KVM: VMX: Provide support for user space injected NMIs
[safe/jmp/linux-2.6] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "irq.h"
19 #include "vmx.h"
20 #include "mmu.h"
21
22 #include <linux/kvm_host.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/mm.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/moduleparam.h>
29 #include "kvm_cache_regs.h"
30 #include "x86.h"
31
32 #include <asm/io.h>
33 #include <asm/desc.h>
34
35 #define __ex(x) __kvm_handle_fault_on_reboot(x)
36
37 MODULE_AUTHOR("Qumranet");
38 MODULE_LICENSE("GPL");
39
40 static int bypass_guest_pf = 1;
41 module_param(bypass_guest_pf, bool, 0);
42
43 static int enable_vpid = 1;
44 module_param(enable_vpid, bool, 0);
45
46 static int flexpriority_enabled = 1;
47 module_param(flexpriority_enabled, bool, 0);
48
49 static int enable_ept = 1;
50 module_param(enable_ept, bool, 0);
51
52 static int emulate_invalid_guest_state = 0;
53 module_param(emulate_invalid_guest_state, bool, 0);
54
55 struct vmcs {
56         u32 revision_id;
57         u32 abort;
58         char data[0];
59 };
60
61 struct vcpu_vmx {
62         struct kvm_vcpu       vcpu;
63         struct list_head      local_vcpus_link;
64         unsigned long         host_rsp;
65         int                   launched;
66         u8                    fail;
67         u32                   idt_vectoring_info;
68         struct kvm_msr_entry *guest_msrs;
69         struct kvm_msr_entry *host_msrs;
70         int                   nmsrs;
71         int                   save_nmsrs;
72         int                   msr_offset_efer;
73 #ifdef CONFIG_X86_64
74         int                   msr_offset_kernel_gs_base;
75 #endif
76         struct vmcs          *vmcs;
77         struct {
78                 int           loaded;
79                 u16           fs_sel, gs_sel, ldt_sel;
80                 int           gs_ldt_reload_needed;
81                 int           fs_reload_needed;
82                 int           guest_efer_loaded;
83         } host_state;
84         struct {
85                 struct {
86                         bool pending;
87                         u8 vector;
88                         unsigned rip;
89                 } irq;
90         } rmode;
91         int vpid;
92         bool emulation_required;
93 };
94
95 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
96 {
97         return container_of(vcpu, struct vcpu_vmx, vcpu);
98 }
99
100 static int init_rmode(struct kvm *kvm);
101 static u64 construct_eptp(unsigned long root_hpa);
102
103 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
104 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
105 static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
106
107 static struct page *vmx_io_bitmap_a;
108 static struct page *vmx_io_bitmap_b;
109 static struct page *vmx_msr_bitmap;
110
111 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
112 static DEFINE_SPINLOCK(vmx_vpid_lock);
113
114 static struct vmcs_config {
115         int size;
116         int order;
117         u32 revision_id;
118         u32 pin_based_exec_ctrl;
119         u32 cpu_based_exec_ctrl;
120         u32 cpu_based_2nd_exec_ctrl;
121         u32 vmexit_ctrl;
122         u32 vmentry_ctrl;
123 } vmcs_config;
124
125 struct vmx_capability {
126         u32 ept;
127         u32 vpid;
128 } vmx_capability;
129
130 #define VMX_SEGMENT_FIELD(seg)                                  \
131         [VCPU_SREG_##seg] = {                                   \
132                 .selector = GUEST_##seg##_SELECTOR,             \
133                 .base = GUEST_##seg##_BASE,                     \
134                 .limit = GUEST_##seg##_LIMIT,                   \
135                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
136         }
137
138 static struct kvm_vmx_segment_field {
139         unsigned selector;
140         unsigned base;
141         unsigned limit;
142         unsigned ar_bytes;
143 } kvm_vmx_segment_fields[] = {
144         VMX_SEGMENT_FIELD(CS),
145         VMX_SEGMENT_FIELD(DS),
146         VMX_SEGMENT_FIELD(ES),
147         VMX_SEGMENT_FIELD(FS),
148         VMX_SEGMENT_FIELD(GS),
149         VMX_SEGMENT_FIELD(SS),
150         VMX_SEGMENT_FIELD(TR),
151         VMX_SEGMENT_FIELD(LDTR),
152 };
153
154 /*
155  * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
156  * away by decrementing the array size.
157  */
158 static const u32 vmx_msr_index[] = {
159 #ifdef CONFIG_X86_64
160         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
161 #endif
162         MSR_EFER, MSR_K6_STAR,
163 };
164 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
165
166 static void load_msrs(struct kvm_msr_entry *e, int n)
167 {
168         int i;
169
170         for (i = 0; i < n; ++i)
171                 wrmsrl(e[i].index, e[i].data);
172 }
173
174 static void save_msrs(struct kvm_msr_entry *e, int n)
175 {
176         int i;
177
178         for (i = 0; i < n; ++i)
179                 rdmsrl(e[i].index, e[i].data);
180 }
181
182 static inline int is_page_fault(u32 intr_info)
183 {
184         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
185                              INTR_INFO_VALID_MASK)) ==
186                 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
187 }
188
189 static inline int is_no_device(u32 intr_info)
190 {
191         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
192                              INTR_INFO_VALID_MASK)) ==
193                 (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
194 }
195
196 static inline int is_invalid_opcode(u32 intr_info)
197 {
198         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
199                              INTR_INFO_VALID_MASK)) ==
200                 (INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
201 }
202
203 static inline int is_external_interrupt(u32 intr_info)
204 {
205         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
206                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
207 }
208
209 static inline int cpu_has_vmx_msr_bitmap(void)
210 {
211         return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS);
212 }
213
214 static inline int cpu_has_vmx_tpr_shadow(void)
215 {
216         return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
217 }
218
219 static inline int vm_need_tpr_shadow(struct kvm *kvm)
220 {
221         return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
222 }
223
224 static inline int cpu_has_secondary_exec_ctrls(void)
225 {
226         return (vmcs_config.cpu_based_exec_ctrl &
227                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
228 }
229
230 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
231 {
232         return flexpriority_enabled
233                 && (vmcs_config.cpu_based_2nd_exec_ctrl &
234                     SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
235 }
236
237 static inline int cpu_has_vmx_invept_individual_addr(void)
238 {
239         return (!!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT));
240 }
241
242 static inline int cpu_has_vmx_invept_context(void)
243 {
244         return (!!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT));
245 }
246
247 static inline int cpu_has_vmx_invept_global(void)
248 {
249         return (!!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT));
250 }
251
252 static inline int cpu_has_vmx_ept(void)
253 {
254         return (vmcs_config.cpu_based_2nd_exec_ctrl &
255                 SECONDARY_EXEC_ENABLE_EPT);
256 }
257
258 static inline int vm_need_ept(void)
259 {
260         return (cpu_has_vmx_ept() && enable_ept);
261 }
262
263 static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
264 {
265         return ((cpu_has_vmx_virtualize_apic_accesses()) &&
266                 (irqchip_in_kernel(kvm)));
267 }
268
269 static inline int cpu_has_vmx_vpid(void)
270 {
271         return (vmcs_config.cpu_based_2nd_exec_ctrl &
272                 SECONDARY_EXEC_ENABLE_VPID);
273 }
274
275 static inline int cpu_has_virtual_nmis(void)
276 {
277         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
278 }
279
280 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
281 {
282         int i;
283
284         for (i = 0; i < vmx->nmsrs; ++i)
285                 if (vmx->guest_msrs[i].index == msr)
286                         return i;
287         return -1;
288 }
289
290 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
291 {
292     struct {
293         u64 vpid : 16;
294         u64 rsvd : 48;
295         u64 gva;
296     } operand = { vpid, 0, gva };
297
298     asm volatile (__ex(ASM_VMX_INVVPID)
299                   /* CF==1 or ZF==1 --> rc = -1 */
300                   "; ja 1f ; ud2 ; 1:"
301                   : : "a"(&operand), "c"(ext) : "cc", "memory");
302 }
303
304 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
305 {
306         struct {
307                 u64 eptp, gpa;
308         } operand = {eptp, gpa};
309
310         asm volatile (__ex(ASM_VMX_INVEPT)
311                         /* CF==1 or ZF==1 --> rc = -1 */
312                         "; ja 1f ; ud2 ; 1:\n"
313                         : : "a" (&operand), "c" (ext) : "cc", "memory");
314 }
315
316 static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
317 {
318         int i;
319
320         i = __find_msr_index(vmx, msr);
321         if (i >= 0)
322                 return &vmx->guest_msrs[i];
323         return NULL;
324 }
325
326 static void vmcs_clear(struct vmcs *vmcs)
327 {
328         u64 phys_addr = __pa(vmcs);
329         u8 error;
330
331         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
332                       : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
333                       : "cc", "memory");
334         if (error)
335                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
336                        vmcs, phys_addr);
337 }
338
339 static void __vcpu_clear(void *arg)
340 {
341         struct vcpu_vmx *vmx = arg;
342         int cpu = raw_smp_processor_id();
343
344         if (vmx->vcpu.cpu == cpu)
345                 vmcs_clear(vmx->vmcs);
346         if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
347                 per_cpu(current_vmcs, cpu) = NULL;
348         rdtscll(vmx->vcpu.arch.host_tsc);
349         list_del(&vmx->local_vcpus_link);
350         vmx->vcpu.cpu = -1;
351         vmx->launched = 0;
352 }
353
354 static void vcpu_clear(struct vcpu_vmx *vmx)
355 {
356         if (vmx->vcpu.cpu == -1)
357                 return;
358         smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
359 }
360
361 static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
362 {
363         if (vmx->vpid == 0)
364                 return;
365
366         __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
367 }
368
369 static inline void ept_sync_global(void)
370 {
371         if (cpu_has_vmx_invept_global())
372                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
373 }
374
375 static inline void ept_sync_context(u64 eptp)
376 {
377         if (vm_need_ept()) {
378                 if (cpu_has_vmx_invept_context())
379                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
380                 else
381                         ept_sync_global();
382         }
383 }
384
385 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
386 {
387         if (vm_need_ept()) {
388                 if (cpu_has_vmx_invept_individual_addr())
389                         __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
390                                         eptp, gpa);
391                 else
392                         ept_sync_context(eptp);
393         }
394 }
395
396 static unsigned long vmcs_readl(unsigned long field)
397 {
398         unsigned long value;
399
400         asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
401                       : "=a"(value) : "d"(field) : "cc");
402         return value;
403 }
404
405 static u16 vmcs_read16(unsigned long field)
406 {
407         return vmcs_readl(field);
408 }
409
410 static u32 vmcs_read32(unsigned long field)
411 {
412         return vmcs_readl(field);
413 }
414
415 static u64 vmcs_read64(unsigned long field)
416 {
417 #ifdef CONFIG_X86_64
418         return vmcs_readl(field);
419 #else
420         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
421 #endif
422 }
423
424 static noinline void vmwrite_error(unsigned long field, unsigned long value)
425 {
426         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
427                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
428         dump_stack();
429 }
430
431 static void vmcs_writel(unsigned long field, unsigned long value)
432 {
433         u8 error;
434
435         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
436                        : "=q"(error) : "a"(value), "d"(field) : "cc");
437         if (unlikely(error))
438                 vmwrite_error(field, value);
439 }
440
441 static void vmcs_write16(unsigned long field, u16 value)
442 {
443         vmcs_writel(field, value);
444 }
445
446 static void vmcs_write32(unsigned long field, u32 value)
447 {
448         vmcs_writel(field, value);
449 }
450
451 static void vmcs_write64(unsigned long field, u64 value)
452 {
453         vmcs_writel(field, value);
454 #ifndef CONFIG_X86_64
455         asm volatile ("");
456         vmcs_writel(field+1, value >> 32);
457 #endif
458 }
459
460 static void vmcs_clear_bits(unsigned long field, u32 mask)
461 {
462         vmcs_writel(field, vmcs_readl(field) & ~mask);
463 }
464
465 static void vmcs_set_bits(unsigned long field, u32 mask)
466 {
467         vmcs_writel(field, vmcs_readl(field) | mask);
468 }
469
470 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
471 {
472         u32 eb;
473
474         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
475         if (!vcpu->fpu_active)
476                 eb |= 1u << NM_VECTOR;
477         if (vcpu->guest_debug.enabled)
478                 eb |= 1u << DB_VECTOR;
479         if (vcpu->arch.rmode.active)
480                 eb = ~0;
481         if (vm_need_ept())
482                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
483         vmcs_write32(EXCEPTION_BITMAP, eb);
484 }
485
486 static void reload_tss(void)
487 {
488         /*
489          * VT restores TR but not its size.  Useless.
490          */
491         struct descriptor_table gdt;
492         struct desc_struct *descs;
493
494         kvm_get_gdt(&gdt);
495         descs = (void *)gdt.base;
496         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
497         load_TR_desc();
498 }
499
500 static void load_transition_efer(struct vcpu_vmx *vmx)
501 {
502         int efer_offset = vmx->msr_offset_efer;
503         u64 host_efer = vmx->host_msrs[efer_offset].data;
504         u64 guest_efer = vmx->guest_msrs[efer_offset].data;
505         u64 ignore_bits;
506
507         if (efer_offset < 0)
508                 return;
509         /*
510          * NX is emulated; LMA and LME handled by hardware; SCE meaninless
511          * outside long mode
512          */
513         ignore_bits = EFER_NX | EFER_SCE;
514 #ifdef CONFIG_X86_64
515         ignore_bits |= EFER_LMA | EFER_LME;
516         /* SCE is meaningful only in long mode on Intel */
517         if (guest_efer & EFER_LMA)
518                 ignore_bits &= ~(u64)EFER_SCE;
519 #endif
520         if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
521                 return;
522
523         vmx->host_state.guest_efer_loaded = 1;
524         guest_efer &= ~ignore_bits;
525         guest_efer |= host_efer & ignore_bits;
526         wrmsrl(MSR_EFER, guest_efer);
527         vmx->vcpu.stat.efer_reload++;
528 }
529
530 static void reload_host_efer(struct vcpu_vmx *vmx)
531 {
532         if (vmx->host_state.guest_efer_loaded) {
533                 vmx->host_state.guest_efer_loaded = 0;
534                 load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
535         }
536 }
537
538 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
539 {
540         struct vcpu_vmx *vmx = to_vmx(vcpu);
541
542         if (vmx->host_state.loaded)
543                 return;
544
545         vmx->host_state.loaded = 1;
546         /*
547          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
548          * allow segment selectors with cpl > 0 or ti == 1.
