KVM: VMX: Use shared msr infrastructure
[safe/jmp/linux-2.6] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "irq.h"
19 #include "mmu.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/mm.h>
25 #include <linux/highmem.h>
26 #include <linux/sched.h>
27 #include <linux/moduleparam.h>
28 #include <linux/ftrace_event.h>
29 #include "kvm_cache_regs.h"
30 #include "x86.h"
31
32 #include <asm/io.h>
33 #include <asm/desc.h>
34 #include <asm/vmx.h>
35 #include <asm/virtext.h>
36 #include <asm/mce.h>
37
38 #include "trace.h"
39
40 #define __ex(x) __kvm_handle_fault_on_reboot(x)
41
42 MODULE_AUTHOR("Qumranet");
43 MODULE_LICENSE("GPL");
44
45 static int __read_mostly bypass_guest_pf = 1;
46 module_param(bypass_guest_pf, bool, S_IRUGO);
47
48 static int __read_mostly enable_vpid = 1;
49 module_param_named(vpid, enable_vpid, bool, 0444);
50
51 static int __read_mostly flexpriority_enabled = 1;
52 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
53
54 static int __read_mostly enable_ept = 1;
55 module_param_named(ept, enable_ept, bool, S_IRUGO);
56
57 static int __read_mostly enable_unrestricted_guest = 1;
58 module_param_named(unrestricted_guest,
59                         enable_unrestricted_guest, bool, S_IRUGO);
60
61 static int __read_mostly emulate_invalid_guest_state = 0;
62 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
63
64 /*
65  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
66  * ple_gap:    upper bound on the amount of time between two successive
67  *             executions of PAUSE in a loop. Also indicate if ple enabled.
68  *             According to test, this time is usually small than 41 cycles.
69  * ple_window: upper bound on the amount of time a guest is allowed to execute
70  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
71  *             less than 2^12 cycles
72  * Time is measured based on a counter that runs at the same rate as the TSC,
73  * refer SDM volume 3b section 21.6.13 & 22.1.3.
74  */
75 #define KVM_VMX_DEFAULT_PLE_GAP    41
76 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
77 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
78 module_param(ple_gap, int, S_IRUGO);
79
80 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
81 module_param(ple_window, int, S_IRUGO);
82
83 struct vmcs {
84         u32 revision_id;
85         u32 abort;
86         char data[0];
87 };
88
89 struct shared_msr_entry {
90         unsigned index;
91         u64 data;
92 };
93
94 struct vcpu_vmx {
95         struct kvm_vcpu       vcpu;
96         struct list_head      local_vcpus_link;
97         unsigned long         host_rsp;
98         int                   launched;
99         u8                    fail;
100         u32                   idt_vectoring_info;
101         struct shared_msr_entry *guest_msrs;
102         int                   nmsrs;
103         int                   save_nmsrs;
104         int                   msr_offset_efer;
105 #ifdef CONFIG_X86_64
106         u64                   msr_host_kernel_gs_base;
107         u64                   msr_guest_kernel_gs_base;
108 #endif
109         struct vmcs          *vmcs;
110         struct {
111                 int           loaded;
112                 u16           fs_sel, gs_sel, ldt_sel;
113                 int           gs_ldt_reload_needed;
114                 int           fs_reload_needed;
115         } host_state;
116         struct {
117                 int vm86_active;
118                 u8 save_iopl;
119                 struct kvm_save_segment {
120                         u16 selector;
121                         unsigned long base;
122                         u32 limit;
123                         u32 ar;
124                 } tr, es, ds, fs, gs;
125                 struct {
126                         bool pending;
127                         u8 vector;
128                         unsigned rip;
129                 } irq;
130         } rmode;
131         int vpid;
132         bool emulation_required;
133
134         /* Support for vnmi-less CPUs */
135         int soft_vnmi_blocked;
136         ktime_t entry_time;
137         s64 vnmi_blocked_time;
138         u32 exit_reason;
139 };
140
141 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
142 {
143         return container_of(vcpu, struct vcpu_vmx, vcpu);
144 }
145
146 static int init_rmode(struct kvm *kvm);
147 static u64 construct_eptp(unsigned long root_hpa);
148
149 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
150 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
151 static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
152
153 static unsigned long *vmx_io_bitmap_a;
154 static unsigned long *vmx_io_bitmap_b;
155 static unsigned long *vmx_msr_bitmap_legacy;
156 static unsigned long *vmx_msr_bitmap_longmode;
157
158 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
159 static DEFINE_SPINLOCK(vmx_vpid_lock);
160
161 static struct vmcs_config {
162         int size;
163         int order;
164         u32 revision_id;
165         u32 pin_based_exec_ctrl;
166         u32 cpu_based_exec_ctrl;
167         u32 cpu_based_2nd_exec_ctrl;
168         u32 vmexit_ctrl;
169         u32 vmentry_ctrl;
170 } vmcs_config;
171
172 static struct vmx_capability {
173         u32 ept;
174         u32 vpid;
175 } vmx_capability;
176
177 #define VMX_SEGMENT_FIELD(seg)                                  \
178         [VCPU_SREG_##seg] = {                                   \
179                 .selector = GUEST_##seg##_SELECTOR,             \
180                 .base = GUEST_##seg##_BASE,                     \
181                 .limit = GUEST_##seg##_LIMIT,                   \
182                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
183         }
184
185 static struct kvm_vmx_segment_field {
186         unsigned selector;
187         unsigned base;
188         unsigned limit;
189         unsigned ar_bytes;
190 } kvm_vmx_segment_fields[] = {
191         VMX_SEGMENT_FIELD(CS),
192         VMX_SEGMENT_FIELD(DS),
193         VMX_SEGMENT_FIELD(ES),
194         VMX_SEGMENT_FIELD(FS),
195         VMX_SEGMENT_FIELD(GS),
196         VMX_SEGMENT_FIELD(SS),
197         VMX_SEGMENT_FIELD(TR),
198         VMX_SEGMENT_FIELD(LDTR),
199 };
200
201 static u64 host_efer;
202
203 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
204
205 /*
206  * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
207  * away by decrementing the array size.
208  */
209 static const u32 vmx_msr_index[] = {
210 #ifdef CONFIG_X86_64
211         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
212 #endif
213         MSR_EFER, MSR_K6_STAR,
214 };
215 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
216
217 static inline int is_page_fault(u32 intr_info)
218 {
219         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
220                              INTR_INFO_VALID_MASK)) ==
221                 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
222 }
223
224 static inline int is_no_device(u32 intr_info)
225 {
226         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
227                              INTR_INFO_VALID_MASK)) ==
228                 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
229 }
230
231 static inline int is_invalid_opcode(u32 intr_info)
232 {
233         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
234                              INTR_INFO_VALID_MASK)) ==
235                 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
236 }
237
238 static inline int is_external_interrupt(u32 intr_info)
239 {
240         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
241                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
242 }
243
244 static inline int is_machine_check(u32 intr_info)
245 {
246         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
247                              INTR_INFO_VALID_MASK)) ==
248                 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
249 }
250
251 static inline int cpu_has_vmx_msr_bitmap(void)
252 {
253         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
254 }
255
256 static inline int cpu_has_vmx_tpr_shadow(void)
257 {
258         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
259 }
260
261 static inline int vm_need_tpr_shadow(struct kvm *kvm)
262 {
263         return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
264 }
265
266 static inline int cpu_has_secondary_exec_ctrls(void)
267 {
268         return vmcs_config.cpu_based_exec_ctrl &
269                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
270 }
271
272 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
273 {
274         return vmcs_config.cpu_based_2nd_exec_ctrl &
275                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
276 }
277
278 static inline bool cpu_has_vmx_flexpriority(void)
279 {
280         return cpu_has_vmx_tpr_shadow() &&
281                 cpu_has_vmx_virtualize_apic_accesses();
282 }
283
284 static inline bool cpu_has_vmx_ept_execute_only(void)
285 {
286         return !!(vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT);
287 }
288
289 static inline bool cpu_has_vmx_eptp_uncacheable(void)
290 {
291         return !!(vmx_capability.ept & VMX_EPTP_UC_BIT);
292 }
293
294 static inline bool cpu_has_vmx_eptp_writeback(void)
295 {
296         return !!(vmx_capability.ept & VMX_EPTP_WB_BIT);
297 }
298
299 static inline bool cpu_has_vmx_ept_2m_page(void)
300 {
301         return !!(vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT);
302 }
303
304 static inline int cpu_has_vmx_invept_individual_addr(void)
305 {
306         return !!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT);
307 }
308
309 static inline int cpu_has_vmx_invept_context(void)
310 {
311         return !!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT);
312 }
313
314 static inline int cpu_has_vmx_invept_global(void)
315 {
316         return !!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT);
317 }
318
319 static inline int cpu_has_vmx_ept(void)
320 {
321         return vmcs_config.cpu_based_2nd_exec_ctrl &
322                 SECONDARY_EXEC_ENABLE_EPT;
323 }
324
325 static inline int cpu_has_vmx_unrestricted_guest(void)
326 {
327         return vmcs_config.cpu_based_2nd_exec_ctrl &
328                 SECONDARY_EXEC_UNRESTRICTED_GUEST;
329 }
330
331 static inline int cpu_has_vmx_ple(void)
332 {
333         return vmcs_config.cpu_based_2nd_exec_ctrl &
334                 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
335 }
336
337 static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
338 {
339         return flexpriority_enabled &&
340                 (cpu_has_vmx_virtualize_apic_accesses()) &&
341                 (irqchip_in_kernel(kvm));
342 }
343
344 static inline int cpu_has_vmx_vpid(void)
345 {
346         return vmcs_config.cpu_based_2nd_exec_ctrl &
347                 SECONDARY_EXEC_ENABLE_VPID;
348 }
349
350 static inline int cpu_has_virtual_nmis(void)
351 {
352         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
353 }
354
355 static inline bool report_flexpriority(void)
356 {
357         return flexpriority_enabled;
358 }
359
360 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
361 {
362         int i;
363
364         for (i = 0; i < vmx->nmsrs; ++i)
365                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
366                         return i;
367         return -1;
368 }
369
370 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
371 {
372     struct {
373         u64 vpid : 16;
374         u64 rsvd : 48;
375         u64 gva;
376     } operand = { vpid, 0, gva };
377
378     asm volatile (__ex(ASM_VMX_INVVPID)
379                   /* CF==1 or ZF==1 --> rc = -1 */
380                   "; ja 1f ; ud2 ; 1:"
381                   : : "a"(&operand), "c"(ext) : "cc", "memory");
382 }
383
384 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
385 {
386         struct {
387                 u64 eptp, gpa;
388         } operand = {eptp, gpa};
389
390         asm volatile (__ex(ASM_VMX_INVEPT)
391                         /* CF==1 or ZF==1 --> rc = -1 */
392                         "; ja 1f ; ud2 ; 1:\n"
393                         : : "a" (&operand), "c" (ext) : "cc", "memory");
394 }
395
396 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
397 {
398         int i;
399
400         i = __find_msr_index(vmx, msr);
401         if (i >= 0)
402                 return &vmx->guest_msrs[i];
403         return NULL;
404 }
405
406 static void vmcs_clear(struct vmcs *vmcs)
407 {
408         u64 phys_addr = __pa(vmcs);
409         u8 error;
410
411         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
412                       : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
413                       : "cc", "memory");
414         if (error)
415                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
416                        vmcs, phys_addr);
417 }
418
419 static void __vcpu_clear(void *arg)
420 {
421         struct vcpu_vmx *vmx = arg;
422         int cpu = raw_smp_processor_id();
423
424         if (vmx->vcpu.cpu == cpu)
425                 vmcs_clear(vmx->vmcs);
426         if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
427                 per_cpu(current_vmcs, cpu) = NULL;
428         rdtscll(vmx->vcpu.arch.host_tsc);
429         list_del(&vmx->local_vcpus_link);
430         vmx->vcpu.cpu = -1;
431         vmx->launched = 0;
432 }
433
434 static void vcpu_clear(struct vcpu_vmx *vmx)
435 {
436         if (vmx->vcpu.cpu == -1)
437                 return;
438         smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
439 }
440
441 static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
442 {
443         if (vmx->vpid == 0)
444                 return;
445
446         __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
447 }
448
449 static inline void ept_sync_global(void)
450 {
451         if (cpu_has_vmx_invept_global())
452                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
453 }
454
455 static inline void ept_sync_context(u64 eptp)
456 {
457         if (enable_ept) {
458                 if (cpu_has_vmx_invept_context())
459                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
460                 else
461                         ept_sync_global();
462         }
463 }
464
465 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
466 {
467         if (enable_ept) {
468                 if (cpu_has_vmx_invept_individual_addr())
469                         __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
