KVM: Move performance counter MSR access interception to generic x86 path
[safe/jmp/linux-2.6] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "irq.h"
19 #include "mmu.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/mm.h>
25 #include <linux/highmem.h>
26 #include <linux/sched.h>
27 #include <linux/moduleparam.h>
28 #include "kvm_cache_regs.h"
29 #include "x86.h"
30
31 #include <asm/io.h>
32 #include <asm/desc.h>
33 #include <asm/vmx.h>
34 #include <asm/virtext.h>
35 #include <asm/mce.h>
36
37 #define __ex(x) __kvm_handle_fault_on_reboot(x)
38
39 MODULE_AUTHOR("Qumranet");
40 MODULE_LICENSE("GPL");
41
42 static int __read_mostly bypass_guest_pf = 1;
43 module_param(bypass_guest_pf, bool, S_IRUGO);
44
45 static int __read_mostly enable_vpid = 1;
46 module_param_named(vpid, enable_vpid, bool, 0444);
47
48 static int __read_mostly flexpriority_enabled = 1;
49 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
50
51 static int __read_mostly enable_ept = 1;
52 module_param_named(ept, enable_ept, bool, S_IRUGO);
53
54 static int __read_mostly enable_unrestricted_guest = 1;
55 module_param_named(unrestricted_guest,
56                         enable_unrestricted_guest, bool, S_IRUGO);
57
58 static int __read_mostly emulate_invalid_guest_state = 0;
59 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
60
61 struct vmcs {
62         u32 revision_id;
63         u32 abort;
64         char data[0];
65 };
66
67 struct vcpu_vmx {
68         struct kvm_vcpu       vcpu;
69         struct list_head      local_vcpus_link;
70         unsigned long         host_rsp;
71         int                   launched;
72         u8                    fail;
73         u32                   idt_vectoring_info;
74         struct kvm_msr_entry *guest_msrs;
75         struct kvm_msr_entry *host_msrs;
76         int                   nmsrs;
77         int                   save_nmsrs;
78         int                   msr_offset_efer;
79 #ifdef CONFIG_X86_64
80         int                   msr_offset_kernel_gs_base;
81 #endif
82         struct vmcs          *vmcs;
83         struct {
84                 int           loaded;
85                 u16           fs_sel, gs_sel, ldt_sel;
86                 int           gs_ldt_reload_needed;
87                 int           fs_reload_needed;
88                 int           guest_efer_loaded;
89         } host_state;
90         struct {
91                 int vm86_active;
92                 u8 save_iopl;
93                 struct kvm_save_segment {
94                         u16 selector;
95                         unsigned long base;
96                         u32 limit;
97                         u32 ar;
98                 } tr, es, ds, fs, gs;
99                 struct {
100                         bool pending;
101                         u8 vector;
102                         unsigned rip;
103                 } irq;
104         } rmode;
105         int vpid;
106         bool emulation_required;
107         enum emulation_result invalid_state_emulation_result;
108
109         /* Support for vnmi-less CPUs */
110         int soft_vnmi_blocked;
111         ktime_t entry_time;
112         s64 vnmi_blocked_time;
113         u32 exit_reason;
114 };
115
116 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
117 {
118         return container_of(vcpu, struct vcpu_vmx, vcpu);
119 }
120
121 static int init_rmode(struct kvm *kvm);
122 static u64 construct_eptp(unsigned long root_hpa);
123
124 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
125 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
126 static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
127
128 static unsigned long *vmx_io_bitmap_a;
129 static unsigned long *vmx_io_bitmap_b;
130 static unsigned long *vmx_msr_bitmap_legacy;
131 static unsigned long *vmx_msr_bitmap_longmode;
132
133 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
134 static DEFINE_SPINLOCK(vmx_vpid_lock);
135
136 static struct vmcs_config {
137         int size;
138         int order;
139         u32 revision_id;
140         u32 pin_based_exec_ctrl;
141         u32 cpu_based_exec_ctrl;
142         u32 cpu_based_2nd_exec_ctrl;
143         u32 vmexit_ctrl;
144         u32 vmentry_ctrl;
145 } vmcs_config;
146
147 static struct vmx_capability {
148         u32 ept;
149         u32 vpid;
150 } vmx_capability;
151
152 #define VMX_SEGMENT_FIELD(seg)                                  \
153         [VCPU_SREG_##seg] = {                                   \
154                 .selector = GUEST_##seg##_SELECTOR,             \
155                 .base = GUEST_##seg##_BASE,                     \
156                 .limit = GUEST_##seg##_LIMIT,                   \
157                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
158         }
159
160 static struct kvm_vmx_segment_field {
161         unsigned selector;
162         unsigned base;
163         unsigned limit;
164         unsigned ar_bytes;
165 } kvm_vmx_segment_fields[] = {
166         VMX_SEGMENT_FIELD(CS),
167         VMX_SEGMENT_FIELD(DS),
168         VMX_SEGMENT_FIELD(ES),
169         VMX_SEGMENT_FIELD(FS),
170         VMX_SEGMENT_FIELD(GS),
171         VMX_SEGMENT_FIELD(SS),
172         VMX_SEGMENT_FIELD(TR),
173         VMX_SEGMENT_FIELD(LDTR),
174 };
175
176 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
177
178 /*
179  * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
180  * away by decrementing the array size.
181  */
182 static const u32 vmx_msr_index[] = {
183 #ifdef CONFIG_X86_64
184         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
185 #endif
186         MSR_EFER, MSR_K6_STAR,
187 };
188 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
189
190 static void load_msrs(struct kvm_msr_entry *e, int n)
191 {
192         int i;
193
194         for (i = 0; i < n; ++i)
195                 wrmsrl(e[i].index, e[i].data);
196 }
197
198 static void save_msrs(struct kvm_msr_entry *e, int n)
199 {
200         int i;
201
202         for (i = 0; i < n; ++i)
203                 rdmsrl(e[i].index, e[i].data);
204 }
205
206 static inline int is_page_fault(u32 intr_info)
207 {
208         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
209                              INTR_INFO_VALID_MASK)) ==
210                 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
211 }
212
213 static inline int is_no_device(u32 intr_info)
214 {
215         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
216                              INTR_INFO_VALID_MASK)) ==
217                 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
218 }
219
220 static inline int is_invalid_opcode(u32 intr_info)
221 {
222         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
223                              INTR_INFO_VALID_MASK)) ==
224                 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
225 }
226
227 static inline int is_external_interrupt(u32 intr_info)
228 {
229         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
230                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
231 }
232
233 static inline int is_machine_check(u32 intr_info)
234 {
235         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
236                              INTR_INFO_VALID_MASK)) ==
237                 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
238 }
239
240 static inline int cpu_has_vmx_msr_bitmap(void)
241 {
242         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
243 }
244
245 static inline int cpu_has_vmx_tpr_shadow(void)
246 {
247         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
248 }
249
250 static inline int vm_need_tpr_shadow(struct kvm *kvm)
251 {
252         return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
253 }
254
255 static inline int cpu_has_secondary_exec_ctrls(void)
256 {
257         return vmcs_config.cpu_based_exec_ctrl &
258                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
259 }
260
261 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
262 {
263         return vmcs_config.cpu_based_2nd_exec_ctrl &
264                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
265 }
266
267 static inline bool cpu_has_vmx_flexpriority(void)
268 {
269         return cpu_has_vmx_tpr_shadow() &&
270                 cpu_has_vmx_virtualize_apic_accesses();
271 }
272
273 static inline int cpu_has_vmx_invept_individual_addr(void)
274 {
275         return !!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT);
276 }
277
278 static inline int cpu_has_vmx_invept_context(void)
279 {
280         return !!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT);
281 }
282
283 static inline int cpu_has_vmx_invept_global(void)
284 {
285         return !!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT);
286 }
287
288 static inline int cpu_has_vmx_ept(void)
289 {
290         return vmcs_config.cpu_based_2nd_exec_ctrl &
291                 SECONDARY_EXEC_ENABLE_EPT;
292 }
293
294 static inline int cpu_has_vmx_unrestricted_guest(void)
295 {
296         return vmcs_config.cpu_based_2nd_exec_ctrl &
297                 SECONDARY_EXEC_UNRESTRICTED_GUEST;
298 }
299
300 static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
301 {
302         return flexpriority_enabled &&
303                 (cpu_has_vmx_virtualize_apic_accesses()) &&
304                 (irqchip_in_kernel(kvm));
305 }
306
307 static inline int cpu_has_vmx_vpid(void)
308 {
309         return vmcs_config.cpu_based_2nd_exec_ctrl &
310                 SECONDARY_EXEC_ENABLE_VPID;
311 }
312
313 static inline int cpu_has_virtual_nmis(void)
314 {
315         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
316 }
317
318 static inline bool report_flexpriority(void)
319 {
320         return flexpriority_enabled;
321 }
322
323 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
324 {
325         int i;
326
327         for (i = 0; i < vmx->nmsrs; ++i)
328                 if (vmx->guest_msrs[i].index == msr)
329                         return i;
330         return -1;
331 }
332
333 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
334 {
335     struct {
336         u64 vpid : 16;
337         u64 rsvd : 48;
338         u64 gva;
339     } operand = { vpid, 0, gva };
340
341     asm volatile (__ex(ASM_VMX_INVVPID)
342                   /* CF==1 or ZF==1 --> rc = -1 */
343                   "; ja 1f ; ud2 ; 1:"
344                   : : "a"(&operand), "c"(ext) : "cc", "memory");
345 }
346
347 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
348 {
349         struct {
350                 u64 eptp, gpa;
351         } operand = {eptp, gpa};
352
353         asm volatile (__ex(ASM_VMX_INVEPT)
354                         /* CF==1 or ZF==1 --> rc = -1 */
355                         "; ja 1f ; ud2 ; 1:\n"
356                         : : "a" (&operand), "c" (ext) : "cc", "memory");
357 }
358
359 static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
360 {
361         int i;
362
363         i = __find_msr_index(vmx, msr);
364         if (i >= 0)
365                 return &vmx->guest_msrs[i];
366         return NULL;
367 }
368
369 static void vmcs_clear(struct vmcs *vmcs)
370 {
371         u64 phys_addr = __pa(vmcs);
372         u8 error;
373
374         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
375                       : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
376                       : "cc", "memory");
377         if (error)
378                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
379                        vmcs, phys_addr);
380 }
381
382 static void __vcpu_clear(void *arg)
383 {
384         struct vcpu_vmx *vmx = arg;
385         int cpu = raw_smp_processor_id();
386
387         if (vmx->vcpu.cpu == cpu)
388                 vmcs_clear(vmx->vmcs);
389         if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
390                 per_cpu(current_vmcs, cpu) = NULL;
391         rdtscll(vmx->vcpu.arch.host_tsc);
392         list_del(&vmx->local_vcpus_link);
393         vmx->vcpu.cpu = -1;
394         vmx->launched = 0;
395 }
396
397 static void vcpu_clear(struct vcpu_vmx *vmx)
398 {
399         if (vmx->vcpu.cpu == -1)
400                 return;
401         smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
402 }
403
404 static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
405 {
406         if (vmx->vpid == 0)
407                 return;
408
409         __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
410 }
411
412 static inline void ept_sync_global(void)
413 {
414         if (cpu_has_vmx_invept_global())
415                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
416 }
417
418 static inline void ept_sync_context(u64 eptp)
419 {
420         if (enable_ept) {
421                 if (cpu_has_vmx_invept_context())
422                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
423                 else
424                         ept_sync_global();
425         }
426 }
427
428 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
429 {
430         if (enable_ept) {
431                 if (cpu_has_vmx_invept_individual_addr())
432                         __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
433                                         eptp, gpa);
434                 else
435                         ept_sync_context(eptp);
436         }
437 }
438
439 static unsigned long vmcs_readl(unsigned long field)
440 {
441         unsigned long value;
442
443         asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
444                       : "=a"(value) : "d"(field) : "cc");
445         return value;
446 }
447
448 static u16 vmcs_read16(unsigned long field)
449 {
450         return vmcs_readl(field);
451 }
452
453 static u32 vmcs_read32(unsigned long field)
454 {
455         return vmcs_readl(field);
456 }
457
458 static u64 vmcs_read64(unsigned long field)
459 {
460 #ifdef CONFIG_X86_64
461         return vmcs_readl(field);
462 #else
463         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
464 #endif
465 }
466
467 static noinline void vmwrite_error(unsigned long field, unsigned long value)
468 {
469         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
470                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
471         dump_stack();
472 }
473
474 static void vmcs_writel(unsigned long field, unsigned long value)
475 {
476         u8 error;
477
478         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
479                        : "=q"(error) : "a"(value), "d"(field) : "cc");
480         if (unlikely(error))
481                 vmwrite_error(field, value);
482 }
483
484 static void vmcs_write16(unsigned long field, u16 value)
485 {
486         vmcs_writel(field, value);
487 }
488
489 static void vmcs_write32(unsigned long field, u32 value)
490 {
491         vmcs_writel(field, value);
492 }
493
494 static void vmcs_write64(unsigned long field, u64 value)
495 {
496         vmcs_writel(field, value);
497 #ifndef CONFIG_X86_64
498         asm volatile ("");
499         vmcs_writel(field+1, value >> 32);
500 #endif
501 }
502
503 static void vmcs_clear_bits(unsigned long field, u32 mask)
504 {
505         vmcs_writel(field, vmcs_readl(field) & ~mask);
506 }
507
508 static void vmcs_set_bits(unsigned long field, u32 mask)
509 {
510         vmcs_writel(field, vmcs_readl(field) | mask);
511 }
512
513 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
514 {
515         u32 eb;
516
517         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR);
518         if (!vcpu->fpu_active)
519                 eb |= 1u << NM_VECTOR;
520         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
521                 if (vcpu->guest_debug &
522                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
523                         eb |= 1u << DB_VECTOR;
524                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
525                         eb |= 1u << BP_VECTOR;
526         }
527         if (to_vmx(vcpu)->rmode.vm86_active)
528                 eb = ~0;
529         if (enable_ept)
530                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
531         vmcs_write32(EXCEPTION_BITMAP, eb);
532 }
533
534 static void reload_tss(void)
535 {
536         /*
537          * VT restores TR but not its size.  Useless.
