = 0;
3921                 return EMULATE_DO_MMIO;
3922         }
3923
3924 done:
3925         if (vcpu->arch.exception.pending)
3926                 vcpu->arch.emulate_ctxt.restart = false;
3927
3928         if (vcpu->arch.emulate_ctxt.restart)
3929                 goto restart;
3930
3931         return EMULATE_DONE;
3932 }
3933 EXPORT_SYMBOL_GPL(emulate_instruction);
3934
3935 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
3936 {
3937         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
3938         int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
3939         /* do not return to emulator after return from userspace */
3940         vcpu->arch.pio.count = 0;
3941         return ret;
3942 }
3943 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
3944
3945 static void bounce_off(void *info)
3946 {
3947         /* nothing */
3948 }
3949
3950 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
3951                                      void *data)
3952 {
3953         struct cpufreq_freqs *freq = data;
3954         struct kvm *kvm;
3955         struct kvm_vcpu *vcpu;
3956         int i, send_ipi = 0;
3957
3958         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
3959                 return 0;
3960         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
3961                 return 0;
3962         per_cpu(cpu_tsc_khz, freq->cpu) = freq->new;
3963
3964         spin_lock(&kvm_lock);
3965         list_for_each_entry(kvm, &vm_list, vm_list) {
3966                 kvm_for_each_vcpu(i, vcpu, kvm) {
3967                         if (vcpu->cpu != freq->cpu)
3968                                 continue;
3969                         if (!kvm_request_guest_time_update(vcpu))
3970                                 continue;
3971                         if (vcpu->cpu != smp_processor_id())
3972                                 send_ipi++;
3973                 }
3974         }
3975         spin_unlock(&kvm_lock);
3976
3977         if (freq->old < freq->new && send_ipi) {
3978                 /*
3979                  * We upscale the frequency.  Must make the guest
3980                  * doesn't see old kvmclock values while running with
3981                  * the new frequency, otherwise we risk the guest sees
3982                  * time go backwards.
3983                  *
3984                  * In case we update the frequency for another cpu
3985                  * (which might be in guest context) send an interrupt
3986                  * to kick the cpu out of guest context.  Next time
3987                  * guest context is entered kvmclock will be updated,
3988                  * so the guest will not see stale values.
3989                  */
3990                 smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
3991         }
3992         return 0;
3993 }
3994
3995 static struct notifier_block kvmclock_cpufreq_notifier_block = {
3996         .notifier_call  = kvmclock_cpufreq_notifier
3997 };
3998
3999 static void kvm_timer_init(void)
4000 {
4001         int cpu;
4002
4003         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4004                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4005                                           CPUFREQ_TRANSITION_NOTIFIER);
4006                 for_each_online_cpu(cpu) {
4007                         unsigned long khz = cpufreq_get(cpu);
4008                         if (!khz)
4009                                 khz = tsc_khz;
4010                         per_cpu(cpu_tsc_khz, cpu) = khz;
4011                 }
4012         } else {
4013                 for_each_possible_cpu(cpu)
4014                         per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
4015         }
4016 }
4017
4018 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4019
4020 static int kvm_is_in_guest(void)
4021 {
4022         return percpu_read(current_vcpu) != NULL;
4023 }
4024
4025 static int kvm_is_user_mode(void)
4026 {
4027         int user_mode = 3;
4028
4029         if (percpu_read(current_vcpu))
4030                 user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
4031
4032         return user_mode != 0;
4033 }
4034
4035 static unsigned long kvm_get_guest_ip(void)
4036 {
4037         unsigned long ip = 0;
4038
4039         if (percpu_read(current_vcpu))
4040                 ip = kvm_rip_read(percpu_read(current_vcpu));
4041
4042         return ip;
4043 }
4044
4045 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4046         .is_in_guest            = kvm_is_in_guest,
4047         .is_user_mode           = kvm_is_user_mode,
4048         .get_guest_ip           = kvm_get_guest_ip,
4049 };
4050
4051 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4052 {
4053         percpu_write(current_vcpu, vcpu);
4054 }
4055 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4056
4057 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4058 {
4059         percpu_write(current_vcpu, NULL);
4060 }
4061 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4062
4063 int kvm_arch_init(void *opaque)
4064 {
4065         int r;
4066         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4067
4068         if (kvm_x86_ops) {
4069                 printk(KERN_ERR "kvm: already loaded the other module\n");
4070                 r = -EEXIST;
4071                 goto out;
4072         }
4073
4074         if (!ops->cpu_has_kvm_support()) {
4075                 printk(KERN_ERR "kvm: no hardware support\n");
4076                 r = -EOPNOTSUPP;
4077                 goto out;
4078         }
4079         if (ops->disabled_by_bios()) {
4080                 printk(KERN_ERR "kvm: disabled by bios\n");
4081                 r = -EOPNOTSUPP;
4082                 goto out;
4083         }
4084
4085         r = kvm_mmu_module_init();
4086         if (r)
4087                 goto out;
4088
4089         kvm_init_msr_list();
4090
4091         kvm_x86_ops = ops;
4092         kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
4093         kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
4094         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4095                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
4096
4097         kvm_timer_init();
4098
4099         perf_register_guest_info_callbacks(&kvm_guest_cbs);
4100
4101         return 0;
4102
4103 out:
4104         return r;
4105 }
4106
4107 void kvm_arch_exit(void)
4108 {
4109         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4110
4111         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4112                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4113                                             CPUFREQ_TRANSITION_NOTIFIER);
4114         kvm_x86_ops = NULL;
4115         kvm_mmu_module_exit();
4116 }
4117
4118 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4119 {
4120         ++vcpu->stat.halt_exits;
4121         if (irqchip_in_kernel(vcpu->kvm)) {
4122                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4123                 return 1;
4124         } else {
4125                 vcpu->run->exit_reason = KVM_EXIT_HLT;
4126                 return 0;
4127         }
4128 }
4129 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4130
4131 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
4132                            unsigned long a1)
4133 {
4134         if (is_long_mode(vcpu))
4135                 return a0;
4136         else
4137                 return a0 | ((gpa_t)a1 << 32);
4138 }
4139
4140 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4141 {
4142         u64 param, ingpa, outgpa, ret;
4143         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4144         bool fast, longmode;
4145         int cs_db, cs_l;
4146
4147         /*
4148          * hypercall generates UD from non zero cpl and real mode
4149          * per HYPER-V spec
4150          */
4151         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4152                 kvm_queue_exception(vcpu, UD_VECTOR);
4153                 return 0;
4154         }
4155
4156         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4157         longmode = is_long_mode(vcpu) && cs_l == 1;
4158
4159         if (!longmode) {
4160                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4161                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4162                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4163                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4164                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4165                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4166         }