470                                         eptp, gpa);
471                 else
472                         ept_sync_context(eptp);
473         }
474 }
475
476 static unsigned long vmcs_readl(unsigned long field)
477 {
478         unsigned long value;
479
480         asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
481                       : "=a"(value) : "d"(field) : "cc");
482         return value;
483 }
484
485 static u16 vmcs_read16(unsigned long field)
486 {
487         return vmcs_readl(field);
488 }
489
490 static u32 vmcs_read32(unsigned long field)
491 {
492         return vmcs_readl(field);
493 }
494
495 static u64 vmcs_read64(unsigned long field)
496 {
497 #ifdef CONFIG_X86_64
498         return vmcs_readl(field);
499 #else
500         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
501 #endif
502 }
503
504 static noinline void vmwrite_error(unsigned long field, unsigned long value)
505 {
506         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
507                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
508         dump_stack();
509 }
510
511 static void vmcs_writel(unsigned long field, unsigned long value)
512 {
513         u8 error;
514
515         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
516                        : "=q"(error) : "a"(value), "d"(field) : "cc");
517         if (unlikely(error))
518                 vmwrite_error(field, value);
519 }
520
521 static void vmcs_write16(unsigned long field, u16 value)
522 {
523         vmcs_writel(field, value);
524 }
525
526 static void vmcs_write32(unsigned long field, u32 value)
527 {
528         vmcs_writel(field, value);
529 }
530
531 static void vmcs_write64(unsigned long field, u64 value)
532 {
533         vmcs_writel(field, value);
534 #ifndef CONFIG_X86_64
535         asm volatile ("");
536         vmcs_writel(field+1, value >> 32);
537 #endif
538 }
539
540 static void vmcs_clear_bits(unsigned long field, u32 mask)
541 {
542         vmcs_writel(field, vmcs_readl(field) & ~mask);
543 }
544
545 static void vmcs_set_bits(unsigned long field, u32 mask)
546 {
547         vmcs_writel(field, vmcs_readl(field) | mask);
548 }
549
550 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
551 {
552         u32 eb;
553
554         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR);
555         if (!vcpu->fpu_active)
556                 eb |= 1u << NM_VECTOR;
557         /*
558          * Unconditionally intercept #DB so we can maintain dr6 without
559          * reading it every exit.
560          */
561         eb |= 1u << DB_VECTOR;
562         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
563                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
564                         eb |= 1u << BP_VECTOR;
565         }
566         if (to_vmx(vcpu)->rmode.vm86_active)
567                 eb = ~0;
568         if (enable_ept)
569                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
570         vmcs_write32(EXCEPTION_BITMAP, eb);
571 }
572
573 static void reload_tss(void)
574 {
575         /*
576          * VT restores TR but not its size.  Useless.
577          */
578         struct descriptor_table gdt;
579         struct desc_struct *descs;
580
581         kvm_get_gdt(&gdt);
582         descs = (void *)gdt.base;
583         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
584         load_TR_desc();
585 }
586
587 static bool update_transition_efer(struct vcpu_vmx *vmx)
588 {
589         int efer_offset = vmx->msr_offset_efer;
590         u64 guest_efer;
591         u64 ignore_bits;
592
593         if (efer_offset < 0)
594                 return false;
595         guest_efer = vmx->vcpu.arch.shadow_efer;
596
597         /*
598          * NX is emulated; LMA and LME handled by hardware; SCE meaninless
599          * outside long mode
600          */
601         ignore_bits = EFER_NX | EFER_SCE;
602 #ifdef CONFIG_X86_64
603         ignore_bits |= EFER_LMA | EFER_LME;
604         /* SCE is meaningful only in long mode on Intel */
605         if (guest_efer & EFER_LMA)
606                 ignore_bits &= ~(u64)EFER_SCE;
607 #endif
608         if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
609                 return false;
610
611         guest_efer &= ~ignore_bits;
612         guest_efer |= host_efer & ignore_bits;
613         vmx->guest_msrs[efer_offset].data = guest_efer;
614         return true;
615 }
616
617 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
618 {
619         struct vcpu_vmx *vmx = to_vmx(vcpu);
620         int i;
621
622         if (vmx->host_state.loaded)
623                 return;
624
625         vmx->host_state.loaded = 1;
626         /*
627          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
628          * allow segment selectors with cpl > 0 or ti == 1.
629          */
630         vmx->host_state.ldt_sel = kvm_read_ldt();
631         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
632         vmx->host_state.fs_sel = kvm_read_fs();
633         if (!(vmx->host_state.fs_sel & 7)) {
634                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
635                 vmx->host_state.fs_reload_needed = 0;
636         } else {
637                 vmcs_write16(HOST_FS_SELECTOR, 0);
638                 vmx->host_state.fs_reload_needed = 1;
639         }
640         vmx->host_state.gs_sel = kvm_read_gs();
641         if (!(vmx->host_state.gs_sel & 7))
642                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
643         else {
644                 vmcs_write16(HOST_GS_SELECTOR, 0);
645                 vmx->host_state.gs_ldt_reload_needed = 1;
646         }
647
648 #ifdef CONFIG_X86_64
649         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
650         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
651 #else
652         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
653         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
654 #endif
655
656 #ifdef CONFIG_X86_64
657         if (is_long_mode(&vmx->vcpu)) {
658                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
659                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
660         }
661 #endif
662         for (i = 0; i < vmx->save_nmsrs; ++i)
663                 kvm_set_shared_msr(vmx->guest_msrs[i].index,
664                                    vmx->guest_msrs[i].data);
665 }
666
667 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
668 {
669         unsigned long flags;
670
671         if (!vmx->host_state.loaded)
672                 return;
673
674         ++vmx->vcpu.stat.host_state_reload;
675         vmx->host_state.loaded = 0;
676         if (vmx->host_state.fs_reload_needed)
677                 kvm_load_fs(vmx->host_state.fs_sel);
678         if (vmx->host_state.gs_ldt_reload_needed) {
679                 kvm_load_ldt(vmx->host_state.ldt_sel);
680                 /*
681                  * If we have to reload gs, we must take care to
682                  * preserve our gs base.
683                  */
684                 local_irq_save(flags);
685                 kvm_load_gs(vmx->host_state.gs_sel);
686 #ifdef CONFIG_X86_64
687                 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
688 #endif
689                 local_irq_restore(flags);
690         }
691         reload_tss();
692 #ifdef CONFIG_X86_64
693         if (is_long_mode(&vmx->vcpu)) {
694                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
695                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
696         }
697 #endif
698 }
699
700 static void vmx_load_host_state(struct vcpu_vmx *vmx)
701 {
702         preempt_disable();
703         __vmx_load_host_state(vmx);
704         preempt_enable();
705 }
706
707 /*
708  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
709  * vcpu mutex is already taken.
710  */
711 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
712 {
713         struct vcpu_vmx *vmx = to_vmx(vcpu);
714         u64 phys_addr = __pa(vmx->vmcs);
715         u64 tsc_this, delta, new_offset;
716
717         if (vcpu->cpu != cpu) {
718                 vcpu_clear(vmx);
719                 kvm_migrate_timers(vcpu);
720                 set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
721                 local_irq_disable();
722                 list_add(&vmx->local_vcpus_link,
723                          &per_cpu(vcpus_on_cpu, cpu));
724                 local_irq_enable();
725         }
726
727         if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
728                 u8 error;
729
730                 per_cpu(current_vmcs, cpu) = vmx->vmcs;
731                 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
732                               : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
733                               : "cc");
734                 if (error)
735                         printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
736                                vmx->vmcs, phys_addr);
737         }
738
739         if (vcpu->cpu != cpu) {
740                 struct descriptor_table dt;
741                 unsigned long sysenter_esp;
742
743                 vcpu->cpu = cpu;
744                 /*
745                  * Linux uses per-cpu TSS and GDT, so set these when switching
746                  * processors.
747                  */
748                 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
749                 kvm_get_gdt(&dt);
750                 vmcs_writel(HOST_GDTR_BASE, dt.base);   /* 22.2.4 */
751
752                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
753                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
754
755                 /*
756                  * Make sure the time stamp counter is monotonous.
757                  */
758                 rdtscll(tsc_this);
759                 if (tsc_this < vcpu->arch.host_tsc) {
760                         delta = vcpu->arch.host_tsc - tsc_this;
761                         new_offset = vmcs_read64(TSC_OFFSET) + delta;
762                         vmcs_write64(TSC_OFFSET, new_offset);
763                 }
764         }
765 }
766
767 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
768 {
769         __vmx_load_host_state(to_vmx(vcpu));
770 }
771
772 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
773 {
774         if (vcpu->fpu_active)
775                 return;
776         vcpu->fpu_active = 1;
777         vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
778         if (vcpu->arch.cr0 & X86_CR0_TS)
779                 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
780         update_exception_bitmap(vcpu);
781 }
782
783 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
784 {
785         if (!vcpu->fpu_active)
786                 return;
787         vcpu->fpu_active = 0;
788         vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
789         update_exception_bitmap(vcpu);
790 }
791
792 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
793 {
794         unsigned long rflags;
795
796         rflags = vmcs_readl(GUEST_RFLAGS);
797         if (to_vmx(vcpu)->rmode.vm86_active)
798                 rflags &= ~(unsigned long)(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
799         return rflags;
800 }
801
802 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
803 {
804         if (to_vmx(vcpu)->rmode.vm86_active)
805                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
806         vmcs_writel(GUEST_RFLAGS, rflags);
807 }
808
809 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
810 {
811         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
812         int ret = 0;
813
814         if (interruptibility & GUEST_INTR_STATE_STI)
815                 ret |= X86_SHADOW_INT_STI;
816         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
817                 ret |= X86_SHADOW_INT_MOV_SS;
818
819         return ret & mask;
820 }
821
822 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
823 {
824         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
825         u32 interruptibility = interruptibility_old;
826
827         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
828
829         if (mask & X86_SHADOW_INT_MOV_SS)
830                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
831         if (mask & X86_SHADOW_INT_STI)
832                 interruptibility |= GUEST_INTR_STATE_STI;
833
834         if ((interruptibility != interruptibility_old))
835                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
836 }
837
838 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
839 {
840         unsigned long rip;
841
842         rip = kvm_rip_read(vcpu);
843         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
844         kvm_rip_write(vcpu, rip);
845
846         /* skipping an emulated instruction also counts */
847         vmx_set_interrupt_shadow(vcpu, 0);
848 }
849
850 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
851                                 bool has_error_code, u32 error_code)
852 {
853         struct vcpu_vmx *vmx = to_vmx(vcpu);
854         u32 intr_info = nr | INTR_INFO_VALID_MASK;
855
856         if (has_error_code) {
857                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
858                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
859         }
860
861         if (vmx->rmode.vm86_active) {
862                 vmx->rmode.irq.pending = true;
863                 vmx->rmode.irq.vector = nr;
864                 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
865                 if (kvm_exception_is_soft(nr))
866                         vmx->rmode.irq.rip +=
867                                 vmx->vcpu.arch.event_exit_inst_len;
868                 intr_info |= INTR_TYPE_SOFT_INTR;
869                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
870                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
871                 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
872                 return;
873         }
874
875         if (kvm_exception_is_soft(nr)) {
876                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
877                              vmx->vcpu.arch.event_exit_inst_len);
878                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
879         } else
880                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
881
882         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
883 }
884
885 /*
886  * Swap MSR entry in host/guest MSR entry array.