538          */
539         struct descriptor_table gdt;
540         struct desc_struct *descs;
541
542         kvm_get_gdt(&gdt);
543         descs = (void *)gdt.base;
544         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
545         load_TR_desc();
546 }
547
548 static void load_transition_efer(struct vcpu_vmx *vmx)
549 {
550         int efer_offset = vmx->msr_offset_efer;
551         u64 host_efer = vmx->host_msrs[efer_offset].data;
552         u64 guest_efer = vmx->guest_msrs[efer_offset].data;
553         u64 ignore_bits;
554
555         if (efer_offset < 0)
556                 return;
557         /*
558          * NX is emulated; LMA and LME handled by hardware; SCE meaninless
559          * outside long mode
560          */
561         ignore_bits = EFER_NX | EFER_SCE;
562 #ifdef CONFIG_X86_64
563         ignore_bits |= EFER_LMA | EFER_LME;
564         /* SCE is meaningful only in long mode on Intel */
565         if (guest_efer & EFER_LMA)
566                 ignore_bits &= ~(u64)EFER_SCE;
567 #endif
568         if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
569                 return;
570
571         vmx->host_state.guest_efer_loaded = 1;
572         guest_efer &= ~ignore_bits;
573         guest_efer |= host_efer & ignore_bits;
574         wrmsrl(MSR_EFER, guest_efer);
575         vmx->vcpu.stat.efer_reload++;
576 }
577
578 static void reload_host_efer(struct vcpu_vmx *vmx)
579 {
580         if (vmx->host_state.guest_efer_loaded) {
581                 vmx->host_state.guest_efer_loaded = 0;
582                 load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
583         }
584 }
585
586 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
587 {
588         struct vcpu_vmx *vmx = to_vmx(vcpu);
589
590         if (vmx->host_state.loaded)
591                 return;
592
593         vmx->host_state.loaded = 1;
594         /*
595          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
596          * allow segment selectors with cpl > 0 or ti == 1.
597          */
598         vmx->host_state.ldt_sel = kvm_read_ldt();
599         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
600         vmx->host_state.fs_sel = kvm_read_fs();
601         if (!(vmx->host_state.fs_sel & 7)) {
602                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
603                 vmx->host_state.fs_reload_needed = 0;
604         } else {
605                 vmcs_write16(HOST_FS_SELECTOR, 0);
606                 vmx->host_state.fs_reload_needed = 1;
607         }
608         vmx->host_state.gs_sel = kvm_read_gs();
609         if (!(vmx->host_state.gs_sel & 7))
610                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
611         else {
612                 vmcs_write16(HOST_GS_SELECTOR, 0);
613                 vmx->host_state.gs_ldt_reload_needed = 1;
614         }
615
616 #ifdef CONFIG_X86_64
617         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
618         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
619 #else
620         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
621         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
622 #endif
623
624 #ifdef CONFIG_X86_64
625         if (is_long_mode(&vmx->vcpu))
626                 save_msrs(vmx->host_msrs +
627                           vmx->msr_offset_kernel_gs_base, 1);
628
629 #endif
630         load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
631         load_transition_efer(vmx);
632 }
633
634 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
635 {
636         unsigned long flags;
637
638         if (!vmx->host_state.loaded)
639                 return;
640
641         ++vmx->vcpu.stat.host_state_reload;
642         vmx->host_state.loaded = 0;
643         if (vmx->host_state.fs_reload_needed)
644                 kvm_load_fs(vmx->host_state.fs_sel);
645         if (vmx->host_state.gs_ldt_reload_needed) {
646                 kvm_load_ldt(vmx->host_state.ldt_sel);
647                 /*
648                  * If we have to reload gs, we must take care to
649                  * preserve our gs base.
650                  */
651                 local_irq_save(flags);
652                 kvm_load_gs(vmx->host_state.gs_sel);
653 #ifdef CONFIG_X86_64
654                 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
655 #endif
656                 local_irq_restore(flags);
657         }
658         reload_tss();
659         save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
660         load_msrs(vmx->host_msrs, vmx->save_nmsrs);
661         reload_host_efer(vmx);
662 }
663
664 static void vmx_load_host_state(struct vcpu_vmx *vmx)
665 {
666         preempt_disable();
667         __vmx_load_host_state(vmx);
668         preempt_enable();
669 }
670
671 /*
672  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
673  * vcpu mutex is already taken.
674  */
675 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
676 {
677         struct vcpu_vmx *vmx = to_vmx(vcpu);
678         u64 phys_addr = __pa(vmx->vmcs);
679         u64 tsc_this, delta, new_offset;
680
681         if (vcpu->cpu != cpu) {
682                 vcpu_clear(vmx);
683                 kvm_migrate_timers(vcpu);
684                 vpid_sync_vcpu_all(vmx);
685                 local_irq_disable();
686                 list_add(&vmx->local_vcpus_link,
687                          &per_cpu(vcpus_on_cpu, cpu));
688                 local_irq_enable();
689         }
690
691         if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
692                 u8 error;
693
694                 per_cpu(current_vmcs, cpu) = vmx->vmcs;
695                 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
696                               : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
697                               : "cc");
698                 if (error)
699                         printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
700                                vmx->vmcs, phys_addr);
701         }
702
703         if (vcpu->cpu != cpu) {
704                 struct descriptor_table dt;
705                 unsigned long sysenter_esp;
706
707                 vcpu->cpu = cpu;
708                 /*
709                  * Linux uses per-cpu TSS and GDT, so set these when switching
710                  * processors.
711                  */
712                 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
713                 kvm_get_gdt(&dt);
714                 vmcs_writel(HOST_GDTR_BASE, dt.base);   /* 22.2.4 */
715
716                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
717                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
718
719                 /*
720                  * Make sure the time stamp counter is monotonous.
721                  */
722                 rdtscll(tsc_this);
723                 if (tsc_this < vcpu->arch.host_tsc) {
724                         delta = vcpu->arch.host_tsc - tsc_this;
725                         new_offset = vmcs_read64(TSC_OFFSET) + delta;
726                         vmcs_write64(TSC_OFFSET, new_offset);
727                 }
728         }
729 }
730
731 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
732 {
733         __vmx_load_host_state(to_vmx(vcpu));
734 }
735
736 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
737 {
738         if (vcpu->fpu_active)
739                 return;
740         vcpu->fpu_active = 1;
741         vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
742         if (vcpu->arch.cr0 & X86_CR0_TS)
743                 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
744         update_exception_bitmap(vcpu);
745 }
746
747 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
748 {
749         if (!vcpu->fpu_active)
750                 return;
751         vcpu->fpu_active = 0;
752         vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
753         update_exception_bitmap(vcpu);
754 }
755
756 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
757 {
758         return vmcs_readl(GUEST_RFLAGS);
759 }
760
761 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
762 {
763         if (to_vmx(vcpu)->rmode.vm86_active)
764                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
765         vmcs_writel(GUEST_RFLAGS, rflags);
766 }
767
768 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
769 {
770         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
771         int ret = 0;
772
773         if (interruptibility & GUEST_INTR_STATE_STI)
774                 ret |= X86_SHADOW_INT_STI;
775         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
776                 ret |= X86_SHADOW_INT_MOV_SS;
777
778         return ret & mask;
779 }
780
781 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
782 {
783         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
784         u32 interruptibility = interruptibility_old;
785
786         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
787
788         if (mask & X86_SHADOW_INT_MOV_SS)
789                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
790         if (mask & X86_SHADOW_INT_STI)
791                 interruptibility |= GUEST_INTR_STATE_STI;
792
793         if ((interruptibility != interruptibility_old))
794                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
795 }
796
797 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
798 {
799         unsigned long rip;
800
801         rip = kvm_rip_read(vcpu);
802         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
803         kvm_rip_write(vcpu, rip);
804
805         /* skipping an emulated instruction also counts */
806         vmx_set_interrupt_shadow(vcpu, 0);
807 }
808
809 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
810                                 bool has_error_code, u32 error_code)
811 {
812         struct vcpu_vmx *vmx = to_vmx(vcpu);
813         u32 intr_info = nr | INTR_INFO_VALID_MASK;
814
815         if (has_error_code) {
816                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
817                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
818         }
819
820         if (vmx->rmode.vm86_active) {
821                 vmx->rmode.irq.pending = true;
822                 vmx->rmode.irq.vector = nr;
823                 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
824                 if (kvm_exception_is_soft(nr))
825                         vmx->rmode.irq.rip +=
826                                 vmx->vcpu.arch.event_exit_inst_len;
827                 intr_info |= INTR_TYPE_SOFT_INTR;
828                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
829                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
830                 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
831                 return;
832         }
833
834         if (kvm_exception_is_soft(nr)) {
835                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
836                              vmx->vcpu.arch.event_exit_inst_len);
837                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
838         } else
839                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
840
841         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
842 }
843
844 /*
845  * Swap MSR entry in host/guest MSR entry array.
846  */
847 #ifdef CONFIG_X86_64
848 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
849 {
850         struct kvm_msr_entry tmp;
851
852         tmp = vmx->guest_msrs[to];
853         vmx->guest_msrs[to] = vmx->guest_msrs[from];
854         vmx->guest_msrs[from] = tmp;
855         tmp = vmx->host_msrs[to];
856         vmx->host_msrs[to] = vmx->host_msrs[from];
857         vmx->host_msrs[from] = tmp;
858 }
859 #endif
860
861 /*
862  * Set up the vmcs to automatically save and restore system
863  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
864  * mode, as fiddling with msrs is very expensive.
865  */
866 static void setup_msrs(struct vcpu_vmx *vmx)
867 {
868         int save_nmsrs;
869         unsigned long *msr_bitmap;
870
871         vmx_load_host_state(vmx);
872         save_nmsrs = 0;
873 #ifdef CONFIG_X86_64
874         if (is_long_mode(&vmx->vcpu)) {
875                 int index;
876
877                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
878                 if (index >= 0)
879                         move_msr_up(vmx, index, save_nmsrs++);
880                 index = __find_msr_index(vmx, MSR_LSTAR);
881                 if (index >= 0)
882                         move_msr_up(vmx, index, save_nmsrs++);
883                 index = __find_msr_index(vmx, MSR_CSTAR);
884                 if (index >= 0)
885                         move_msr_up(vmx, index, save_nmsrs++);
886                 index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
887                 if (index >= 0)
888                         move_msr_up(vmx, index, save_nmsrs++);
889                 /*
890                  * MSR_K6_STAR is only needed on long mode guests, and only
891                  * if efer.sce is enabled.
892                  */
893                 index = __find_msr_index(vmx, MSR_K6_STAR);
894                 if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
895                         move_msr_up(vmx, index, save_nmsrs++);
896         }
897 #endif
898         vmx->save_nmsrs = save_nmsrs;
899
900 #ifdef CONFIG_X86_64
901         vmx->msr_offset_kernel_gs_base =
902                 __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
903 #endif
904         vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
905
906         if (cpu_has_vmx_msr_bitmap()) {
907                 if (is_long_mode(&vmx->vcpu))
908                         msr_bitmap = vmx_msr_bitmap_longmode;
909                 else
910                         msr_bitmap = vmx_msr_bitmap_legacy;
911
912                 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
913         }
914 }
915
916 /*
917  * reads and returns guest's timestamp counter "register"
918  * guest_tsc = host_tsc + tsc_offset    -- 21.3
919  */
920 static u64 guest_read_tsc(void)
921 {
922         u64 host_tsc, tsc_offset;
923
924         rdtscll(host_tsc);
925         tsc_offset = vmcs_read64(TSC_OFFSET);
926         return host_tsc + tsc_offset;
927 }
928
929 /*
930  * writes 'guest_tsc' into guest's timestamp counter "register"
931  * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
932  */
933 static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
934 {
935         vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
936 }
937
938 /*
939  * Reads an msr value (of 'msr_index') into 'pdata'.
940  * Returns 0 on success, non-0 otherwise.
941  * Assumes vcpu_load() was already called.
942  */
943 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
944 {
945         u64 data;
946         struct kvm_msr_entry *msr;
947
948         if (!pdata) {
949                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
950                 return -EINVAL;
951         }
952
953         switch (msr_index) {
954 #ifdef CONFIG_X86_64
955         case MSR_FS_BASE:
956                 data = vmcs_readl(GUEST_FS_BASE);
957                 break;
958         case MSR_GS_BASE:
959                 data = vmcs_readl(GUEST_GS_BASE);
960                 break;
961         case MSR_EFER:
962                 return kvm_get_msr_common(vcpu, msr_index, pdata);
963 #endif
964         case MSR_IA32_TSC:
965                 data = guest_read_tsc();
966                 break;
967         case MSR_IA32_SYSENTER_CS:
968                 data = vmcs_read32(GUEST_SYSENTER_CS);
969                 break;
970         case MSR_IA32_SYSENTER_EIP:
971                 data = vmcs_readl(GUEST_SYSENTER_EIP);
972                 break;
973         case MSR_IA32_SYSENTER_ESP:
974                 data = vmcs_readl(GUEST_SYSENTER_ESP);
975                 break;
976         default:
977                 vmx_load_host_state(to_vmx(vcpu));
978                 msr = find_msr_entry(to_vmx(vcpu), msr_index);
979                 if (msr) {
980                         data = msr->data;
981                         break;
982                 }
983                 return kvm_get_msr_common(vcpu, msr_index, pdata);
984         }
985
986         *pdata = data;
987         return 0;
988 }
989
990 /*
991  * Writes msr value into into the appropriate "register".
992  * Returns 0 on success, non-0 otherwise.
993  * Assumes vcpu_load() was already called.