4167 #ifdef CONFIG_X86_64
4168         else {
4169                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4170                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4171                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4172         }
4173 #endif
4174
4175         code = param & 0xffff;
4176         fast = (param >> 16) & 0x1;
4177         rep_cnt = (param >> 32) & 0xfff;
4178         rep_idx = (param >> 48) & 0xfff;
4179
4180         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
4181
4182         switch (code) {
4183         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
4184                 kvm_vcpu_on_spin(vcpu);
4185                 break;
4186         default:
4187                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
4188                 break;
4189         }
4190
4191         ret = res | (((u64)rep_done & 0xfff) << 32);
4192         if (longmode) {
4193                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4194         } else {
4195                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
4196                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
4197         }
4198
4199         return 1;
4200 }
4201
4202 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
4203 {
4204         unsigned long nr, a0, a1, a2, a3, ret;
4205         int r = 1;
4206
4207         if (kvm_hv_hypercall_enabled(vcpu->kvm))
4208                 return kvm_hv_hypercall(vcpu);
4209
4210         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
4211         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
4212         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
4213         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
4214         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
4215
4216         trace_kvm_hypercall(nr, a0, a1, a2, a3);
4217
4218         if (!is_long_mode(vcpu)) {
4219                 nr &= 0xFFFFFFFF;
4220                 a0 &= 0xFFFFFFFF;
4221                 a1 &= 0xFFFFFFFF;
4222                 a2 &= 0xFFFFFFFF;
4223                 a3 &= 0xFFFFFFFF;
4224         }
4225
4226         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
4227                 ret = -KVM_EPERM;
4228                 goto out;
4229         }
4230
4231         switch (nr) {
4232         case KVM_HC_VAPIC_POLL_IRQ:
4233                 ret = 0;
4234                 break;
4235         case KVM_HC_MMU_OP:
4236                 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
4237                 break;
4238         default:
4239                 ret = -KVM_ENOSYS;
4240                 break;
4241         }
4242 out:
4243         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4244         ++vcpu->stat.hypercalls;
4245         return r;
4246 }
4247 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
4248
4249 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
4250 {
4251         char instruction[3];
4252         unsigned long rip = kvm_rip_read(vcpu);
4253
4254         /*
4255          * Blow out the MMU to ensure that no other VCPU has an active mapping
4256          * to ensure that the updated hypercall appears atomically across all
4257          * VCPUs.
4258          */
4259         kvm_mmu_zap_all(vcpu->kvm);
4260
4261         kvm_x86_ops->patch_hypercall(vcpu, instruction);
4262
4263         return emulator_write_emulated(rip, instruction, 3, vcpu);
4264 }
4265
4266 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4267 {
4268         struct desc_ptr dt = { limit, base };
4269
4270         kvm_x86_ops->set_gdt(vcpu, &dt);
4271 }
4272
4273 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4274 {
4275         struct desc_ptr dt = { limit, base };
4276
4277         kvm_x86_ops->set_idt(vcpu, &dt);
4278 }
4279
4280 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
4281 {
4282         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
4283         int j, nent = vcpu->arch.cpuid_nent;
4284
4285         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
4286         /* when no next entry is found, the current entry[i] is reselected */
4287         for (j = i + 1; ; j = (j + 1) % nent) {
4288                 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
4289                 if (ej->function == e->function) {
4290                         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
4291                         return j;
4292                 }
4293         }
4294         return 0; /* silence gcc, even though control never reaches here */
4295 }
4296
4297 /* find an entry with matching function, matching index (if needed), and that
4298  * should be read next (if it's stateful) */
4299 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
4300         u32 function, u32 index)
4301 {
4302         if (e->function != function)
4303                 return 0;
4304         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
4305                 return 0;
4306         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
4307             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
4308                 return 0;
4309         return 1;
4310 }
4311
4312 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
4313                                               u32 function, u32 index)
4314 {
4315         int i;
4316         struct kvm_cpuid_entry2 *best = NULL;
4317
4318         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
4319                 struct kvm_cpuid_entry2 *e;
4320
4321                 e = &vcpu->arch.cpuid_entries[i];
4322                 if (is_matching_cpuid_entry(e, function, index)) {
4323                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
4324                                 move_to_next_stateful_cpuid_entry(vcpu, i);
4325                         best = e;
4326                         break;
4327                 }
4328                 /*
4329                  * Both basic or both extended?
4330                  */
4331                 if (((e->function ^ function) & 0x80000000) == 0)
4332                         if (!best || e->function > best->function)
4333                                 best = e;
4334         }
4335         return best;
4336 }
4337 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
4338
4339 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
4340 {
4341         struct kvm_cpuid_entry2 *best;
4342
4343         best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
4344         if (!best || best->eax < 0x80000008)
4345                 goto not_found;
4346         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
4347         if (best)
4348                 return best->eax & 0xff;
4349 not_found:
4350         return 36;
4351 }
4352
4353 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
4354 {
4355         u32 function, index;
4356         struct kvm_cpuid_entry2 *best;
4357
4358         function = kvm_register_read(vcpu, VCPU_REGS_RAX);
4359         index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4360         kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
4361         kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
4362         kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
4363         kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
4364         best = kvm_find_cpuid_entry(vcpu, function, index);
4365         if (best) {
4366                 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
4367                 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
4368                 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
4369                 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
4370         }
4371         kvm_x86_ops->skip_emulated_instruction(vcpu);
4372         trace_kvm_cpuid(function,
4373                         kvm_register_read(vcpu, VCPU_REGS_RAX),
4374                         kvm_register_read(vcpu, VCPU_REGS_RBX),
4375                         kvm_register_read(vcpu, VCPU_REGS_RCX),
4376                         kvm_register_read(vcpu, VCPU_REGS_RDX));
4377 }
4378 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
4379
4380 /*
4381  * Check if userspace requested an interrupt window, and that the
4382  * interrupt window is open.