887  */
888 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
889 {
890         struct shared_msr_entry tmp;
891
892         tmp = vmx->guest_msrs[to];
893         vmx->guest_msrs[to] = vmx->guest_msrs[from];
894         vmx->guest_msrs[from] = tmp;
895 }
896
897 /*
898  * Set up the vmcs to automatically save and restore system
899  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
900  * mode, as fiddling with msrs is very expensive.
901  */
902 static void setup_msrs(struct vcpu_vmx *vmx)
903 {
904         int save_nmsrs, index;
905         unsigned long *msr_bitmap;
906
907         vmx_load_host_state(vmx);
908         save_nmsrs = 0;
909 #ifdef CONFIG_X86_64
910         if (is_long_mode(&vmx->vcpu)) {
911                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
912                 if (index >= 0)
913                         move_msr_up(vmx, index, save_nmsrs++);
914                 index = __find_msr_index(vmx, MSR_LSTAR);
915                 if (index >= 0)
916                         move_msr_up(vmx, index, save_nmsrs++);
917                 index = __find_msr_index(vmx, MSR_CSTAR);
918                 if (index >= 0)
919                         move_msr_up(vmx, index, save_nmsrs++);
920                 /*
921                  * MSR_K6_STAR is only needed on long mode guests, and only
922                  * if efer.sce is enabled.
923                  */
924                 index = __find_msr_index(vmx, MSR_K6_STAR);
925                 if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
926                         move_msr_up(vmx, index, save_nmsrs++);
927         }
928 #endif
929         vmx->msr_offset_efer = index = __find_msr_index(vmx, MSR_EFER);
930         if (index >= 0 && update_transition_efer(vmx))
931                 move_msr_up(vmx, index, save_nmsrs++);
932
933         vmx->save_nmsrs = save_nmsrs;
934
935         if (cpu_has_vmx_msr_bitmap()) {
936                 if (is_long_mode(&vmx->vcpu))
937                         msr_bitmap = vmx_msr_bitmap_longmode;
938                 else
939                         msr_bitmap = vmx_msr_bitmap_legacy;
940
941                 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
942         }
943 }
944
945 /*
946  * reads and returns guest's timestamp counter "register"
947  * guest_tsc = host_tsc + tsc_offset    -- 21.3
948  */
949 static u64 guest_read_tsc(void)
950 {
951         u64 host_tsc, tsc_offset;
952
953         rdtscll(host_tsc);
954         tsc_offset = vmcs_read64(TSC_OFFSET);
955         return host_tsc + tsc_offset;
956 }
957
958 /*
959  * writes 'guest_tsc' into guest's timestamp counter "register"
960  * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
961  */
962 static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
963 {
964         vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
965 }
966
967 /*
968  * Reads an msr value (of 'msr_index') into 'pdata'.
969  * Returns 0 on success, non-0 otherwise.
970  * Assumes vcpu_load() was already called.
971  */
972 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
973 {
974         u64 data;
975         struct shared_msr_entry *msr;
976
977         if (!pdata) {
978                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
979                 return -EINVAL;
980         }
981
982         switch (msr_index) {
983 #ifdef CONFIG_X86_64
984         case MSR_FS_BASE:
985                 data = vmcs_readl(GUEST_FS_BASE);
986                 break;
987         case MSR_GS_BASE:
988                 data = vmcs_readl(GUEST_GS_BASE);
989                 break;
990         case MSR_KERNEL_GS_BASE:
991                 vmx_load_host_state(to_vmx(vcpu));
992                 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
993                 break;
994 #endif
995         case MSR_EFER:
996                 return kvm_get_msr_common(vcpu, msr_index, pdata);
997         case MSR_IA32_TSC:
998                 data = guest_read_tsc();
999                 break;
1000         case MSR_IA32_SYSENTER_CS:
1001                 data = vmcs_read32(GUEST_SYSENTER_CS);
1002                 break;
1003         case MSR_IA32_SYSENTER_EIP:
1004                 data = vmcs_readl(GUEST_SYSENTER_EIP);
1005                 break;
1006         case MSR_IA32_SYSENTER_ESP:
1007                 data = vmcs_readl(GUEST_SYSENTER_ESP);
1008                 break;
1009         default:
1010                 vmx_load_host_state(to_vmx(vcpu));
1011                 msr = find_msr_entry(to_vmx(vcpu), msr_index);
1012                 if (msr) {
1013                         vmx_load_host_state(to_vmx(vcpu));
1014                         data = msr->data;
1015                         break;
1016                 }
1017                 return kvm_get_msr_common(vcpu, msr_index, pdata);
1018         }
1019
1020         *pdata = data;
1021         return 0;
1022 }
1023
1024 /*
1025  * Writes msr value into into the appropriate "register".
1026  * Returns 0 on success, non-0 otherwise.
1027  * Assumes vcpu_load() was already called.
1028  */
1029 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1030 {
1031         struct vcpu_vmx *vmx = to_vmx(vcpu);
1032         struct shared_msr_entry *msr;
1033         u64 host_tsc;
1034         int ret = 0;
1035
1036         switch (msr_index) {
1037         case MSR_EFER:
1038                 vmx_load_host_state(vmx);
1039                 ret = kvm_set_msr_common(vcpu, msr_index, data);
1040                 break;
1041 #ifdef CONFIG_X86_64
1042         case MSR_FS_BASE:
1043                 vmcs_writel(GUEST_FS_BASE, data);
1044                 break;
1045         case MSR_GS_BASE:
1046                 vmcs_writel(GUEST_GS_BASE, data);
1047                 break;
1048         case MSR_KERNEL_GS_BASE:
1049                 vmx_load_host_state(vmx);
1050                 vmx->msr_guest_kernel_gs_base = data;
1051                 break;
1052 #endif
1053         case MSR_IA32_SYSENTER_CS:
1054                 vmcs_write32(GUEST_SYSENTER_CS, data);
1055                 break;
1056         case MSR_IA32_SYSENTER_EIP:
1057                 vmcs_writel(GUEST_SYSENTER_EIP, data);
1058                 break;
1059         case MSR_IA32_SYSENTER_ESP:
1060                 vmcs_writel(GUEST_SYSENTER_ESP, data);
1061                 break;
1062         case MSR_IA32_TSC:
1063                 rdtscll(host_tsc);
1064                 guest_write_tsc(data, host_tsc);
1065                 break;
1066         case MSR_IA32_CR_PAT:
1067                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
1068                         vmcs_write64(GUEST_IA32_PAT, data);
1069                         vcpu->arch.pat = data;
1070                         break;
1071                 }
1072                 /* Otherwise falls through to kvm_set_msr_common */
1073         default:
1074                 msr = find_msr_entry(vmx, msr_index);
1075                 if (msr) {
1076                         vmx_load_host_state(vmx);
1077                         msr->data = data;
1078                         break;
1079                 }
1080                 ret = kvm_set_msr_common(vcpu, msr_index, data);
1081         }
1082
1083         return ret;
1084 }
1085
1086 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1087 {
1088         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
1089         switch (reg) {
1090         case VCPU_REGS_RSP:
1091                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
1092                 break;
1093         case VCPU_REGS_RIP:
1094                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
1095                 break;
1096         case VCPU_EXREG_PDPTR:
1097                 if (enable_ept)
1098                         ept_save_pdptrs(vcpu);
1099                 break;
1100         default:
1101                 break;
1102         }
1103 }
1104
1105 static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1106 {
1107         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1108                 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
1109         else
1110                 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
1111
1112         update_exception_bitmap(vcpu);
1113 }
1114
1115 static __init int cpu_has_kvm_support(void)
1116 {
1117         return cpu_has_vmx();
1118 }
1119
1120 static __init int vmx_disabled_by_bios(void)
1121 {
1122         u64 msr;
1123
1124         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
1125         return (msr & (FEATURE_CONTROL_LOCKED |
1126                        FEATURE_CONTROL_VMXON_ENABLED))
1127             == FEATURE_CONTROL_LOCKED;
1128         /* locked but not enabled */
1129 }
1130
1131 static int hardware_enable(void *garbage)
1132 {
1133         int cpu = raw_smp_processor_id();
1134         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1135         u64 old;
1136
1137         if (read_cr4() & X86_CR4_VMXE)
1138                 return -EBUSY;
1139
1140         INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
1141         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1142         if ((old & (FEATURE_CONTROL_LOCKED |
1143                     FEATURE_CONTROL_VMXON_ENABLED))
1144             != (FEATURE_CONTROL_LOCKED |
1145                 FEATURE_CONTROL_VMXON_ENABLED))
1146                 /* enable and lock */
1147                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
1148                        FEATURE_CONTROL_LOCKED |
1149                        FEATURE_CONTROL_VMXON_ENABLED);
1150         write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
1151         asm volatile (ASM_VMX_VMXON_RAX
1152                       : : "a"(&phys_addr), "m"(phys_addr)
1153                       : "memory", "cc");
1154
1155         ept_sync_global();
1156
1157         return 0;
1158 }
1159
1160 static void vmclear_local_vcpus(void)
1161 {
1162         int cpu = raw_smp_processor_id();
1163         struct vcpu_vmx *vmx, *n;
1164
1165         list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
1166                                  local_vcpus_link)
1167                 __vcpu_clear(vmx);
1168 }
1169
1170
1171 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
1172  * tricks.