994  */
995 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
996 {
997         struct vcpu_vmx *vmx = to_vmx(vcpu);
998         struct kvm_msr_entry *msr;
999         u64 host_tsc;
1000         int ret = 0;
1001
1002         switch (msr_index) {
1003         case MSR_EFER:
1004                 vmx_load_host_state(vmx);
1005                 ret = kvm_set_msr_common(vcpu, msr_index, data);
1006                 break;
1007 #ifdef CONFIG_X86_64
1008         case MSR_FS_BASE:
1009                 vmcs_writel(GUEST_FS_BASE, data);
1010                 break;
1011         case MSR_GS_BASE:
1012                 vmcs_writel(GUEST_GS_BASE, data);
1013                 break;
1014 #endif
1015         case MSR_IA32_SYSENTER_CS:
1016                 vmcs_write32(GUEST_SYSENTER_CS, data);
1017                 break;
1018         case MSR_IA32_SYSENTER_EIP:
1019                 vmcs_writel(GUEST_SYSENTER_EIP, data);
1020                 break;
1021         case MSR_IA32_SYSENTER_ESP:
1022                 vmcs_writel(GUEST_SYSENTER_ESP, data);
1023                 break;
1024         case MSR_IA32_TSC:
1025                 rdtscll(host_tsc);
1026                 guest_write_tsc(data, host_tsc);
1027                 break;
1028         case MSR_IA32_CR_PAT:
1029                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
1030                         vmcs_write64(GUEST_IA32_PAT, data);
1031                         vcpu->arch.pat = data;
1032                         break;
1033                 }
1034                 /* Otherwise falls through to kvm_set_msr_common */
1035         default:
1036                 vmx_load_host_state(vmx);
1037                 msr = find_msr_entry(vmx, msr_index);
1038                 if (msr) {
1039                         msr->data = data;
1040                         break;
1041                 }
1042                 ret = kvm_set_msr_common(vcpu, msr_index, data);
1043         }
1044
1045         return ret;
1046 }
1047
1048 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1049 {
1050         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
1051         switch (reg) {
1052         case VCPU_REGS_RSP:
1053                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
1054                 break;
1055         case VCPU_REGS_RIP:
1056                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
1057                 break;
1058         case VCPU_EXREG_PDPTR:
1059                 if (enable_ept)
1060                         ept_save_pdptrs(vcpu);
1061                 break;
1062         default:
1063                 break;
1064         }
1065 }
1066
1067 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1068 {
1069         int old_debug = vcpu->guest_debug;
1070         unsigned long flags;
1071
1072         vcpu->guest_debug = dbg->control;
1073         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
1074                 vcpu->guest_debug = 0;
1075
1076         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1077                 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
1078         else
1079                 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
1080
1081         flags = vmcs_readl(GUEST_RFLAGS);
1082         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
1083                 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1084         else if (old_debug & KVM_GUESTDBG_SINGLESTEP)
1085                 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1086         vmcs_writel(GUEST_RFLAGS, flags);
1087
1088         update_exception_bitmap(vcpu);
1089
1090         return 0;
1091 }
1092
1093 static __init int cpu_has_kvm_support(void)
1094 {
1095         return cpu_has_vmx();
1096 }
1097
1098 static __init int vmx_disabled_by_bios(void)
1099 {
1100         u64 msr;
1101
1102         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
1103         return (msr & (FEATURE_CONTROL_LOCKED |
1104                        FEATURE_CONTROL_VMXON_ENABLED))
1105             == FEATURE_CONTROL_LOCKED;
1106         /* locked but not enabled */
1107 }
1108
1109 static void hardware_enable(void *garbage)
1110 {
1111         int cpu = raw_smp_processor_id();
1112         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1113         u64 old;
1114
1115         INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
1116         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1117         if ((old & (FEATURE_CONTROL_LOCKED |
1118                     FEATURE_CONTROL_VMXON_ENABLED))
1119             != (FEATURE_CONTROL_LOCKED |
1120                 FEATURE_CONTROL_VMXON_ENABLED))
1121                 /* enable and lock */
1122                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
1123                        FEATURE_CONTROL_LOCKED |
1124                        FEATURE_CONTROL_VMXON_ENABLED);
1125         write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
1126         asm volatile (ASM_VMX_VMXON_RAX
1127                       : : "a"(&phys_addr), "m"(phys_addr)
1128                       : "memory", "cc");
1129 }
1130
1131 static void vmclear_local_vcpus(void)
1132 {
1133         int cpu = raw_smp_processor_id();
1134         struct vcpu_vmx *vmx, *n;
1135
1136         list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
1137                                  local_vcpus_link)
1138                 __vcpu_clear(vmx);
1139 }
1140
1141
1142 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
1143  * tricks.
1144  */
1145 static void kvm_cpu_vmxoff(void)
1146 {
1147         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1148         write_cr4(read_cr4() & ~X86_CR4_VMXE);
1149 }
1150
1151 static void hardware_disable(void *garbage)
1152 {
1153         vmclear_local_vcpus();
1154         kvm_cpu_vmxoff();
1155 }
1156
1157 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1158                                       u32 msr, u32 *result)
1159 {
1160         u32 vmx_msr_low, vmx_msr_high;
1161         u32 ctl = ctl_min | ctl_opt;
1162
1163         rdmsr(msr, vmx_msr_low, vmx_msr_high);
1164
1165         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1166         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
1167
1168         /* Ensure minimum (required) set of control bits are supported. */
1169         if (ctl_min & ~ctl)
1170                 return -EIO;
1171
1172         *result = ctl;
1173         return 0;
1174 }
1175
1176 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1177 {
1178         u32 vmx_msr_low, vmx_msr_high;
1179         u32 min, opt, min2, opt2;
1180         u32 _pin_based_exec_control = 0;
1181         u32 _cpu_based_exec_control = 0;
1182         u32 _cpu_based_2nd_exec_control = 0;
1183         u32 _vmexit_control = 0;
1184         u32 _vmentry_control = 0;
1185
1186         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1187         opt = PIN_BASED_VIRTUAL_NMIS;
1188         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1189                                 &_pin_based_exec_control) < 0)
1190                 return -EIO;
1191
1192         min = CPU_BASED_HLT_EXITING |
1193 #ifdef CONFIG_X86_64
1194               CPU_BASED_CR8_LOAD_EXITING |
1195               CPU_BASED_CR8_STORE_EXITING |
1196 #endif
1197               CPU_BASED_CR3_LOAD_EXITING |
1198               CPU_BASED_CR3_STORE_EXITING |
1199               CPU_BASED_USE_IO_BITMAPS |
1200               CPU_BASED_MOV_DR_EXITING |
1201               CPU_BASED_USE_TSC_OFFSETING |
1202               CPU_BASED_INVLPG_EXITING;
1203         opt = CPU_BASED_TPR_SHADOW |
1204               CPU_BASED_USE_MSR_BITMAPS |
1205               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1206         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1207                                 &_cpu_based_exec_control) < 0)
1208                 return -EIO;
1209 #ifdef CONFIG_X86_64
1210         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1211                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1212                                            ~CPU_BASED_CR8_STORE_EXITING;
1213 #endif
1214         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1215                 min2 = 0;
1216                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1217                         SECONDARY_EXEC_WBINVD_EXITING |
1218                         SECONDARY_EXEC_ENABLE_VPID |
1219                         SECONDARY_EXEC_ENABLE_EPT |
1220                         SECONDARY_EXEC_UNRESTRICTED_GUEST;
1221                 if (adjust_vmx_controls(min2, opt2,
1222                                         MSR_IA32_VMX_PROCBASED_CTLS2,
1223                                         &_cpu_based_2nd_exec_control) < 0)
1224                         return -EIO;
1225         }
1226 #ifndef CONFIG_X86_64
1227         if (!(_cpu_based_2nd_exec_control &
1228                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1229                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1230 #endif
1231         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1232                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
1233                    enabled */
1234                 min &= ~(CPU_BASED_CR3_LOAD_EXITING |
1235                          CPU_BASED_CR3_STORE_EXITING |
1236                          CPU_BASED_INVLPG_EXITING);
1237                 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1238                                         &_cpu_based_exec_control) < 0)
1239                         return -EIO;
1240                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1241                       vmx_capability.ept, vmx_capability.vpid);
1242         }
1243
1244         min = 0;
1245 #ifdef CONFIG_X86_64
1246         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1247 #endif
1248         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
1249         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1250                                 &_vmexit_control) < 0)
1251                 return -EIO;
1252
1253         min = 0;
1254         opt = VM_ENTRY_LOAD_IA32_PAT;
1255         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1256                                 &_vmentry_control) < 0)
1257                 return -EIO;
1258
1259         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1260
1261         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1262         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1263                 return -EIO;
1264
1265 #ifdef CONFIG_X86_64
1266         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1267         if (vmx_msr_high & (1u<<16))
1268                 return -EIO;
1269 #endif
1270
1271         /* Require Write-Back (WB) memory type for VMCS accesses. */
1272         if (((vmx_msr_high >> 18) & 15) != 6)
1273                 return -EIO;
1274
1275         vmcs_conf->size = vmx_msr_high & 0x1fff;
1276         vmcs_conf->order = get_order(vmcs_config.size);
1277         vmcs_conf->revision_id = vmx_msr_low;
1278
1279         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1280         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1281         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1282         vmcs_conf->vmexit_ctrl         = _vmexit_control;
1283         vmcs_conf->vmentry_ctrl        = _vmentry_control;
1284
1285         return 0;
1286 }
1287
1288 static struct vmcs *alloc_vmcs_cpu(int cpu)
1289 {
1290         int node = cpu_to_node(cpu);
1291         struct page *pages;
1292         struct vmcs *vmcs;
1293
1294         pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
1295         if (!pages)
1296                 return NULL;
1297         vmcs = page_address(pages);
1298         memset(vmcs, 0, vmcs_config.size);
1299         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1300         return vmcs;
1301 }
1302
1303 static struct vmcs *alloc_vmcs(void)
1304 {
1305         return alloc_vmcs_cpu(raw_smp_processor_id());
1306 }
1307
1308 static void free_vmcs(struct vmcs *vmcs)
1309 {
1310         free_pages((unsigned long)vmcs, vmcs_config.order);
1311 }
1312
1313 static void free_kvm_area(void)
1314 {
1315         int cpu;
1316
1317         for_each_online_cpu(cpu)
1318                 free_vmcs(per_cpu(vmxarea, cpu));
1319 }
1320
1321 static __init int alloc_kvm_area(void)
1322 {
1323         int cpu;
1324
1325         for_each_online_cpu(cpu) {
1326                 struct vmcs *vmcs;
1327
1328                 vmcs = alloc_vmcs_cpu(cpu);
1329                 if (!vmcs) {
1330                         free_kvm_area();
1331                         return -ENOMEM;
1332                 }
1333
1334                 per_cpu(vmxarea, cpu) = vmcs;
1335         }
1336         return 0;
1337 }
1338
1339 static __init int hardware_setup(void)
1340 {
1341         if (setup_vmcs_config(&vmcs_config) < 0)
1342                 return -EIO;
1343
1344         if (boot_cpu_has(X86_FEATURE_NX))
1345                 kvm_enable_efer_bits(EFER_NX);
1346
1347         if (!cpu_has_vmx_vpid())
1348                 enable_vpid = 0;
1349
1350         if (!cpu_has_vmx_ept()) {
1351                 enable_ept = 0;
1352                 enable_unrestricted_guest = 0;
1353         }
1354
1355         if (!cpu_has_vmx_unrestricted_guest())
1356                 enable_unrestricted_guest = 0;
1357
1358         if (!cpu_has_vmx_flexpriority())
1359                 flexpriority_enabled = 0;
1360
1361         if (!cpu_has_vmx_tpr_shadow())
1362                 kvm_x86_ops->update_cr8_intercept = NULL;
1363
1364         return alloc_kvm_area();
1365 }
1366
1367 static __exit void hardware_unsetup(void)
1368 {
1369         free_kvm_area();
1370 }
1371
1372 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1373 {
1374         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1375
1376         if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1377                 vmcs_write16(sf->selector, save->selector);
1378                 vmcs_writel(sf->base, save->base);
1379                 vmcs_write32(sf->limit, save->limit);
1380                 vmcs_write32(sf->ar_bytes, save->ar);
1381         } else {
1382                 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1383                         << AR_DPL_SHIFT;
1384                 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1385         }
1386 }
1387
1388 static void enter_pmode(struct kvm_vcpu *vcpu)
1389 {
1390         unsigned long flags;
1391         struct vcpu_vmx *vmx = to_vmx(vcpu);
1392
1393         vmx->emulation_required = 1;
1394         vmx->rmode.vm86_active = 0;
1395
1396         vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
1397         vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
1398         vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
1399
1400         flags = vmcs_readl(GUEST_RFLAGS);
1401         flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
1402         flags |= (vmx->rmode.save_iopl << IOPL_SHIFT);
1403         vmcs_writel(GUEST_RFLAGS, flags);
1404
1405         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1406                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1407
1408         update_exception_bitmap(vcpu);
1409
1410         if (emulate_invalid_guest_state)
1411                 return;
1412
1413         fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
1414         fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
1415         fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
1416         fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
1417
1418         vmcs_write16(GUEST_SS_SELECTOR, 0);
1419         vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1420
1421         vmcs_write16(GUEST_CS_SELECTOR,
1422                      vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1423         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1424 }
1425
1426 static gva_t rmode_tss_base(struct kvm *kvm)
1427 {
1428         if (!kvm->arch.tss_addr) {
1429                 gfn_t base_gfn = kvm->memslots[0].base_gfn +
1430                                  kvm->memslots[0].npages - 3;
1431                 return base_gfn << PAGE_SHIFT;
1432         }
1433         return kvm->arch.tss_addr;
1434 }
1435
1436 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1437 {
1438         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1439
1440         save->selector = vmcs_read16(sf->selector);
1441         save->base = vmcs_readl(sf->base);
1442         save->limit = vmcs_read32(sf->limit);
1443         save->ar = vmcs_read32(sf->ar_bytes);
1444         vmcs_write16(sf->selector, save->base >> 4);
1445         vmcs_write32(sf->base, save->base & 0xfffff);
1446         vmcs_write32(sf->limit, 0xffff);
1447         vmcs_write32(sf->ar_bytes, 0xf3);
1448 }
1449
1450 static void enter_rmode(struct kvm_vcpu *vcpu)
1451 {
1452         unsigned long flags;
1453         struct vcpu_vmx *vmx = to_vmx(vcpu);
1454
1455         if (enable_unrestricted_guest)
1456                 return;
1457
1458         vmx->emulation_required = 1;
1459         vmx->rmode.vm86_active = 1;
1460
1461         vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1462         vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1463
1464         vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1465         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1466
1467         vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1468         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1469
1470         flags = vmcs_readl(GUEST_RFLAGS);
1471         vmx->rmode.save_iopl
1472                 = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
1473
1474         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1475
1476         vmcs_writel(GUEST_RFLAGS, flags);
1477         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1478         update_exception_bitmap(vcpu);
1479
1480         if (emulate_invalid_guest_state)
1481                 goto continue_rmode;
1482
1483         vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1484         vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1485         vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1486