4383  *
4384  * No need to exit to userspace if we already have an interrupt queued.
4385  */
4386 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
4387 {
4388         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
4389                 vcpu->run->request_interrupt_window &&
4390                 kvm_arch_interrupt_allowed(vcpu));
4391 }
4392
4393 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
4394 {
4395         struct kvm_run *kvm_run = vcpu->run;
4396
4397         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
4398         kvm_run->cr8 = kvm_get_cr8(vcpu);
4399         kvm_run->apic_base = kvm_get_apic_base(vcpu);
4400         if (irqchip_in_kernel(vcpu->kvm))
4401                 kvm_run->ready_for_interrupt_injection = 1;
4402         else
4403                 kvm_run->ready_for_interrupt_injection =
4404                         kvm_arch_interrupt_allowed(vcpu) &&
4405                         !kvm_cpu_has_interrupt(vcpu) &&
4406                         !kvm_event_needs_reinjection(vcpu);
4407 }
4408
4409 static void vapic_enter(struct kvm_vcpu *vcpu)
4410 {
4411         struct kvm_lapic *apic = vcpu->arch.apic;
4412         struct page *page;
4413
4414         if (!apic || !apic->vapic_addr)
4415                 return;
4416
4417         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4418
4419         vcpu->arch.apic->vapic_page = page;
4420 }
4421
4422 static void vapic_exit(struct kvm_vcpu *vcpu)
4423 {
4424         struct kvm_lapic *apic = vcpu->arch.apic;
4425         int idx;
4426
4427         if (!apic || !apic->vapic_addr)
4428                 return;
4429
4430         idx = srcu_read_lock(&vcpu->kvm->srcu);
4431         kvm_release_page_dirty(apic->vapic_page);
4432         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4433         srcu_read_unlock(&vcpu->kvm->srcu, idx);
4434 }
4435
4436 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
4437 {
4438         int max_irr, tpr;
4439
4440         if (!kvm_x86_ops->update_cr8_intercept)
4441                 return;
4442
4443         if (!vcpu->arch.apic)
4444                 return;
4445
4446         if (!vcpu->arch.apic->vapic_addr)
4447                 max_irr = kvm_lapic_find_highest_irr(vcpu);
4448         else
4449                 max_irr = -1;
4450
4451         if (max_irr != -1)
4452                 max_irr >>= 4;
4453
4454         tpr = kvm_lapic_get_cr8(vcpu);
4455
4456         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
4457 }
4458
4459 static void inject_pending_event(struct kvm_vcpu *vcpu)
4460 {
4461         /* try to reinject previous events if any */
4462         if (vcpu->arch.exception.pending) {
4463                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
4464                                         vcpu->arch.exception.has_error_code,
4465                                         vcpu->arch.exception.error_code);
4466                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
4467                                           vcpu->arch.exception.has_error_code,
4468                                           vcpu->arch.exception.error_code,
4469                                           vcpu->arch.exception.reinject);
4470                 return;
4471         }
4472
4473         if (vcpu->arch.nmi_injected) {
4474                 kvm_x86_ops->set_nmi(vcpu);
4475                 return;
4476         }
4477
4478         if (vcpu->arch.interrupt.pending) {
4479                 kvm_x86_ops->set_irq(vcpu);
4480                 return;
4481         }
4482
4483         /* try to inject new event if pending */
4484         if (vcpu->arch.nmi_pending) {
4485                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
4486                         vcpu->arch.nmi_pending = false;
4487                         vcpu->arch.nmi_injected = true;
4488                         kvm_x86_ops->set_nmi(vcpu);
4489                 }
4490         } else if (kvm_cpu_has_interrupt(vcpu)) {
4491                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
4492                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
4493                                             false);
4494                         kvm_x86_ops->set_irq(vcpu);
4495                 }
4496         }
4497 }
4498
4499 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
4500 {
4501         int r;
4502         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
4503                 vcpu->run->request_interrupt_window;
4504
4505         if (vcpu->requests)
4506                 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
4507                         kvm_mmu_unload(vcpu);
4508
4509         r = kvm_mmu_reload(vcpu);
4510         if (unlikely(r))
4511                 goto out;
4512
4513         if (vcpu->requests) {
4514                 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
4515                         __kvm_migrate_timers(vcpu);
4516                 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
4517                         kvm_write_guest_time(vcpu);
4518                 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
4519                         kvm_mmu_sync_roots(vcpu);
4520                 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
4521                         kvm_x86_ops->tlb_flush(vcpu);
4522                 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
4523                                        &vcpu->requests)) {
4524                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
4525                         r = 0;
4526                         goto out;
4527                 }
4528                 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
4529                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4530                         r = 0;
4531                         goto out;
4532                 }
4533                 if (test_and_clear_bit(KVM_REQ_DEACTIVATE_FPU, &vcpu->requests)) {
4534                         vcpu->fpu_active = 0;
4535                         kvm_x86_ops->fpu_deactivate(vcpu);
4536                 }
4537         }
4538
4539         preempt_disable();
4540
4541         kvm_x86_ops->prepare_guest_switch(vcpu);
4542         if (vcpu->fpu_active)
4543                 kvm_load_guest_fpu(vcpu);
4544
4545         local_irq_disable();
4546
4547         clear_bit(KVM_REQ_KICK, &vcpu->requests);
4548         smp_mb__after_clear_bit();
4549
4550         if (vcpu->requests || need_resched() || signal_pending(current)) {
4551                 set_bit(KVM_REQ_KICK, &vcpu->requests);
4552                 local_irq_enable();
4553                 preempt_enable();
4554                 r = 1;
4555                 goto out;
4556         }
4557
4558         inject_pending_event(vcpu);
4559
4560         /* enable NMI/IRQ window open exits if needed */
4561         if (vcpu->arch.nmi_pending)
4562                 kvm_x86_ops->enable_nmi_window(vcpu);
4563         else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
4564                 kvm_x86_ops->enable_irq_window(vcpu);
4565
4566         if (kvm_lapic_enabled(vcpu)) {
4567                 update_cr8_intercept(vcpu);
4568                 kvm_lapic_sync_to_vapic(vcpu);
4569         }
4570
4571         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4572
4573         kvm_guest_enter();
4574
4575         if (unlikely(vcpu->arch.switch_db_regs)) {
4576                 set_debugreg(0, 7);
4577                 set_debugreg(vcpu->arch.eff_db[0], 0);
4578                 set_debugreg(vcpu->arch.eff_db[1], 1);
4579                 set_debugreg(vcpu->arch.eff_db[2], 2);
4580                 set_debugreg(vcpu->arch.eff_db[3], 3);
4581         }
4582
4583         trace_kvm_entry(vcpu->vcpu_id);
4584         kvm_x86_ops->run(vcpu);
4585
4586         /*
4587          * If the guest has used debug registers, at least dr7
4588          * will be disabled while returning to the host.