549          */
550         vmx->host_state.ldt_sel = kvm_read_ldt();
551         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
552         vmx->host_state.fs_sel = kvm_read_fs();
553         if (!(vmx->host_state.fs_sel & 7)) {
554                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
555                 vmx->host_state.fs_reload_needed = 0;
556         } else {
557                 vmcs_write16(HOST_FS_SELECTOR, 0);
558                 vmx->host_state.fs_reload_needed = 1;
559         }
560         vmx->host_state.gs_sel = kvm_read_gs();
561         if (!(vmx->host_state.gs_sel & 7))
562                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
563         else {
564                 vmcs_write16(HOST_GS_SELECTOR, 0);
565                 vmx->host_state.gs_ldt_reload_needed = 1;
566         }
567
568 #ifdef CONFIG_X86_64
569         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
570         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
571 #else
572         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
573         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
574 #endif
575
576 #ifdef CONFIG_X86_64
577         if (is_long_mode(&vmx->vcpu))
578                 save_msrs(vmx->host_msrs +
579                           vmx->msr_offset_kernel_gs_base, 1);
580
581 #endif
582         load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
583         load_transition_efer(vmx);
584 }
585
586 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
587 {
588         unsigned long flags;
589
590         if (!vmx->host_state.loaded)
591                 return;
592
593         ++vmx->vcpu.stat.host_state_reload;
594         vmx->host_state.loaded = 0;
595         if (vmx->host_state.fs_reload_needed)
596                 kvm_load_fs(vmx->host_state.fs_sel);
597         if (vmx->host_state.gs_ldt_reload_needed) {
598                 kvm_load_ldt(vmx->host_state.ldt_sel);
599                 /*
600                  * If we have to reload gs, we must take care to
601                  * preserve our gs base.
602                  */
603                 local_irq_save(flags);
604                 kvm_load_gs(vmx->host_state.gs_sel);
605 #ifdef CONFIG_X86_64
606                 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
607 #endif
608                 local_irq_restore(flags);
609         }
610         reload_tss();
611         save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
612         load_msrs(vmx->host_msrs, vmx->save_nmsrs);
613         reload_host_efer(vmx);
614 }
615
616 static void vmx_load_host_state(struct vcpu_vmx *vmx)
617 {
618         preempt_disable();
619         __vmx_load_host_state(vmx);
620         preempt_enable();
621 }
622
623 /*
624  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
625  * vcpu mutex is already taken.
626  */
627 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
628 {
629         struct vcpu_vmx *vmx = to_vmx(vcpu);
630         u64 phys_addr = __pa(vmx->vmcs);
631         u64 tsc_this, delta, new_offset;
632
633         if (vcpu->cpu != cpu) {
634                 vcpu_clear(vmx);
635                 kvm_migrate_timers(vcpu);
636                 vpid_sync_vcpu_all(vmx);
637                 local_irq_disable();
638                 list_add(&vmx->local_vcpus_link,
639                          &per_cpu(vcpus_on_cpu, cpu));
640                 local_irq_enable();
641         }
642
643         if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
644                 u8 error;
645
646                 per_cpu(current_vmcs, cpu) = vmx->vmcs;
647                 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
648                               : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
649                               : "cc");
650                 if (error)
651                         printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
652                                vmx->vmcs, phys_addr);
653         }
654
655         if (vcpu->cpu != cpu) {
656                 struct descriptor_table dt;
657                 unsigned long sysenter_esp;
658
659                 vcpu->cpu = cpu;
660                 /*
661                  * Linux uses per-cpu TSS and GDT, so set these when switching
662                  * processors.
663                  */
664                 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
665                 kvm_get_gdt(&dt);
666                 vmcs_writel(HOST_GDTR_BASE, dt.base);   /* 22.2.4 */
667
668                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
669                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
670
671                 /*
672                  * Make sure the time stamp counter is monotonous.
673                  */
674                 rdtscll(tsc_this);
675                 if (tsc_this < vcpu->arch.host_tsc) {
676                         delta = vcpu->arch.host_tsc - tsc_this;
677                         new_offset = vmcs_read64(TSC_OFFSET) + delta;
678                         vmcs_write64(TSC_OFFSET, new_offset);
679                 }
680         }
681 }
682
683 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
684 {
685         __vmx_load_host_state(to_vmx(vcpu));
686 }
687
688 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
689 {
690         if (vcpu->fpu_active)
691                 return;
692         vcpu->fpu_active = 1;
693         vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
694         if (vcpu->arch.cr0 & X86_CR0_TS)
695                 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
696         update_exception_bitmap(vcpu);
697 }
698
699 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
700 {
701         if (!vcpu->fpu_active)
702                 return;
703         vcpu->fpu_active = 0;
704         vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
705         update_exception_bitmap(vcpu);
706 }
707
708 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
709 {
710         return vmcs_readl(GUEST_RFLAGS);
711 }
712
713 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
714 {
715         if (vcpu->arch.rmode.active)
716                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
717         vmcs_writel(GUEST_RFLAGS, rflags);
718 }
719
720 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
721 {
722         unsigned long rip;
723         u32 interruptibility;
724
725         rip = kvm_rip_read(vcpu);
726         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
727         kvm_rip_write(vcpu, rip);
728
729         /*
730          * We emulated an instruction, so temporary interrupt blocking
731          * should be removed, if set.
732          */
733         interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
734         if (interruptibility & 3)
735                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
736                              interruptibility & ~3);
737         vcpu->arch.interrupt_window_open = 1;
738 }
739
740 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
741                                 bool has_error_code, u32 error_code)
742 {
743         struct vcpu_vmx *vmx = to_vmx(vcpu);
744
745         if (has_error_code)
746                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
747
748         if (vcpu->arch.rmode.active) {
749                 vmx->rmode.irq.pending = true;
750                 vmx->rmode.irq.vector = nr;
751                 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
752                 if (nr == BP_VECTOR)
753                         vmx->rmode.irq.rip++;
754                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
755                              nr | INTR_TYPE_SOFT_INTR
756                              | (has_error_code ? INTR_INFO_DELIVER_CODE_MASK : 0)
757                              | INTR_INFO_VALID_MASK);
758                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
759                 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
760                 return;
761         }
762
763         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
764                      nr | INTR_TYPE_EXCEPTION
765                      | (has_error_code ? INTR_INFO_DELIVER_CODE_MASK : 0)
766                      | INTR_INFO_VALID_MASK);
767 }
768
769 static bool vmx_exception_injected(struct kvm_vcpu *vcpu)
770 {
771         return false;
772 }
773
774 /*
775  * Swap MSR entry in host/guest MSR entry array.
776  */
777 #ifdef CONFIG_X86_64
778 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
779 {
780         struct kvm_msr_entry tmp;
781
782         tmp = vmx->guest_msrs[to];
783         vmx->guest_msrs[to] = vmx->guest_msrs[from];
784         vmx->guest_msrs[from] = tmp;
785         tmp = vmx->host_msrs[to];
786         vmx->host_msrs[to] = vmx->host_msrs[from];
787         vmx->host_msrs[from] = tmp;
788 }
789 #endif
790
791 /*
792  * Set up the vmcs to automatically save and restore system
793  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
794  * mode, as fiddling with msrs is very expensive.
795  */
796 static void setup_msrs(struct vcpu_vmx *vmx)
797 {
798         int save_nmsrs;
799
800         vmx_load_host_state(vmx);
801         save_nmsrs = 0;
802 #ifdef CONFIG_X86_64
803         if (is_long_mode(&vmx->vcpu)) {
804                 int index;
805
806                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
807                 if (index >= 0)
808                         move_msr_up(vmx, index, save_nmsrs++);
809                 index = __find_msr_index(vmx, MSR_LSTAR);
810                 if (index >= 0)
811                         move_msr_up(vmx, index, save_nmsrs++);
812                 index = __find_msr_index(vmx, MSR_CSTAR);
813                 if (index >= 0)
814                         move_msr_up(vmx, index, save_nmsrs++);
815                 index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
816                 if (index >= 0)
817                         move_msr_up(vmx, index, save_nmsrs++);
818                 /*
819                  * MSR_K6_STAR is only needed on long mode guests, and only
820                  * if efer.sce is enabled.
821                  */
822                 index = __find_msr_index(vmx, MSR_K6_STAR);
823                 if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
824                         move_msr_up(vmx, index, save_nmsrs++);
825         }
826 #endif
827         vmx->save_nmsrs = save_nmsrs;
828
829 #ifdef CONFIG_X86_64
830         vmx->msr_offset_kernel_gs_base =
831                 __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
832 #endif
833         vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
834 }
835
836 /*
837  * reads and returns guest's timestamp counter "register"
838  * guest_tsc = host_tsc + tsc_offset    -- 21.3
839  */
840 static u64 guest_read_tsc(void)
841 {
842         u64 host_tsc, tsc_offset;
843
844         rdtscll(host_tsc);
845         tsc_offset = vmcs_read64(TSC_OFFSET);
846         return host_tsc + tsc_offset;
847 }
848
849 /*
850  * writes 'guest_tsc' into guest's timestamp counter "register"
851  * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
852  */
853 static void guest_write_tsc(u64 guest_tsc)
854 {
855         u64 host_tsc;
856
857         rdtscll(host_tsc);
858         vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
859 }
860
861 /*
862  * Reads an msr value (of 'msr_index') into 'pdata'.
863  * Returns 0 on success, non-0 otherwise.
864  * Assumes vcpu_load() was already called.
865  */
866 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
867 {
868         u64 data;
869         struct kvm_msr_entry *msr;
870
871         if (!pdata) {
872                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
873                 return -EINVAL;
874         }
875
876         switch (msr_index) {
877 #ifdef CONFIG_X86_64
878         case MSR_FS_BASE:
879                 data = vmcs_readl(GUEST_FS_BASE);
880                 break;
881         case MSR_GS_BASE:
882                 data = vmcs_readl(GUEST_GS_BASE);
883                 break;
884         case MSR_EFER:
885                 return kvm_get_msr_common(vcpu, msr_index, pdata);
886 #endif
887         case MSR_IA32_TIME_STAMP_COUNTER:
888                 data = guest_read_tsc();
889                 break;
890         case MSR_IA32_SYSENTER_CS:
891                 data = vmcs_read32(GUEST_SYSENTER_CS);
892                 break;
893         case MSR_IA32_SYSENTER_EIP:
894                 data = vmcs_readl(GUEST_SYSENTER_EIP);
895                 break;
896         case MSR_IA32_SYSENTER_ESP:
897                 data = vmcs_readl(GUEST_SYSENTER_ESP);
898                 break;
899         default:
900                 msr = find_msr_entry(to_vmx(vcpu), msr_index);
901                 if (msr) {
902                         data = msr->data;
903                         break;
904                 }
905                 return kvm_get_msr_common(vcpu, msr_index, pdata);
906         }
907
908         *pdata = data;
909         return 0;
910 }
911
912 /*
913  * Writes msr value into into the appropriate "register".
914  * Returns 0 on success, non-0 otherwise.
915  * Assumes vcpu_load() was already called.