1487         vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1488         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1489         if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1490                 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1491         vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1492
1493         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
1494         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
1495         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
1496         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
1497
1498 continue_rmode:
1499         kvm_mmu_reset_context(vcpu);
1500         init_rmode(vcpu->kvm);
1501 }
1502
1503 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1504 {
1505         struct vcpu_vmx *vmx = to_vmx(vcpu);
1506         struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1507
1508         vcpu->arch.shadow_efer = efer;
1509         if (!msr)
1510                 return;
1511         if (efer & EFER_LMA) {
1512                 vmcs_write32(VM_ENTRY_CONTROLS,
1513                              vmcs_read32(VM_ENTRY_CONTROLS) |
1514                              VM_ENTRY_IA32E_MODE);
1515                 msr->data = efer;
1516         } else {
1517                 vmcs_write32(VM_ENTRY_CONTROLS,
1518                              vmcs_read32(VM_ENTRY_CONTROLS) &
1519                              ~VM_ENTRY_IA32E_MODE);
1520
1521                 msr->data = efer & ~EFER_LME;
1522         }
1523         setup_msrs(vmx);
1524 }
1525
1526 #ifdef CONFIG_X86_64
1527
1528 static void enter_lmode(struct kvm_vcpu *vcpu)
1529 {
1530         u32 guest_tr_ar;
1531
1532         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1533         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1534                 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1535                        __func__);
1536                 vmcs_write32(GUEST_TR_AR_BYTES,
1537                              (guest_tr_ar & ~AR_TYPE_MASK)
1538                              | AR_TYPE_BUSY_64_TSS);
1539         }
1540         vcpu->arch.shadow_efer |= EFER_LMA;
1541         vmx_set_efer(vcpu, vcpu->arch.shadow_efer);
1542 }
1543
1544 static void exit_lmode(struct kvm_vcpu *vcpu)
1545 {
1546         vcpu->arch.shadow_efer &= ~EFER_LMA;
1547
1548         vmcs_write32(VM_ENTRY_CONTROLS,
1549                      vmcs_read32(VM_ENTRY_CONTROLS)
1550                      & ~VM_ENTRY_IA32E_MODE);
1551 }
1552
1553 #endif
1554
1555 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1556 {
1557         vpid_sync_vcpu_all(to_vmx(vcpu));
1558         if (enable_ept)
1559                 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
1560 }
1561
1562 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1563 {
1564         vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
1565         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
1566 }
1567
1568 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
1569 {
1570         if (!test_bit(VCPU_EXREG_PDPTR,
1571                       (unsigned long *)&vcpu->arch.regs_dirty))
1572                 return;
1573
1574         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1575                 vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
1576                 vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
1577                 vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
1578                 vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
1579         }
1580 }
1581
1582 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
1583 {
1584         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1585                 vcpu->arch.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
1586                 vcpu->arch.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
1587                 vcpu->arch.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
1588                 vcpu->arch.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
1589         }
1590
1591         __set_bit(VCPU_EXREG_PDPTR,
1592                   (unsigned long *)&vcpu->arch.regs_avail);
1593         __set_bit(VCPU_EXREG_PDPTR,
1594                   (unsigned long *)&vcpu->arch.regs_dirty);
1595 }
1596
1597 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1598
1599 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
1600                                         unsigned long cr0,
1601                                         struct kvm_vcpu *vcpu)
1602 {
1603         if (!(cr0 & X86_CR0_PG)) {
1604                 /* From paging/starting to nonpaging */
1605                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1606                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1607                              (CPU_BASED_CR3_LOAD_EXITING |
1608                               CPU_BASED_CR3_STORE_EXITING));
1609                 vcpu->arch.cr0 = cr0;
1610                 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1611                 *hw_cr0 &= ~X86_CR0_WP;
1612         } else if (!is_paging(vcpu)) {
1613                 /* From nonpaging to paging */
1614                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1615                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1616                              ~(CPU_BASED_CR3_LOAD_EXITING |
1617                                CPU_BASED_CR3_STORE_EXITING));
1618                 vcpu->arch.cr0 = cr0;
1619                 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1620                 if (!(vcpu->arch.cr0 & X86_CR0_WP))
1621                         *hw_cr0 &= ~X86_CR0_WP;
1622         }
1623 }
1624
1625 static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
1626                                         struct kvm_vcpu *vcpu)
1627 {
1628         if (!is_paging(vcpu)) {
1629                 *hw_cr4 &= ~X86_CR4_PAE;
1630                 *hw_cr4 |= X86_CR4_PSE;
1631         } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
1632                 *hw_cr4 &= ~X86_CR4_PAE;
1633 }
1634
1635 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1636 {
1637         struct vcpu_vmx *vmx = to_vmx(vcpu);
1638         unsigned long hw_cr0;
1639
1640         if (enable_unrestricted_guest)
1641                 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
1642                         | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
1643         else
1644                 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
1645
1646         vmx_fpu_deactivate(vcpu);
1647
1648         if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
1649                 enter_pmode(vcpu);
1650
1651         if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
1652                 enter_rmode(vcpu);
1653
1654 #ifdef CONFIG_X86_64
1655         if (vcpu->arch.shadow_efer & EFER_LME) {
1656                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1657                         enter_lmode(vcpu);
1658                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1659                         exit_lmode(vcpu);
1660         }
1661 #endif
1662
1663         if (enable_ept)
1664                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
1665
1666         vmcs_writel(CR0_READ_SHADOW, cr0);
1667         vmcs_writel(GUEST_CR0, hw_cr0);
1668         vcpu->arch.cr0 = cr0;
1669
1670         if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1671                 vmx_fpu_activate(vcpu);
1672 }
1673
1674 static u64 construct_eptp(unsigned long root_hpa)
1675 {
1676         u64 eptp;
1677
1678         /* TODO write the value reading from MSR */
1679         eptp = VMX_EPT_DEFAULT_MT |
1680                 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
1681         eptp |= (root_hpa & PAGE_MASK);
1682
1683         return eptp;
1684 }
1685
1686 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1687 {
1688         unsigned long guest_cr3;
1689         u64 eptp;
1690
1691         guest_cr3 = cr3;
1692         if (enable_ept) {
1693                 eptp = construct_eptp(cr3);
1694                 vmcs_write64(EPT_POINTER, eptp);
1695                 guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
1696                         VMX_EPT_IDENTITY_PAGETABLE_ADDR;
1697         }
1698
1699         vmx_flush_tlb(vcpu);
1700         vmcs_writel(GUEST_CR3, guest_cr3);
1701         if (vcpu->arch.cr0 & X86_CR0_PE)
1702                 vmx_fpu_deactivate(vcpu);
1703 }
1704
1705 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1706 {
1707         unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
1708                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1709
1710         vcpu->arch.cr4 = cr4;
1711         if (enable_ept)
1712                 ept_update_paging_mode_cr4(&hw_cr4, vcpu);
1713
1714         vmcs_writel(CR4_READ_SHADOW, cr4);
1715         vmcs_writel(GUEST_CR4, hw_cr4);
1716 }
1717
1718 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1719 {
1720         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1721
1722         return vmcs_readl(sf->base);
1723 }
1724
1725 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1726                             struct kvm_segment *var, int seg)
1727 {
1728         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1729         u32 ar;
1730
1731         var->base = vmcs_readl(sf->base);
1732         var->limit = vmcs_read32(sf->limit);
1733         var->selector = vmcs_read16(sf->selector);
1734         ar = vmcs_read32(sf->ar_bytes);
1735         if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
1736                 ar = 0;
1737         var->type = ar & 15;
1738         var->s = (ar >> 4) & 1;
1739         var->dpl = (ar >> 5) & 3;
1740         var->present = (ar >> 7) & 1;
1741         var->avl = (ar >> 12) & 1;
1742         var->l = (ar >> 13) & 1;
1743         var->db = (ar >> 14) & 1;
1744         var->g = (ar >> 15) & 1;
1745         var->unusable = (ar >> 16) & 1;
1746 }
1747
1748 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
1749 {
1750         struct kvm_segment kvm_seg;
1751
1752         if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
1753                 return 0;
1754
1755         if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
1756                 return 3;
1757
1758         vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
1759         return kvm_seg.selector & 3;
1760 }
1761
1762 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1763 {
1764         u32 ar;
1765
1766         if (var->unusable)
1767                 ar = 1 << 16;
1768         else {
1769                 ar = var->type & 15;
1770                 ar |= (var->s & 1) << 4;
1771                 ar |= (var->dpl & 3) << 5;
1772                 ar |= (var->present & 1) << 7;
1773                 ar |= (var->avl & 1) << 12;
1774                 ar |= (var->l & 1) << 13;
1775                 ar |= (var->db & 1) << 14;
1776                 ar |= (var->g & 1) << 15;
1777         }
1778         if (ar == 0) /* a 0 value means unusable */
1779                 ar = AR_UNUSABLE_MASK;
1780
1781         return ar;
1782 }
1783
1784 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1785                             struct kvm_segment *var, int seg)
1786 {
1787         struct vcpu_vmx *vmx = to_vmx(vcpu);
1788         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1789         u32 ar;
1790
1791         if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
1792                 vmx->rmode.tr.selector = var->selector;
1793                 vmx->rmode.tr.base = var->base;
1794                 vmx->rmode.tr.limit = var->limit;
1795                 vmx->rmode.tr.ar = vmx_segment_access_rights(var);
1796                 return;
1797         }
1798         vmcs_writel(sf->base, var->base);
1799         vmcs_write32(sf->limit, var->limit);
1800         vmcs_write16(sf->selector, var->selector);
1801         if (vmx->rmode.vm86_active && var->s) {
1802                 /*
1803                  * Hack real-mode segments into vm86 compatibility.
1804                  */
1805                 if (var->base == 0xffff0000 && var->selector == 0xf000)
1806                         vmcs_writel(sf->base, 0xf0000);
1807                 ar = 0xf3;
1808         } else
1809                 ar = vmx_segment_access_rights(var);
1810
1811         /*
1812          *   Fix the "Accessed" bit in AR field of segment registers for older
1813          * qemu binaries.
1814          *   IA32 arch specifies that at the time of processor reset the
1815          * "Accessed" bit in the AR field of segment registers is 1. And qemu
1816          * is setting it to 0 in the usedland code. This causes invalid guest
1817          * state vmexit when "unrestricted guest" mode is turned on.
1818          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
1819          * tree. Newer qemu binaries with that qemu fix would not need this
1820          * kvm hack.
1821          */
1822         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
1823                 ar |= 0x1; /* Accessed */
1824
1825         vmcs_write32(sf->ar_bytes, ar);
1826 }
1827
1828 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1829 {
1830         u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1831
1832         *db = (ar >> 14) & 1;
1833         *l = (ar >> 13) & 1;
1834 }
1835
1836 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1837 {
1838         dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1839         dt->base = vmcs_readl(GUEST_IDTR_BASE);
1840 }
1841
1842 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1843 {
1844         vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1845         vmcs_writel(GUEST_IDTR_BASE, dt->base);
1846 }
1847
1848 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1849 {
1850         dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1851         dt->base = vmcs_readl(GUEST_GDTR_BASE);
1852 }
1853
1854 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1855 {
1856         vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1857         vmcs_writel(GUEST_GDTR_BASE, dt->base);
1858 }
1859
1860 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
1861 {
1862         struct kvm_segment var;
1863         u32 ar;
1864
1865         vmx_get_segment(vcpu, &var, seg);
1866         ar = vmx_segment_access_rights(&var);
1867
1868         if (var.base != (var.selector << 4))
1869                 return false;
1870         if (var.limit != 0xffff)
1871                 return false;
1872         if (ar != 0xf3)
1873                 return false;
1874
1875         return true;
1876 }
1877
1878 static bool code_segment_valid(struct kvm_vcpu *vcpu)
1879 {
1880         struct kvm_segment cs;
1881         unsigned int cs_rpl;
1882
1883         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
1884         cs_rpl = cs.selector & SELECTOR_RPL_MASK;
1885
1886         if (cs.unusable)
1887                 return false;
1888         if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
1889                 return false;
1890         if (!cs.s)
1891                 return false;
1892         if (cs.type & AR_TYPE_WRITEABLE_MASK) {
1893                 if (cs.dpl > cs_rpl)
1894                         return false;
1895         } else {
1896                 if (cs.dpl != cs_rpl)
1897                         return false;
1898         }
1899         if (!cs.present)
1900                 return false;
1901
1902         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
1903         return true;
1904 }
1905
1906 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
1907 {
1908         struct kvm_segment ss;
1909         unsigned int ss_rpl;
1910
1911         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
1912         ss_rpl = ss.selector & SELECTOR_RPL_MASK;
1913
1914         if (ss.unusable)
1915                 return true;
1916         if (ss.type != 3 && ss.type != 7)
1917                 return false;
1918         if (!ss.s)
1919                 return false;
1920         if (ss.dpl != ss_rpl) /* DPL != RPL */
1921                 return false;
1922         if (!ss.present)
1923                 return false;
1924
1925         return true;
1926 }
1927
1928 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
1929 {
1930         struct kvm_segment var;
1931         unsigned int rpl;
1932
1933         vmx_get_segment(vcpu, &var, seg);
1934         rpl = var.selector & SELECTOR_RPL_MASK;
1935
1936         if (var.unusable)
1937                 return true;
1938         if (!var.s)
1939                 return false;
1940         if (!var.present)
1941                 return false;
1942         if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
1943                 if (var.dpl < rpl) /* DPL < RPL */
1944                         return false;
1945         }
1946
1947         /* TODO: Add other members to kvm_segment_field to allow checking for other access
1948          * rights flags
1949          */
1950         return true;
1951 }
1952
1953 static bool tr_valid(struct kvm_vcpu *vcpu)
1954 {
1955         struct kvm_segment tr;
1956
1957         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
1958
1959         if (tr.unusable)
1960                 return false;
1961         if (tr.selector & SELECTOR_TI_MASK)     /* TI = 1 */
1962                 return false;
1963         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
1964                 return false;
1965         if (!tr.present)
1966                 return false;
1967
1968         return true;
1969 }
1970
1971 static bool ldtr_valid(struct kvm_vcpu *vcpu)
1972 {
1973         struct kvm_segment ldtr;
1974
1975         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
1976
1977         if (ldtr.unusable)
1978                 return true;
1979         if (ldtr.selector & SELECTOR_TI_MASK)   /* TI = 1 */
1980                 return false;
1981         if (ldtr.type != 2)
1982                 return false;
1983         if (!ldtr.present)
1984                 return false;
1985
1986         return true;
1987 }
1988
1989 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
1990 {
1991         struct kvm_segment cs, ss;
1992
1993         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
1994         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
1995
1996         return ((cs.selector & SELECTOR_RPL_MASK) ==
1997                  (ss.selector & SELECTOR_RPL_MASK));
1998 }
1999
2000 /*
2001  * Check if guest state is valid. Returns true if valid, false if
2002  * not.