4589          * If we don't have active breakpoints in the host, we don't
4590          * care about the messed up debug address registers. But if
4591          * we have some of them active, restore the old state.
4592          */
4593         if (hw_breakpoint_active())
4594                 hw_breakpoint_restore();
4595
4596         set_bit(KVM_REQ_KICK, &vcpu->requests);
4597         local_irq_enable();
4598
4599         ++vcpu->stat.exits;
4600
4601         /*
4602          * We must have an instruction between local_irq_enable() and
4603          * kvm_guest_exit(), so the timer interrupt isn't delayed by
4604          * the interrupt shadow.  The stat.exits increment will do nicely.
4605          * But we need to prevent reordering, hence this barrier():
4606          */
4607         barrier();
4608
4609         kvm_guest_exit();
4610
4611         preempt_enable();
4612
4613         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4614
4615         /*
4616          * Profile KVM exit RIPs:
4617          */
4618         if (unlikely(prof_on == KVM_PROFILING)) {
4619                 unsigned long rip = kvm_rip_read(vcpu);
4620                 profile_hit(KVM_PROFILING, (void *)rip);
4621         }
4622
4623
4624         kvm_lapic_sync_from_vapic(vcpu);
4625
4626         r = kvm_x86_ops->handle_exit(vcpu);
4627 out:
4628         return r;
4629 }
4630
4631
4632 static int __vcpu_run(struct kvm_vcpu *vcpu)
4633 {
4634         int r;
4635         struct kvm *kvm = vcpu->kvm;
4636
4637         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
4638                 pr_debug("vcpu %d received sipi with vector # %x\n",
4639                          vcpu->vcpu_id, vcpu->arch.sipi_vector);
4640                 kvm_lapic_reset(vcpu);
4641                 r = kvm_arch_vcpu_reset(vcpu);
4642                 if (r)
4643                         return r;
4644                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4645         }
4646
4647         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4648         vapic_enter(vcpu);
4649
4650         r = 1;
4651         while (r > 0) {
4652                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
4653                         r = vcpu_enter_guest(vcpu);
4654                 else {
4655                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4656                         kvm_vcpu_block(vcpu);
4657                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4658                         if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
4659                         {
4660                                 switch(vcpu->arch.mp_state) {
4661                                 case KVM_MP_STATE_HALTED:
4662                                         vcpu->arch.mp_state =
4663                                                 KVM_MP_STATE_RUNNABLE;
4664                                 case KVM_MP_STATE_RUNNABLE:
4665                                         break;
4666                                 case KVM_MP_STATE_SIPI_RECEIVED:
4667                                 default:
4668                                         r = -EINTR;
4669                                         break;
4670                                 }
4671                         }
4672                 }
4673
4674                 if (r <= 0)
4675                         break;
4676
4677                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
4678                 if (kvm_cpu_has_pending_timer(vcpu))
4679                         kvm_inject_pending_timer_irqs(vcpu);
4680
4681                 if (dm_request_for_irq_injection(vcpu)) {
4682                         r = -EINTR;
4683                         vcpu->run->exit_reason = KVM_EXIT_INTR;
4684                         ++vcpu->stat.request_irq_exits;
4685                 }
4686                 if (signal_pending(current)) {
4687                         r = -EINTR;
4688                         vcpu->run->exit_reason = KVM_EXIT_INTR;
4689                         ++vcpu->stat.signal_exits;
4690                 }
4691                 if (need_resched()) {
4692                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4693                         kvm_resched(vcpu);
4694                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4695                 }
4696         }
4697
4698         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4699
4700         vapic_exit(vcpu);
4701
4702         return r;
4703 }
4704
4705 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
4706 {
4707         int r;
4708         sigset_t sigsaved;
4709
4710         vcpu_load(vcpu);
4711
4712         if (vcpu->sigset_active)
4713                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
4714
4715         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
4716                 kvm_vcpu_block(vcpu);
4717                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
4718                 r = -EAGAIN;
4719                 goto out;
4720         }
4721
4722         /* re-sync apic's tpr */
4723         if (!irqchip_in_kernel(vcpu->kvm))
4724                 kvm_set_cr8(vcpu, kvm_run->cr8);
4725
4726         if (vcpu->arch.pio.count || vcpu->mmio_needed ||
4727             vcpu->arch.emulate_ctxt.restart) {
4728                 if (vcpu->mmio_needed) {
4729                         memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
4730                         vcpu->mmio_read_completed = 1;
4731                         vcpu->mmio_needed = 0;
4732                 }
4733                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4734                 r = emulate_instruction(vcpu, 0, 0, EMULTYPE_NO_DECODE);
4735                 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4736                 if (r == EMULATE_DO_MMIO) {
4737                         r = 0;
4738                         goto out;
4739                 }
4740         }
4741         if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
4742                 kvm_register_write(vcpu, VCPU_REGS_RAX,
4743                                      kvm_run->hypercall.ret);
4744
4745         r = __vcpu_run(vcpu);
4746
4747 out:
4748         post_kvm_run_save(vcpu);
4749         if (vcpu->sigset_active)
4750                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
4751
4752         vcpu_put(vcpu);
4753         return r;
4754 }
4755
4756 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4757 {
4758         vcpu_load(vcpu);
4759
4760         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4761         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4762         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4763         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4764         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4765         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4766         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4767         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4768 #ifdef CONFIG_X86_64
4769         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
4770         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
4771         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
4772         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
4773         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
4774         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
4775         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
4776         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
4777 #endif
4778
4779         regs->rip = kvm_rip_read(vcpu);
4780         regs->rflags = kvm_get_rflags(vcpu);
4781
4782         vcpu_put(vcpu);
4783
4784         return 0;
4785 }
4786
4787 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4788 {
4789         vcpu_load(vcpu);
4790
4791         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
4792         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
4793         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
4794         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
4795         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
4796         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
4797         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
4798         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