1173  */
1174 static void kvm_cpu_vmxoff(void)
1175 {
1176         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1177         write_cr4(read_cr4() & ~X86_CR4_VMXE);
1178 }
1179
1180 static void hardware_disable(void *garbage)
1181 {
1182         vmclear_local_vcpus();
1183         kvm_cpu_vmxoff();
1184 }
1185
1186 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1187                                       u32 msr, u32 *result)
1188 {
1189         u32 vmx_msr_low, vmx_msr_high;
1190         u32 ctl = ctl_min | ctl_opt;
1191
1192         rdmsr(msr, vmx_msr_low, vmx_msr_high);
1193
1194         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1195         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
1196
1197         /* Ensure minimum (required) set of control bits are supported. */
1198         if (ctl_min & ~ctl)
1199                 return -EIO;
1200
1201         *result = ctl;
1202         return 0;
1203 }
1204
1205 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1206 {
1207         u32 vmx_msr_low, vmx_msr_high;
1208         u32 min, opt, min2, opt2;
1209         u32 _pin_based_exec_control = 0;
1210         u32 _cpu_based_exec_control = 0;
1211         u32 _cpu_based_2nd_exec_control = 0;
1212         u32 _vmexit_control = 0;
1213         u32 _vmentry_control = 0;
1214
1215         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1216         opt = PIN_BASED_VIRTUAL_NMIS;
1217         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1218                                 &_pin_based_exec_control) < 0)
1219                 return -EIO;
1220
1221         min = CPU_BASED_HLT_EXITING |
1222 #ifdef CONFIG_X86_64
1223               CPU_BASED_CR8_LOAD_EXITING |
1224               CPU_BASED_CR8_STORE_EXITING |
1225 #endif
1226               CPU_BASED_CR3_LOAD_EXITING |
1227               CPU_BASED_CR3_STORE_EXITING |
1228               CPU_BASED_USE_IO_BITMAPS |
1229               CPU_BASED_MOV_DR_EXITING |
1230               CPU_BASED_USE_TSC_OFFSETING |
1231               CPU_BASED_INVLPG_EXITING;
1232         opt = CPU_BASED_TPR_SHADOW |
1233               CPU_BASED_USE_MSR_BITMAPS |
1234               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1235         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1236                                 &_cpu_based_exec_control) < 0)
1237                 return -EIO;
1238 #ifdef CONFIG_X86_64
1239         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1240                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1241                                            ~CPU_BASED_CR8_STORE_EXITING;
1242 #endif
1243         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1244                 min2 = 0;
1245                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1246                         SECONDARY_EXEC_WBINVD_EXITING |
1247                         SECONDARY_EXEC_ENABLE_VPID |
1248                         SECONDARY_EXEC_ENABLE_EPT |
1249                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
1250                         SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1251                 if (adjust_vmx_controls(min2, opt2,
1252                                         MSR_IA32_VMX_PROCBASED_CTLS2,
1253                                         &_cpu_based_2nd_exec_control) < 0)
1254                         return -EIO;
1255         }
1256 #ifndef CONFIG_X86_64
1257         if (!(_cpu_based_2nd_exec_control &
1258                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1259                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1260 #endif
1261         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1262                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
1263                    enabled */
1264                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
1265                                              CPU_BASED_CR3_STORE_EXITING |
1266                                              CPU_BASED_INVLPG_EXITING);
1267                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1268                       vmx_capability.ept, vmx_capability.vpid);
1269         }
1270
1271         min = 0;
1272 #ifdef CONFIG_X86_64
1273         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1274 #endif
1275         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
1276         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1277                                 &_vmexit_control) < 0)
1278                 return -EIO;
1279
1280         min = 0;
1281         opt = VM_ENTRY_LOAD_IA32_PAT;
1282         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1283                                 &_vmentry_control) < 0)
1284                 return -EIO;
1285
1286         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1287
1288         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1289         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1290                 return -EIO;
1291
1292 #ifdef CONFIG_X86_64
1293         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1294         if (vmx_msr_high & (1u<<16))
1295                 return -EIO;
1296 #endif
1297
1298         /* Require Write-Back (WB) memory type for VMCS accesses. */
1299         if (((vmx_msr_high >> 18) & 15) != 6)
1300                 return -EIO;
1301
1302         vmcs_conf->size = vmx_msr_high & 0x1fff;
1303         vmcs_conf->order = get_order(vmcs_config.size);
1304         vmcs_conf->revision_id = vmx_msr_low;
1305
1306         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1307         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1308         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1309         vmcs_conf->vmexit_ctrl         = _vmexit_control;
1310         vmcs_conf->vmentry_ctrl        = _vmentry_control;
1311
1312         return 0;
1313 }
1314
1315 static struct vmcs *alloc_vmcs_cpu(int cpu)
1316 {
1317         int node = cpu_to_node(cpu);
1318         struct page *pages;
1319         struct vmcs *vmcs;
1320
1321         pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
1322         if (!pages)
1323                 return NULL;
1324         vmcs = page_address(pages);
1325         memset(vmcs, 0, vmcs_config.size);
1326         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1327         return vmcs;
1328 }
1329
1330 static struct vmcs *alloc_vmcs(void)
1331 {
1332         return alloc_vmcs_cpu(raw_smp_processor_id());
1333 }
1334
1335 static void free_vmcs(struct vmcs *vmcs)
1336 {
1337         free_pages((unsigned long)vmcs, vmcs_config.order);
1338 }
1339
1340 static void free_kvm_area(void)
1341 {
1342         int cpu;
1343
1344         for_each_possible_cpu(cpu) {
1345                 free_vmcs(per_cpu(vmxarea, cpu));
1346                 per_cpu(vmxarea, cpu) = NULL;
1347         }
1348 }
1349
1350 static __init int alloc_kvm_area(void)
1351 {
1352         int cpu;
1353
1354         for_each_possible_cpu(cpu) {
1355                 struct vmcs *vmcs;
1356
1357                 vmcs = alloc_vmcs_cpu(cpu);
1358                 if (!vmcs) {
1359                         free_kvm_area();
1360                         return -ENOMEM;
1361                 }
1362
1363                 per_cpu(vmxarea, cpu) = vmcs;
1364         }
1365         return 0;
1366 }
1367
1368 static __init int hardware_setup(void)
1369 {
1370         if (setup_vmcs_config(&vmcs_config) < 0)
1371                 return -EIO;
1372
1373         if (boot_cpu_has(X86_FEATURE_NX))
1374                 kvm_enable_efer_bits(EFER_NX);
1375
1376         if (!cpu_has_vmx_vpid())
1377                 enable_vpid = 0;
1378
1379         if (!cpu_has_vmx_ept()) {
1380                 enable_ept = 0;
1381                 enable_unrestricted_guest = 0;
1382         }
1383
1384         if (!cpu_has_vmx_unrestricted_guest())
1385                 enable_unrestricted_guest = 0;
1386
1387         if (!cpu_has_vmx_flexpriority())
1388                 flexpriority_enabled = 0;
1389
1390         if (!cpu_has_vmx_tpr_shadow())
1391                 kvm_x86_ops->update_cr8_intercept = NULL;
1392
1393         if (enable_ept && !cpu_has_vmx_ept_2m_page())
1394                 kvm_disable_largepages();
1395
1396         if (!cpu_has_vmx_ple())
1397                 ple_gap = 0;
1398
1399         return alloc_kvm_area();
1400 }
1401
1402 static __exit void hardware_unsetup(void)
1403 {
1404         free_kvm_area();
1405 }
1406
1407 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1408 {
1409         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1410
1411         if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1412                 vmcs_write16(sf->selector, save->selector);
1413                 vmcs_writel(sf->base, save->base);
1414                 vmcs_write32(sf->limit, save->limit);
1415                 vmcs_write32(sf->ar_bytes, save->ar);
1416         } else {
1417                 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1418                         << AR_DPL_SHIFT;
1419                 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1420         }
1421 }
1422
1423 static void enter_pmode(struct kvm_vcpu *vcpu)
1424 {
1425         unsigned long flags;
1426         struct vcpu_vmx *vmx = to_vmx(vcpu);
1427
1428         vmx->emulation_required = 1;
1429         vmx->rmode.vm86_active = 0;
1430
1431         vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
1432         vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
1433         vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
1434
1435         flags = vmcs_readl(GUEST_RFLAGS);
1436         flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
1437         flags |= (vmx->rmode.save_iopl << IOPL_SHIFT);
1438         vmcs_writel(GUEST_RFLAGS, flags);
1439
1440         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1441                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1442
1443         update_exception_bitmap(vcpu);
1444
1445         if (emulate_invalid_guest_state)
1446                 return;
1447
1448         fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
1449         fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
1450         fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
1451         fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
1452
1453         vmcs_write16(GUEST_SS_SELECTOR, 0);
1454         vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1455
1456         vmcs_write16(GUEST_CS_SELECTOR,
1457                      vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1458         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1459 }
1460
1461 static gva_t rmode_tss_base(struct kvm *kvm)
1462 {
1463         if (!kvm->arch.tss_addr) {
1464                 gfn_t base_gfn = kvm->memslots[0].base_gfn +
1465                                  kvm->memslots[0].npages - 3;
1466                 return base_gfn << PAGE_SHIFT;
1467         }
1468         return kvm->arch.tss_addr;
1469 }
1470
1471 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1472 {
1473         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1474
1475         save->selector = vmcs_read16(sf->selector);
1476         save->base = vmcs_readl(sf->base);
1477         save->limit = vmcs_read32(sf->limit);
1478         save->ar = vmcs_read32(sf->ar_bytes);
1479         vmcs_write16(sf->selector, save->base >> 4);
1480         vmcs_write32(sf->base, save->base & 0xfffff);
1481         vmcs_write32(sf->limit, 0xffff);
1482         vmcs_write32(sf->ar_bytes, 0xf3);
1483 }
1484
1485 static void enter_rmode(struct kvm_vcpu *vcpu)
1486 {
1487         unsigned long flags;
1488         struct vcpu_vmx *vmx = to_vmx(vcpu);
1489
1490         if (enable_unrestricted_guest)
1491                 return;
1492
1493         vmx->emulation_required = 1;
1494         vmx->rmode.vm86_active = 1;
1495
1496         vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1497         vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1498
1499         vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1500         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1501
1502         vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1503         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1504
1505         flags = vmcs_readl(GUEST_RFLAGS);
1506         vmx->rmode.save_iopl
1507                 = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
1508
1509         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1510
1511         vmcs_writel(GUEST_RFLAGS, flags);
1512         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1513         update_exception_bitmap(vcpu);
1514
1515         if (emulate_invalid_guest_state)
1516                 goto continue_rmode;
1517
1518         vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1519         vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1520         vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1521
1522         vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1523         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1524         if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1525                 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1526         vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1527
1528         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
1529         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
1530         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
1531         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
1532
1533 continue_rmode:
1534         kvm_mmu_reset_context(vcpu);
1535         init_rmode(vcpu->kvm);
1536 }
1537
1538 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1539 {
1540         struct vcpu_vmx *vmx = to_vmx(vcpu);
1541         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1542
1543         if (!msr)
1544                 return;
1545
1546         /*
1547          * Force kernel_gs_base reloading before EFER changes, as control
1548          * of this msr depends on is_long_mode().