916  */
917 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
918 {
919         struct vcpu_vmx *vmx = to_vmx(vcpu);
920         struct kvm_msr_entry *msr;
921         int ret = 0;
922
923         switch (msr_index) {
924 #ifdef CONFIG_X86_64
925         case MSR_EFER:
926                 vmx_load_host_state(vmx);
927                 ret = kvm_set_msr_common(vcpu, msr_index, data);
928                 break;
929         case MSR_FS_BASE:
930                 vmcs_writel(GUEST_FS_BASE, data);
931                 break;
932         case MSR_GS_BASE:
933                 vmcs_writel(GUEST_GS_BASE, data);
934                 break;
935 #endif
936         case MSR_IA32_SYSENTER_CS:
937                 vmcs_write32(GUEST_SYSENTER_CS, data);
938                 break;
939         case MSR_IA32_SYSENTER_EIP:
940                 vmcs_writel(GUEST_SYSENTER_EIP, data);
941                 break;
942         case MSR_IA32_SYSENTER_ESP:
943                 vmcs_writel(GUEST_SYSENTER_ESP, data);
944                 break;
945         case MSR_IA32_TIME_STAMP_COUNTER:
946                 guest_write_tsc(data);
947                 break;
948         case MSR_P6_PERFCTR0:
949         case MSR_P6_PERFCTR1:
950         case MSR_P6_EVNTSEL0:
951         case MSR_P6_EVNTSEL1:
952                 /*
953                  * Just discard all writes to the performance counters; this
954                  * should keep both older linux and windows 64-bit guests
955                  * happy
956                  */
957                 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", msr_index, data);
958
959                 break;
960         default:
961                 vmx_load_host_state(vmx);
962                 msr = find_msr_entry(vmx, msr_index);
963                 if (msr) {
964                         msr->data = data;
965                         break;
966                 }
967                 ret = kvm_set_msr_common(vcpu, msr_index, data);
968         }
969
970         return ret;
971 }
972
973 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
974 {
975         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
976         switch (reg) {
977         case VCPU_REGS_RSP:
978                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
979                 break;
980         case VCPU_REGS_RIP:
981                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
982                 break;
983         default:
984                 break;
985         }
986 }
987
988 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
989 {
990         unsigned long dr7 = 0x400;
991         int old_singlestep;
992
993         old_singlestep = vcpu->guest_debug.singlestep;
994
995         vcpu->guest_debug.enabled = dbg->enabled;
996         if (vcpu->guest_debug.enabled) {
997                 int i;
998
999                 dr7 |= 0x200;  /* exact */
1000                 for (i = 0; i < 4; ++i) {
1001                         if (!dbg->breakpoints[i].enabled)
1002                                 continue;
1003                         vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
1004                         dr7 |= 2 << (i*2);    /* global enable */
1005                         dr7 |= 0 << (i*4+16); /* execution breakpoint */
1006                 }
1007
1008                 vcpu->guest_debug.singlestep = dbg->singlestep;
1009         } else
1010                 vcpu->guest_debug.singlestep = 0;
1011
1012         if (old_singlestep && !vcpu->guest_debug.singlestep) {
1013                 unsigned long flags;
1014
1015                 flags = vmcs_readl(GUEST_RFLAGS);
1016                 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1017                 vmcs_writel(GUEST_RFLAGS, flags);
1018         }
1019
1020         update_exception_bitmap(vcpu);
1021         vmcs_writel(GUEST_DR7, dr7);
1022
1023         return 0;
1024 }
1025
1026 static int vmx_get_irq(struct kvm_vcpu *vcpu)
1027 {
1028         if (!vcpu->arch.interrupt.pending)
1029                 return -1;
1030         return vcpu->arch.interrupt.nr;
1031 }
1032
1033 static __init int cpu_has_kvm_support(void)
1034 {
1035         unsigned long ecx = cpuid_ecx(1);
1036         return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
1037 }
1038
1039 static __init int vmx_disabled_by_bios(void)
1040 {
1041         u64 msr;
1042
1043         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
1044         return (msr & (FEATURE_CONTROL_LOCKED |
1045                        FEATURE_CONTROL_VMXON_ENABLED))
1046             == FEATURE_CONTROL_LOCKED;
1047         /* locked but not enabled */
1048 }
1049
1050 static void hardware_enable(void *garbage)
1051 {
1052         int cpu = raw_smp_processor_id();
1053         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1054         u64 old;
1055
1056         INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
1057         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1058         if ((old & (FEATURE_CONTROL_LOCKED |
1059                     FEATURE_CONTROL_VMXON_ENABLED))
1060             != (FEATURE_CONTROL_LOCKED |
1061                 FEATURE_CONTROL_VMXON_ENABLED))
1062                 /* enable and lock */
1063                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
1064                        FEATURE_CONTROL_LOCKED |
1065                        FEATURE_CONTROL_VMXON_ENABLED);
1066         write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
1067         asm volatile (ASM_VMX_VMXON_RAX
1068                       : : "a"(&phys_addr), "m"(phys_addr)
1069                       : "memory", "cc");
1070 }
1071
1072 static void vmclear_local_vcpus(void)
1073 {
1074         int cpu = raw_smp_processor_id();
1075         struct vcpu_vmx *vmx, *n;
1076
1077         list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
1078                                  local_vcpus_link)
1079                 __vcpu_clear(vmx);
1080 }
1081
1082 static void hardware_disable(void *garbage)
1083 {
1084         vmclear_local_vcpus();
1085         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1086         write_cr4(read_cr4() & ~X86_CR4_VMXE);
1087 }
1088
1089 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1090                                       u32 msr, u32 *result)
1091 {
1092         u32 vmx_msr_low, vmx_msr_high;
1093         u32 ctl = ctl_min | ctl_opt;
1094
1095         rdmsr(msr, vmx_msr_low, vmx_msr_high);
1096
1097         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1098         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
1099
1100         /* Ensure minimum (required) set of control bits are supported. */
1101         if (ctl_min & ~ctl)
1102                 return -EIO;
1103
1104         *result = ctl;
1105         return 0;
1106 }
1107
1108 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1109 {
1110         u32 vmx_msr_low, vmx_msr_high;
1111         u32 min, opt, min2, opt2;
1112         u32 _pin_based_exec_control = 0;
1113         u32 _cpu_based_exec_control = 0;
1114         u32 _cpu_based_2nd_exec_control = 0;
1115         u32 _vmexit_control = 0;
1116         u32 _vmentry_control = 0;
1117
1118         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1119         opt = PIN_BASED_VIRTUAL_NMIS;
1120         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1121                                 &_pin_based_exec_control) < 0)
1122                 return -EIO;
1123
1124         min = CPU_BASED_HLT_EXITING |
1125 #ifdef CONFIG_X86_64
1126               CPU_BASED_CR8_LOAD_EXITING |
1127               CPU_BASED_CR8_STORE_EXITING |
1128 #endif
1129               CPU_BASED_CR3_LOAD_EXITING |
1130               CPU_BASED_CR3_STORE_EXITING |
1131               CPU_BASED_USE_IO_BITMAPS |
1132               CPU_BASED_MOV_DR_EXITING |
1133               CPU_BASED_USE_TSC_OFFSETING |
1134               CPU_BASED_INVLPG_EXITING;
1135         opt = CPU_BASED_TPR_SHADOW |
1136               CPU_BASED_USE_MSR_BITMAPS |
1137               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1138         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1139                                 &_cpu_based_exec_control) < 0)
1140                 return -EIO;
1141 #ifdef CONFIG_X86_64
1142         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1143                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1144                                            ~CPU_BASED_CR8_STORE_EXITING;
1145 #endif
1146         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1147                 min2 = 0;
1148                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1149                         SECONDARY_EXEC_WBINVD_EXITING |
1150                         SECONDARY_EXEC_ENABLE_VPID |
1151                         SECONDARY_EXEC_ENABLE_EPT;
1152                 if (adjust_vmx_controls(min2, opt2,
1153                                         MSR_IA32_VMX_PROCBASED_CTLS2,
1154                                         &_cpu_based_2nd_exec_control) < 0)
1155                         return -EIO;
1156         }
1157 #ifndef CONFIG_X86_64
1158         if (!(_cpu_based_2nd_exec_control &
1159                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1160                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1161 #endif
1162         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1163                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
1164                    enabled */
1165                 min &= ~(CPU_BASED_CR3_LOAD_EXITING |
1166                          CPU_BASED_CR3_STORE_EXITING |
1167                          CPU_BASED_INVLPG_EXITING);
1168                 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1169                                         &_cpu_based_exec_control) < 0)
1170                         return -EIO;
1171                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1172                       vmx_capability.ept, vmx_capability.vpid);
1173         }
1174
1175         min = 0;
1176 #ifdef CONFIG_X86_64
1177         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1178 #endif
1179         opt = 0;
1180         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1181                                 &_vmexit_control) < 0)
1182                 return -EIO;
1183
1184         min = opt = 0;
1185         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1186                                 &_vmentry_control) < 0)
1187                 return -EIO;
1188
1189         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1190
1191         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1192         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1193                 return -EIO;
1194
1195 #ifdef CONFIG_X86_64
1196         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1197         if (vmx_msr_high & (1u<<16))
1198                 return -EIO;
1199 #endif
1200
1201         /* Require Write-Back (WB) memory type for VMCS accesses. */
1202         if (((vmx_msr_high >> 18) & 15) != 6)
1203                 return -EIO;
1204
1205         vmcs_conf->size = vmx_msr_high & 0x1fff;
1206         vmcs_conf->order = get_order(vmcs_config.size);
1207         vmcs_conf->revision_id = vmx_msr_low;
1208
1209         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1210         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1211         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1212         vmcs_conf->vmexit_ctrl         = _vmexit_control;
1213         vmcs_conf->vmentry_ctrl        = _vmentry_control;
1214
1215         return 0;
1216 }
1217
1218 static struct vmcs *alloc_vmcs_cpu(int cpu)
1219 {
1220         int node = cpu_to_node(cpu);
1221         struct page *pages;
1222         struct vmcs *vmcs;
1223
1224         pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
1225         if (!pages)
1226                 return NULL;
1227         vmcs = page_address(pages);
1228         memset(vmcs, 0, vmcs_config.size);
1229         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1230         return vmcs;
1231 }
1232
1233 static struct vmcs *alloc_vmcs(void)
1234 {
1235         return alloc_vmcs_cpu(raw_smp_processor_id());
1236 }
1237
1238 static void free_vmcs(struct vmcs *vmcs)
1239 {
1240         free_pages((unsigned long)vmcs, vmcs_config.order);
1241 }
1242
1243 static void free_kvm_area(void)
1244 {
1245         int cpu;
1246
1247         for_each_online_cpu(cpu)
1248                 free_vmcs(per_cpu(vmxarea, cpu));
1249 }
1250
1251 static __init int alloc_kvm_area(void)
1252 {
1253         int cpu;
1254
1255         for_each_online_cpu(cpu) {
1256                 struct vmcs *vmcs;
1257
1258                 vmcs = alloc_vmcs_cpu(cpu);
1259                 if (!vmcs) {
1260                         free_kvm_area();
1261                         return -ENOMEM;
1262                 }
1263
1264                 per_cpu(vmxarea, cpu) = vmcs;
1265         }
1266         return 0;
1267 }
1268
1269 static __init int hardware_setup(void)
1270 {
1271         if (setup_vmcs_config(&vmcs_config) < 0)
1272                 return -EIO;
1273
1274         if (boot_cpu_has(X86_FEATURE_NX))
1275                 kvm_enable_efer_bits(EFER_NX);
1276
1277         return alloc_kvm_area();
1278 }
1279
1280 static __exit void hardware_unsetup(void)
1281 {
1282         free_kvm_area();
1283 }
1284
1285 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1286 {
1287         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1288
1289         if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1290                 vmcs_write16(sf->selector, save->selector);
1291                 vmcs_writel(sf->base, save->base);
1292                 vmcs_write32(sf->limit, save->limit);
1293                 vmcs_write32(sf->ar_bytes, save->ar);
1294         } else {
1295                 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1296                         << AR_DPL_SHIFT;
1297                 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1298         }
1299 }
1300
1301 static void enter_pmode(struct kvm_vcpu *vcpu)
1302 {
1303         unsigned long flags;
1304         struct vcpu_vmx *vmx = to_vmx(vcpu);
1305
1306         vmx->emulation_required = 1;
1307         vcpu->arch.rmode.active = 0;
1308
1309         vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
1310         vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
1311         vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
1312
1313         flags = vmcs_readl(GUEST_RFLAGS);
1314         flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
1315         flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
1316         vmcs_writel(GUEST_RFLAGS, flags);
1317
1318         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1319                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1320
1321         update_exception_bitmap(vcpu);
1322
1323         if (emulate_invalid_guest_state)
1324                 return;
1325
1326         fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1327         fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1328         fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1329         fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1330
1331         vmcs_write16(GUEST_SS_SELECTOR, 0);
1332         vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1333
1334         vmcs_write16(GUEST_CS_SELECTOR,
1335                      vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1336         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1337 }
1338
1339 static gva_t rmode_tss_base(struct kvm *kvm)
1340 {
1341         if (!kvm->arch.tss_addr) {
1342                 gfn_t base_gfn = kvm->memslots[0].base_gfn +
1343                                  kvm->memslots[0].npages - 3;
1344                 return base_gfn << PAGE_SHIFT;
1345         }
1346         return kvm->arch.tss_addr;
1347 }
1348
1349 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1350 {
1351         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1352
1353         save->selector = vmcs_read16(sf->selector);
1354         save->base = vmcs_readl(sf->base);
1355         save->limit = vmcs_read32(sf->limit);
1356         save->ar = vmcs_read32(sf->ar_bytes);
1357         vmcs_write16(sf->selector, save->base >> 4);
1358         vmcs_write32(sf->base, save->base & 0xfffff);
1359         vmcs_write32(sf->limit, 0xffff);
1360         vmcs_write32(sf->ar_bytes, 0xf3);
1361 }
1362
1363 static void enter_rmode(struct kvm_vcpu *vcpu)
1364 {
1365         unsigned long flags;
1366         struct vcpu_vmx *vmx = to_vmx(vcpu);
1367
1368         vmx->emulation_required = 1;
1369         vcpu->arch.rmode.active = 1;
1370
1371         vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1372         vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1373
1374         vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1375         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1376
1377         vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1378         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1379
1380         flags = vmcs_readl(GUEST_RFLAGS);
1381         vcpu->arch.rmode.save_iopl
1382                 = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
1383
1384         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1385
1386         vmcs_writel(GUEST_RFLAGS, flags);