2003  * We assume that registers are always usable
2004  */
2005 static bool guest_state_valid(struct kvm_vcpu *vcpu)
2006 {
2007         /* real mode guest state checks */
2008         if (!(vcpu->arch.cr0 & X86_CR0_PE)) {
2009                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
2010                         return false;
2011                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
2012                         return false;
2013                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
2014                         return false;
2015                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
2016                         return false;
2017                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
2018                         return false;
2019                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
2020                         return false;
2021         } else {
2022         /* protected mode guest state checks */
2023                 if (!cs_ss_rpl_check(vcpu))
2024                         return false;
2025                 if (!code_segment_valid(vcpu))
2026                         return false;
2027                 if (!stack_segment_valid(vcpu))
2028                         return false;
2029                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
2030                         return false;
2031                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
2032                         return false;
2033                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
2034                         return false;
2035                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
2036                         return false;
2037                 if (!tr_valid(vcpu))
2038                         return false;
2039                 if (!ldtr_valid(vcpu))
2040                         return false;
2041         }
2042         /* TODO:
2043          * - Add checks on RIP
2044          * - Add checks on RFLAGS
2045          */
2046
2047         return true;
2048 }
2049
2050 static int init_rmode_tss(struct kvm *kvm)
2051 {
2052         gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
2053         u16 data = 0;
2054         int ret = 0;
2055         int r;
2056
2057         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2058         if (r < 0)
2059                 goto out;
2060         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
2061         r = kvm_write_guest_page(kvm, fn++, &data,
2062                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
2063         if (r < 0)
2064                 goto out;
2065         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
2066         if (r < 0)
2067                 goto out;
2068         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2069         if (r < 0)
2070                 goto out;
2071         data = ~0;
2072         r = kvm_write_guest_page(kvm, fn, &data,
2073                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
2074                                  sizeof(u8));
2075         if (r < 0)
2076                 goto out;
2077
2078         ret = 1;
2079 out:
2080         return ret;
2081 }
2082
2083 static int init_rmode_identity_map(struct kvm *kvm)
2084 {
2085         int i, r, ret;
2086         pfn_t identity_map_pfn;
2087         u32 tmp;
2088
2089         if (!enable_ept)
2090                 return 1;
2091         if (unlikely(!kvm->arch.ept_identity_pagetable)) {
2092                 printk(KERN_ERR "EPT: identity-mapping pagetable "
2093                         "haven't been allocated!\n");
2094                 return 0;
2095         }
2096         if (likely(kvm->arch.ept_identity_pagetable_done))
2097                 return 1;
2098         ret = 0;
2099         identity_map_pfn = VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT;
2100         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
2101         if (r < 0)
2102                 goto out;
2103         /* Set up identity-mapping pagetable for EPT in real mode */
2104         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
2105                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
2106                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
2107                 r = kvm_write_guest_page(kvm, identity_map_pfn,
2108                                 &tmp, i * sizeof(tmp), sizeof(tmp));
2109                 if (r < 0)
2110                         goto out;
2111         }
2112         kvm->arch.ept_identity_pagetable_done = true;
2113         ret = 1;
2114 out:
2115         return ret;
2116 }
2117
2118 static void seg_setup(int seg)
2119 {
2120         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2121         unsigned int ar;
2122
2123         vmcs_write16(sf->selector, 0);
2124         vmcs_writel(sf->base, 0);
2125         vmcs_write32(sf->limit, 0xffff);
2126         if (enable_unrestricted_guest) {
2127                 ar = 0x93;
2128                 if (seg == VCPU_SREG_CS)
2129                         ar |= 0x08; /* code segment */
2130         } else
2131                 ar = 0xf3;
2132
2133         vmcs_write32(sf->ar_bytes, ar);
2134 }
2135
2136 static int alloc_apic_access_page(struct kvm *kvm)
2137 {
2138         struct kvm_userspace_memory_region kvm_userspace_mem;
2139         int r = 0;
2140
2141         down_write(&kvm->slots_lock);
2142         if (kvm->arch.apic_access_page)
2143                 goto out;
2144         kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
2145         kvm_userspace_mem.flags = 0;
2146         kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
2147         kvm_userspace_mem.memory_size = PAGE_SIZE;
2148         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2149         if (r)
2150                 goto out;
2151
2152         kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
2153 out:
2154         up_write(&kvm->slots_lock);
2155         return r;
2156 }
2157
2158 static int alloc_identity_pagetable(struct kvm *kvm)
2159 {
2160         struct kvm_userspace_memory_region kvm_userspace_mem;
2161         int r = 0;
2162
2163         down_write(&kvm->slots_lock);
2164         if (kvm->arch.ept_identity_pagetable)
2165                 goto out;
2166         kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
2167         kvm_userspace_mem.flags = 0;
2168         kvm_userspace_mem.guest_phys_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
2169         kvm_userspace_mem.memory_size = PAGE_SIZE;
2170         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2171         if (r)
2172                 goto out;
2173
2174         kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
2175                         VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT);
2176 out:
2177         up_write(&kvm->slots_lock);
2178         return r;
2179 }
2180
2181 static void allocate_vpid(struct vcpu_vmx *vmx)
2182 {
2183         int vpid;
2184
2185         vmx->vpid = 0;
2186         if (!enable_vpid)
2187                 return;
2188         spin_lock(&vmx_vpid_lock);
2189         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
2190         if (vpid < VMX_NR_VPIDS) {
2191                 vmx->vpid = vpid;
2192                 __set_bit(vpid, vmx_vpid_bitmap);
2193         }
2194         spin_unlock(&vmx_vpid_lock);
2195 }
2196
2197 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
2198 {
2199         int f = sizeof(unsigned long);
2200
2201         if (!cpu_has_vmx_msr_bitmap())
2202                 return;
2203
2204         /*
2205          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
2206          * have the write-low and read-high bitmap offsets the wrong way round.
2207          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
2208          */
2209         if (msr <= 0x1fff) {
2210                 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
2211                 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
2212         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2213                 msr &= 0x1fff;
2214                 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
2215                 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
2216         }
2217 }
2218
2219 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
2220 {
2221         if (!longmode_only)
2222                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
2223         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
2224 }
2225
2226 /*
2227  * Sets up the vmcs for emulated real mode.
2228  */
2229 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
2230 {
2231         u32 host_sysenter_cs, msr_low, msr_high;
2232         u32 junk;
2233         u64 host_pat, tsc_this, tsc_base;
2234         unsigned long a;
2235         struct descriptor_table dt;
2236         int i;
2237         unsigned long kvm_vmx_return;
2238         u32 exec_control;
2239
2240         /* I/O */
2241         vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
2242         vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
2243
2244         if (cpu_has_vmx_msr_bitmap())
2245                 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
2246
2247         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
2248
2249         /* Control */
2250         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
2251                 vmcs_config.pin_based_exec_ctrl);
2252
2253         exec_control = vmcs_config.cpu_based_exec_ctrl;
2254         if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
2255                 exec_control &= ~CPU_BASED_TPR_SHADOW;
2256 #ifdef CONFIG_X86_64
2257                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
2258                                 CPU_BASED_CR8_LOAD_EXITING;
2259 #endif
2260         }
2261         if (!enable_ept)
2262                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
2263                                 CPU_BASED_CR3_LOAD_EXITING  |
2264                                 CPU_BASED_INVLPG_EXITING;
2265         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
2266
2267         if (cpu_has_secondary_exec_ctrls()) {
2268                 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
2269                 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2270                         exec_control &=
2271                                 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
2272                 if (vmx->vpid == 0)
2273                         exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
2274                 if (!enable_ept)
2275                         exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
2276                 if (!enable_unrestricted_guest)
2277                         exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2278                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
2279         }
2280
2281         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
2282         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
2283         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
2284
2285         vmcs_writel(HOST_CR0, read_cr0());  /* 22.2.3 */
2286         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
2287         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
2288
2289         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
2290         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2291         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2292         vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs());    /* 22.2.4 */
2293         vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs());    /* 22.2.4 */
2294         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2295 #ifdef CONFIG_X86_64
2296         rdmsrl(MSR_FS_BASE, a);
2297         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
2298         rdmsrl(MSR_GS_BASE, a);
2299         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
2300 #else
2301         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
2302         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
2303 #endif
2304
2305         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
2306
2307         kvm_get_idt(&dt);
2308         vmcs_writel(HOST_IDTR_BASE, dt.base);   /* 22.2.4 */
2309
2310         asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
2311         vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
2312         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
2313         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2314         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2315
2316         rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
2317         vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
2318         rdmsrl(MSR_IA32_SYSENTER_ESP, a);
2319         vmcs_writel(HOST_IA32_SYSENTER_ESP, a);   /* 22.2.3 */
2320         rdmsrl(MSR_IA32_SYSENTER_EIP, a);
2321         vmcs_writel(HOST_IA32_SYSENTER_EIP, a);   /* 22.2.3 */
2322
2323         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
2324                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2325                 host_pat = msr_low | ((u64) msr_high << 32);
2326                 vmcs_write64(HOST_IA32_PAT, host_pat);
2327         }
2328         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2329                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2330                 host_pat = msr_low | ((u64) msr_high << 32);
2331                 /* Write the default value follow host pat */
2332                 vmcs_write64(GUEST_IA32_PAT, host_pat);
2333                 /* Keep arch.pat sync with GUEST_IA32_PAT */
2334                 vmx->vcpu.arch.pat = host_pat;
2335         }
2336
2337         for (i = 0; i < NR_VMX_MSR; ++i) {
2338                 u32 index = vmx_msr_index[i];
2339                 u32 data_low, data_high;
2340                 u64 data;
2341                 int j = vmx->nmsrs;
2342
2343                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
2344                         continue;
2345                 if (wrmsr_safe(index, data_low, data_high) < 0)
2346                         continue;
2347                 data = data_low | ((u64)data_high << 32);
2348                 vmx->host_msrs[j].index = index;
2349                 vmx->host_msrs[j].reserved = 0;
2350                 vmx->host_msrs[j].data = data;
2351                 vmx->guest_msrs[j] = vmx->host_msrs[j];
2352                 ++vmx->nmsrs;
2353         }
2354
2355         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
2356
2357         /* 22.2.1, 20.8.1 */
2358         vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
2359
2360         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
2361         vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
2362
2363         tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
2364         rdtscll(tsc_this);
2365         if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
2366                 tsc_base = tsc_this;
2367
2368         guest_write_tsc(0, tsc_base);
2369
2370         return 0;
2371 }
2372
2373 static int init_rmode(struct kvm *kvm)
2374 {
2375         if (!init_rmode_tss(kvm))
2376                 return 0;
2377         if (!init_rmode_identity_map(kvm))
2378                 return 0;
2379         return 1;
2380 }
2381
2382 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
2383 {
2384         struct vcpu_vmx *vmx = to_vmx(vcpu);
2385         u64 msr;
2386         int ret;
2387
2388         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
2389         down_read(&vcpu->kvm->slots_lock);
2390         if (!init_rmode(vmx->vcpu.kvm)) {
2391                 ret = -ENOMEM;
2392                 goto out;
2393         }
2394
2395         vmx->rmode.vm86_active = 0;
2396
2397         vmx->soft_vnmi_blocked = 0;
2398
2399         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2400         kvm_set_cr8(&vmx->vcpu, 0);
2401         msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
2402         if (kvm_vcpu_is_bsp(&vmx->vcpu))
2403                 msr |= MSR_IA32_APICBASE_BSP;
2404         kvm_set_apic_base(&vmx->vcpu, msr);
2405
2406         fx_init(&vmx->vcpu);
2407
2408         seg_setup(VCPU_SREG_CS);
2409         /*
2410          * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2411          * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh.
2412          */
2413         if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
2414                 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
2415                 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
2416         } else {
2417                 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
2418                 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
2419         }
2420
2421         seg_setup(VCPU_SREG_DS);
2422         seg_setup(VCPU_SREG_ES);
2423         seg_setup(VCPU_SREG_FS);
2424         seg_setup(VCPU_SREG_GS);
2425         seg_setup(VCPU_SREG_SS);
2426
2427         vmcs_write16(GUEST_TR_SELECTOR, 0);
2428         vmcs_writel(GUEST_TR_BASE, 0);
2429         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
2430         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2431
2432         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
2433         vmcs_writel(GUEST_LDTR_BASE, 0);
2434         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
2435         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
2436
2437         vmcs_write32(GUEST_SYSENTER_CS, 0);
2438         vmcs_writel(GUEST_SYSENTER_ESP, 0);
2439         vmcs_writel(GUEST_SYSENTER_EIP, 0);
2440
2441         vmcs_writel(GUEST_RFLAGS, 0x02);
2442         if (kvm_vcpu_is_bsp(&vmx->vcpu))
2443                 kvm_rip_write(vcpu, 0xfff0);
2444         else
2445                 kvm_rip_write(vcpu, 0);
2446         kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
2447
2448         vmcs_writel(GUEST_DR7, 0x400);
2449
2450         vmcs_writel(GUEST_GDTR_BASE, 0);
2451         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
2452
2453         vmcs_writel(GUEST_IDTR_BASE, 0);
2454         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
2455
2456         vmcs_write32(GUEST_ACTIVITY_STATE, 0);
2457         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
2458         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
2459
2460         /* Special registers */
2461         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
2462
2463         setup_msrs(vmx);
2464
2465         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
2466
2467         if (cpu_has_vmx_tpr_shadow()) {
2468                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
2469                 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
2470                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
2471                                 page_to_phys(vmx->vcpu.arch.apic->regs_page));
2472                 vmcs_write32(TPR_THRESHOLD, 0);
2473         }
2474
2475         if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2476                 vmcs_write64(APIC_ACCESS_ADDR,
2477                              page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
2478
2479         if (vmx->vpid != 0)
2480                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2481
2482         vmx->vcpu.arch.cr0 = 0x60000010;
2483         vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
2484         vmx_set_cr4(&vmx->vcpu, 0);
2485         vmx_set_efer(&vmx->vcpu, 0);
2486         vmx_fpu_activate(&vmx->vcpu);
2487         update_exception_bitmap(&vmx->vcpu);
2488
2489         vpid_sync_vcpu_all(vmx);
2490
2491         ret = 0;
2492
2493         /* HACK: Don't enable emulation on guest boot/reset */
2494         vmx->emulation_required = 0;
2495
2496 out:
2497         up_read(&vcpu->kvm->slots_lock);
2498         return ret;
2499 }
2500
2501 static void enable_irq_window(struct kvm_vcpu *vcpu)
2502 {
2503         u32 cpu_based_vm_exec_control;
2504
2505         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2506         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2507         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2508 }
2509
2510 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2511 {
2512         u32 cpu_based_vm_exec_control;
2513
2514         if (!cpu_has_virtual_nmis()) {
2515                 enable_irq_window(vcpu);
2516                 return;
2517         }
2518
2519         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2520         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
2521         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2522 }
2523
2524 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
2525 {
2526         struct vcpu_vmx *vmx = to_vmx(vcpu);
2527         uint32_t intr;
2528         int irq = vcpu->arch.interrupt.nr;
2529
2530         KVMTRACE_1D(INJ_VIRQ, vcpu, (u32)irq, handler);
2531
2532         ++vcpu->stat.irq_injections;
2533         if (vmx->rmode.vm86_active) {
2534                 vmx->rmode.irq.pending = true;
2535                 vmx->rmode.irq.vector = irq;
2536                 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2537                 if (vcpu->arch.interrupt.soft)
2538                         vmx->rmode.irq.rip +=
2539                                 vmx->vcpu.arch.event_exit_inst_len;
2540                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2541                              irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
2542                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2543                 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2544                 return;
2545         }
2546         intr = irq | INTR_INFO_VALID_MASK;
2547         if (vcpu->arch.interrupt.soft) {
2548                 intr |= INTR_TYPE_SOFT_INTR;
2549                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2550                              vmx->vcpu.arch.event_exit_inst_len);
2551         } else
2552                 intr |= INTR_TYPE_EXT_INTR;
2553         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
2554 }
2555
2556 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
2557 {
2558         struct vcpu_vmx *vmx = to_vmx(vcpu);
2559
2560         if (!cpu_has_virtual_nmis()) {
2561                 /*
2562                  * Tracking the NMI-blocked state in software is built upon
2563                  * finding the next open IRQ window. This, in turn, depends on
2564                  * well-behaving guests: They have to keep IRQs disabled at
2565                  * least as long as the NMI handler runs. Otherwise we may
2566                  * cause NMI nesting, maybe breaking the guest. But as this is
2567                  * highly unlikely, we can live with the residual risk.