1549          */
1550         vmx_load_host_state(to_vmx(vcpu));
1551         vcpu->arch.shadow_efer = efer;
1552         if (!msr)
1553                 return;
1554         if (efer & EFER_LMA) {
1555                 vmcs_write32(VM_ENTRY_CONTROLS,
1556                              vmcs_read32(VM_ENTRY_CONTROLS) |
1557                              VM_ENTRY_IA32E_MODE);
1558                 msr->data = efer;
1559         } else {
1560                 vmcs_write32(VM_ENTRY_CONTROLS,
1561                              vmcs_read32(VM_ENTRY_CONTROLS) &
1562                              ~VM_ENTRY_IA32E_MODE);
1563
1564                 msr->data = efer & ~EFER_LME;
1565         }
1566         setup_msrs(vmx);
1567 }
1568
1569 #ifdef CONFIG_X86_64
1570
1571 static void enter_lmode(struct kvm_vcpu *vcpu)
1572 {
1573         u32 guest_tr_ar;
1574
1575         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1576         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1577                 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1578                        __func__);
1579                 vmcs_write32(GUEST_TR_AR_BYTES,
1580                              (guest_tr_ar & ~AR_TYPE_MASK)
1581                              | AR_TYPE_BUSY_64_TSS);
1582         }
1583         vcpu->arch.shadow_efer |= EFER_LMA;
1584         vmx_set_efer(vcpu, vcpu->arch.shadow_efer);
1585 }
1586
1587 static void exit_lmode(struct kvm_vcpu *vcpu)
1588 {
1589         vcpu->arch.shadow_efer &= ~EFER_LMA;
1590
1591         vmcs_write32(VM_ENTRY_CONTROLS,
1592                      vmcs_read32(VM_ENTRY_CONTROLS)
1593                      & ~VM_ENTRY_IA32E_MODE);
1594 }
1595
1596 #endif
1597
1598 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1599 {
1600         vpid_sync_vcpu_all(to_vmx(vcpu));
1601         if (enable_ept)
1602                 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
1603 }
1604
1605 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1606 {
1607         vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
1608         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
1609 }
1610
1611 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
1612 {
1613         if (!test_bit(VCPU_EXREG_PDPTR,
1614                       (unsigned long *)&vcpu->arch.regs_dirty))
1615                 return;
1616
1617         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1618                 vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
1619                 vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
1620                 vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
1621                 vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
1622         }
1623 }
1624
1625 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
1626 {
1627         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1628                 vcpu->arch.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
1629                 vcpu->arch.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
1630                 vcpu->arch.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
1631                 vcpu->arch.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
1632         }
1633
1634         __set_bit(VCPU_EXREG_PDPTR,
1635                   (unsigned long *)&vcpu->arch.regs_avail);
1636         __set_bit(VCPU_EXREG_PDPTR,
1637                   (unsigned long *)&vcpu->arch.regs_dirty);
1638 }
1639
1640 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1641
1642 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
1643                                         unsigned long cr0,
1644                                         struct kvm_vcpu *vcpu)
1645 {
1646         if (!(cr0 & X86_CR0_PG)) {
1647                 /* From paging/starting to nonpaging */
1648                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1649                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1650                              (CPU_BASED_CR3_LOAD_EXITING |
1651                               CPU_BASED_CR3_STORE_EXITING));
1652                 vcpu->arch.cr0 = cr0;
1653                 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1654         } else if (!is_paging(vcpu)) {
1655                 /* From nonpaging to paging */
1656                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1657                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1658                              ~(CPU_BASED_CR3_LOAD_EXITING |
1659                                CPU_BASED_CR3_STORE_EXITING));
1660                 vcpu->arch.cr0 = cr0;
1661                 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1662         }
1663
1664         if (!(cr0 & X86_CR0_WP))
1665                 *hw_cr0 &= ~X86_CR0_WP;
1666 }
1667
1668 static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
1669                                         struct kvm_vcpu *vcpu)
1670 {
1671         if (!is_paging(vcpu)) {
1672                 *hw_cr4 &= ~X86_CR4_PAE;
1673                 *hw_cr4 |= X86_CR4_PSE;
1674         } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
1675                 *hw_cr4 &= ~X86_CR4_PAE;
1676 }
1677
1678 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1679 {
1680         struct vcpu_vmx *vmx = to_vmx(vcpu);
1681         unsigned long hw_cr0;
1682
1683         if (enable_unrestricted_guest)
1684                 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
1685                         | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
1686         else
1687                 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
1688
1689         vmx_fpu_deactivate(vcpu);
1690
1691         if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
1692                 enter_pmode(vcpu);
1693
1694         if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
1695                 enter_rmode(vcpu);
1696
1697 #ifdef CONFIG_X86_64
1698         if (vcpu->arch.shadow_efer & EFER_LME) {
1699                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1700                         enter_lmode(vcpu);
1701                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1702                         exit_lmode(vcpu);
1703         }
1704 #endif
1705
1706         if (enable_ept)
1707                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
1708
1709         vmcs_writel(CR0_READ_SHADOW, cr0);
1710         vmcs_writel(GUEST_CR0, hw_cr0);
1711         vcpu->arch.cr0 = cr0;
1712
1713         if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1714                 vmx_fpu_activate(vcpu);
1715 }
1716
1717 static u64 construct_eptp(unsigned long root_hpa)
1718 {
1719         u64 eptp;
1720
1721         /* TODO write the value reading from MSR */
1722         eptp = VMX_EPT_DEFAULT_MT |
1723                 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
1724         eptp |= (root_hpa & PAGE_MASK);
1725
1726         return eptp;
1727 }
1728
1729 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1730 {
1731         unsigned long guest_cr3;
1732         u64 eptp;
1733
1734         guest_cr3 = cr3;
1735         if (enable_ept) {
1736                 eptp = construct_eptp(cr3);
1737                 vmcs_write64(EPT_POINTER, eptp);
1738                 guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
1739                         vcpu->kvm->arch.ept_identity_map_addr;
1740         }
1741
1742         vmx_flush_tlb(vcpu);
1743         vmcs_writel(GUEST_CR3, guest_cr3);
1744         if (vcpu->arch.cr0 & X86_CR0_PE)
1745                 vmx_fpu_deactivate(vcpu);
1746 }
1747
1748 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1749 {
1750         unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
1751                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1752
1753         vcpu->arch.cr4 = cr4;
1754         if (enable_ept)
1755                 ept_update_paging_mode_cr4(&hw_cr4, vcpu);
1756
1757         vmcs_writel(CR4_READ_SHADOW, cr4);
1758         vmcs_writel(GUEST_CR4, hw_cr4);
1759 }
1760
1761 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1762 {
1763         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1764
1765         return vmcs_readl(sf->base);
1766 }
1767
1768 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1769                             struct kvm_segment *var, int seg)
1770 {
1771         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1772         u32 ar;
1773
1774         var->base = vmcs_readl(sf->base);
1775         var->limit = vmcs_read32(sf->limit);
1776         var->selector = vmcs_read16(sf->selector);
1777         ar = vmcs_read32(sf->ar_bytes);
1778         if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
1779                 ar = 0;
1780         var->type = ar & 15;
1781         var->s = (ar >> 4) & 1;
1782         var->dpl = (ar >> 5) & 3;
1783         var->present = (ar >> 7) & 1;
1784         var->avl = (ar >> 12) & 1;
1785         var->l = (ar >> 13) & 1;
1786         var->db = (ar >> 14) & 1;
1787         var->g = (ar >> 15) & 1;
1788         var->unusable = (ar >> 16) & 1;
1789 }
1790
1791 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
1792 {
1793         if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
1794                 return 0;
1795
1796         if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
1797                 return 3;
1798
1799         return vmcs_read16(GUEST_CS_SELECTOR) & 3;
1800 }
1801
1802 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1803 {
1804         u32 ar;
1805
1806         if (var->unusable)
1807                 ar = 1 << 16;
1808         else {
1809                 ar = var->type & 15;
1810                 ar |= (var->s & 1) << 4;
1811                 ar |= (var->dpl & 3) << 5;
1812                 ar |= (var->present & 1) << 7;
1813                 ar |= (var->avl & 1) << 12;
1814                 ar |= (var->l & 1) << 13;
1815                 ar |= (var->db & 1) << 14;
1816                 ar |= (var->g & 1) << 15;
1817         }
1818         if (ar == 0) /* a 0 value means unusable */
1819                 ar = AR_UNUSABLE_MASK;
1820
1821         return ar;
1822 }
1823
1824 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1825                             struct kvm_segment *var, int seg)
1826 {
1827         struct vcpu_vmx *vmx = to_vmx(vcpu);
1828         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1829         u32 ar;
1830
1831         if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
1832                 vmx->rmode.tr.selector = var->selector;
1833                 vmx->rmode.tr.base = var->base;
1834                 vmx->rmode.tr.limit = var->limit;
1835                 vmx->rmode.tr.ar = vmx_segment_access_rights(var);
1836                 return;
1837         }
1838         vmcs_writel(sf->base, var->base);
1839         vmcs_write32(sf->limit, var->limit);
1840         vmcs_write16(sf->selector, var->selector);
1841         if (vmx->rmode.vm86_active && var->s) {
1842                 /*
1843                  * Hack real-mode segments into vm86 compatibility.
1844                  */
1845                 if (var->base == 0xffff0000 && var->selector == 0xf000)
1846                         vmcs_writel(sf->base, 0xf0000);
1847                 ar = 0xf3;
1848         } else
1849                 ar = vmx_segment_access_rights(var);
1850
1851         /*
1852          *   Fix the "Accessed" bit in AR field of segment registers for older
1853          * qemu binaries.
1854          *   IA32 arch specifies that at the time of processor reset the
1855          * "Accessed" bit in the AR field of segment registers is 1. And qemu
1856          * is setting it to 0 in the usedland code. This causes invalid guest
1857          * state vmexit when "unrestricted guest" mode is turned on.
1858          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
1859          * tree. Newer qemu binaries with that qemu fix would not need this
1860          * kvm hack.
1861          */
1862         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
1863                 ar |= 0x1; /* Accessed */
1864
1865         vmcs_write32(sf->ar_bytes, ar);
1866 }
1867
1868 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1869 {
1870         u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1871
1872         *db = (ar >> 14) & 1;
1873         *l = (ar >> 13) & 1;
1874 }
1875
1876 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1877 {
1878         dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1879         dt->base = vmcs_readl(GUEST_IDTR_BASE);
1880 }
1881
1882 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1883 {
1884         vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1885         vmcs_writel(GUEST_IDTR_BASE, dt->base);
1886 }
1887
1888 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1889 {
1890         dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1891         dt->base = vmcs_readl(GUEST_GDTR_BASE);
1892 }
1893
1894 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1895 {
1896         vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1897         vmcs_writel(GUEST_GDTR_BASE, dt->base);
1898 }
1899
1900 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
1901 {
1902         struct kvm_segment var;
1903         u32 ar;
1904
1905         vmx_get_segment(vcpu, &var, seg);
1906         ar = vmx_segment_access_rights(&var);
1907
1908         if (var.base != (var.selector << 4))
1909                 return false;
1910         if (var.limit != 0xffff)
1911                 return false;
1912         if (ar != 0xf3)
1913                 return false;
1914
1915         return true;
1916 }
1917
1918 static bool code_segment_valid(struct kvm_vcpu *vcpu)
1919 {
1920         struct kvm_segment cs;
1921         unsigned int cs_rpl;
1922
1923         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
1924         cs_rpl = cs.selector & SELECTOR_RPL_MASK;
1925
1926         if (cs.unusable)
1927                 return false;
1928         if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
1929                 return false;
1930         if (!cs.s)
1931                 return false;
1932         if (cs.type & AR_TYPE_WRITEABLE_MASK) {
1933                 if (cs.dpl > cs_rpl)
1934                         return false;
1935         } else {
1936                 if (cs.dpl != cs_rpl)
1937                         return false;
1938         }
1939         if (!cs.present)
1940                 return false;
1941
1942         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
1943         return true;
1944 }
1945
1946 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
1947 {
1948         struct kvm_segment ss;
1949         unsigned int ss_rpl;
1950
1951         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
1952         ss_rpl = ss.selector & SELECTOR_RPL_MASK;
1953
1954         if (ss.unusable)
1955                 return true;
1956         if (ss.type != 3 && ss.type != 7)
1957                 return false;
1958         if (!ss.s)
1959                 return false;
1960         if (ss.dpl != ss_rpl) /* DPL != RPL */
1961                 return false;
1962         if (!ss.present)
1963                 return false;
1964
1965         return true;
1966 }
1967
1968 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
1969 {
1970         struct kvm_segment var;
1971         unsigned int rpl;
1972
1973         vmx_get_segment(vcpu, &var, seg);
1974         rpl = var.selector & SELECTOR_RPL_MASK;
1975
1976         if (var.unusable)
1977                 return true;
1978         if (!var.s)
1979                 return false;
1980         if (!var.present)
1981                 return false;
1982         if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
1983                 if (var.dpl < rpl) /* DPL < RPL */
1984                         return false;
1985         }
1986
1987         /* TODO: Add other members to kvm_segment_field to allow checking for other access
1988          * rights flags
1989          */
1990         return true;
1991 }
1992
1993 static bool tr_valid(struct kvm_vcpu *vcpu)
1994 {
1995         struct kvm_segment tr;
1996
1997         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
1998
1999         if (tr.unusable)
2000                 return false;
2001         if (tr.selector & SELECTOR_TI_MASK)     /* TI = 1 */
2002                 return false;
2003         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
2004                 return false;
2005         if (!tr.present)
2006                 return false;
2007
2008         return true;
2009 }
2010
2011 static bool ldtr_valid(struct kvm_vcpu *vcpu)
2012 {
2013         struct kvm_segment ldtr;
2014
2015         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
2016
2017         if (ldtr.unusable)
2018                 return true;
2019         if (ldtr.selector & SELECTOR_TI_MASK)   /* TI = 1 */
2020                 return false;
2021         if (ldtr.type != 2)
2022                 return false;
2023         if (!ldtr.present)
2024                 return false;
2025
2026         return true;
2027 }
2028
2029 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
2030 {
2031         struct kvm_segment cs, ss;
2032
2033         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
2034         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
2035
2036         return ((cs.selector & SELECTOR_RPL_MASK) ==
2037                  (ss.selector & SELECTOR_RPL_MASK));
2038 }
2039
2040 /*
2041  * Check if guest state is valid. Returns true if valid, false if
2042  * not.