1387         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1388         update_exception_bitmap(vcpu);
1389
1390         if (emulate_invalid_guest_state)
1391                 goto continue_rmode;
1392
1393         vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1394         vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1395         vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1396
1397         vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1398         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1399         if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1400                 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1401         vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1402
1403         fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1404         fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1405         fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1406         fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1407
1408 continue_rmode:
1409         kvm_mmu_reset_context(vcpu);
1410         init_rmode(vcpu->kvm);
1411 }
1412
1413 #ifdef CONFIG_X86_64
1414
1415 static void enter_lmode(struct kvm_vcpu *vcpu)
1416 {
1417         u32 guest_tr_ar;
1418
1419         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1420         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1421                 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1422                        __func__);
1423                 vmcs_write32(GUEST_TR_AR_BYTES,
1424                              (guest_tr_ar & ~AR_TYPE_MASK)
1425                              | AR_TYPE_BUSY_64_TSS);
1426         }
1427
1428         vcpu->arch.shadow_efer |= EFER_LMA;
1429
1430         find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
1431         vmcs_write32(VM_ENTRY_CONTROLS,
1432                      vmcs_read32(VM_ENTRY_CONTROLS)
1433                      | VM_ENTRY_IA32E_MODE);
1434 }
1435
1436 static void exit_lmode(struct kvm_vcpu *vcpu)
1437 {
1438         vcpu->arch.shadow_efer &= ~EFER_LMA;
1439
1440         vmcs_write32(VM_ENTRY_CONTROLS,
1441                      vmcs_read32(VM_ENTRY_CONTROLS)
1442                      & ~VM_ENTRY_IA32E_MODE);
1443 }
1444
1445 #endif
1446
1447 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1448 {
1449         vpid_sync_vcpu_all(to_vmx(vcpu));
1450         if (vm_need_ept())
1451                 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
1452 }
1453
1454 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1455 {
1456         vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
1457         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
1458 }
1459
1460 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
1461 {
1462         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1463                 if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
1464                         printk(KERN_ERR "EPT: Fail to load pdptrs!\n");
1465                         return;
1466                 }
1467                 vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
1468                 vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
1469                 vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
1470                 vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
1471         }
1472 }
1473
1474 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1475
1476 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
1477                                         unsigned long cr0,
1478                                         struct kvm_vcpu *vcpu)
1479 {
1480         if (!(cr0 & X86_CR0_PG)) {
1481                 /* From paging/starting to nonpaging */
1482                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1483                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1484                              (CPU_BASED_CR3_LOAD_EXITING |
1485                               CPU_BASED_CR3_STORE_EXITING));
1486                 vcpu->arch.cr0 = cr0;
1487                 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1488                 *hw_cr0 |= X86_CR0_PE | X86_CR0_PG;
1489                 *hw_cr0 &= ~X86_CR0_WP;
1490         } else if (!is_paging(vcpu)) {
1491                 /* From nonpaging to paging */
1492                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1493                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1494                              ~(CPU_BASED_CR3_LOAD_EXITING |
1495                                CPU_BASED_CR3_STORE_EXITING));
1496                 vcpu->arch.cr0 = cr0;
1497                 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1498                 if (!(vcpu->arch.cr0 & X86_CR0_WP))
1499                         *hw_cr0 &= ~X86_CR0_WP;
1500         }
1501 }
1502
1503 static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
1504                                         struct kvm_vcpu *vcpu)
1505 {
1506         if (!is_paging(vcpu)) {
1507                 *hw_cr4 &= ~X86_CR4_PAE;
1508                 *hw_cr4 |= X86_CR4_PSE;
1509         } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
1510                 *hw_cr4 &= ~X86_CR4_PAE;
1511 }
1512
1513 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1514 {
1515         unsigned long hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) |
1516                                 KVM_VM_CR0_ALWAYS_ON;
1517
1518         vmx_fpu_deactivate(vcpu);
1519
1520         if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
1521                 enter_pmode(vcpu);
1522
1523         if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
1524                 enter_rmode(vcpu);
1525
1526 #ifdef CONFIG_X86_64
1527         if (vcpu->arch.shadow_efer & EFER_LME) {
1528                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1529                         enter_lmode(vcpu);
1530                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1531                         exit_lmode(vcpu);
1532         }
1533 #endif
1534
1535         if (vm_need_ept())
1536                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
1537
1538         vmcs_writel(CR0_READ_SHADOW, cr0);
1539         vmcs_writel(GUEST_CR0, hw_cr0);
1540         vcpu->arch.cr0 = cr0;
1541
1542         if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1543                 vmx_fpu_activate(vcpu);
1544 }
1545
1546 static u64 construct_eptp(unsigned long root_hpa)
1547 {
1548         u64 eptp;
1549
1550         /* TODO write the value reading from MSR */
1551         eptp = VMX_EPT_DEFAULT_MT |
1552                 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
1553         eptp |= (root_hpa & PAGE_MASK);
1554
1555         return eptp;
1556 }
1557
1558 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1559 {
1560         unsigned long guest_cr3;
1561         u64 eptp;
1562
1563         guest_cr3 = cr3;
1564         if (vm_need_ept()) {
1565                 eptp = construct_eptp(cr3);
1566                 vmcs_write64(EPT_POINTER, eptp);
1567                 ept_sync_context(eptp);
1568                 ept_load_pdptrs(vcpu);
1569                 guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
1570                         VMX_EPT_IDENTITY_PAGETABLE_ADDR;
1571         }
1572
1573         vmx_flush_tlb(vcpu);
1574         vmcs_writel(GUEST_CR3, guest_cr3);
1575         if (vcpu->arch.cr0 & X86_CR0_PE)
1576                 vmx_fpu_deactivate(vcpu);
1577 }
1578
1579 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1580 {
1581         unsigned long hw_cr4 = cr4 | (vcpu->arch.rmode.active ?
1582                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1583
1584         vcpu->arch.cr4 = cr4;
1585         if (vm_need_ept())
1586                 ept_update_paging_mode_cr4(&hw_cr4, vcpu);
1587
1588         vmcs_writel(CR4_READ_SHADOW, cr4);
1589         vmcs_writel(GUEST_CR4, hw_cr4);
1590 }
1591
1592 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1593 {
1594         struct vcpu_vmx *vmx = to_vmx(vcpu);
1595         struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1596
1597         vcpu->arch.shadow_efer = efer;
1598         if (!msr)
1599                 return;
1600         if (efer & EFER_LMA) {
1601                 vmcs_write32(VM_ENTRY_CONTROLS,
1602                                      vmcs_read32(VM_ENTRY_CONTROLS) |
1603                                      VM_ENTRY_IA32E_MODE);
1604                 msr->data = efer;
1605
1606         } else {
1607                 vmcs_write32(VM_ENTRY_CONTROLS,
1608                                      vmcs_read32(VM_ENTRY_CONTROLS) &
1609                                      ~VM_ENTRY_IA32E_MODE);
1610
1611                 msr->data = efer & ~EFER_LME;
1612         }
1613         setup_msrs(vmx);
1614 }
1615
1616 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1617 {
1618         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1619
1620         return vmcs_readl(sf->base);
1621 }
1622
1623 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1624                             struct kvm_segment *var, int seg)
1625 {
1626         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1627         u32 ar;
1628
1629         var->base = vmcs_readl(sf->base);
1630         var->limit = vmcs_read32(sf->limit);
1631         var->selector = vmcs_read16(sf->selector);
1632         ar = vmcs_read32(sf->ar_bytes);
1633         if (ar & AR_UNUSABLE_MASK)
1634                 ar = 0;
1635         var->type = ar & 15;
1636         var->s = (ar >> 4) & 1;
1637         var->dpl = (ar >> 5) & 3;
1638         var->present = (ar >> 7) & 1;
1639         var->avl = (ar >> 12) & 1;
1640         var->l = (ar >> 13) & 1;
1641         var->db = (ar >> 14) & 1;
1642         var->g = (ar >> 15) & 1;
1643         var->unusable = (ar >> 16) & 1;
1644 }
1645
1646 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
1647 {
1648         struct kvm_segment kvm_seg;
1649
1650         if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
1651                 return 0;
1652
1653         if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
1654                 return 3;
1655
1656         vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
1657         return kvm_seg.selector & 3;
1658 }
1659
1660 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1661 {
1662         u32 ar;
1663
1664         if (var->unusable)
1665                 ar = 1 << 16;
1666         else {
1667                 ar = var->type & 15;
1668                 ar |= (var->s & 1) << 4;
1669                 ar |= (var->dpl & 3) << 5;
1670                 ar |= (var->present & 1) << 7;
1671                 ar |= (var->avl & 1) << 12;
1672                 ar |= (var->l & 1) << 13;
1673                 ar |= (var->db & 1) << 14;
1674                 ar |= (var->g & 1) << 15;
1675         }
1676         if (ar == 0) /* a 0 value means unusable */
1677                 ar = AR_UNUSABLE_MASK;
1678
1679         return ar;
1680 }
1681
1682 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1683                             struct kvm_segment *var, int seg)
1684 {
1685         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1686         u32 ar;
1687
1688         if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
1689                 vcpu->arch.rmode.tr.selector = var->selector;
1690                 vcpu->arch.rmode.tr.base = var->base;
1691                 vcpu->arch.rmode.tr.limit = var->limit;
1692                 vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
1693                 return;
1694         }
1695         vmcs_writel(sf->base, var->base);
1696         vmcs_write32(sf->limit, var->limit);
1697         vmcs_write16(sf->selector, var->selector);
1698         if (vcpu->arch.rmode.active && var->s) {
1699                 /*
1700                  * Hack real-mode segments into vm86 compatibility.
1701                  */
1702                 if (var->base == 0xffff0000 && var->selector == 0xf000)
1703                         vmcs_writel(sf->base, 0xf0000);
1704                 ar = 0xf3;
1705         } else
1706                 ar = vmx_segment_access_rights(var);
1707         vmcs_write32(sf->ar_bytes, ar);
1708 }
1709
1710 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1711 {
1712         u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1713
1714         *db = (ar >> 14) & 1;
1715         *l = (ar >> 13) & 1;
1716 }
1717
1718 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1719 {
1720         dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1721         dt->base = vmcs_readl(GUEST_IDTR_BASE);
1722 }
1723
1724 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1725 {
1726         vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1727         vmcs_writel(GUEST_IDTR_BASE, dt->base);
1728 }
1729
1730 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1731 {
1732         dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1733         dt->base = vmcs_readl(GUEST_GDTR_BASE);
1734 }
1735
1736 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1737 {
1738         vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1739         vmcs_writel(GUEST_GDTR_BASE, dt->base);
1740 }
1741
1742 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
1743 {
1744         struct kvm_segment var;
1745         u32 ar;
1746
1747         vmx_get_segment(vcpu, &var, seg);
1748         ar = vmx_segment_access_rights(&var);
1749
1750         if (var.base != (var.selector << 4))
1751                 return false;
1752         if (var.limit != 0xffff)
1753                 return false;
1754         if (ar != 0xf3)
1755                 return false;
1756
1757         return true;
1758 }
1759
1760 static bool code_segment_valid(struct kvm_vcpu *vcpu)
1761 {
1762         struct kvm_segment cs;
1763         unsigned int cs_rpl;
1764
1765         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
1766         cs_rpl = cs.selector & SELECTOR_RPL_MASK;
1767
1768         if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
1769                 return false;
1770         if (!cs.s)
1771                 return false;
1772         if (!(~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK))) {
1773                 if (cs.dpl > cs_rpl)
1774                         return false;
1775         } else if (cs.type & AR_TYPE_CODE_MASK) {
1776                 if (cs.dpl != cs_rpl)
1777                         return false;
1778         }
1779         if (!cs.present)
1780                 return false;
1781
1782         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
1783         return true;
1784 }
1785
1786 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
1787 {
1788         struct kvm_segment ss;
1789         unsigned int ss_rpl;
1790
1791         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
1792         ss_rpl = ss.selector & SELECTOR_RPL_MASK;
1793
1794         if ((ss.type != 3) || (ss.type != 7))
1795                 return false;
1796         if (!ss.s)
1797                 return false;
1798         if (ss.dpl != ss_rpl) /* DPL != RPL */
1799                 return false;
1800         if (!ss.present)
1801                 return false;
1802
1803         return true;
1804 }
1805
1806 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
1807 {
1808         struct kvm_segment var;
1809         unsigned int rpl;
1810
1811         vmx_get_segment(vcpu, &var, seg);
1812         rpl = var.selector & SELECTOR_RPL_MASK;
1813
1814         if (!var.s)
1815                 return false;
1816         if (!var.present)
1817                 return false;
1818         if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
1819                 if (var.dpl < rpl) /* DPL < RPL */
1820                         return false;
1821         }
1822
1823         /* TODO: Add other members to kvm_segment_field to allow checking for other access
1824          * rights flags
1825          */
1826         return true;
1827 }
1828
1829 static bool tr_valid(struct kvm_vcpu *vcpu)
1830 {
1831         struct kvm_segment tr;
1832
1833         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
1834
1835         if (tr.selector & SELECTOR_TI_MASK)     /* TI = 1 */
1836                 return false;
1837         if ((tr.type != 3) || (tr.type != 11)) /* TODO: Check if guest is in IA32e mode */
1838                 return false;
1839         if (!tr.present)
1840                 return false;
1841
1842         return true;
1843 }
1844
1845 static bool ldtr_valid(struct kvm_vcpu *vcpu)
1846 {
1847         struct kvm_segment ldtr;
1848
1849         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
1850
1851         if (ldtr.selector & SELECTOR_TI_MASK)   /* TI = 1 */
1852                 return false;
1853         if (ldtr.type != 2)
1854                 return false;
1855         if (!ldtr.present)
1856                 return false;
1857
1858         return true;
1859 }
1860
1861 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
1862 {
1863         struct kvm_segment cs, ss;
1864
1865         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
1866         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
1867
1868         return ((cs.selector & SELECTOR_RPL_MASK) ==
1869                  (ss.selector & SELECTOR_RPL_MASK));
1870 }
1871
1872 /*
1873  * Check if guest state is valid. Returns true if valid, false if
1874  * not.