4799 #ifdef CONFIG_X86_64
4800         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
4801         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
4802         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
4803         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
4804         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
4805         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
4806         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
4807         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
4808 #endif
4809
4810         kvm_rip_write(vcpu, regs->rip);
4811         kvm_set_rflags(vcpu, regs->rflags);
4812
4813         vcpu->arch.exception.pending = false;
4814
4815         vcpu_put(vcpu);
4816
4817         return 0;
4818 }
4819
4820 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4821 {
4822         struct kvm_segment cs;
4823
4824         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
4825         *db = cs.db;
4826         *l = cs.l;
4827 }
4828 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
4829
4830 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
4831                                   struct kvm_sregs *sregs)
4832 {
4833         struct desc_ptr dt;
4834
4835         vcpu_load(vcpu);
4836
4837         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4838         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4839         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4840         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4841         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4842         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4843
4844         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4845         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4846
4847         kvm_x86_ops->get_idt(vcpu, &dt);
4848         sregs->idt.limit = dt.size;
4849         sregs->idt.base = dt.address;
4850         kvm_x86_ops->get_gdt(vcpu, &dt);
4851         sregs->gdt.limit = dt.size;
4852         sregs->gdt.base = dt.address;
4853
4854         sregs->cr0 = kvm_read_cr0(vcpu);
4855         sregs->cr2 = vcpu->arch.cr2;
4856         sregs->cr3 = vcpu->arch.cr3;
4857         sregs->cr4 = kvm_read_cr4(vcpu);
4858         sregs->cr8 = kvm_get_cr8(vcpu);
4859         sregs->efer = vcpu->arch.efer;
4860         sregs->apic_base = kvm_get_apic_base(vcpu);
4861
4862         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
4863
4864         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
4865                 set_bit(vcpu->arch.interrupt.nr,
4866                         (unsigned long *)sregs->interrupt_bitmap);
4867
4868         vcpu_put(vcpu);
4869
4870         return 0;
4871 }
4872
4873 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
4874                                     struct kvm_mp_state *mp_state)
4875 {
4876         vcpu_load(vcpu);
4877         mp_state->mp_state = vcpu->arch.mp_state;
4878         vcpu_put(vcpu);
4879         return 0;
4880 }
4881
4882 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
4883                                     struct kvm_mp_state *mp_state)
4884 {
4885         vcpu_load(vcpu);
4886         vcpu->arch.mp_state = mp_state->mp_state;
4887         vcpu_put(vcpu);
4888         return 0;
4889 }
4890
4891 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
4892                     bool has_error_code, u32 error_code)
4893 {
4894         int cs_db, cs_l, ret;
4895         cache_all_regs(vcpu);
4896
4897         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4898
4899         vcpu->arch.emulate_ctxt.vcpu = vcpu;
4900         vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
4901         vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
4902         vcpu->arch.emulate_ctxt.mode =
4903                 (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4904                 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
4905                 ? X86EMUL_MODE_VM86 : cs_l
4906                 ? X86EMUL_MODE_PROT64 : cs_db
4907                 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
4908
4909         ret = emulator_task_switch(&vcpu->arch.emulate_ctxt, &emulate_ops,
4910                                    tss_selector, reason, has_error_code,
4911                                    error_code);
4912
4913         if (ret)
4914                 return EMULATE_FAIL;
4915
4916         kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4917         return EMULATE_DONE;
4918 }
4919 EXPORT_SYMBOL_GPL(kvm_task_switch);
4920
4921 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
4922                                   struct kvm_sregs *sregs)
4923 {
4924         int mmu_reset_needed = 0;
4925         int pending_vec, max_bits;
4926         struct desc_ptr dt;
4927
4928         vcpu_load(vcpu);
4929
4930         dt.size = sregs->idt.limit;
4931         dt.address = sregs->idt.base;
4932         kvm_x86_ops->set_idt(vcpu, &dt);
4933         dt.size = sregs->gdt.limit;
4934         dt.address = sregs->gdt.base;
4935         kvm_x86_ops->set_gdt(vcpu, &dt);
4936
4937         vcpu->arch.cr2 = sregs->cr2;
4938         mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
4939         vcpu->arch.cr3 = sregs->cr3;
4940
4941         kvm_set_cr8(vcpu, sregs->cr8);
4942
4943         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
4944         kvm_x86_ops->set_efer(vcpu, sregs->efer);
4945         kvm_set_apic_base(vcpu, sregs->apic_base);
4946
4947         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
4948         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
4949         vcpu->arch.cr0 = sregs->cr0;
4950
4951         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
4952         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
4953         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
4954                 load_pdptrs(vcpu, vcpu->arch.cr3);
4955                 mmu_reset_needed = 1;
4956         }
4957
4958         if (mmu_reset_needed)
4959                 kvm_mmu_reset_context(vcpu);
4960
4961         max_bits = (sizeof sregs->interrupt_bitmap) << 3;
4962         pending_vec = find_first_bit(
4963                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
4964         if (pending_vec < max_bits) {
4965                 kvm_queue_interrupt(vcpu, pending_vec, false);
4966                 pr_debug("Set back pending irq %d\n", pending_vec);
4967                 if (irqchip_in_kernel(vcpu->kvm))
4968                         kvm_pic_clear_isr_ack(vcpu->kvm);
4969         }
4970
4971         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4972         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4973         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4974         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4975         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4976         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4977
4978         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4979         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4980
4981         update_cr8_intercept(vcpu);
4982
4983         /* Older userspace won't unhalt the vcpu on reset. */
4984         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
4985             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
4986             !is_protmode(vcpu))
4987                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4988
4989         vcpu_put(vcpu);
4990
4991         return 0;
4992 }
4993
4994 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
4995                                         struct kvm_guest_debug *dbg)
4996 {
4997         unsigned long rflags;
4998         int i, r;
4999
5000         vcpu_load(vcpu);
5001
5002         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5003                 r = -EBUSY;
5004                 if (vcpu->arch.exception.pending)
5005                         goto unlock_out;
5006                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5007                         kvm_queue_exception(vcpu, DB_VECTOR);
5008                 else
5009                         kvm_queue_exception(vcpu, BP_VECTOR);
5010         }
5011
5012         /*
5013          * Read rflags as long as potentially injected trace flags are still
5014          * filtered out.