2043  * We assume that registers are always usable
2044  */
2045 static bool guest_state_valid(struct kvm_vcpu *vcpu)
2046 {
2047         /* real mode guest state checks */
2048         if (!(vcpu->arch.cr0 & X86_CR0_PE)) {
2049                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
2050                         return false;
2051                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
2052                         return false;
2053                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
2054                         return false;
2055                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
2056                         return false;
2057                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
2058                         return false;
2059                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
2060                         return false;
2061         } else {
2062         /* protected mode guest state checks */
2063                 if (!cs_ss_rpl_check(vcpu))
2064                         return false;
2065                 if (!code_segment_valid(vcpu))
2066                         return false;
2067                 if (!stack_segment_valid(vcpu))
2068                         return false;
2069                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
2070                         return false;
2071                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
2072                         return false;
2073                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
2074                         return false;
2075                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
2076                         return false;
2077                 if (!tr_valid(vcpu))
2078                         return false;
2079                 if (!ldtr_valid(vcpu))
2080                         return false;
2081         }
2082         /* TODO:
2083          * - Add checks on RIP
2084          * - Add checks on RFLAGS
2085          */
2086
2087         return true;
2088 }
2089
2090 static int init_rmode_tss(struct kvm *kvm)
2091 {
2092         gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
2093         u16 data = 0;
2094         int ret = 0;
2095         int r;
2096
2097         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2098         if (r < 0)
2099                 goto out;
2100         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
2101         r = kvm_write_guest_page(kvm, fn++, &data,
2102                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
2103         if (r < 0)
2104                 goto out;
2105         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
2106         if (r < 0)
2107                 goto out;
2108         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2109         if (r < 0)
2110                 goto out;
2111         data = ~0;
2112         r = kvm_write_guest_page(kvm, fn, &data,
2113                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
2114                                  sizeof(u8));
2115         if (r < 0)
2116                 goto out;
2117
2118         ret = 1;
2119 out:
2120         return ret;
2121 }
2122
2123 static int init_rmode_identity_map(struct kvm *kvm)
2124 {
2125         int i, r, ret;
2126         pfn_t identity_map_pfn;
2127         u32 tmp;
2128
2129         if (!enable_ept)
2130                 return 1;
2131         if (unlikely(!kvm->arch.ept_identity_pagetable)) {
2132                 printk(KERN_ERR "EPT: identity-mapping pagetable "
2133                         "haven't been allocated!\n");
2134                 return 0;
2135         }
2136         if (likely(kvm->arch.ept_identity_pagetable_done))
2137                 return 1;
2138         ret = 0;
2139         identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
2140         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
2141         if (r < 0)
2142                 goto out;
2143         /* Set up identity-mapping pagetable for EPT in real mode */
2144         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
2145                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
2146                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
2147                 r = kvm_write_guest_page(kvm, identity_map_pfn,
2148                                 &tmp, i * sizeof(tmp), sizeof(tmp));
2149                 if (r < 0)
2150                         goto out;
2151         }
2152         kvm->arch.ept_identity_pagetable_done = true;
2153         ret = 1;
2154 out:
2155         return ret;
2156 }
2157
2158 static void seg_setup(int seg)
2159 {
2160         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2161         unsigned int ar;
2162
2163         vmcs_write16(sf->selector, 0);
2164         vmcs_writel(sf->base, 0);
2165         vmcs_write32(sf->limit, 0xffff);
2166         if (enable_unrestricted_guest) {
2167                 ar = 0x93;
2168                 if (seg == VCPU_SREG_CS)
2169                         ar |= 0x08; /* code segment */
2170         } else
2171                 ar = 0xf3;
2172
2173         vmcs_write32(sf->ar_bytes, ar);
2174 }
2175
2176 static int alloc_apic_access_page(struct kvm *kvm)
2177 {
2178         struct kvm_userspace_memory_region kvm_userspace_mem;
2179         int r = 0;
2180
2181         down_write(&kvm->slots_lock);
2182         if (kvm->arch.apic_access_page)
2183                 goto out;
2184         kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
2185         kvm_userspace_mem.flags = 0;
2186         kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
2187         kvm_userspace_mem.memory_size = PAGE_SIZE;
2188         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2189         if (r)
2190                 goto out;
2191
2192         kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
2193 out:
2194         up_write(&kvm->slots_lock);
2195         return r;
2196 }
2197
2198 static int alloc_identity_pagetable(struct kvm *kvm)
2199 {
2200         struct kvm_userspace_memory_region kvm_userspace_mem;
2201         int r = 0;
2202
2203         down_write(&kvm->slots_lock);
2204         if (kvm->arch.ept_identity_pagetable)
2205                 goto out;
2206         kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
2207         kvm_userspace_mem.flags = 0;
2208         kvm_userspace_mem.guest_phys_addr =
2209                 kvm->arch.ept_identity_map_addr;
2210         kvm_userspace_mem.memory_size = PAGE_SIZE;
2211         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2212         if (r)
2213                 goto out;
2214
2215         kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
2216                         kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
2217 out:
2218         up_write(&kvm->slots_lock);
2219         return r;
2220 }
2221
2222 static void allocate_vpid(struct vcpu_vmx *vmx)
2223 {
2224         int vpid;
2225
2226         vmx->vpid = 0;
2227         if (!enable_vpid)
2228                 return;
2229         spin_lock(&vmx_vpid_lock);
2230         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
2231         if (vpid < VMX_NR_VPIDS) {
2232                 vmx->vpid = vpid;
2233                 __set_bit(vpid, vmx_vpid_bitmap);
2234         }
2235         spin_unlock(&vmx_vpid_lock);
2236 }
2237
2238 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
2239 {
2240         int f = sizeof(unsigned long);
2241
2242         if (!cpu_has_vmx_msr_bitmap())
2243                 return;
2244
2245         /*
2246          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
2247          * have the write-low and read-high bitmap offsets the wrong way round.
2248          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
2249          */
2250         if (msr <= 0x1fff) {
2251                 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
2252                 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
2253         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2254                 msr &= 0x1fff;
2255                 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
2256                 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
2257         }
2258 }
2259
2260 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
2261 {
2262         if (!longmode_only)
2263                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
2264         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
2265 }
2266
2267 /*
2268  * Sets up the vmcs for emulated real mode.
2269  */
2270 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
2271 {
2272         u32 host_sysenter_cs, msr_low, msr_high;
2273         u32 junk;
2274         u64 host_pat, tsc_this, tsc_base;
2275         unsigned long a;
2276         struct descriptor_table dt;
2277         int i;
2278         unsigned long kvm_vmx_return;
2279         u32 exec_control;
2280
2281         /* I/O */
2282         vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
2283         vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
2284
2285         if (cpu_has_vmx_msr_bitmap())
2286                 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
2287
2288         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
2289
2290         /* Control */
2291         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
2292                 vmcs_config.pin_based_exec_ctrl);
2293
2294         exec_control = vmcs_config.cpu_based_exec_ctrl;
2295         if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
2296                 exec_control &= ~CPU_BASED_TPR_SHADOW;
2297 #ifdef CONFIG_X86_64
2298                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
2299                                 CPU_BASED_CR8_LOAD_EXITING;
2300 #endif
2301         }
2302         if (!enable_ept)
2303                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
2304                                 CPU_BASED_CR3_LOAD_EXITING  |
2305                                 CPU_BASED_INVLPG_EXITING;
2306         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
2307
2308         if (cpu_has_secondary_exec_ctrls()) {
2309                 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
2310                 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2311                         exec_control &=
2312                                 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
2313                 if (vmx->vpid == 0)
2314                         exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
2315                 if (!enable_ept)
2316                         exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
2317                 if (!enable_unrestricted_guest)
2318                         exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2319                 if (!ple_gap)
2320                         exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
2321                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
2322         }
2323
2324         if (ple_gap) {
2325                 vmcs_write32(PLE_GAP, ple_gap);
2326                 vmcs_write32(PLE_WINDOW, ple_window);
2327         }
2328
2329         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
2330         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
2331         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
2332
2333         vmcs_writel(HOST_CR0, read_cr0());  /* 22.2.3 */
2334         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
2335         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
2336
2337         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
2338         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2339         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2340         vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs());    /* 22.2.4 */
2341         vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs());    /* 22.2.4 */
2342         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2343 #ifdef CONFIG_X86_64
2344         rdmsrl(MSR_FS_BASE, a);
2345         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
2346         rdmsrl(MSR_GS_BASE, a);
2347         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
2348 #else
2349         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
2350         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
2351 #endif
2352
2353         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
2354
2355         kvm_get_idt(&dt);
2356         vmcs_writel(HOST_IDTR_BASE, dt.base);   /* 22.2.4 */
2357
2358         asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
2359         vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
2360         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
2361         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2362         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2363
2364         rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
2365         vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
2366         rdmsrl(MSR_IA32_SYSENTER_ESP, a);
2367         vmcs_writel(HOST_IA32_SYSENTER_ESP, a);   /* 22.2.3 */
2368         rdmsrl(MSR_IA32_SYSENTER_EIP, a);
2369         vmcs_writel(HOST_IA32_SYSENTER_EIP, a);   /* 22.2.3 */
2370
2371         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
2372                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2373                 host_pat = msr_low | ((u64) msr_high << 32);
2374                 vmcs_write64(HOST_IA32_PAT, host_pat);
2375         }
2376         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2377                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2378                 host_pat = msr_low | ((u64) msr_high << 32);
2379                 /* Write the default value follow host pat */
2380                 vmcs_write64(GUEST_IA32_PAT, host_pat);
2381                 /* Keep arch.pat sync with GUEST_IA32_PAT */
2382                 vmx->vcpu.arch.pat = host_pat;
2383         }
2384
2385         for (i = 0; i < NR_VMX_MSR; ++i) {
2386                 u32 index = vmx_msr_index[i];
2387                 u32 data_low, data_high;
2388                 u64 data;
2389                 int j = vmx->nmsrs;
2390
2391                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
2392                         continue;
2393                 if (wrmsr_safe(index, data_low, data_high) < 0)
2394                         continue;
2395                 data = data_low | ((u64)data_high << 32);
2396                 vmx->guest_msrs[j].index = i;
2397                 vmx->guest_msrs[j].data = 0;
2398                 ++vmx->nmsrs;
2399         }
2400
2401         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
2402
2403         /* 22.2.1, 20.8.1 */
2404         vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
2405
2406         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
2407         vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
2408
2409         tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
2410         rdtscll(tsc_this);
2411         if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
2412                 tsc_base = tsc_this;
2413
2414         guest_write_tsc(0, tsc_base);
2415
2416         return 0;
2417 }
2418
2419 static int init_rmode(struct kvm *kvm)
2420 {
2421         if (!init_rmode_tss(kvm))
2422                 return 0;
2423         if (!init_rmode_identity_map(kvm))
2424                 return 0;
2425         return 1;
2426 }
2427
2428 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
2429 {
2430         struct vcpu_vmx *vmx = to_vmx(vcpu);
2431         u64 msr;
2432         int ret;
2433
2434         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
2435         down_read(&vcpu->kvm->slots_lock);
2436         if (!init_rmode(vmx->vcpu.kvm)) {
2437                 ret = -ENOMEM;
2438                 goto out;
2439         }
2440
2441         vmx->rmode.vm86_active = 0;
2442
2443         vmx->soft_vnmi_blocked = 0;
2444
2445         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2446         kvm_set_cr8(&vmx->vcpu, 0);
2447         msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
2448         if (kvm_vcpu_is_bsp(&vmx->vcpu))
2449                 msr |= MSR_IA32_APICBASE_BSP;
2450         kvm_set_apic_base(&vmx->vcpu, msr);
2451
2452         fx_init(&vmx->vcpu);
2453
2454         seg_setup(VCPU_SREG_CS);
2455         /*
2456          * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2457          * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh.