1875  * We assume that registers are always usable
1876  */
1877 static bool guest_state_valid(struct kvm_vcpu *vcpu)
1878 {
1879         /* real mode guest state checks */
1880         if (!(vcpu->arch.cr0 & X86_CR0_PE)) {
1881                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
1882                         return false;
1883                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
1884                         return false;
1885                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
1886                         return false;
1887                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
1888                         return false;
1889                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
1890                         return false;
1891                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
1892                         return false;
1893         } else {
1894         /* protected mode guest state checks */
1895                 if (!cs_ss_rpl_check(vcpu))
1896                         return false;
1897                 if (!code_segment_valid(vcpu))
1898                         return false;
1899                 if (!stack_segment_valid(vcpu))
1900                         return false;
1901                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
1902                         return false;
1903                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
1904                         return false;
1905                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
1906                         return false;
1907                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
1908                         return false;
1909                 if (!tr_valid(vcpu))
1910                         return false;
1911                 if (!ldtr_valid(vcpu))
1912                         return false;
1913         }
1914         /* TODO:
1915          * - Add checks on RIP
1916          * - Add checks on RFLAGS
1917          */
1918
1919         return true;
1920 }
1921
1922 static int init_rmode_tss(struct kvm *kvm)
1923 {
1924         gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
1925         u16 data = 0;
1926         int ret = 0;
1927         int r;
1928
1929         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1930         if (r < 0)
1931                 goto out;
1932         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
1933         r = kvm_write_guest_page(kvm, fn++, &data,
1934                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
1935         if (r < 0)
1936                 goto out;
1937         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
1938         if (r < 0)
1939                 goto out;
1940         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1941         if (r < 0)
1942                 goto out;
1943         data = ~0;
1944         r = kvm_write_guest_page(kvm, fn, &data,
1945                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
1946                                  sizeof(u8));
1947         if (r < 0)
1948                 goto out;
1949
1950         ret = 1;
1951 out:
1952         return ret;
1953 }
1954
1955 static int init_rmode_identity_map(struct kvm *kvm)
1956 {
1957         int i, r, ret;
1958         pfn_t identity_map_pfn;
1959         u32 tmp;
1960
1961         if (!vm_need_ept())
1962                 return 1;
1963         if (unlikely(!kvm->arch.ept_identity_pagetable)) {
1964                 printk(KERN_ERR "EPT: identity-mapping pagetable "
1965                         "haven't been allocated!\n");
1966                 return 0;
1967         }
1968         if (likely(kvm->arch.ept_identity_pagetable_done))
1969                 return 1;
1970         ret = 0;
1971         identity_map_pfn = VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT;
1972         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
1973         if (r < 0)
1974                 goto out;
1975         /* Set up identity-mapping pagetable for EPT in real mode */
1976         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
1977                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
1978                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
1979                 r = kvm_write_guest_page(kvm, identity_map_pfn,
1980                                 &tmp, i * sizeof(tmp), sizeof(tmp));
1981                 if (r < 0)
1982                         goto out;
1983         }
1984         kvm->arch.ept_identity_pagetable_done = true;
1985         ret = 1;
1986 out:
1987         return ret;
1988 }
1989
1990 static void seg_setup(int seg)
1991 {
1992         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1993
1994         vmcs_write16(sf->selector, 0);
1995         vmcs_writel(sf->base, 0);
1996         vmcs_write32(sf->limit, 0xffff);
1997         vmcs_write32(sf->ar_bytes, 0xf3);
1998 }
1999
2000 static int alloc_apic_access_page(struct kvm *kvm)
2001 {
2002         struct kvm_userspace_memory_region kvm_userspace_mem;
2003         int r = 0;
2004
2005         down_write(&kvm->slots_lock);
2006         if (kvm->arch.apic_access_page)
2007                 goto out;
2008         kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
2009         kvm_userspace_mem.flags = 0;
2010         kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
2011         kvm_userspace_mem.memory_size = PAGE_SIZE;
2012         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2013         if (r)
2014                 goto out;
2015
2016         kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
2017 out:
2018         up_write(&kvm->slots_lock);
2019         return r;
2020 }
2021
2022 static int alloc_identity_pagetable(struct kvm *kvm)
2023 {
2024         struct kvm_userspace_memory_region kvm_userspace_mem;
2025         int r = 0;
2026
2027         down_write(&kvm->slots_lock);
2028         if (kvm->arch.ept_identity_pagetable)
2029                 goto out;
2030         kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
2031         kvm_userspace_mem.flags = 0;
2032         kvm_userspace_mem.guest_phys_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
2033         kvm_userspace_mem.memory_size = PAGE_SIZE;
2034         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2035         if (r)
2036                 goto out;
2037
2038         kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
2039                         VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT);
2040 out:
2041         up_write(&kvm->slots_lock);
2042         return r;
2043 }
2044
2045 static void allocate_vpid(struct vcpu_vmx *vmx)
2046 {
2047         int vpid;
2048
2049         vmx->vpid = 0;
2050         if (!enable_vpid || !cpu_has_vmx_vpid())
2051                 return;
2052         spin_lock(&vmx_vpid_lock);
2053         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
2054         if (vpid < VMX_NR_VPIDS) {
2055                 vmx->vpid = vpid;
2056                 __set_bit(vpid, vmx_vpid_bitmap);
2057         }
2058         spin_unlock(&vmx_vpid_lock);
2059 }
2060
2061 static void vmx_disable_intercept_for_msr(struct page *msr_bitmap, u32 msr)
2062 {
2063         void *va;
2064
2065         if (!cpu_has_vmx_msr_bitmap())
2066                 return;
2067
2068         /*
2069          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
2070          * have the write-low and read-high bitmap offsets the wrong way round.
2071          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
2072          */
2073         va = kmap(msr_bitmap);
2074         if (msr <= 0x1fff) {
2075                 __clear_bit(msr, va + 0x000); /* read-low */
2076                 __clear_bit(msr, va + 0x800); /* write-low */
2077         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2078                 msr &= 0x1fff;
2079                 __clear_bit(msr, va + 0x400); /* read-high */
2080                 __clear_bit(msr, va + 0xc00); /* write-high */
2081         }
2082         kunmap(msr_bitmap);
2083 }
2084
2085 /*
2086  * Sets up the vmcs for emulated real mode.
2087  */
2088 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
2089 {
2090         u32 host_sysenter_cs;
2091         u32 junk;
2092         unsigned long a;
2093         struct descriptor_table dt;
2094         int i;
2095         unsigned long kvm_vmx_return;
2096         u32 exec_control;
2097
2098         /* I/O */
2099         vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
2100         vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
2101
2102         if (cpu_has_vmx_msr_bitmap())
2103                 vmcs_write64(MSR_BITMAP, page_to_phys(vmx_msr_bitmap));
2104
2105         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
2106
2107         /* Control */
2108         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
2109                 vmcs_config.pin_based_exec_ctrl);
2110
2111         exec_control = vmcs_config.cpu_based_exec_ctrl;
2112         if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
2113                 exec_control &= ~CPU_BASED_TPR_SHADOW;
2114 #ifdef CONFIG_X86_64
2115                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
2116                                 CPU_BASED_CR8_LOAD_EXITING;
2117 #endif
2118         }
2119         if (!vm_need_ept())
2120                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
2121                                 CPU_BASED_CR3_LOAD_EXITING  |
2122                                 CPU_BASED_INVLPG_EXITING;
2123         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
2124
2125         if (cpu_has_secondary_exec_ctrls()) {
2126                 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
2127                 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2128                         exec_control &=
2129                                 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
2130                 if (vmx->vpid == 0)
2131                         exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
2132                 if (!vm_need_ept())
2133                         exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
2134                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
2135         }
2136
2137         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
2138         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
2139         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
2140
2141         vmcs_writel(HOST_CR0, read_cr0());  /* 22.2.3 */
2142         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
2143         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
2144
2145         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
2146         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2147         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2148         vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs());    /* 22.2.4 */
2149         vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs());    /* 22.2.4 */
2150         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2151 #ifdef CONFIG_X86_64
2152         rdmsrl(MSR_FS_BASE, a);
2153         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
2154         rdmsrl(MSR_GS_BASE, a);
2155         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
2156 #else
2157         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
2158         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
2159 #endif
2160
2161         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
2162
2163         kvm_get_idt(&dt);
2164         vmcs_writel(HOST_IDTR_BASE, dt.base);   /* 22.2.4 */
2165
2166         asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
2167         vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
2168         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
2169         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2170         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2171
2172         rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
2173         vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
2174         rdmsrl(MSR_IA32_SYSENTER_ESP, a);
2175         vmcs_writel(HOST_IA32_SYSENTER_ESP, a);   /* 22.2.3 */
2176         rdmsrl(MSR_IA32_SYSENTER_EIP, a);
2177         vmcs_writel(HOST_IA32_SYSENTER_EIP, a);   /* 22.2.3 */
2178
2179         for (i = 0; i < NR_VMX_MSR; ++i) {
2180                 u32 index = vmx_msr_index[i];
2181                 u32 data_low, data_high;
2182                 u64 data;
2183                 int j = vmx->nmsrs;
2184
2185                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
2186                         continue;
2187                 if (wrmsr_safe(index, data_low, data_high) < 0)
2188                         continue;
2189                 data = data_low | ((u64)data_high << 32);
2190                 vmx->host_msrs[j].index = index;
2191                 vmx->host_msrs[j].reserved = 0;
2192                 vmx->host_msrs[j].data = data;
2193                 vmx->guest_msrs[j] = vmx->host_msrs[j];
2194                 ++vmx->nmsrs;
2195         }
2196
2197         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
2198
2199         /* 22.2.1, 20.8.1 */
2200         vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
2201
2202         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
2203         vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
2204
2205
2206         return 0;
2207 }
2208
2209 static int init_rmode(struct kvm *kvm)
2210 {
2211         if (!init_rmode_tss(kvm))
2212                 return 0;
2213         if (!init_rmode_identity_map(kvm))
2214                 return 0;
2215         return 1;
2216 }
2217
2218 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
2219 {
2220         struct vcpu_vmx *vmx = to_vmx(vcpu);
2221         u64 msr;
2222         int ret;
2223
2224         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
2225         down_read(&vcpu->kvm->slots_lock);
2226         if (!init_rmode(vmx->vcpu.kvm)) {
2227                 ret = -ENOMEM;
2228                 goto out;
2229         }
2230
2231         vmx->vcpu.arch.rmode.active = 0;
2232
2233         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2234         kvm_set_cr8(&vmx->vcpu, 0);
2235         msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
2236         if (vmx->vcpu.vcpu_id == 0)
2237                 msr |= MSR_IA32_APICBASE_BSP;
2238         kvm_set_apic_base(&vmx->vcpu, msr);
2239
2240         fx_init(&vmx->vcpu);
2241
2242         seg_setup(VCPU_SREG_CS);
2243         /*
2244          * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2245          * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh.