5015          */
5016         rflags = kvm_get_rflags(vcpu);
5017
5018         vcpu->guest_debug = dbg->control;
5019         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5020                 vcpu->guest_debug = 0;
5021
5022         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5023                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5024                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5025                 vcpu->arch.switch_db_regs =
5026                         (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5027         } else {
5028                 for (i = 0; i < KVM_NR_DB_REGS; i++)
5029                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5030                 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5031         }
5032
5033         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5034                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5035                         get_segment_base(vcpu, VCPU_SREG_CS);
5036
5037         /*
5038          * Trigger an rflags update that will inject or remove the trace
5039          * flags.
5040          */
5041         kvm_set_rflags(vcpu, rflags);
5042
5043         kvm_x86_ops->set_guest_debug(vcpu, dbg);
5044
5045         r = 0;
5046
5047 unlock_out:
5048         vcpu_put(vcpu);
5049
5050         return r;
5051 }
5052
5053 /*
5054  * fxsave fpu state.  Taken from x86_64/processor.h.  To be killed when
5055  * we have asm/x86/processor.h
5056  */
5057 struct fxsave {
5058         u16     cwd;
5059         u16     swd;
5060         u16     twd;
5061         u16     fop;
5062         u64     rip;
5063         u64     rdp;
5064         u32     mxcsr;
5065         u32     mxcsr_mask;
5066         u32     st_space[32];   /* 8*16 bytes for each FP-reg = 128 bytes */
5067 #ifdef CONFIG_X86_64
5068         u32     xmm_space[64];  /* 16*16 bytes for each XMM-reg = 256 bytes */
5069 #else
5070         u32     xmm_space[32];  /* 8*16 bytes for each XMM-reg = 128 bytes */
5071 #endif
5072 };
5073
5074 /*
5075  * Translate a guest virtual address to a guest physical address.
5076  */
5077 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5078                                     struct kvm_translation *tr)
5079 {
5080         unsigned long vaddr = tr->linear_address;
5081         gpa_t gpa;
5082         int idx;
5083
5084         vcpu_load(vcpu);
5085         idx = srcu_read_lock(&vcpu->kvm->srcu);
5086         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5087         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5088         tr->physical_address = gpa;
5089         tr->valid = gpa != UNMAPPED_GVA;
5090         tr->writeable = 1;
5091         tr->usermode = 0;
5092         vcpu_put(vcpu);
5093
5094         return 0;
5095 }
5096
5097 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5098 {
5099         struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
5100
5101         vcpu_load(vcpu);
5102
5103         memcpy(fpu->fpr, fxsave->st_space, 128);
5104         fpu->fcw = fxsave->cwd;
5105         fpu->fsw = fxsave->swd;
5106         fpu->ftwx = fxsave->twd;
5107         fpu->last_opcode = fxsave->fop;
5108         fpu->last_ip = fxsave->rip;
5109         fpu->last_dp = fxsave->rdp;
5110         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5111
5112         vcpu_put(vcpu);
5113
5114         return 0;
5115 }
5116
5117 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5118 {
5119         struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
5120
5121         vcpu_load(vcpu);
5122
5123         memcpy(fxsave->st_space, fpu->fpr, 128);
5124         fxsave->cwd = fpu->fcw;
5125         fxsave->swd = fpu->fsw;
5126         fxsave->twd = fpu->ftwx;
5127         fxsave->fop = fpu->last_opcode;
5128         fxsave->rip = fpu->last_ip;
5129         fxsave->rdp = fpu->last_dp;
5130         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5131
5132         vcpu_put(vcpu);
5133
5134         return 0;
5135 }
5136
5137 void fx_init(struct kvm_vcpu *vcpu)
5138 {
5139         unsigned after_mxcsr_mask;
5140
5141         /*
5142          * Touch the fpu the first time in non atomic context as if
5143          * this is the first fpu instruction the exception handler
5144          * will fire before the instruction returns and it'll have to
5145          * allocate ram with GFP_KERNEL.