2458          */
2459         if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
2460                 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
2461                 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
2462         } else {
2463                 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
2464                 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
2465         }
2466
2467         seg_setup(VCPU_SREG_DS);
2468         seg_setup(VCPU_SREG_ES);
2469         seg_setup(VCPU_SREG_FS);
2470         seg_setup(VCPU_SREG_GS);
2471         seg_setup(VCPU_SREG_SS);
2472
2473         vmcs_write16(GUEST_TR_SELECTOR, 0);
2474         vmcs_writel(GUEST_TR_BASE, 0);
2475         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
2476         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2477
2478         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
2479         vmcs_writel(GUEST_LDTR_BASE, 0);
2480         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
2481         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
2482
2483         vmcs_write32(GUEST_SYSENTER_CS, 0);
2484         vmcs_writel(GUEST_SYSENTER_ESP, 0);
2485         vmcs_writel(GUEST_SYSENTER_EIP, 0);
2486
2487         vmcs_writel(GUEST_RFLAGS, 0x02);
2488         if (kvm_vcpu_is_bsp(&vmx->vcpu))
2489                 kvm_rip_write(vcpu, 0xfff0);
2490         else
2491                 kvm_rip_write(vcpu, 0);
2492         kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
2493
2494         vmcs_writel(GUEST_DR7, 0x400);
2495
2496         vmcs_writel(GUEST_GDTR_BASE, 0);
2497         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
2498
2499         vmcs_writel(GUEST_IDTR_BASE, 0);
2500         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
2501
2502         vmcs_write32(GUEST_ACTIVITY_STATE, 0);
2503         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
2504         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
2505
2506         /* Special registers */
2507         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
2508
2509         setup_msrs(vmx);
2510
2511         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
2512
2513         if (cpu_has_vmx_tpr_shadow()) {
2514                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
2515                 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
2516                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
2517                                 page_to_phys(vmx->vcpu.arch.apic->regs_page));
2518                 vmcs_write32(TPR_THRESHOLD, 0);
2519         }
2520
2521         if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2522                 vmcs_write64(APIC_ACCESS_ADDR,
2523                              page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
2524
2525         if (vmx->vpid != 0)
2526                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2527
2528         vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
2529         vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
2530         vmx_set_cr4(&vmx->vcpu, 0);
2531         vmx_set_efer(&vmx->vcpu, 0);
2532         vmx_fpu_activate(&vmx->vcpu);
2533         update_exception_bitmap(&vmx->vcpu);
2534
2535         vpid_sync_vcpu_all(vmx);
2536
2537         ret = 0;
2538
2539         /* HACK: Don't enable emulation on guest boot/reset */
2540         vmx->emulation_required = 0;
2541
2542 out:
2543         up_read(&vcpu->kvm->slots_lock);
2544         return ret;
2545 }
2546
2547 static void enable_irq_window(struct kvm_vcpu *vcpu)
2548 {
2549         u32 cpu_based_vm_exec_control;
2550
2551         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2552         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2553         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2554 }
2555
2556 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2557 {
2558         u32 cpu_based_vm_exec_control;
2559
2560         if (!cpu_has_virtual_nmis()) {
2561                 enable_irq_window(vcpu);
2562                 return;
2563         }
2564
2565         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2566         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
2567         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2568 }
2569
2570 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
2571 {
2572         struct vcpu_vmx *vmx = to_vmx(vcpu);
2573         uint32_t intr;
2574         int irq = vcpu->arch.interrupt.nr;
2575
2576         trace_kvm_inj_virq(irq);
2577
2578         ++vcpu->stat.irq_injections;
2579         if (vmx->rmode.vm86_active) {
2580                 vmx->rmode.irq.pending = true;
2581                 vmx->rmode.irq.vector = irq;
2582                 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2583                 if (vcpu->arch.interrupt.soft)
2584                         vmx->rmode.irq.rip +=
2585                                 vmx->vcpu.arch.event_exit_inst_len;
2586                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2587                              irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
2588                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2589                 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2590                 return;
2591         }
2592         intr = irq | INTR_INFO_VALID_MASK;
2593         if (vcpu->arch.interrupt.soft) {
2594                 intr |= INTR_TYPE_SOFT_INTR;
2595                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2596                              vmx->vcpu.arch.event_exit_inst_len);
2597         } else
2598                 intr |= INTR_TYPE_EXT_INTR;
2599         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
2600 }
2601
2602 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
2603 {
2604         struct vcpu_vmx *vmx = to_vmx(vcpu);
2605
2606         if (!cpu_has_virtual_nmis()) {
2607                 /*
2608                  * Tracking the NMI-blocked state in software is built upon
2609                  * finding the next open IRQ window. This, in turn, depends on
2610                  * well-behaving guests: They have to keep IRQs disabled at
2611                  * least as long as the NMI handler runs. Otherwise we may
2612                  * cause NMI nesting, maybe breaking the guest. But as this is
2613                  * highly unlikely, we can live with the residual risk.
2614                  */
2615                 vmx->soft_vnmi_blocked = 1;
2616                 vmx->vnmi_blocked_time = 0;
2617         }
2618
2619         ++vcpu->stat.nmi_injections;
2620         if (vmx->rmode.vm86_active) {
2621                 vmx->rmode.irq.pending = true;
2622                 vmx->rmode.irq.vector = NMI_VECTOR;
2623                 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2624                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2625                              NMI_VECTOR | INTR_TYPE_SOFT_INTR |
2626                              INTR_INFO_VALID_MASK);
2627                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2628                 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2629                 return;
2630         }
2631         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2632                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
2633 }
2634
2635 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
2636 {
2637         if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
2638                 return 0;
2639
2640         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2641                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS |
2642                                 GUEST_INTR_STATE_NMI));
2643 }
2644
2645 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
2646 {
2647         return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2648                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2649                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
2650 }
2651
2652 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
2653 {
2654         int ret;
2655         struct kvm_userspace_memory_region tss_mem = {
2656                 .slot = TSS_PRIVATE_MEMSLOT,
2657                 .guest_phys_addr = addr,
2658                 .memory_size = PAGE_SIZE * 3,
2659                 .flags = 0,
2660         };
2661
2662         ret = kvm_set_memory_region(kvm, &tss_mem, 0);
2663         if (ret)
2664                 return ret;
2665         kvm->arch.tss_addr = addr;
2666         return 0;
2667 }
2668
2669 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
2670                                   int vec, u32 err_code)
2671 {
2672         /*
2673          * Instruction with address size override prefix opcode 0x67
2674          * Cause the #SS fault with 0 error code in VM86 mode.
2675          */
2676         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
2677                 if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE)
2678                         return 1;
2679         /*
2680          * Forward all other exceptions that are valid in real mode.
2681          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
2682          *        the required debugging infrastructure rework.
2683          */
2684         switch (vec) {
2685         case DB_VECTOR:
2686                 if (vcpu->guest_debug &
2687                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
2688                         return 0;
2689                 kvm_queue_exception(vcpu, vec);
2690                 return 1;
2691         case BP_VECTOR:
2692                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2693                         return 0;
2694                 /* fall through */
2695         case DE_VECTOR:
2696         case OF_VECTOR:
2697         case BR_VECTOR:
2698         case UD_VECTOR:
2699         case DF_VECTOR:
2700         case SS_VECTOR:
2701         case GP_VECTOR:
2702         case MF_VECTOR:
2703                 kvm_queue_exception(vcpu, vec);
2704                 return 1;
2705         }
2706         return 0;
2707 }
2708
2709 /*
2710  * Trigger machine check on the host. We assume all the MSRs are already set up
2711  * by the CPU and that we still run on the same CPU as the MCE occurred on.
2712  * We pass a fake environment to the machine check handler because we want
2713  * the guest to be always treated like user space, no matter what context
2714  * it used internally.