2568                  */
2569                 vmx->soft_vnmi_blocked = 1;
2570                 vmx->vnmi_blocked_time = 0;
2571         }
2572
2573         ++vcpu->stat.nmi_injections;
2574         if (vmx->rmode.vm86_active) {
2575                 vmx->rmode.irq.pending = true;
2576                 vmx->rmode.irq.vector = NMI_VECTOR;
2577                 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2578                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2579                              NMI_VECTOR | INTR_TYPE_SOFT_INTR |
2580                              INTR_INFO_VALID_MASK);
2581                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2582                 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2583                 return;
2584         }
2585         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2586                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
2587 }
2588
2589 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
2590 {
2591         if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
2592                 return 0;
2593
2594         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2595                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS |
2596                                 GUEST_INTR_STATE_NMI));
2597 }
2598
2599 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
2600 {
2601         return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2602                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2603                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
2604 }
2605
2606 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
2607 {
2608         int ret;
2609         struct kvm_userspace_memory_region tss_mem = {
2610                 .slot = TSS_PRIVATE_MEMSLOT,
2611                 .guest_phys_addr = addr,
2612                 .memory_size = PAGE_SIZE * 3,
2613                 .flags = 0,
2614         };
2615
2616         ret = kvm_set_memory_region(kvm, &tss_mem, 0);
2617         if (ret)
2618                 return ret;
2619         kvm->arch.tss_addr = addr;
2620         return 0;
2621 }
2622
2623 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
2624                                   int vec, u32 err_code)
2625 {
2626         /*
2627          * Instruction with address size override prefix opcode 0x67
2628          * Cause the #SS fault with 0 error code in VM86 mode.
2629          */
2630         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
2631                 if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
2632                         return 1;
2633         /*
2634          * Forward all other exceptions that are valid in real mode.
2635          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
2636          *        the required debugging infrastructure rework.
2637          */
2638         switch (vec) {
2639         case DB_VECTOR:
2640                 if (vcpu->guest_debug &
2641                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
2642                         return 0;
2643                 kvm_queue_exception(vcpu, vec);
2644                 return 1;
2645         case BP_VECTOR:
2646                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2647                         return 0;
2648                 /* fall through */
2649         case DE_VECTOR:
2650         case OF_VECTOR:
2651         case BR_VECTOR:
2652         case UD_VECTOR:
2653         case DF_VECTOR:
2654         case SS_VECTOR:
2655         case GP_VECTOR:
2656         case MF_VECTOR:
2657                 kvm_queue_exception(vcpu, vec);
2658                 return 1;
2659         }
2660         return 0;
2661 }
2662
2663 /*
2664  * Trigger machine check on the host. We assume all the MSRs are already set up
2665  * by the CPU and that we still run on the same CPU as the MCE occurred on.
2666  * We pass a fake environment to the machine check handler because we want
2667  * the guest to be always treated like user space, no matter what context
2668  * it used internally.
2669  */
2670 static void kvm_machine_check(void)
2671 {
2672 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
2673         struct pt_regs regs = {
2674                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
2675                 .flags = X86_EFLAGS_IF,
2676         };
2677
2678         do_machine_check(&regs, 0);
2679 #endif
2680 }
2681
2682 static int handle_machine_check(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2683 {
2684         /* already handled by vcpu_run */
2685         return 1;
2686 }
2687
2688 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2689 {
2690         struct vcpu_vmx *vmx = to_vmx(vcpu);
2691         u32 intr_info, ex_no, error_code;
2692         unsigned long cr2, rip, dr6;
2693         u32 vect_info;
2694         enum emulation_result er;
2695
2696         vect_info = vmx->idt_vectoring_info;
2697         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2698
2699         if (is_machine_check(intr_info))
2700                 return handle_machine_check(vcpu, kvm_run);
2701
2702         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
2703                                                 !is_page_fault(intr_info))
2704                 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
2705                        "intr info 0x%x\n", __func__, vect_info, intr_info);
2706
2707         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
2708                 return 1;  /* already handled by vmx_vcpu_run() */
2709
2710         if (is_no_device(intr_info)) {
2711                 vmx_fpu_activate(vcpu);
2712                 return 1;
2713         }
2714
2715         if (is_invalid_opcode(intr_info)) {
2716                 er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
2717                 if (er != EMULATE_DONE)
2718                         kvm_queue_exception(vcpu, UD_VECTOR);
2719                 return 1;
2720         }
2721
2722         error_code = 0;
2723         rip = kvm_rip_read(vcpu);
2724         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
2725                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
2726         if (is_page_fault(intr_info)) {
2727                 /* EPT won't cause page fault directly */
2728                 if (enable_ept)
2729                         BUG();
2730                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
2731                 KVMTRACE_3D(PAGE_FAULT, vcpu, error_code, (u32)cr2,
2732                             (u32)((u64)cr2 >> 32), handler);
2733                 if (kvm_event_needs_reinjection(vcpu))
2734                         kvm_mmu_unprotect_page_virt(vcpu, cr2);
2735                 return kvm_mmu_page_fault(vcpu, cr2, error_code);
2736         }
2737
2738         if (vmx->rmode.vm86_active &&
2739             handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
2740                                                                 error_code)) {
2741                 if (vcpu->arch.halt_request) {
2742                         vcpu->arch.halt_request = 0;
2743                         return kvm_emulate_halt(vcpu);
2744                 }
2745                 return 1;
2746         }
2747
2748         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
2749         switch (ex_no) {
2750         case DB_VECTOR:
2751                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
2752                 if (!(vcpu->guest_debug &
2753                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
2754                         vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
2755                         kvm_queue_exception(vcpu, DB_VECTOR);
2756                         return 1;
2757                 }
2758                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
2759                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
2760                 /* fall through */
2761         case BP_VECTOR:
2762                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2763                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
2764                 kvm_run->debug.arch.exception = ex_no;
2765                 break;
2766         default:
2767                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
2768                 kvm_run->ex.exception = ex_no;
2769                 kvm_run->ex.error_code = error_code;
2770                 break;
2771         }
2772         return 0;
2773 }
2774
2775 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
2776                                      struct kvm_run *kvm_run)
2777 {
2778         ++vcpu->stat.irq_exits;
2779         KVMTRACE_1D(INTR, vcpu, vmcs_read32(VM_EXIT_INTR_INFO), handler);
2780         return 1;
2781 }
2782
2783 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2784 {
2785         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2786         return 0;
2787 }
2788
2789 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2790 {
2791         unsigned long exit_qualification;
2792         int size, in, string;
2793         unsigned port;
2794
2795         ++vcpu->stat.io_exits;
2796         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2797         string = (exit_qualification & 16) != 0;
2798
2799         if (string) {
2800                 if (emulate_instruction(vcpu,
2801                                         kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
2802                         return 0;
2803                 return 1;
2804         }
2805
2806         size = (exit_qualification & 7) + 1;
2807         in = (exit_qualification & 8) != 0;
2808         port = exit_qualification >> 16;
2809
2810         skip_emulated_instruction(vcpu);
2811         return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
2812 }
2813
2814 static void
2815 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2816 {
2817         /*
2818          * Patch in the VMCALL instruction:
2819          */
2820         hypercall[0] = 0x0f;
2821         hypercall[1] = 0x01;
2822         hypercall[2] = 0xc1;
2823 }
2824
2825 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2826 {
2827         unsigned long exit_qualification;
2828         int cr;
2829         int reg;
2830
2831         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2832         cr = exit_qualification & 15;
2833         reg = (exit_qualification >> 8) & 15;
2834         switch ((exit_qualification >> 4) & 3) {
2835         case 0: /* mov to cr */
2836                 KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr,
2837                             (u32)kvm_register_read(vcpu, reg),
2838                             (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
2839                             handler);
2840                 switch (cr) {
2841                 case 0:
2842                         kvm_set_cr0(vcpu, kvm_register_read(vcpu, reg));
2843                         skip_emulated_instruction(vcpu);
2844                         return 1;
2845                 case 3:
2846                         kvm_set_cr3(vcpu, kvm_register_read(vcpu, reg));
2847                         skip_emulated_instruction(vcpu);
2848                         return 1;
2849                 case 4:
2850                         kvm_set_cr4(vcpu, kvm_register_read(vcpu, reg));
2851                         skip_emulated_instruction(vcpu);
2852                         return 1;
2853                 case 8: {
2854                                 u8 cr8_prev = kvm_get_cr8(vcpu);
2855                                 u8 cr8 = kvm_register_read(vcpu, reg);
2856                                 kvm_set_cr8(vcpu, cr8);
2857                                 skip_emulated_instruction(vcpu);
2858                                 if (irqchip_in_kernel(vcpu->kvm))
2859                                         return 1;
2860                                 if (cr8_prev <= cr8)
2861                                         return 1;
2862                                 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2863                                 return 0;
2864                         }
2865                 };
2866                 break;
2867         case 2: /* clts */
2868                 vmx_fpu_deactivate(vcpu);
2869                 vcpu->arch.cr0 &= ~X86_CR0_TS;
2870                 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2871                 vmx_fpu_activate(vcpu);
2872                 KVMTRACE_0D(CLTS, vcpu, handler);
2873                 skip_emulated_instruction(vcpu);
2874                 return 1;
2875         case 1: /*mov from cr*/
2876                 switch (cr) {
2877                 case 3:
2878                         kvm_register_write(vcpu, reg, vcpu->arch.cr3);
2879                         KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
2880                                     (u32)kvm_register_read(vcpu, reg),
2881                                     (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
2882                                     handler);
2883                         skip_emulated_instruction(vcpu);
2884                         return 1;
2885                 case 8:
2886                         kvm_register_write(vcpu, reg, kvm_get_cr8(vcpu));
2887                         KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
2888                                     (u32)kvm_register_read(vcpu, reg), handler);
2889                         skip_emulated_instruction(vcpu);
2890                         return 1;
2891                 }
2892                 break;
2893         case 3: /* lmsw */
2894                 kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
2895
2896                 skip_emulated_instruction(vcpu);
2897                 return 1;
2898         default:
2899                 break;
2900         }
2901         kvm_run->exit_reason = 0;
2902         pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
2903                (int)(exit_qualification >> 4) & 3, cr);
2904         return 0;
2905 }
2906
2907 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2908 {
2909         unsigned long exit_qualification;
2910         unsigned long val;
2911         int dr, reg;
2912
2913         dr = vmcs_readl(GUEST_DR7);
2914         if (dr & DR7_GD) {
2915                 /*
2916                  * As the vm-exit takes precedence over the debug trap, we
2917                  * need to emulate the latter, either for the host or the
2918                  * guest debugging itself.
2919                  */
2920                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
2921                         kvm_run->debug.arch.dr6 = vcpu->arch.dr6;
2922                         kvm_run->debug.arch.dr7 = dr;
2923                         kvm_run->debug.arch.pc =
2924                                 vmcs_readl(GUEST_CS_BASE) +
2925                                 vmcs_readl(GUEST_RIP);
2926                         kvm_run->debug.arch.exception = DB_VECTOR;
2927                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
2928                         return 0;
2929                 } else {
2930                         vcpu->arch.dr7 &= ~DR7_GD;
2931                         vcpu->arch.dr6 |= DR6_BD;
2932                         vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
2933                         kvm_queue_exception(vcpu, DB_VECTOR);
2934                         return 1;
2935                 }
2936         }
2937
2938         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2939         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
2940         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
2941         if (exit_qualification & TYPE_MOV_FROM_DR) {
2942                 switch (dr) {
2943                 case 0 ... 3:
2944                         val = vcpu->arch.db[dr];
2945                         break;
2946                 case 6:
2947                         val = vcpu->arch.dr6;
2948                         break;
2949                 case 7:
2950                         val = vcpu->arch.dr7;
2951                         break;
2952                 default:
2953                         val = 0;
2954                 }
2955                 kvm_register_write(vcpu, reg, val);
2956                 KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
2957         } else {
2958                 val = vcpu->arch.regs[reg];
2959                 switch (dr) {
2960                 case 0 ... 3:
2961                         vcpu->arch.db[dr] = val;
2962                         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
2963                                 vcpu->arch.eff_db[dr] = val;
2964                         break;
2965                 case 4 ... 5:
2966                         if (vcpu->arch.cr4 & X86_CR4_DE)
2967                                 kvm_queue_exception(vcpu, UD_VECTOR);
2968                         break;
2969                 case 6:
2970                         if (val & 0xffffffff00000000ULL) {
2971                                 kvm_queue_exception(vcpu, GP_VECTOR);
2972                                 break;
2973                         }
2974                         vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
2975                         break;
2976                 case 7:
2977                         if (val & 0xffffffff00000000ULL) {
2978                                 kvm_queue_exception(vcpu, GP_VECTOR);
2979                                 break;
2980                         }
2981                         vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
2982                         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
2983                                 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
2984                                 vcpu->arch.switch_db_regs =
2985                                         (val & DR7_BP_EN_MASK);
2986                         }
2987                         break;
2988                 }
2989                 KVMTRACE_2D(DR_WRITE, vcpu, (u32)dr, (u32)val, handler);
2990         }
2991         skip_emulated_instruction(vcpu);
2992         return 1;
2993 }
2994
2995 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2996 {
2997         kvm_emulate_cpuid(vcpu);
2998         return 1;
2999 }
3000
3001 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3002 {
3003         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3004         u64 data;
3005
3006         if (vmx_get_msr(vcpu, ecx, &data)) {
3007                 kvm_inject_gp(vcpu, 0);
3008                 return 1;
3009         }
3010
3011         KVMTRACE_3D(MSR_READ, vcpu, ecx, (u32)data, (u32)(data >> 32),
3012                     handler);
3013
3014         /* FIXME: handling of bits 32:63 of rax, rdx */
3015         vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
3016         vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
3017         skip_emulated_instruction(vcpu);
3018         return 1;
3019 }
3020
3021 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3022 {
3023         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3024         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
3025                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3026
3027         KVMTRACE_3D(MSR_WRITE, vcpu, ecx, (u32)data, (u32)(data >> 32),
3028                     handler);
3029
3030         if (vmx_set_msr(vcpu, ecx, data) != 0) {
3031                 kvm_inject_gp(vcpu, 0);
3032                 return 1;
3033         }
3034
3035         skip_emulated_instruction(vcpu);
3036         return 1;
3037 }
3038
3039 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
3040                                       struct kvm_run *kvm_run)
3041 {
3042         return 1;
3043 }
3044
3045 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
3046                                    struct kvm_run *kvm_run)
3047 {
3048         u32 cpu_based_vm_exec_control;
3049
3050         /* clear pending irq */
3051         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3052         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
3053         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3054
3055         KVMTRACE_0D(PEND_INTR, vcpu, handler);
3056         ++vcpu->stat.irq_window_exits;
3057
3058         /*
3059          * If the user space waits to inject interrupts, exit as soon as
3060          * possible
3061          */
3062         if (!irqchip_in_kernel(vcpu->kvm) &&
3063             kvm_run->request_interrupt_window &&
3064             !kvm_cpu_has_interrupt(vcpu)) {
3065                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3066                 return 0;
3067         }
3068         return 1;
3069 }
3070
3071 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3072 {
3073         skip_emulated_instruction(vcpu);
3074         return kvm_emulate_halt(vcpu);
3075 }
3076
3077 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3078 {
3079         skip_emulated_instruction(vcpu);
3080         kvm_emulate_hypercall(vcpu);
3081         return 1;
3082 }
3083
3084 static int handle_vmx_insn(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3085 {
3086         kvm_queue_exception(vcpu, UD_VECTOR);
3087         return 1;
3088 }
3089
3090 static int handle_invlpg(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3091 {
3092         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3093
3094         kvm_mmu_invlpg(vcpu, exit_qualification);
3095         skip_emulated_instruction(vcpu);
3096         return 1;
3097 }
3098
3099 static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3100 {
3101         skip_emulated_instruction(vcpu);
3102         /* TODO: Add support for VT-d/pass-through device */
3103         return 1;
3104 }
3105
3106 static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3107 {
3108         unsigned long exit_qualification;
3109         enum emulation_result er;
3110         unsigned long offset;
3111
3112         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3113         offset = exit_qualification & 0xffful;
3114
3115         er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
3116
3117         if (er !=  EMULATE_DONE) {
3118                 printk(KERN_ERR
3119                        "Fail to handle apic access vmexit! Offset is 0x%lx\n",
3120                        offset);
3121                 return -ENOTSUPP;
3122         }
3123         return 1;
3124 }
3125
3126 static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3127 {
3128         struct vcpu_vmx *vmx = to_vmx(vcpu);
3129         unsigned long exit_qualification;
3130         u16 tss_selector;
3131         int reason, type, idt_v;
3132
3133         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
3134         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
3135
3136         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3137
3138         reason = (u32)exit_qualification >> 30;
3139         if (reason == TASK_SWITCH_GATE && idt_v) {
3140                 switch (type) {
3141                 case INTR_TYPE_NMI_INTR:
3142                         vcpu->arch.nmi_injected = false;
3143                         if (cpu_has_virtual_nmis())
3144                                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3145                                               GUEST_INTR_STATE_NMI);
3146                         break;
3147                 case INTR_TYPE_EXT_INTR:
3148                 case INTR_TYPE_SOFT_INTR:
3149                         kvm_clear_interrupt_queue(vcpu);
3150                         break;
3151                 case INTR_TYPE_HARD_EXCEPTION:
3152                 case INTR_TYPE_SOFT_EXCEPTION:
3153                         kvm_clear_exception_queue(vcpu);
3154                         break;
3155                 default:
3156                         break;
3157                 }
3158         }
3159         tss_selector = exit_qualification;
3160
3161         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
3162                        type != INTR_TYPE_EXT_INTR &&
3163                        type != INTR_TYPE_NMI_INTR))
3164                 skip_emulated_instruction(vcpu);
3165
3166         if (!kvm_task_switch(vcpu, tss_selector, reason))
3167                 return 0;
3168
3169         /* clear all local breakpoint enable flags */
3170         vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
3171
3172         /*
3173          * TODO: What about debug traps on tss switch?