2246          */
2247         if (vmx->vcpu.vcpu_id == 0) {
2248                 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
2249                 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
2250         } else {
2251                 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
2252                 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
2253         }
2254
2255         seg_setup(VCPU_SREG_DS);
2256         seg_setup(VCPU_SREG_ES);
2257         seg_setup(VCPU_SREG_FS);
2258         seg_setup(VCPU_SREG_GS);
2259         seg_setup(VCPU_SREG_SS);
2260
2261         vmcs_write16(GUEST_TR_SELECTOR, 0);
2262         vmcs_writel(GUEST_TR_BASE, 0);
2263         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
2264         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2265
2266         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
2267         vmcs_writel(GUEST_LDTR_BASE, 0);
2268         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
2269         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
2270
2271         vmcs_write32(GUEST_SYSENTER_CS, 0);
2272         vmcs_writel(GUEST_SYSENTER_ESP, 0);
2273         vmcs_writel(GUEST_SYSENTER_EIP, 0);
2274
2275         vmcs_writel(GUEST_RFLAGS, 0x02);
2276         if (vmx->vcpu.vcpu_id == 0)
2277                 kvm_rip_write(vcpu, 0xfff0);
2278         else
2279                 kvm_rip_write(vcpu, 0);
2280         kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
2281
2282         /* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */
2283         vmcs_writel(GUEST_DR7, 0x400);
2284
2285         vmcs_writel(GUEST_GDTR_BASE, 0);
2286         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
2287
2288         vmcs_writel(GUEST_IDTR_BASE, 0);
2289         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
2290
2291         vmcs_write32(GUEST_ACTIVITY_STATE, 0);
2292         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
2293         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
2294
2295         guest_write_tsc(0);
2296
2297         /* Special registers */
2298         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
2299
2300         setup_msrs(vmx);
2301
2302         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
2303
2304         if (cpu_has_vmx_tpr_shadow()) {
2305                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
2306                 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
2307                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
2308                                 page_to_phys(vmx->vcpu.arch.apic->regs_page));
2309                 vmcs_write32(TPR_THRESHOLD, 0);
2310         }
2311
2312         if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2313                 vmcs_write64(APIC_ACCESS_ADDR,
2314                              page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
2315
2316         if (vmx->vpid != 0)
2317                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2318
2319         vmx->vcpu.arch.cr0 = 0x60000010;
2320         vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
2321         vmx_set_cr4(&vmx->vcpu, 0);
2322         vmx_set_efer(&vmx->vcpu, 0);
2323         vmx_fpu_activate(&vmx->vcpu);
2324         update_exception_bitmap(&vmx->vcpu);
2325
2326         vpid_sync_vcpu_all(vmx);
2327
2328         ret = 0;
2329
2330         /* HACK: Don't enable emulation on guest boot/reset */
2331         vmx->emulation_required = 0;
2332
2333 out:
2334         up_read(&vcpu->kvm->slots_lock);
2335         return ret;
2336 }
2337
2338 static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
2339 {
2340         struct vcpu_vmx *vmx = to_vmx(vcpu);
2341
2342         KVMTRACE_1D(INJ_VIRQ, vcpu, (u32)irq, handler);
2343
2344         ++vcpu->stat.irq_injections;
2345         if (vcpu->arch.rmode.active) {
2346                 vmx->rmode.irq.pending = true;
2347                 vmx->rmode.irq.vector = irq;
2348                 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2349                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2350                              irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
2351                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2352                 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2353                 return;
2354         }
2355         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2356                         irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
2357 }
2358
2359 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
2360 {
2361         struct vcpu_vmx *vmx = to_vmx(vcpu);
2362
2363         ++vcpu->stat.nmi_injections;
2364         if (vcpu->arch.rmode.active) {
2365                 vmx->rmode.irq.pending = true;
2366                 vmx->rmode.irq.vector = NMI_VECTOR;
2367                 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2368                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2369                              NMI_VECTOR | INTR_TYPE_SOFT_INTR |
2370                              INTR_INFO_VALID_MASK);
2371                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2372                 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2373                 return;
2374         }
2375         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2376                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
2377 }
2378
2379 static void vmx_update_window_states(struct kvm_vcpu *vcpu)
2380 {
2381         u32 guest_intr = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2382
2383         vcpu->arch.nmi_window_open =
2384                 !(guest_intr & (GUEST_INTR_STATE_STI |
2385                                 GUEST_INTR_STATE_MOV_SS |
2386                                 GUEST_INTR_STATE_NMI));
2387
2388         vcpu->arch.interrupt_window_open =
2389                 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2390                  !(guest_intr & (GUEST_INTR_STATE_STI |
2391                                  GUEST_INTR_STATE_MOV_SS)));
2392 }
2393
2394 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
2395 {
2396         int word_index = __ffs(vcpu->arch.irq_summary);
2397         int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
2398         int irq = word_index * BITS_PER_LONG + bit_index;
2399
2400         clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
2401         if (!vcpu->arch.irq_pending[word_index])
2402                 clear_bit(word_index, &vcpu->arch.irq_summary);
2403         kvm_queue_interrupt(vcpu, irq);
2404 }
2405
2406 static void enable_irq_window(struct kvm_vcpu *vcpu)
2407 {
2408         u32 cpu_based_vm_exec_control;
2409
2410         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2411         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2412         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2413 }
2414
2415 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2416 {
2417         u32 cpu_based_vm_exec_control;
2418
2419         if (!cpu_has_virtual_nmis())
2420                 return;
2421
2422         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2423         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
2424         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2425 }
2426
2427 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
2428                                        struct kvm_run *kvm_run)
2429 {
2430         vmx_update_window_states(vcpu);
2431
2432         if (cpu_has_virtual_nmis()) {
2433                 if (vcpu->arch.nmi_pending && !vcpu->arch.nmi_injected) {
2434                         if (vcpu->arch.nmi_window_open) {
2435                                 vcpu->arch.nmi_pending = false;
2436                                 vcpu->arch.nmi_injected = true;
2437                         } else {
2438                                 enable_nmi_window(vcpu);
2439                                 return;
2440                         }
2441                 }
2442                 if (vcpu->arch.nmi_injected) {
2443                         vmx_inject_nmi(vcpu);
2444                         if (vcpu->arch.nmi_pending
2445                             || kvm_run->request_nmi_window)
2446                                 enable_nmi_window(vcpu);
2447                         else if (vcpu->arch.irq_summary
2448                                  || kvm_run->request_interrupt_window)
2449                                 enable_irq_window(vcpu);
2450                         return;
2451                 }
2452                 if (!vcpu->arch.nmi_window_open || kvm_run->request_nmi_window)
2453                         enable_nmi_window(vcpu);
2454         }
2455
2456         if (vcpu->arch.interrupt_window_open) {
2457                 if (vcpu->arch.irq_summary && !vcpu->arch.interrupt.pending)
2458                         kvm_do_inject_irq(vcpu);
2459
2460                 if (vcpu->arch.interrupt.pending)
2461                         vmx_inject_irq(vcpu, vcpu->arch.interrupt.nr);
2462         }
2463         if (!vcpu->arch.interrupt_window_open &&
2464             (vcpu->arch.irq_summary || kvm_run->request_interrupt_window))
2465                 enable_irq_window(vcpu);
2466 }
2467
2468 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
2469 {
2470         int ret;
2471         struct kvm_userspace_memory_region tss_mem = {
2472                 .slot = 8,
2473                 .guest_phys_addr = addr,
2474                 .memory_size = PAGE_SIZE * 3,
2475                 .flags = 0,
2476         };
2477
2478         ret = kvm_set_memory_region(kvm, &tss_mem, 0);
2479         if (ret)
2480                 return ret;
2481         kvm->arch.tss_addr = addr;
2482         return 0;
2483 }
2484
2485 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
2486 {
2487         struct kvm_guest_debug *dbg = &vcpu->guest_debug;
2488
2489         set_debugreg(dbg->bp[0], 0);
2490         set_debugreg(dbg->bp[1], 1);
2491         set_debugreg(dbg->bp[2], 2);
2492         set_debugreg(dbg->bp[3], 3);
2493
2494         if (dbg->singlestep) {
2495                 unsigned long flags;
2496
2497                 flags = vmcs_readl(GUEST_RFLAGS);
2498                 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
2499                 vmcs_writel(GUEST_RFLAGS, flags);
2500         }
2501 }
2502
2503 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
2504                                   int vec, u32 err_code)
2505 {
2506         /*
2507          * Instruction with address size override prefix opcode 0x67
2508          * Cause the #SS fault with 0 error code in VM86 mode.
2509          */
2510         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
2511                 if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
2512                         return 1;
2513         /*
2514          * Forward all other exceptions that are valid in real mode.
2515          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
2516          *        the required debugging infrastructure rework.
2517          */
2518         switch (vec) {
2519         case DE_VECTOR:
2520         case DB_VECTOR:
2521         case BP_VECTOR:
2522         case OF_VECTOR:
2523         case BR_VECTOR:
2524         case UD_VECTOR:
2525         case DF_VECTOR:
2526         case SS_VECTOR:
2527         case GP_VECTOR:
2528         case MF_VECTOR:
2529                 kvm_queue_exception(vcpu, vec);
2530                 return 1;
2531         }
2532         return 0;
2533 }
2534
2535 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2536 {
2537         struct vcpu_vmx *vmx = to_vmx(vcpu);
2538         u32 intr_info, error_code;
2539         unsigned long cr2, rip;
2540         u32 vect_info;
2541         enum emulation_result er;
2542
2543         vect_info = vmx->idt_vectoring_info;
2544         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2545
2546         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
2547                                                 !is_page_fault(intr_info))
2548                 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
2549                        "intr info 0x%x\n", __func__, vect_info, intr_info);
2550
2551         if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
2552                 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
2553                 set_bit(irq, vcpu->arch.irq_pending);
2554                 set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
2555         }
2556
2557         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
2558                 return 1;  /* already handled by vmx_vcpu_run() */
2559
2560         if (is_no_device(intr_info)) {
2561                 vmx_fpu_activate(vcpu);
2562                 return 1;
2563         }
2564
2565         if (is_invalid_opcode(intr_info)) {
2566                 er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
2567                 if (er != EMULATE_DONE)
2568                         kvm_queue_exception(vcpu, UD_VECTOR);
2569                 return 1;
2570         }
2571
2572         error_code = 0;
2573         rip = kvm_rip_read(vcpu);
2574         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
2575                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
2576         if (is_page_fault(intr_info)) {
2577                 /* EPT won't cause page fault directly */
2578                 if (vm_need_ept())
2579                         BUG();
2580                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
2581                 KVMTRACE_3D(PAGE_FAULT, vcpu, error_code, (u32)cr2,
2582                             (u32)((u64)cr2 >> 32), handler);
2583                 if (vcpu->arch.interrupt.pending || vcpu->arch.exception.pending)
2584                         kvm_mmu_unprotect_page_virt(vcpu, cr2);
2585                 return kvm_mmu_page_fault(vcpu, cr2, error_code);
2586         }
2587
2588         if (vcpu->arch.rmode.active &&
2589             handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
2590                                                                 error_code)) {
2591                 if (vcpu->arch.halt_request) {
2592                         vcpu->arch.halt_request = 0;
2593                         return kvm_emulate_halt(vcpu);
2594                 }
2595                 return 1;
2596         }
2597
2598         if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) ==
2599             (INTR_TYPE_EXCEPTION | 1)) {
2600                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2601                 return 0;
2602         }
2603         kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
2604         kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
2605         kvm_run->ex.error_code = error_code;
2606         return 0;
2607 }
2608
2609 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
2610                                      struct kvm_run *kvm_run)
2611 {
2612         ++vcpu->stat.irq_exits;
2613         KVMTRACE_1D(INTR, vcpu, vmcs_read32(VM_EXIT_INTR_INFO), handler);
2614         return 1;
2615 }
2616
2617 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2618 {
2619         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2620         return 0;
2621 }
2622
2623 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2624 {
2625         unsigned long exit_qualification;
2626         int size, down, in, string, rep;
2627         unsigned port;
2628
2629         ++vcpu->stat.io_exits;
2630         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2631         string = (exit_qualification & 16) != 0;
2632
2633         if (string) {
2634                 if (emulate_instruction(vcpu,
2635                                         kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
2636                         return 0;
2637                 return 1;
2638         }
2639
2640         size = (exit_qualification & 7) + 1;
2641         in = (exit_qualification & 8) != 0;
2642         down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
2643         rep = (exit_qualification & 32) != 0;
2644         port = exit_qualification >> 16;
2645
2646         return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
2647 }
2648
2649 static void
2650 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2651 {
2652         /*
2653          * Patch in the VMCALL instruction:
2654          */
2655         hypercall[0] = 0x0f;
2656         hypercall[1] = 0x01;
2657         hypercall[2] = 0xc1;
2658 }
2659
2660 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2661 {
2662         unsigned long exit_qualification;
2663         int cr;
2664         int reg;
2665
2666         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2667         cr = exit_qualification & 15;
2668         reg = (exit_qualification >> 8) & 15;
2669         switch ((exit_qualification >> 4) & 3) {
2670         case 0: /* mov to cr */
2671                 KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr,
2672                             (u32)kvm_register_read(vcpu, reg),
2673                             (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
2674                             handler);
2675                 switch (cr) {
2676                 case 0:
2677                         kvm_set_cr0(vcpu, kvm_register_read(vcpu, reg));
2678                         skip_emulated_instruction(vcpu);
2679                         return 1;
2680                 case 3:
2681                         kvm_set_cr3(vcpu, kvm_register_read(vcpu, reg));
2682                         skip_emulated_instruction(vcpu);
2683                         return 1;
2684                 case 4:
2685                         kvm_set_cr4(vcpu, kvm_register_read(vcpu, reg));
2686                         skip_emulated_instruction(vcpu);
2687                         return 1;
2688                 case 8:
2689                         kvm_set_cr8(vcpu, kvm_register_read(vcpu, reg));
2690                         skip_emulated_instruction(vcpu);
2691                         if (irqchip_in_kernel(vcpu->kvm))
2692                                 return 1;
2693                         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2694                         return 0;
2695                 };
2696                 break;
2697         case 2: /* clts */
2698                 vmx_fpu_deactivate(vcpu);
2699                 vcpu->arch.cr0 &= ~X86_CR0_TS;
2700                 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2701                 vmx_fpu_activate(vcpu);
2702                 KVMTRACE_0D(CLTS, vcpu, handler);
2703                 skip_emulated_instruction(vcpu);
2704                 return 1;
2705         case 1: /*mov from cr*/
2706                 switch (cr) {
2707                 case 3:
2708                         kvm_register_write(vcpu, reg, vcpu->arch.cr3);
2709                         KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
2710                                     (u32)kvm_register_read(vcpu, reg),
2711                                     (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
2712                                     handler);
2713                         skip_emulated_instruction(vcpu);
2714                         return 1;
2715                 case 8:
2716                         kvm_register_write(vcpu, reg, kvm_get_cr8(vcpu));
2717                         KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
2718                                     (u32)kvm_register_read(vcpu, reg), handler);
2719                         skip_emulated_instruction(vcpu);
2720                         return 1;
2721                 }
2722                 break;
2723         case 3: /* lmsw */
2724                 kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
2725
2726                 skip_emulated_instruction(vcpu);
2727                 return 1;
2728         default:
2729                 break;
2730         }
2731         kvm_run->exit_reason = 0;
2732         pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
2733                (int)(exit_qualification >> 4) & 3, cr);
2734         return 0;
2735 }
2736
2737 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2738 {
2739         unsigned long exit_qualification;
2740         unsigned long val;
2741         int dr, reg;
2742
2743         /*
2744          * FIXME: this code assumes the host is debugging the guest.
2745          *        need to deal with guest debugging itself too.