5146          */
5147         if (!used_math())
5148                 kvm_fx_save(&vcpu->arch.host_fx_image);
5149
5150         /* Initialize guest FPU by resetting ours and saving into guest's */
5151         preempt_disable();
5152         kvm_fx_save(&vcpu->arch.host_fx_image);
5153         kvm_fx_finit();
5154         kvm_fx_save(&vcpu->arch.guest_fx_image);
5155         kvm_fx_restore(&vcpu->arch.host_fx_image);
5156         preempt_enable();
5157
5158         vcpu->arch.cr0 |= X86_CR0_ET;
5159         after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
5160         vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
5161         memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
5162                0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
5163 }
5164 EXPORT_SYMBOL_GPL(fx_init);
5165
5166 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5167 {
5168         if (vcpu->guest_fpu_loaded)
5169                 return;
5170
5171         vcpu->guest_fpu_loaded = 1;
5172         kvm_fx_save(&vcpu->arch.host_fx_image);
5173         kvm_fx_restore(&vcpu->arch.guest_fx_image);
5174         trace_kvm_fpu(1);
5175 }
5176
5177 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5178 {
5179         if (!vcpu->guest_fpu_loaded)
5180                 return;
5181
5182         vcpu->guest_fpu_loaded = 0;
5183         kvm_fx_save(&vcpu->arch.guest_fx_image);
5184         kvm_fx_restore(&vcpu->arch.host_fx_image);
5185         ++vcpu->stat.fpu_reload;
5186         set_bit(KVM_REQ_DEACTIVATE_FPU, &vcpu->requests);
5187         trace_kvm_fpu(0);
5188 }
5189
5190 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5191 {
5192         if (vcpu->arch.time_page) {
5193                 kvm_release_page_dirty(vcpu->arch.time_page);
5194                 vcpu->arch.time_page = NULL;
5195         }
5196
5197         kvm_x86_ops->vcpu_free(vcpu);
5198 }
5199
5200 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5201                                                 unsigned int id)
5202 {
5203         return kvm_x86_ops->vcpu_create(kvm, id);
5204 }
5205
5206 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5207 {
5208         int r;
5209
5210         /* We do fxsave: this must be aligned. */
5211         BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
5212
5213         vcpu->arch.mtrr_state.have_fixed = 1;
5214         vcpu_load(vcpu);
5215         r = kvm_arch_vcpu_reset(vcpu);
5216         if (r == 0)
5217                 r = kvm_mmu_setup(vcpu);
5218         vcpu_put(vcpu);
5219         if (r < 0)
5220                 goto free_vcpu;
5221
5222         return 0;
5223 free_vcpu:
5224         kvm_x86_ops->vcpu_free(vcpu);
5225         return r;
5226 }
5227
5228 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5229 {
5230         vcpu_load(vcpu);
5231         kvm_mmu_unload(vcpu);
5232         vcpu_put(vcpu);
5233
5234         kvm_x86_ops->vcpu_free(vcpu);
5235 }
5236
5237 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5238 {
5239         vcpu->arch.nmi_pending = false;
5240         vcpu->arch.nmi_injected = false;
5241
5242         vcpu->arch.switch_db_regs = 0;
5243         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5244         vcpu->arch.dr6 = DR6_FIXED_1;
5245         vcpu->arch.dr7 = DR7_FIXED_1;
5246
5247         return kvm_x86_ops->vcpu_reset(vcpu);
5248 }
5249
5250 int kvm_arch_hardware_enable(void *garbage)
5251 {
5252         /*
5253          * Since this may be called from a hotplug notifcation,
5254          * we can't get the CPU frequency directly.
5255          */
5256         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5257                 int cpu = raw_smp_processor_id();
5258                 per_cpu(cpu_tsc_khz, cpu) = 0;
5259         }
5260
5261         kvm_shared_msr_cpu_online();
5262
5263         return kvm_x86_ops->hardware_enable(garbage);
5264 }
5265
5266 void kvm_arch_hardware_disable(void *garbage)
5267 {
5268         kvm_x86_ops->hardware_disable(garbage);
5269         drop_user_return_notifiers(garbage);
5270 }
5271
5272 int kvm_arch_hardware_setup(void)
5273 {
5274         return kvm_x86_ops->hardware_setup();
5275 }
5276
5277 void kvm_arch_hardware_unsetup(void)
5278 {
5279         kvm_x86_ops->hardware_unsetup();
5280 }
5281
5282 void kvm_arch_check_processor_compat(void *rtn)
5283 {
5284         kvm_x86_ops->check_processor_compatibility(rtn);
5285 }
5286
5287 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
5288 {
5289         struct page *page;
5290         struct kvm *kvm;
5291         int r;
5292
5293         BUG_ON(vcpu->kvm == NULL);
5294         kvm = vcpu->kvm;
5295
5296         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5297         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
5298                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5299         else
5300                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
5301
5302         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
5303         if (!page) {
5304                 r = -ENOMEM;
5305                 goto fail;
5306         }
5307         vcpu->arch.pio_data = page_address(page);
5308
5309         r = kvm_mmu_create(vcpu);
5310         if (r < 0)
5311                 goto fail_free_pio_data;
5312
5313         if (irqchip_in_kernel(kvm)) {
5314                 r = kvm_create_lapic(vcpu);
5315                 if (r < 0)
5316                         goto fail_mmu_destroy;
5317         }
5318
5319         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
5320                                        GFP_KERNEL);
5321         if (!vcpu->arch.mce_banks) {
5322                 r = -ENOMEM;
5323                 goto fail_free_lapic;
5324         }
5325         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
5326
5327         return 0;
5328 fail_free_lapic:
5329         kvm_free_lapic(vcpu);
5330 fail_mmu_destroy:
5331         kvm_mmu_destroy(vcpu);
5332 fail_free_pio_data:
5333         free_page((unsigned long)vcpu->arch.pio_data);
5334 fail:
5335         return r;
5336 }
5337
5338 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
5339 {
5340         int idx;
5341
5342         kfree(vcpu->arch.mce_banks);
5343         kvm_free_lapic(vcpu);
5344         idx = srcu_read_lock(&vcpu->kvm->srcu);
5345         kvm_mmu_destroy(vcpu);
5346         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5347         free_page((unsigned long)vcpu->arch.pio_data);
5348 }
5349
5350 struct  kvm *kvm_arch_create_vm(void)
5351 {
5352         struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
5353
5354         if (!kvm)
5355                 return ERR_PTR(-ENOMEM);
5356
5357         kvm->arch.aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
5358         if (!kvm->arch.aliases) {
5359                 kfree(kvm);
5360                 return ERR_PTR(-ENOMEM);
5361         }
5362
5363         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
5364         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
5365
5366         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
5367         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
5368
5369         rdtscll(kvm->arch.vm_init_tsc);
5370
5371         return kvm;
5372 }
5373
5374 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
5375 {
5376         vcpu_load(vcpu);
5377         kvm_mmu_unload(vcpu);
5378         vcpu_put(vcpu);
5379 }
5380
5381 static void kvm_free_vcpus(struct kvm *kvm)
5382 {
5383         unsigned int i;
5384         struct kvm_vcpu *vcpu;
5385
5386         /*
5387          * Unpin any mmu pages first.