3174          *       Are we supposed to inject them and update dr6?
3175          */
3176
3177         return 1;
3178 }
3179
3180 static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3181 {
3182         unsigned long exit_qualification;
3183         gpa_t gpa;
3184         int gla_validity;
3185
3186         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3187
3188         if (exit_qualification & (1 << 6)) {
3189                 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
3190                 return -ENOTSUPP;
3191         }
3192
3193         gla_validity = (exit_qualification >> 7) & 0x3;
3194         if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
3195                 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
3196                 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
3197                         (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
3198                         vmcs_readl(GUEST_LINEAR_ADDRESS));
3199                 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
3200                         (long unsigned int)exit_qualification);
3201                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3202                 kvm_run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
3203                 return 0;
3204         }
3205
3206         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3207         return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
3208 }
3209
3210 static int handle_nmi_window(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3211 {
3212         u32 cpu_based_vm_exec_control;
3213
3214         /* clear pending NMI */
3215         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3216         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
3217         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3218         ++vcpu->stat.nmi_window_exits;
3219
3220         return 1;
3221 }
3222
3223 static void handle_invalid_guest_state(struct kvm_vcpu *vcpu,
3224                                 struct kvm_run *kvm_run)
3225 {
3226         struct vcpu_vmx *vmx = to_vmx(vcpu);
3227         enum emulation_result err = EMULATE_DONE;
3228
3229         local_irq_enable();
3230         preempt_enable();
3231
3232         while (!guest_state_valid(vcpu)) {
3233                 err = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
3234
3235                 if (err == EMULATE_DO_MMIO)
3236                         break;
3237
3238                 if (err != EMULATE_DONE) {
3239                         kvm_report_emulation_failure(vcpu, "emulation failure");
3240                         break;
3241                 }
3242
3243                 if (signal_pending(current))
3244                         break;
3245                 if (need_resched())
3246                         schedule();
3247         }
3248
3249         preempt_disable();
3250         local_irq_disable();
3251
3252         vmx->invalid_state_emulation_result = err;
3253 }
3254
3255 /*
3256  * The exit handlers return 1 if the exit was handled fully and guest execution
3257  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
3258  * to be done to userspace and return 0.
3259  */
3260 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
3261                                       struct kvm_run *kvm_run) = {
3262         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
3263         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
3264         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
3265         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
3266         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
3267         [EXIT_REASON_CR_ACCESS]               = handle_cr,
3268         [EXIT_REASON_DR_ACCESS]               = handle_dr,
3269         [EXIT_REASON_CPUID]                   = handle_cpuid,
3270         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
3271         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
3272         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
3273         [EXIT_REASON_HLT]                     = handle_halt,
3274         [EXIT_REASON_INVLPG]                  = handle_invlpg,
3275         [EXIT_REASON_VMCALL]                  = handle_vmcall,
3276         [EXIT_REASON_VMCLEAR]                 = handle_vmx_insn,
3277         [EXIT_REASON_VMLAUNCH]                = handle_vmx_insn,
3278         [EXIT_REASON_VMPTRLD]                 = handle_vmx_insn,
3279         [EXIT_REASON_VMPTRST]                 = handle_vmx_insn,
3280         [EXIT_REASON_VMREAD]                  = handle_vmx_insn,
3281         [EXIT_REASON_VMRESUME]                = handle_vmx_insn,
3282         [EXIT_REASON_VMWRITE]                 = handle_vmx_insn,
3283         [EXIT_REASON_VMOFF]                   = handle_vmx_insn,
3284         [EXIT_REASON_VMON]                    = handle_vmx_insn,
3285         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
3286         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
3287         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
3288         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
3289         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
3290         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
3291 };
3292
3293 static const int kvm_vmx_max_exit_handlers =
3294         ARRAY_SIZE(kvm_vmx_exit_handlers);
3295
3296 /*
3297  * The guest has exited.  See if we can fix it or if we need userspace
3298  * assistance.
3299  */
3300 static int vmx_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3301 {
3302         struct vcpu_vmx *vmx = to_vmx(vcpu);
3303         u32 exit_reason = vmx->exit_reason;
3304         u32 vectoring_info = vmx->idt_vectoring_info;
3305
3306         KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)kvm_rip_read(vcpu),
3307                     (u32)((u64)kvm_rip_read(vcpu) >> 32), entryexit);
3308
3309         /* If we need to emulate an MMIO from handle_invalid_guest_state
3310          * we just return 0 */
3311         if (vmx->emulation_required && emulate_invalid_guest_state) {
3312                 if (guest_state_valid(vcpu))
3313                         vmx->emulation_required = 0;
3314                 return vmx->invalid_state_emulation_result != EMULATE_DO_MMIO;
3315         }
3316
3317         /* Access CR3 don't cause VMExit in paging mode, so we need
3318          * to sync with guest real CR3. */
3319         if (enable_ept && is_paging(vcpu))
3320                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3321
3322         if (unlikely(vmx->fail)) {
3323                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3324                 kvm_run->fail_entry.hardware_entry_failure_reason
3325                         = vmcs_read32(VM_INSTRUCTION_ERROR);
3326                 return 0;
3327         }
3328
3329         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
3330                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
3331                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
3332                         exit_reason != EXIT_REASON_TASK_SWITCH))
3333                 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
3334                        "(0x%x) and exit reason is 0x%x\n",
3335                        __func__, vectoring_info, exit_reason);
3336
3337         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
3338                 if (vmx_interrupt_allowed(vcpu)) {
3339                         vmx->soft_vnmi_blocked = 0;
3340                 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
3341                            vcpu->arch.nmi_pending) {
3342                         /*
3343                          * This CPU don't support us in finding the end of an
3344                          * NMI-blocked window if the guest runs with IRQs
3345                          * disabled. So we pull the trigger after 1 s of
3346                          * futile waiting, but inform the user about this.
3347                          */
3348                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
3349                                "state on VCPU %d after 1 s timeout\n",
3350                                __func__, vcpu->vcpu_id);
3351                         vmx->soft_vnmi_blocked = 0;
3352                 }
3353         }
3354
3355         if (exit_reason < kvm_vmx_max_exit_handlers
3356             && kvm_vmx_exit_handlers[exit_reason])
3357                 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
3358         else {
3359                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3360                 kvm_run->hw.hardware_exit_reason = exit_reason;
3361         }
3362         return 0;
3363 }
3364
3365 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3366 {
3367         if (irr == -1 || tpr < irr) {
3368                 vmcs_write32(TPR_THRESHOLD, 0);
3369                 return;
3370         }
3371
3372         vmcs_write32(TPR_THRESHOLD, irr);
3373 }
3374
3375 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
3376 {
3377         u32 exit_intr_info;
3378         u32 idt_vectoring_info = vmx->idt_vectoring_info;
3379         bool unblock_nmi;
3380         u8 vector;
3381         int type;
3382         bool idtv_info_valid;
3383
3384         exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3385
3386         vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
3387
3388         /* Handle machine checks before interrupts are enabled */
3389         if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
3390             || (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI
3391                 && is_machine_check(exit_intr_info)))
3392                 kvm_machine_check();
3393
3394         /* We need to handle NMIs before interrupts are enabled */
3395         if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
3396             (exit_intr_info & INTR_INFO_VALID_MASK)) {
3397                 KVMTRACE_0D(NMI, &vmx->vcpu, handler);
3398                 asm("int $2");
3399         }
3400
3401         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
3402
3403         if (cpu_has_virtual_nmis()) {
3404                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
3405                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
3406                 /*
3407                  * SDM 3: 27.7.1.2 (September 2008)
3408                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
3409                  * a guest IRET fault.
3410                  * SDM 3: 23.2.2 (September 2008)
3411                  * Bit 12 is undefined in any of the following cases:
3412                  *  If the VM exit sets the valid bit in the IDT-vectoring
3413                  *   information field.
3414                  *  If the VM exit is due to a double fault.
3415                  */
3416                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
3417                     vector != DF_VECTOR && !idtv_info_valid)
3418                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3419                                       GUEST_INTR_STATE_NMI);
3420         } else if (unlikely(vmx->soft_vnmi_blocked))
3421                 vmx->vnmi_blocked_time +=
3422                         ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
3423
3424         vmx->vcpu.arch.nmi_injected = false;
3425         kvm_clear_exception_queue(&vmx->vcpu);
3426         kvm_clear_interrupt_queue(&vmx->vcpu);
3427
3428         if (!idtv_info_valid)
3429                 return;
3430
3431         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
3432         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
3433
3434         switch (type) {
3435         case INTR_TYPE_NMI_INTR:
3436                 vmx->vcpu.arch.nmi_injected = true;
3437                 /*
3438                  * SDM 3: 27.7.1.2 (September 2008)
3439                  * Clear bit "block by NMI" before VM entry if a NMI
3440                  * delivery faulted.
3441                  */
3442                 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
3443                                 GUEST_INTR_STATE_NMI);
3444                 break;
3445         case INTR_TYPE_SOFT_EXCEPTION:
3446                 vmx->vcpu.arch.event_exit_inst_len =
3447                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3448                 /* fall through */
3449         case INTR_TYPE_HARD_EXCEPTION:
3450                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
3451                         u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE);
3452                         kvm_queue_exception_e(&vmx->vcpu, vector, err);
3453                 } else
3454                         kvm_queue_exception(&vmx->vcpu, vector);
3455                 break;
3456         case INTR_TYPE_SOFT_INTR:
3457                 vmx->vcpu.arch.event_exit_inst_len =
3458                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3459                 /* fall through */
3460         case INTR_TYPE_EXT_INTR:
3461                 kvm_queue_interrupt(&vmx->vcpu, vector,
3462                         type == INTR_TYPE_SOFT_INTR);
3463                 break;
3464         default:
3465                 break;
3466         }
3467 }
3468
3469 /*
3470  * Failure to inject an interrupt should give us the information
3471  * in IDT_VECTORING_INFO_FIELD.  However, if the failure occurs
3472  * when fetching the interrupt redirection bitmap in the real-mode
3473  * tss, this doesn't happen.  So we do it ourselves.