2746          */
2747         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2748         dr = exit_qualification & 7;
2749         reg = (exit_qualification >> 8) & 15;
2750         if (exit_qualification & 16) {
2751                 /* mov from dr */
2752                 switch (dr) {
2753                 case 6:
2754                         val = 0xffff0ff0;
2755                         break;
2756                 case 7:
2757                         val = 0x400;
2758                         break;
2759                 default:
2760                         val = 0;
2761                 }
2762                 kvm_register_write(vcpu, reg, val);
2763                 KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
2764         } else {
2765                 /* mov to dr */
2766         }
2767         skip_emulated_instruction(vcpu);
2768         return 1;
2769 }
2770
2771 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2772 {
2773         kvm_emulate_cpuid(vcpu);
2774         return 1;
2775 }
2776
2777 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2778 {
2779         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2780         u64 data;
2781
2782         if (vmx_get_msr(vcpu, ecx, &data)) {
2783                 kvm_inject_gp(vcpu, 0);
2784                 return 1;
2785         }
2786
2787         KVMTRACE_3D(MSR_READ, vcpu, ecx, (u32)data, (u32)(data >> 32),
2788                     handler);
2789
2790         /* FIXME: handling of bits 32:63 of rax, rdx */
2791         vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
2792         vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
2793         skip_emulated_instruction(vcpu);
2794         return 1;
2795 }
2796
2797 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2798 {
2799         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2800         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
2801                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2802
2803         KVMTRACE_3D(MSR_WRITE, vcpu, ecx, (u32)data, (u32)(data >> 32),
2804                     handler);
2805
2806         if (vmx_set_msr(vcpu, ecx, data) != 0) {
2807                 kvm_inject_gp(vcpu, 0);
2808                 return 1;
2809         }
2810
2811         skip_emulated_instruction(vcpu);
2812         return 1;
2813 }
2814
2815 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
2816                                       struct kvm_run *kvm_run)
2817 {
2818         return 1;
2819 }
2820
2821 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
2822                                    struct kvm_run *kvm_run)
2823 {
2824         u32 cpu_based_vm_exec_control;
2825
2826         /* clear pending irq */
2827         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2828         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2829         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2830
2831         KVMTRACE_0D(PEND_INTR, vcpu, handler);
2832         ++vcpu->stat.irq_window_exits;
2833
2834         /*
2835          * If the user space waits to inject interrupts, exit as soon as
2836          * possible
2837          */
2838         if (kvm_run->request_interrupt_window &&
2839             !vcpu->arch.irq_summary) {
2840                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2841                 return 0;
2842         }
2843         return 1;
2844 }
2845
2846 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2847 {
2848         skip_emulated_instruction(vcpu);
2849         return kvm_emulate_halt(vcpu);
2850 }
2851
2852 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2853 {
2854         skip_emulated_instruction(vcpu);
2855         kvm_emulate_hypercall(vcpu);
2856         return 1;
2857 }
2858
2859 static int handle_invlpg(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2860 {
2861         u64 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
2862
2863         kvm_mmu_invlpg(vcpu, exit_qualification);
2864         skip_emulated_instruction(vcpu);
2865         return 1;
2866 }
2867
2868 static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2869 {
2870         skip_emulated_instruction(vcpu);
2871         /* TODO: Add support for VT-d/pass-through device */
2872         return 1;
2873 }
2874
2875 static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2876 {
2877         u64 exit_qualification;
2878         enum emulation_result er;
2879         unsigned long offset;
2880
2881         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
2882         offset = exit_qualification & 0xffful;
2883
2884         er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
2885
2886         if (er !=  EMULATE_DONE) {
2887                 printk(KERN_ERR
2888                        "Fail to handle apic access vmexit! Offset is 0x%lx\n",
2889                        offset);
2890                 return -ENOTSUPP;
2891         }
2892         return 1;
2893 }
2894
2895 static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2896 {
2897         struct vcpu_vmx *vmx = to_vmx(vcpu);
2898         unsigned long exit_qualification;
2899         u16 tss_selector;
2900         int reason;
2901
2902         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2903
2904         reason = (u32)exit_qualification >> 30;
2905         if (reason == TASK_SWITCH_GATE && vmx->vcpu.arch.nmi_injected &&
2906             (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
2907             (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK)
2908             == INTR_TYPE_NMI_INTR) {
2909                 vcpu->arch.nmi_injected = false;
2910                 if (cpu_has_virtual_nmis())
2911                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
2912                                       GUEST_INTR_STATE_NMI);
2913         }
2914         tss_selector = exit_qualification;
2915
2916         return kvm_task_switch(vcpu, tss_selector, reason);
2917 }
2918
2919 static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2920 {
2921         u64 exit_qualification;
2922         enum emulation_result er;
2923         gpa_t gpa;
2924         unsigned long hva;
2925         int gla_validity;
2926         int r;
2927
2928         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
2929
2930         if (exit_qualification & (1 << 6)) {
2931                 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
2932                 return -ENOTSUPP;
2933         }
2934
2935         gla_validity = (exit_qualification >> 7) & 0x3;
2936         if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
2937                 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
2938                 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
2939                         (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
2940                         (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
2941                 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
2942                         (long unsigned int)exit_qualification);
2943                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2944                 kvm_run->hw.hardware_exit_reason = 0;
2945                 return -ENOTSUPP;
2946         }
2947
2948         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
2949         hva = gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT);
2950         if (!kvm_is_error_hva(hva)) {
2951                 r = kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
2952                 if (r < 0) {
2953                         printk(KERN_ERR "EPT: Not enough memory!\n");
2954                         return -ENOMEM;
2955                 }
2956                 return 1;
2957         } else {
2958                 /* must be MMIO */
2959                 er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
2960
2961                 if (er == EMULATE_FAIL) {
2962                         printk(KERN_ERR
2963                          "EPT: Fail to handle EPT violation vmexit!er is %d\n",
2964                          er);
2965                         printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
2966                          (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
2967                          (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
2968                         printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
2969                                 (long unsigned int)exit_qualification);
2970                         return -ENOTSUPP;
2971                 } else if (er == EMULATE_DO_MMIO)
2972                         return 0;
2973         }
2974         return 1;
2975 }
2976
2977 static int handle_nmi_window(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2978 {
2979         u32 cpu_based_vm_exec_control;
2980
2981         /* clear pending NMI */
2982         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2983         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
2984         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2985         ++vcpu->stat.nmi_window_exits;
2986
2987         /*
2988          * If the user space waits to inject a NMI, exit as soon as possible
2989          */
2990         if (kvm_run->request_nmi_window && !vcpu->arch.nmi_pending) {
2991                 kvm_run->exit_reason = KVM_EXIT_NMI_WINDOW_OPEN;
2992                 return 0;
2993         }
2994
2995         return 1;
2996 }
2997
2998 static void handle_invalid_guest_state(struct kvm_vcpu *vcpu,
2999                                 struct kvm_run *kvm_run)
3000 {
3001         struct vcpu_vmx *vmx = to_vmx(vcpu);
3002         int err;
3003
3004         preempt_enable();
3005         local_irq_enable();
3006
3007         while (!guest_state_valid(vcpu)) {
3008                 err = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
3009
3010                 switch (err) {
3011                         case EMULATE_DONE:
3012                                 break;
3013                         case EMULATE_DO_MMIO:
3014                                 kvm_report_emulation_failure(vcpu, "mmio");
3015                                 /* TODO: Handle MMIO */
3016                                 return;
3017                         default:
3018                                 kvm_report_emulation_failure(vcpu, "emulation failure");
3019                                 return;
3020                 }
3021
3022                 if (signal_pending(current))
3023                         break;
3024                 if (need_resched())
3025                         schedule();
3026         }
3027
3028         local_irq_disable();
3029         preempt_disable();
3030
3031         /* Guest state should be valid now, no more emulation should be needed */
3032         vmx->emulation_required = 0;
3033 }
3034
3035 /*
3036  * The exit handlers return 1 if the exit was handled fully and guest execution
3037  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
3038  * to be done to userspace and return 0.
3039  */
3040 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
3041                                       struct kvm_run *kvm_run) = {
3042         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
3043         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
3044         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
3045         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
3046         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
3047         [EXIT_REASON_CR_ACCESS]               = handle_cr,
3048         [EXIT_REASON_DR_ACCESS]               = handle_dr,
3049         [EXIT_REASON_CPUID]                   = handle_cpuid,
3050         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
3051         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
3052         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
3053         [EXIT_REASON_HLT]                     = handle_halt,
3054         [EXIT_REASON_INVLPG]                  = handle_invlpg,
3055         [EXIT_REASON_VMCALL]                  = handle_vmcall,
3056         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
3057         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
3058         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
3059         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
3060         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
3061 };
3062
3063 static const int kvm_vmx_max_exit_handlers =
3064         ARRAY_SIZE(kvm_vmx_exit_handlers);
3065
3066 /*
3067  * The guest has exited.  See if we can fix it or if we need userspace
3068  * assistance.
3069  */
3070 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3071 {
3072         u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
3073         struct vcpu_vmx *vmx = to_vmx(vcpu);
3074         u32 vectoring_info = vmx->idt_vectoring_info;
3075
3076         KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)kvm_rip_read(vcpu),
3077                     (u32)((u64)kvm_rip_read(vcpu) >> 32), entryexit);
3078
3079         /* Access CR3 don't cause VMExit in paging mode, so we need
3080          * to sync with guest real CR3. */
3081         if (vm_need_ept() && is_paging(vcpu)) {
3082                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3083                 ept_load_pdptrs(vcpu);
3084         }
3085
3086         if (unlikely(vmx->fail)) {
3087                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3088                 kvm_run->fail_entry.hardware_entry_failure_reason
3089                         = vmcs_read32(VM_INSTRUCTION_ERROR);
3090                 return 0;
3091         }
3092
3093         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
3094                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
3095                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
3096                         exit_reason != EXIT_REASON_TASK_SWITCH))
3097                 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
3098                        "(0x%x) and exit reason is 0x%x\n",
3099                        __func__, vectoring_info, exit_reason);
3100         if (exit_reason < kvm_vmx_max_exit_handlers
3101             && kvm_vmx_exit_handlers[exit_reason])
3102                 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
3103         else {
3104                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3105                 kvm_run->hw.hardware_exit_reason = exit_reason;
3106         }
3107         return 0;
3108 }
3109
3110 static void update_tpr_threshold(struct kvm_vcpu *vcpu)
3111 {
3112         int max_irr, tpr;
3113
3114         if (!vm_need_tpr_shadow(vcpu->kvm))
3115                 return;
3116
3117         if (!kvm_lapic_enabled(vcpu) ||
3118             ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
3119                 vmcs_write32(TPR_THRESHOLD, 0);
3120                 return;
3121         }
3122
3123         tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
3124         vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
3125 }
3126
3127 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
3128 {
3129         u32 exit_intr_info;
3130         u32 idt_vectoring_info;
3131         bool unblock_nmi;
3132         u8 vector;
3133         int type;
3134         bool idtv_info_valid;
3135         u32 error;
3136
3137         exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3138         if (cpu_has_virtual_nmis()) {
3139                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
3140                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
3141                 /*
3142                  * SDM 3: 25.7.1.2
3143                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
3144                  * a guest IRET fault.
3145                  */
3146                 if (unblock_nmi && vector != DF_VECTOR)
3147                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3148                                       GUEST_INTR_STATE_NMI);
3149         }
3150
3151         idt_vectoring_info = vmx->idt_vectoring_info;
3152         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
3153         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
3154         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
3155         if (vmx->vcpu.arch.nmi_injected) {
3156                 /*
3157                  * SDM 3: 25.7.1.2
3158                  * Clear bit "block by NMI" before VM entry if a NMI delivery
3159                  * faulted.
3160                  */
3161                 if (idtv_info_valid && type == INTR_TYPE_NMI_INTR)
3162                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
3163                                         GUEST_INTR_STATE_NMI);
3164                 else
3165                         vmx->vcpu.arch.nmi_injected = false;
3166         }
3167         kvm_clear_exception_queue(&vmx->vcpu);
3168         if (idtv_info_valid && type == INTR_TYPE_EXCEPTION) {
3169                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
3170                         error = vmcs_read32(IDT_VECTORING_ERROR_CODE);
3171                         kvm_queue_exception_e(&vmx->vcpu, vector, error);
3172                 } else
3173                         kvm_queue_exception(&vmx->vcpu, vector);
3174                 vmx->idt_vectoring_info = 0;
3175         }
3176         kvm_clear_interrupt_queue(&vmx->vcpu);
3177         if (idtv_info_valid && type == INTR_TYPE_EXT_INTR) {
3178                 kvm_queue_interrupt(&vmx->vcpu, vector);
3179                 vmx->idt_vectoring_info = 0;
3180         }
3181 }
3182
3183 static void vmx_intr_assist(struct kvm_vcpu *vcpu)
3184 {
3185         update_tpr_threshold(vcpu);
3186
3187         vmx_update_window_states(vcpu);
3188
3189         if (cpu_has_virtual_nmis()) {
3190                 if (vcpu->arch.nmi_pending && !vcpu->arch.nmi_injected) {
3191                         if (vcpu->arch.interrupt.pending) {
3192                                 enable_nmi_window(vcpu);
3193                         } else if (vcpu->arch.nmi_window_open) {
3194                                 vcpu->arch.nmi_pending = false;
3195                                 vcpu->arch.nmi_injected = true;
3196                         } else {
3197                                 enable_nmi_window(vcpu);
3198                                 return;
3199                         }
3200                 }
3201                 if (vcpu->arch.nmi_injected) {
3202                         vmx_inject_nmi(vcpu);
3203                         if (vcpu->arch.nmi_pending)
3204                                 enable_nmi_window(vcpu);
3205                         else if (kvm_cpu_has_interrupt(vcpu))
3206                                 enable_irq_window(vcpu);
3207                         return;
3208                 }
3209         }
3210         if (!vcpu->arch.interrupt.pending && kvm_cpu_has_interrupt(vcpu)) {
3211                 if (vcpu->arch.interrupt_window_open)
3212                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu));
3213                 else
3214                         enable_irq_window(vcpu);
3215         }
3216         if (vcpu->arch.interrupt.pending) {
3217                 vmx_inject_irq(vcpu, vcpu->arch.interrupt.nr);
3218                 kvm_timer_intr_post(vcpu, vcpu->arch.interrupt.nr);
3219         }
3220 }
3221
3222 /*
3223  * Failure to inject an interrupt should give us the information
3224  * in IDT_VECTORING_INFO_FIELD.  However, if the failure occurs
3225  * when fetching the interrupt redirection bitmap in the real-mode
3226  * tss, this doesn't happen.  So we do it ourselves.