5388          */
5389         kvm_for_each_vcpu(i, vcpu, kvm)
5390                 kvm_unload_vcpu_mmu(vcpu);
5391         kvm_for_each_vcpu(i, vcpu, kvm)
5392                 kvm_arch_vcpu_free(vcpu);
5393
5394         mutex_lock(&kvm->lock);
5395         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
5396                 kvm->vcpus[i] = NULL;
5397
5398         atomic_set(&kvm->online_vcpus, 0);
5399         mutex_unlock(&kvm->lock);
5400 }
5401
5402 void kvm_arch_sync_events(struct kvm *kvm)
5403 {
5404         kvm_free_all_assigned_devices(kvm);
5405 }
5406
5407 void kvm_arch_destroy_vm(struct kvm *kvm)
5408 {
5409         kvm_iommu_unmap_guest(kvm);
5410         kvm_free_pit(kvm);
5411         kfree(kvm->arch.vpic);
5412         kfree(kvm->arch.vioapic);
5413         kvm_free_vcpus(kvm);
5414         kvm_free_physmem(kvm);
5415         if (kvm->arch.apic_access_page)
5416                 put_page(kvm->arch.apic_access_page);
5417         if (kvm->arch.ept_identity_pagetable)
5418                 put_page(kvm->arch.ept_identity_pagetable);
5419         cleanup_srcu_struct(&kvm->srcu);
5420         kfree(kvm->arch.aliases);
5421         kfree(kvm);
5422 }
5423
5424 int kvm_arch_prepare_memory_region(struct kvm *kvm,
5425                                 struct kvm_memory_slot *memslot,
5426                                 struct kvm_memory_slot old,
5427                                 struct kvm_userspace_memory_region *mem,
5428                                 int user_alloc)
5429 {
5430         int npages = memslot->npages;
5431
5432         /*To keep backward compatibility with older userspace,
5433          *x86 needs to hanlde !user_alloc case.
5434          */
5435         if (!user_alloc) {
5436                 if (npages && !old.rmap) {
5437                         unsigned long userspace_addr;
5438
5439                         down_write(&current->mm->mmap_sem);
5440                         userspace_addr = do_mmap(NULL, 0,
5441                                                  npages * PAGE_SIZE,
5442                                                  PROT_READ | PROT_WRITE,
5443                                                  MAP_PRIVATE | MAP_ANONYMOUS,
5444                                                  0);
5445                         up_write(&current->mm->mmap_sem);
5446
5447                         if (IS_ERR((void *)userspace_addr))
5448                                 return PTR_ERR((void *)userspace_addr);
5449
5450                         memslot->userspace_addr = userspace_addr;
5451                 }
5452         }
5453
5454
5455         return 0;
5456 }
5457
5458 void kvm_arch_commit_memory_region(struct kvm *kvm,
5459                                 struct kvm_userspace_memory_region *mem,
5460                                 struct kvm_memory_slot old,
5461                                 int user_alloc)
5462 {
5463
5464         int npages = mem->memory_size >> PAGE_SHIFT;
5465
5466         if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
5467                 int ret;
5468
5469                 down_write(&current->mm->mmap_sem);
5470                 ret = do_munmap(current->mm, old.userspace_addr,
5471                                 old.npages * PAGE_SIZE);
5472                 up_write(&current->mm->mmap_sem);
5473                 if (ret < 0)
5474                         printk(KERN_WARNING
5475                                "kvm_vm_ioctl_set_memory_region: "
5476                                "failed to munmap memory\n");
5477         }
5478
5479         spin_lock(&kvm->mmu_lock);
5480         if (!kvm->arch.n_requested_mmu_pages) {
5481                 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
5482                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
5483         }
5484
5485         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
5486         spin_unlock(&kvm->mmu_lock);
5487 }
5488
5489 void kvm_arch_flush_shadow(struct kvm *kvm)
5490 {
5491         kvm_mmu_zap_all(kvm);
5492         kvm_reload_remote_mmus(kvm);
5493 }
5494
5495 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
5496 {
5497         return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
5498                 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
5499                 || vcpu->arch.nmi_pending ||
5500                 (kvm_arch_interrupt_allowed(vcpu) &&
5501                  kvm_cpu_has_interrupt(vcpu));
5502 }
5503
5504 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
5505 {
5506         int me;
5507         int cpu = vcpu->cpu;
5508
5509         if (waitqueue_active(&vcpu->wq)) {
5510                 wake_up_interruptible(&vcpu->wq);
5511                 ++vcpu->stat.halt_wakeup;
5512         }
5513
5514         me = get_cpu();
5515         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
5516                 if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
5517                         smp_send_reschedule(cpu);
5518         put_cpu();
5519 }
5520
5521 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
5522 {
5523         return kvm_x86_ops->interrupt_allowed(vcpu);
5524 }
5525
5526 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
5527 {
5528         unsigned long current_rip = kvm_rip_read(vcpu) +
5529                 get_segment_base(vcpu, VCPU_SREG_CS);
5530
5531         return current_rip == linear_rip;
5532 }
5533 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
5534
5535 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
5536 {
5537         unsigned long rflags;
5538
5539         rflags = kvm_x86_ops->get_rflags(vcpu);
5540         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5541                 rflags &= ~X86_EFLAGS_TF;
5542         return rflags;
5543 }
5544 EXPORT_SYMBOL_GPL(kvm_get_rflags);
5545
5546 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
5547 {
5548         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
5549             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
5550                 rflags |= X86_EFLAGS_TF;
5551         kvm_x86_ops->set_rflags(vcpu, rflags);
5552 }
5553 EXPORT_SYMBOL_GPL(kvm_set_rflags);
5554
5555 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
5556 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
5557 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
5558 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
5559 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
5560 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
5561 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
5562 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
5563 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
5564 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
5565 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
5566 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);