3474  */
3475 static void fixup_rmode_irq(struct vcpu_vmx *vmx)
3476 {
3477         vmx->rmode.irq.pending = 0;
3478         if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
3479                 return;
3480         kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
3481         if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
3482                 vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
3483                 vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
3484                 return;
3485         }
3486         vmx->idt_vectoring_info =
3487                 VECTORING_INFO_VALID_MASK
3488                 | INTR_TYPE_EXT_INTR
3489                 | vmx->rmode.irq.vector;
3490 }
3491
3492 #ifdef CONFIG_X86_64
3493 #define R "r"
3494 #define Q "q"
3495 #else
3496 #define R "e"
3497 #define Q "l"
3498 #endif
3499
3500 static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3501 {
3502         struct vcpu_vmx *vmx = to_vmx(vcpu);
3503
3504         if (enable_ept && is_paging(vcpu)) {
3505                 vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3506                 ept_load_pdptrs(vcpu);
3507         }
3508         /* Record the guest's net vcpu time for enforced NMI injections. */
3509         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
3510                 vmx->entry_time = ktime_get();
3511
3512         /* Handle invalid guest state instead of entering VMX */
3513         if (vmx->emulation_required && emulate_invalid_guest_state) {
3514                 handle_invalid_guest_state(vcpu, kvm_run);
3515                 return;
3516         }
3517
3518         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
3519                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
3520         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
3521                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
3522
3523         /* When single-stepping over STI and MOV SS, we must clear the
3524          * corresponding interruptibility bits in the guest state. Otherwise
3525          * vmentry fails as it then expects bit 14 (BS) in pending debug
3526          * exceptions being set, but that's not correct for the guest debugging
3527          * case. */
3528         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3529                 vmx_set_interrupt_shadow(vcpu, 0);
3530
3531         /*
3532          * Loading guest fpu may have cleared host cr0.ts
3533          */
3534         vmcs_writel(HOST_CR0, read_cr0());
3535
3536         set_debugreg(vcpu->arch.dr6, 6);
3537
3538         asm(
3539                 /* Store host registers */
3540                 "push %%"R"dx; push %%"R"bp;"
3541                 "push %%"R"cx \n\t"
3542                 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
3543                 "je 1f \n\t"
3544                 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
3545                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
3546                 "1: \n\t"
3547                 /* Check if vmlaunch of vmresume is needed */
3548                 "cmpl $0, %c[launched](%0) \n\t"
3549                 /* Load guest registers.  Don't clobber flags. */
3550                 "mov %c[cr2](%0), %%"R"ax \n\t"
3551                 "mov %%"R"ax, %%cr2 \n\t"
3552                 "mov %c[rax](%0), %%"R"ax \n\t"
3553                 "mov %c[rbx](%0), %%"R"bx \n\t"
3554                 "mov %c[rdx](%0), %%"R"dx \n\t"
3555                 "mov %c[rsi](%0), %%"R"si \n\t"
3556                 "mov %c[rdi](%0), %%"R"di \n\t"
3557                 "mov %c[rbp](%0), %%"R"bp \n\t"
3558 #ifdef CONFIG_X86_64
3559                 "mov %c[r8](%0),  %%r8  \n\t"
3560                 "mov %c[r9](%0),  %%r9  \n\t"
3561                 "mov %c[r10](%0), %%r10 \n\t"
3562                 "mov %c[r11](%0), %%r11 \n\t"
3563                 "mov %c[r12](%0), %%r12 \n\t"
3564                 "mov %c[r13](%0), %%r13 \n\t"
3565                 "mov %c[r14](%0), %%r14 \n\t"
3566                 "mov %c[r15](%0), %%r15 \n\t"
3567 #endif
3568                 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
3569
3570                 /* Enter guest mode */
3571                 "jne .Llaunched \n\t"
3572                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
3573                 "jmp .Lkvm_vmx_return \n\t"
3574                 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
3575                 ".Lkvm_vmx_return: "
3576                 /* Save guest registers, load host registers, keep flags */
3577                 "xchg %0,     (%%"R"sp) \n\t"
3578                 "mov %%"R"ax, %c[rax](%0) \n\t"
3579                 "mov %%"R"bx, %c[rbx](%0) \n\t"
3580                 "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
3581                 "mov %%"R"dx, %c[rdx](%0) \n\t"
3582                 "mov %%"R"si, %c[rsi](%0) \n\t"
3583                 "mov %%"R"di, %c[rdi](%0) \n\t"
3584                 "mov %%"R"bp, %c[rbp](%0) \n\t"
3585 #ifdef CONFIG_X86_64
3586                 "mov %%r8,  %c[r8](%0) \n\t"
3587                 "mov %%r9,  %c[r9](%0) \n\t"
3588                 "mov %%r10, %c[r10](%0) \n\t"
3589                 "mov %%r11, %c[r11](%0) \n\t"
3590                 "mov %%r12, %c[r12](%0) \n\t"
3591                 "mov %%r13, %c[r13](%0) \n\t"
3592                 "mov %%r14, %c[r14](%0) \n\t"
3593                 "mov %%r15, %c[r15](%0) \n\t"
3594 #endif
3595                 "mov %%cr2, %%"R"ax   \n\t"
3596                 "mov %%"R"ax, %c[cr2](%0) \n\t"
3597
3598                 "pop  %%"R"bp; pop  %%"R"bp; pop  %%"R"dx \n\t"
3599                 "setbe %c[fail](%0) \n\t"
3600               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
3601                 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
3602                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
3603                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
3604                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
3605                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
3606                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
3607                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
3608                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
3609                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
3610                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
3611 #ifdef CONFIG_X86_64
3612                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
3613                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
3614                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
3615                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
3616                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
3617                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
3618                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
3619                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
3620 #endif
3621                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
3622               : "cc", "memory"
3623                 , R"bx", R"di", R"si"
3624 #ifdef CONFIG_X86_64
3625                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
3626 #endif
3627               );
3628
3629         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
3630                                   | (1 << VCPU_EXREG_PDPTR));
3631         vcpu->arch.regs_dirty = 0;
3632
3633         get_debugreg(vcpu->arch.dr6, 6);
3634
3635         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
3636         if (vmx->rmode.irq.pending)
3637                 fixup_rmode_irq(vmx);
3638
3639         asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
3640         vmx->launched = 1;
3641
3642         vmx_complete_interrupts(vmx);
3643 }
3644
3645 #undef R
3646 #undef Q
3647
3648 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
3649 {
3650         struct vcpu_vmx *vmx = to_vmx(vcpu);
3651
3652         if (vmx->vmcs) {
3653                 vcpu_clear(vmx);
3654                 free_vmcs(vmx->vmcs);
3655                 vmx->vmcs = NULL;
3656         }
3657 }
3658
3659 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
3660 {
3661         struct vcpu_vmx *vmx = to_vmx(vcpu);
3662
3663         spin_lock(&vmx_vpid_lock);
3664         if (vmx->vpid != 0)
3665                 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3666         spin_unlock(&vmx_vpid_lock);
3667         vmx_free_vmcs(vcpu);
3668         kfree(vmx->host_msrs);
3669         kfree(vmx->guest_msrs);
3670         kvm_vcpu_uninit(vcpu);
3671         kmem_cache_free(kvm_vcpu_cache, vmx);
3672 }
3673
3674 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
3675 {
3676         int err;
3677         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3678         int cpu;
3679
3680         if (!vmx)
3681                 return ERR_PTR(-ENOMEM);
3682
3683         allocate_vpid(vmx);
3684
3685         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
3686         if (err)
3687                 goto free_vcpu;
3688
3689         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3690         if (!vmx->guest_msrs) {
3691                 err = -ENOMEM;
3692                 goto uninit_vcpu;
3693         }
3694
3695         vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3696         if (!vmx->host_msrs)
3697                 goto free_guest_msrs;
3698
3699         vmx->vmcs = alloc_vmcs();
3700         if (!vmx->vmcs)
3701                 goto free_msrs;
3702
3703         vmcs_clear(vmx->vmcs);
3704
3705         cpu = get_cpu();
3706         vmx_vcpu_load(&vmx->vcpu, cpu);
3707         err = vmx_vcpu_setup(vmx);
3708         vmx_vcpu_put(&vmx->vcpu);
3709         put_cpu();
3710         if (err)
3711                 goto free_vmcs;
3712         if (vm_need_virtualize_apic_accesses(kvm))
3713                 if (alloc_apic_access_page(kvm) != 0)
3714                         goto free_vmcs;
3715
3716         if (enable_ept)
3717                 if (alloc_identity_pagetable(kvm) != 0)
3718                         goto free_vmcs;
3719
3720         return &vmx->vcpu;
3721
3722 free_vmcs:
3723         free_vmcs(vmx->vmcs);
3724 free_msrs:
3725         kfree(vmx->host_msrs);
3726 free_guest_msrs:
3727         kfree(vmx->guest_msrs);
3728 uninit_vcpu:
3729         kvm_vcpu_uninit(&vmx->vcpu);
3730 free_vcpu:
3731         kmem_cache_free(kvm_vcpu_cache, vmx);
3732         return ERR_PTR(err);
3733 }
3734
3735 static void __init vmx_check_processor_compat(void *rtn)
3736 {
3737         struct vmcs_config vmcs_conf;
3738
3739         *(int *)rtn = 0;
3740         if (setup_vmcs_config(&vmcs_conf) < 0)
3741                 *(int *)rtn = -EIO;
3742         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
3743                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
3744                                 smp_processor_id());
3745                 *(int *)rtn = -EIO;
3746         }
3747 }
3748
3749 static int get_ept_level(void)
3750 {
3751         return VMX_EPT_DEFAULT_GAW + 1;
3752 }
3753
3754 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3755 {
3756         u64 ret;
3757
3758         /* For VT-d and EPT combination
3759          * 1. MMIO: always map as UC
3760          * 2. EPT with VT-d:
3761          *   a. VT-d without snooping control feature: can't guarantee the
3762          *      result, try to trust guest.
3763          *   b. VT-d with snooping control feature: snooping control feature of
3764          *      VT-d engine can guarantee the cache correctness. Just set it
3765          *      to WB to keep consistent with host. So the same as item 3.
3766          * 3. EPT without VT-d: always map as WB and set IGMT=1 to keep
3767          *    consistent with host MTRR
3768          */
3769         if (is_mmio)
3770                 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
3771         else if (vcpu->kvm->arch.iommu_domain &&
3772                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
3773                 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
3774                       VMX_EPT_MT_EPTE_SHIFT;
3775         else
3776                 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
3777                         | VMX_EPT_IGMT_BIT;
3778
3779         return ret;
3780 }
3781
3782 static struct kvm_x86_ops vmx_x86_ops = {
3783         .cpu_has_kvm_support = cpu_has_kvm_support,
3784         .disabled_by_bios = vmx_disabled_by_bios,
3785         .hardware_setup = hardware_setup,
3786         .hardware_unsetup = hardware_unsetup,
3787         .check_processor_compatibility = vmx_check_processor_compat,
3788         .hardware_enable = hardware_enable,
3789         .hardware_disable = hardware_disable,
3790         .cpu_has_accelerated_tpr = report_flexpriority,
3791
3792         .vcpu_create = vmx_create_vcpu,
3793         .vcpu_free = vmx_free_vcpu,
3794         .vcpu_reset = vmx_vcpu_reset,
3795
3796         .prepare_guest_switch = vmx_save_host_state,
3797         .vcpu_load = vmx_vcpu_load,
3798         .vcpu_put = vmx_vcpu_put,
3799
3800         .set_guest_debug = set_guest_debug,
3801         .get_msr = vmx_get_msr,
3802         .set_msr = vmx_set_msr,
3803         .get_segment_base = vmx_get_segment_base,
3804         .get_segment = vmx_get_segment,
3805         .set_segment = vmx_set_segment,
3806         .get_cpl = vmx_get_cpl,
3807         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
3808         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
3809         .set_cr0 = vmx_set_cr0,
3810         .set_cr3 = vmx_set_cr3,
3811         .set_cr4 = vmx_set_cr4,
3812         .set_efer = vmx_set_efer,
3813         .get_idt = vmx_get_idt,
3814         .set_idt = vmx_set_idt,
3815         .get_gdt = vmx_get_gdt,
3816         .set_gdt = vmx_set_gdt,
3817         .cache_reg = vmx_cache_reg,
3818         .get_rflags = vmx_get_rflags,
3819         .set_rflags = vmx_set_rflags,
3820
3821         .tlb_flush = vmx_flush_tlb,
3822
3823         .run = vmx_vcpu_run,
3824         .handle_exit = vmx_handle_exit,
3825         .skip_emulated_instruction = skip_emulated_instruction,
3826         .set_interrupt_shadow = vmx_set_interrupt_shadow,
3827         .get_interrupt_shadow = vmx_get_interrupt_shadow,
3828         .patch_hypercall = vmx_patch_hypercall,
3829         .set_irq = vmx_inject_irq,
3830         .set_nmi = vmx_inject_nmi,
3831         .queue_exception = vmx_queue_exception,
3832         .interrupt_allowed = vmx_interrupt_allowed,
3833         .nmi_allowed = vmx_nmi_allowed,
3834         .enable_nmi_window = enable_nmi_window,
3835         .enable_irq_window = enable_irq_window,
3836         .update_cr8_intercept = update_cr8_intercept,
3837
3838         .set_tss_addr = vmx_set_tss_addr,
3839         .get_tdp_level = get_ept_level,
3840         .get_mt_mask = vmx_get_mt_mask,
3841 };
3842
3843 static int __init vmx_init(void)
3844 {
3845         int r;
3846
3847         vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
3848         if (!vmx_io_bitmap_a)
3849                 return -ENOMEM;
3850
3851         vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
3852         if (!vmx_io_bitmap_b) {
3853                 r = -ENOMEM;
3854                 goto out;
3855         }
3856
3857         vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
3858         if (!vmx_msr_bitmap_legacy) {
3859                 r = -ENOMEM;
3860                 goto out1;
3861         }
3862
3863         vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
3864         if (!vmx_msr_bitmap_longmode) {
3865                 r = -ENOMEM;
3866                 goto out2;
3867         }
3868
3869         /*
3870          * Allow direct access to the PC debug port (it is often used for I/O
3871          * delays, but the vmexits simply slow things down).
3872          */
3873         memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
3874         clear_bit(0x80, vmx_io_bitmap_a);
3875
3876         memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
3877
3878         memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
3879         memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
3880
3881         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
3882
3883         r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
3884         if (r)
3885                 goto out3;
3886
3887         vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
3888         vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
3889         vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
3890         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
3891         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
3892         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
3893
3894         if (enable_ept) {
3895                 bypass_guest_pf = 0;
3896                 kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
3897                         VMX_EPT_WRITABLE_MASK);
3898                 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
3899                                 VMX_EPT_EXECUTABLE_MASK);
3900                 kvm_enable_tdp();
3901         } else
3902                 kvm_disable_tdp();
3903
3904         if (bypass_guest_pf)
3905                 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
3906
3907         ept_sync_global();
3908
3909         return 0;
3910
3911 out3:
3912         free_page((unsigned long)vmx_msr_bitmap_longmode);
3913 out2:
3914         free_page((unsigned long)vmx_msr_bitmap_legacy);
3915 out1:
3916         free_page((unsigned long)vmx_io_bitmap_b);
3917 out:
3918         free_page((unsigned long)vmx_io_bitmap_a);
3919         return r;
3920 }
3921
3922 static void __exit vmx_exit(void)
3923 {
3924         free_page((unsigned long)vmx_msr_bitmap_legacy);
3925         free_page((unsigned long)vmx_msr_bitmap_longmode);
3926         free_page((unsigned long)vmx_io_bitmap_b);
3927         free_page((unsigned long)vmx_io_bitmap_a);
3928
3929         kvm_exit();
3930 }
3931
3932 module_init(vmx_init)
3933 module_exit(vmx_exit)