3227  */
3228 static void fixup_rmode_irq(struct vcpu_vmx *vmx)
3229 {
3230         vmx->rmode.irq.pending = 0;
3231         if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
3232                 return;
3233         kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
3234         if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
3235                 vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
3236                 vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
3237                 return;
3238         }
3239         vmx->idt_vectoring_info =
3240                 VECTORING_INFO_VALID_MASK
3241                 | INTR_TYPE_EXT_INTR
3242                 | vmx->rmode.irq.vector;
3243 }
3244
3245 #ifdef CONFIG_X86_64
3246 #define R "r"
3247 #define Q "q"
3248 #else
3249 #define R "e"
3250 #define Q "l"
3251 #endif
3252
3253 static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3254 {
3255         struct vcpu_vmx *vmx = to_vmx(vcpu);
3256         u32 intr_info;
3257
3258         /* Handle invalid guest state instead of entering VMX */
3259         if (vmx->emulation_required && emulate_invalid_guest_state) {
3260                 handle_invalid_guest_state(vcpu, kvm_run);
3261                 return;
3262         }
3263
3264         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
3265                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
3266         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
3267                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
3268
3269         /*
3270          * Loading guest fpu may have cleared host cr0.ts
3271          */
3272         vmcs_writel(HOST_CR0, read_cr0());
3273
3274         asm(
3275                 /* Store host registers */
3276                 "push %%"R"dx; push %%"R"bp;"
3277                 "push %%"R"cx \n\t"
3278                 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
3279                 "je 1f \n\t"
3280                 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
3281                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
3282                 "1: \n\t"
3283                 /* Check if vmlaunch of vmresume is needed */
3284                 "cmpl $0, %c[launched](%0) \n\t"
3285                 /* Load guest registers.  Don't clobber flags. */
3286                 "mov %c[cr2](%0), %%"R"ax \n\t"
3287                 "mov %%"R"ax, %%cr2 \n\t"
3288                 "mov %c[rax](%0), %%"R"ax \n\t"
3289                 "mov %c[rbx](%0), %%"R"bx \n\t"
3290                 "mov %c[rdx](%0), %%"R"dx \n\t"
3291                 "mov %c[rsi](%0), %%"R"si \n\t"
3292                 "mov %c[rdi](%0), %%"R"di \n\t"
3293                 "mov %c[rbp](%0), %%"R"bp \n\t"
3294 #ifdef CONFIG_X86_64
3295                 "mov %c[r8](%0),  %%r8  \n\t"
3296                 "mov %c[r9](%0),  %%r9  \n\t"
3297                 "mov %c[r10](%0), %%r10 \n\t"
3298                 "mov %c[r11](%0), %%r11 \n\t"
3299                 "mov %c[r12](%0), %%r12 \n\t"
3300                 "mov %c[r13](%0), %%r13 \n\t"
3301                 "mov %c[r14](%0), %%r14 \n\t"
3302                 "mov %c[r15](%0), %%r15 \n\t"
3303 #endif
3304                 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
3305
3306                 /* Enter guest mode */
3307                 "jne .Llaunched \n\t"
3308                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
3309                 "jmp .Lkvm_vmx_return \n\t"
3310                 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
3311                 ".Lkvm_vmx_return: "
3312                 /* Save guest registers, load host registers, keep flags */
3313                 "xchg %0,     (%%"R"sp) \n\t"
3314                 "mov %%"R"ax, %c[rax](%0) \n\t"
3315                 "mov %%"R"bx, %c[rbx](%0) \n\t"
3316                 "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
3317                 "mov %%"R"dx, %c[rdx](%0) \n\t"
3318                 "mov %%"R"si, %c[rsi](%0) \n\t"
3319                 "mov %%"R"di, %c[rdi](%0) \n\t"
3320                 "mov %%"R"bp, %c[rbp](%0) \n\t"
3321 #ifdef CONFIG_X86_64
3322                 "mov %%r8,  %c[r8](%0) \n\t"
3323                 "mov %%r9,  %c[r9](%0) \n\t"
3324                 "mov %%r10, %c[r10](%0) \n\t"
3325                 "mov %%r11, %c[r11](%0) \n\t"
3326                 "mov %%r12, %c[r12](%0) \n\t"
3327                 "mov %%r13, %c[r13](%0) \n\t"
3328                 "mov %%r14, %c[r14](%0) \n\t"
3329                 "mov %%r15, %c[r15](%0) \n\t"
3330 #endif
3331                 "mov %%cr2, %%"R"ax   \n\t"
3332                 "mov %%"R"ax, %c[cr2](%0) \n\t"
3333
3334                 "pop  %%"R"bp; pop  %%"R"bp; pop  %%"R"dx \n\t"
3335                 "setbe %c[fail](%0) \n\t"
3336               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
3337                 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
3338                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
3339                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
3340                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
3341                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
3342                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
3343                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
3344                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
3345                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
3346                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
3347 #ifdef CONFIG_X86_64
3348                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
3349                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
3350                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
3351                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
3352                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
3353                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
3354                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
3355                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
3356 #endif
3357                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
3358               : "cc", "memory"
3359                 , R"bx", R"di", R"si"
3360 #ifdef CONFIG_X86_64
3361                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
3362 #endif
3363               );
3364
3365         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
3366         vcpu->arch.regs_dirty = 0;
3367
3368         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
3369         if (vmx->rmode.irq.pending)
3370                 fixup_rmode_irq(vmx);
3371
3372         vmx_update_window_states(vcpu);
3373
3374         asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
3375         vmx->launched = 1;
3376
3377         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3378
3379         /* We need to handle NMIs before interrupts are enabled */
3380         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
3381             (intr_info & INTR_INFO_VALID_MASK)) {
3382                 KVMTRACE_0D(NMI, vcpu, handler);
3383                 asm("int $2");
3384         }
3385
3386         vmx_complete_interrupts(vmx);
3387 }
3388
3389 #undef R
3390 #undef Q
3391
3392 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
3393 {
3394         struct vcpu_vmx *vmx = to_vmx(vcpu);
3395
3396         if (vmx->vmcs) {
3397                 vcpu_clear(vmx);
3398                 free_vmcs(vmx->vmcs);
3399                 vmx->vmcs = NULL;
3400         }
3401 }
3402
3403 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
3404 {
3405         struct vcpu_vmx *vmx = to_vmx(vcpu);
3406
3407         spin_lock(&vmx_vpid_lock);
3408         if (vmx->vpid != 0)
3409                 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3410         spin_unlock(&vmx_vpid_lock);
3411         vmx_free_vmcs(vcpu);
3412         kfree(vmx->host_msrs);
3413         kfree(vmx->guest_msrs);
3414         kvm_vcpu_uninit(vcpu);
3415         kmem_cache_free(kvm_vcpu_cache, vmx);
3416 }
3417
3418 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
3419 {
3420         int err;
3421         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3422         int cpu;
3423
3424         if (!vmx)
3425                 return ERR_PTR(-ENOMEM);
3426
3427         allocate_vpid(vmx);
3428
3429         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
3430         if (err)
3431                 goto free_vcpu;
3432
3433         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3434         if (!vmx->guest_msrs) {
3435                 err = -ENOMEM;
3436                 goto uninit_vcpu;
3437         }
3438
3439         vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3440         if (!vmx->host_msrs)
3441                 goto free_guest_msrs;
3442
3443         vmx->vmcs = alloc_vmcs();
3444         if (!vmx->vmcs)
3445                 goto free_msrs;
3446
3447         vmcs_clear(vmx->vmcs);
3448
3449         cpu = get_cpu();
3450         vmx_vcpu_load(&vmx->vcpu, cpu);
3451         err = vmx_vcpu_setup(vmx);
3452         vmx_vcpu_put(&vmx->vcpu);
3453         put_cpu();
3454         if (err)
3455                 goto free_vmcs;
3456         if (vm_need_virtualize_apic_accesses(kvm))
3457                 if (alloc_apic_access_page(kvm) != 0)
3458                         goto free_vmcs;
3459
3460         if (vm_need_ept())
3461                 if (alloc_identity_pagetable(kvm) != 0)
3462                         goto free_vmcs;
3463
3464         return &vmx->vcpu;
3465
3466 free_vmcs:
3467         free_vmcs(vmx->vmcs);
3468 free_msrs:
3469         kfree(vmx->host_msrs);
3470 free_guest_msrs:
3471         kfree(vmx->guest_msrs);
3472 uninit_vcpu:
3473         kvm_vcpu_uninit(&vmx->vcpu);
3474 free_vcpu:
3475         kmem_cache_free(kvm_vcpu_cache, vmx);
3476         return ERR_PTR(err);
3477 }
3478
3479 static void __init vmx_check_processor_compat(void *rtn)
3480 {
3481         struct vmcs_config vmcs_conf;
3482
3483         *(int *)rtn = 0;
3484         if (setup_vmcs_config(&vmcs_conf) < 0)
3485                 *(int *)rtn = -EIO;
3486         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
3487                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
3488                                 smp_processor_id());
3489                 *(int *)rtn = -EIO;
3490         }
3491 }
3492
3493 static int get_ept_level(void)
3494 {
3495         return VMX_EPT_DEFAULT_GAW + 1;
3496 }
3497
3498 static struct kvm_x86_ops vmx_x86_ops = {
3499         .cpu_has_kvm_support = cpu_has_kvm_support,
3500         .disabled_by_bios = vmx_disabled_by_bios,
3501         .hardware_setup = hardware_setup,
3502         .hardware_unsetup = hardware_unsetup,
3503         .check_processor_compatibility = vmx_check_processor_compat,
3504         .hardware_enable = hardware_enable,
3505         .hardware_disable = hardware_disable,
3506         .cpu_has_accelerated_tpr = cpu_has_vmx_virtualize_apic_accesses,
3507
3508         .vcpu_create = vmx_create_vcpu,
3509         .vcpu_free = vmx_free_vcpu,
3510         .vcpu_reset = vmx_vcpu_reset,
3511
3512         .prepare_guest_switch = vmx_save_host_state,
3513         .vcpu_load = vmx_vcpu_load,
3514         .vcpu_put = vmx_vcpu_put,
3515
3516         .set_guest_debug = set_guest_debug,
3517         .guest_debug_pre = kvm_guest_debug_pre,
3518         .get_msr = vmx_get_msr,
3519         .set_msr = vmx_set_msr,
3520         .get_segment_base = vmx_get_segment_base,
3521         .get_segment = vmx_get_segment,
3522         .set_segment = vmx_set_segment,
3523         .get_cpl = vmx_get_cpl,
3524         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
3525         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
3526         .set_cr0 = vmx_set_cr0,
3527         .set_cr3 = vmx_set_cr3,
3528         .set_cr4 = vmx_set_cr4,
3529         .set_efer = vmx_set_efer,
3530         .get_idt = vmx_get_idt,
3531         .set_idt = vmx_set_idt,
3532         .get_gdt = vmx_get_gdt,
3533         .set_gdt = vmx_set_gdt,
3534         .cache_reg = vmx_cache_reg,
3535         .get_rflags = vmx_get_rflags,
3536         .set_rflags = vmx_set_rflags,
3537
3538         .tlb_flush = vmx_flush_tlb,
3539
3540         .run = vmx_vcpu_run,
3541         .handle_exit = kvm_handle_exit,
3542         .skip_emulated_instruction = skip_emulated_instruction,
3543         .patch_hypercall = vmx_patch_hypercall,
3544         .get_irq = vmx_get_irq,
3545         .set_irq = vmx_inject_irq,
3546         .queue_exception = vmx_queue_exception,
3547         .exception_injected = vmx_exception_injected,
3548         .inject_pending_irq = vmx_intr_assist,
3549         .inject_pending_vectors = do_interrupt_requests,
3550
3551         .set_tss_addr = vmx_set_tss_addr,
3552         .get_tdp_level = get_ept_level,
3553 };
3554
3555 static int __init vmx_init(void)
3556 {
3557         void *va;
3558         int r;
3559
3560         vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
3561         if (!vmx_io_bitmap_a)
3562                 return -ENOMEM;
3563
3564         vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
3565         if (!vmx_io_bitmap_b) {
3566                 r = -ENOMEM;
3567                 goto out;
3568         }
3569
3570         vmx_msr_bitmap = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
3571         if (!vmx_msr_bitmap) {
3572                 r = -ENOMEM;
3573                 goto out1;
3574         }
3575
3576         /*
3577          * Allow direct access to the PC debug port (it is often used for I/O
3578          * delays, but the vmexits simply slow things down).
3579          */
3580         va = kmap(vmx_io_bitmap_a);
3581         memset(va, 0xff, PAGE_SIZE);
3582         clear_bit(0x80, va);
3583         kunmap(vmx_io_bitmap_a);
3584
3585         va = kmap(vmx_io_bitmap_b);
3586         memset(va, 0xff, PAGE_SIZE);
3587         kunmap(vmx_io_bitmap_b);
3588
3589         va = kmap(vmx_msr_bitmap);
3590         memset(va, 0xff, PAGE_SIZE);
3591         kunmap(vmx_msr_bitmap);
3592
3593         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
3594
3595         r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
3596         if (r)
3597                 goto out2;
3598
3599         vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_FS_BASE);
3600         vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_GS_BASE);
3601         vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_CS);
3602         vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_ESP);
3603         vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_EIP);
3604
3605         if (vm_need_ept()) {
3606                 bypass_guest_pf = 0;
3607                 kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
3608                         VMX_EPT_WRITABLE_MASK |
3609                         VMX_EPT_DEFAULT_MT << VMX_EPT_MT_EPTE_SHIFT |
3610                         VMX_EPT_IGMT_BIT);
3611                 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
3612                                 VMX_EPT_EXECUTABLE_MASK);
3613                 kvm_enable_tdp();
3614         } else
3615                 kvm_disable_tdp();
3616
3617         if (bypass_guest_pf)
3618                 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
3619
3620         ept_sync_global();
3621
3622         return 0;
3623
3624 out2:
3625         __free_page(vmx_msr_bitmap);
3626 out1:
3627         __free_page(vmx_io_bitmap_b);
3628 out:
3629         __free_page(vmx_io_bitmap_a);
3630         return r;
3631 }
3632
3633 static void __exit vmx_exit(void)
3634 {
3635         __free_page(vmx_msr_bitmap);
3636         __free_page(vmx_io_bitmap_b);
3637         __free_page(vmx_io_bitmap_a);
3638
3639         kvm_exit();
3640 }
3641
3642 module_init(vmx_init)
3643 module_exit(vmx_exit)