2715  */
2716 static void kvm_machine_check(void)
2717 {
2718 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
2719         struct pt_regs regs = {
2720                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
2721                 .flags = X86_EFLAGS_IF,
2722         };
2723
2724         do_machine_check(&regs, 0);
2725 #endif
2726 }
2727
2728 static int handle_machine_check(struct kvm_vcpu *vcpu)
2729 {
2730         /* already handled by vcpu_run */
2731         return 1;
2732 }
2733
2734 static int handle_exception(struct kvm_vcpu *vcpu)
2735 {
2736         struct vcpu_vmx *vmx = to_vmx(vcpu);
2737         struct kvm_run *kvm_run = vcpu->run;
2738         u32 intr_info, ex_no, error_code;
2739         unsigned long cr2, rip, dr6;
2740         u32 vect_info;
2741         enum emulation_result er;
2742
2743         vect_info = vmx->idt_vectoring_info;
2744         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2745
2746         if (is_machine_check(intr_info))
2747                 return handle_machine_check(vcpu);
2748
2749         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
2750                                                 !is_page_fault(intr_info))
2751                 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
2752                        "intr info 0x%x\n", __func__, vect_info, intr_info);
2753
2754         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
2755                 return 1;  /* already handled by vmx_vcpu_run() */
2756
2757         if (is_no_device(intr_info)) {
2758                 vmx_fpu_activate(vcpu);
2759                 return 1;
2760         }
2761
2762         if (is_invalid_opcode(intr_info)) {
2763                 er = emulate_instruction(vcpu, 0, 0, EMULTYPE_TRAP_UD);
2764                 if (er != EMULATE_DONE)
2765                         kvm_queue_exception(vcpu, UD_VECTOR);
2766                 return 1;
2767         }
2768
2769         error_code = 0;
2770         rip = kvm_rip_read(vcpu);
2771         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
2772                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
2773         if (is_page_fault(intr_info)) {
2774                 /* EPT won't cause page fault directly */
2775                 if (enable_ept)
2776                         BUG();
2777                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
2778                 trace_kvm_page_fault(cr2, error_code);
2779
2780                 if (kvm_event_needs_reinjection(vcpu))
2781                         kvm_mmu_unprotect_page_virt(vcpu, cr2);
2782                 return kvm_mmu_page_fault(vcpu, cr2, error_code);
2783         }
2784
2785         if (vmx->rmode.vm86_active &&
2786             handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
2787                                                                 error_code)) {
2788                 if (vcpu->arch.halt_request) {
2789                         vcpu->arch.halt_request = 0;
2790                         return kvm_emulate_halt(vcpu);
2791                 }
2792                 return 1;
2793         }
2794
2795         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
2796         switch (ex_no) {
2797         case DB_VECTOR:
2798                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
2799                 if (!(vcpu->guest_debug &
2800                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
2801                         vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
2802                         kvm_queue_exception(vcpu, DB_VECTOR);
2803                         return 1;
2804                 }
2805                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
2806                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
2807                 /* fall through */
2808         case BP_VECTOR:
2809                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2810                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
2811                 kvm_run->debug.arch.exception = ex_no;
2812                 break;
2813         default:
2814                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
2815                 kvm_run->ex.exception = ex_no;
2816                 kvm_run->ex.error_code = error_code;
2817                 break;
2818         }
2819         return 0;
2820 }
2821
2822 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
2823 {
2824         ++vcpu->stat.irq_exits;
2825         return 1;
2826 }
2827
2828 static int handle_triple_fault(struct kvm_vcpu *vcpu)
2829 {
2830         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
2831         return 0;
2832 }
2833
2834 static int handle_io(struct kvm_vcpu *vcpu)
2835 {
2836         unsigned long exit_qualification;
2837         int size, in, string;
2838         unsigned port;
2839
2840         ++vcpu->stat.io_exits;
2841         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2842         string = (exit_qualification & 16) != 0;
2843
2844         if (string) {
2845                 if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DO_MMIO)
2846                         return 0;
2847                 return 1;
2848         }
2849
2850         size = (exit_qualification & 7) + 1;
2851         in = (exit_qualification & 8) != 0;
2852         port = exit_qualification >> 16;
2853
2854         skip_emulated_instruction(vcpu);
2855         return kvm_emulate_pio(vcpu, in, size, port);
2856 }
2857
2858 static void
2859 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2860 {
2861         /*
2862          * Patch in the VMCALL instruction:
2863          */
2864         hypercall[0] = 0x0f;
2865         hypercall[1] = 0x01;
2866         hypercall[2] = 0xc1;
2867 }
2868
2869 static int handle_cr(struct kvm_vcpu *vcpu)
2870 {
2871         unsigned long exit_qualification, val;
2872         int cr;
2873         int reg;
2874
2875         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2876         cr = exit_qualification & 15;
2877         reg = (exit_qualification >> 8) & 15;
2878         switch ((exit_qualification >> 4) & 3) {
2879         case 0: /* mov to cr */
2880                 val = kvm_register_read(vcpu, reg);
2881                 trace_kvm_cr_write(cr, val);
2882                 switch (cr) {
2883                 case 0:
2884                         kvm_set_cr0(vcpu, val);
2885                         skip_emulated_instruction(vcpu);
2886                         return 1;
2887                 case 3:
2888                         kvm_set_cr3(vcpu, val);
2889                         skip_emulated_instruction(vcpu);
2890                         return 1;
2891                 case 4:
2892                         kvm_set_cr4(vcpu, val);
2893                         skip_emulated_instruction(vcpu);
2894                         return 1;
2895                 case 8: {
2896                                 u8 cr8_prev = kvm_get_cr8(vcpu);
2897                                 u8 cr8 = kvm_register_read(vcpu, reg);
2898                                 kvm_set_cr8(vcpu, cr8);
2899                                 skip_emulated_instruction(vcpu);
2900                                 if (irqchip_in_kernel(vcpu->kvm))
2901                                         return 1;
2902                                 if (cr8_prev <= cr8)
2903                                         return 1;
2904                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2905                                 return 0;
2906                         }
2907                 };
2908                 break;
2909         case 2: /* clts */
2910                 vmx_fpu_deactivate(vcpu);
2911                 vcpu->arch.cr0 &= ~X86_CR0_TS;
2912                 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2913                 vmx_fpu_activate(vcpu);
2914                 skip_emulated_instruction(vcpu);
2915                 return 1;
2916         case 1: /*mov from cr*/
2917                 switch (cr) {
2918                 case 3:
2919                         kvm_register_write(vcpu, reg, vcpu->arch.cr3);
2920                         trace_kvm_cr_read(cr, vcpu->arch.cr3);
2921                         skip_emulated_instruction(vcpu);
2922                         return 1;
2923                 case 8:
2924                         val = kvm_get_cr8(vcpu);
2925                         kvm_register_write(vcpu, reg, val);
2926                         trace_kvm_cr_read(cr, val);
2927                         skip_emulated_instruction(vcpu);
2928                         return 1;
2929                 }
2930                 break;
2931         case 3: /* lmsw */
2932                 kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
2933
2934                 skip_emulated_instruction(vcpu);
2935                 return 1;
2936         default:
2937                 break;
2938         }
2939         vcpu->run->exit_reason = 0;
2940         pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
2941                (int)(exit_qualification >> 4) & 3, cr);
2942         return 0;
2943 }
2944
2945 static int handle_dr(struct kvm_vcpu *vcpu)
2946 {
2947         unsigned long exit_qualification;
2948         unsigned long val;
2949         int dr, reg;
2950
2951         if (!kvm_require_cpl(vcpu, 0))
2952                 return 1;
2953         dr = vmcs_readl(GUEST_DR7);
2954         if (dr & DR7_GD) {
2955                 /*
2956                  * As the vm-exit takes precedence over the debug trap, we
2957                  * need to emulate the latter, either for the host or the
2958                  * guest debugging itself.
2959                  */
2960                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
2961                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
2962                         vcpu->run->debug.arch.dr7 = dr;
2963                         vcpu->run->debug.arch.pc =
2964                                 vmcs_readl(GUEST_CS_BASE) +
2965                                 vmcs_readl(GUEST_RIP);
2966                         vcpu->run->debug.arch.exception = DB_VECTOR;
2967                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
2968                         return 0;
2969                 } else {
2970                         vcpu->arch.dr7 &= ~DR7_GD;
2971                         vcpu->arch.dr6 |= DR6_BD;
2972                         vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
2973                         kvm_queue_exception(vcpu, DB_VECTOR);
2974                         return 1;
2975                 }
2976         }
2977
2978         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2979         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
2980         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
2981         if (exit_qualification & TYPE_MOV_FROM_DR) {
2982                 switch (dr) {
2983                 case 0 ... 3:
2984                         val = vcpu->arch.db[dr];
2985                         break;
2986                 case 6:
2987                         val = vcpu->arch.dr6;
2988                         break;
2989                 case 7:
2990                         val = vcpu->arch.dr7;
2991                         break;
2992                 default:
2993                         val = 0;
2994                 }
2995                 kvm_register_write(vcpu, reg, val);
2996         } else {
2997                 val = vcpu->arch.regs[reg];
2998                 switch (dr) {
2999                 case 0 ... 3:
3000                         vcpu->arch.db[dr] = val;
3001                         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
3002                                 vcpu->arch.eff_db[dr] = val;
3003                         break;
3004                 case 4 ... 5:
3005                         if (vcpu->arch.cr4 & X86_CR4_DE)
3006                                 kvm_queue_exception(vcpu, UD_VECTOR);
3007                         break;
3008                 case 6:
3009                         if (val & 0xffffffff00000000ULL) {
3010                                 kvm_queue_exception(vcpu, GP_VECTOR);
3011                                 break;
3012                         }
3013                         vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
3014                         break;
3015                 case 7:
3016                         if (val & 0xffffffff00000000ULL) {
3017                                 kvm_queue_exception(vcpu, GP_VECTOR);
3018                                 break;
3019                         }
3020                         vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
3021                         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
3022                                 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
3023                                 vcpu->arch.switch_db_regs =
3024                                         (val & DR7_BP_EN_MASK);
3025                         }
3026                         break;
3027                 }
3028         }
3029         skip_emulated_instruction(vcpu);
3030         return 1;
3031 }
3032
3033 static int handle_cpuid(struct kvm_vcpu *vcpu)
3034 {
3035         kvm_emulate_cpuid(vcpu);
3036         return 1;
3037 }
3038
3039 static int handle_rdmsr(struct kvm_vcpu *vcpu)
3040 {
3041         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3042         u64 data;
3043
3044         if (vmx_get_msr(vcpu, ecx, &data)) {
3045                 kvm_inject_gp(vcpu, 0);
3046                 return 1;
3047         }
3048
3049         trace_kvm_msr_read(ecx, data);
3050
3051         /* FIXME: handling of bits 32:63 of rax, rdx */
3052         vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
3053         vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
3054         skip_emulated_instruction(vcpu);
3055         return 1;
3056 }
3057
3058 static int handle_wrmsr(struct kvm_vcpu *vcpu)
3059 {
3060         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3061         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
3062                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3063
3064         trace_kvm_msr_write(ecx, data);
3065
3066         if (vmx_set_msr(vcpu, ecx, data) != 0) {
3067                 kvm_inject_gp(vcpu, 0);
3068                 return 1;
3069         }
3070
3071         skip_emulated_instruction(vcpu);
3072         return 1;
3073 }
3074
3075 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
3076 {
3077         return 1;
3078 }
3079
3080 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
3081 {
3082         u32 cpu_based_vm_exec_control;
3083
3084         /* clear pending irq */
3085         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3086         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
3087         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3088
3089         ++vcpu->stat.irq_window_exits;
3090
3091         /*
3092          * If the user space waits to inject interrupts, exit as soon as
3093          * possible
3094          */
3095         if (!irqchip_in_kernel(vcpu->kvm) &&
3096             vcpu->run->request_interrupt_window &&
3097             !kvm_cpu_has_interrupt(vcpu)) {
3098                 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3099                 return 0;
3100         }
3101         return 1;
3102 }
3103
3104 static int handle_halt(struct kvm_vcpu *vcpu)
3105 {
3106         skip_emulated_instruction(vcpu);
3107         return kvm_emulate_halt(vcpu);
3108 }
3109
3110 static int handle_vmcall(struct kvm_vcpu *vcpu)
3111 {
3112         skip_emulated_instruction(vcpu);
3113         kvm_emulate_hypercall(vcpu);
3114         return 1;
3115 }
3116
3117 static int handle_vmx_insn(struct kvm_vcpu *vcpu)
3118 {
3119         kvm_queue_exception(vcpu, UD_VECTOR);
3120         return 1;
3121 }
3122
3123 static int handle_invlpg(struct kvm_vcpu *vcpu)
3124 {
3125         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3126
3127         kvm_mmu_invlpg(vcpu, exit_qualification);
3128         skip_emulated_instruction(vcpu);
3129         return 1;
3130 }
3131
3132 static int handle_wbinvd(struct kvm_vcpu *vcpu)
3133 {
3134         skip_emulated_instruction(vcpu);
3135         /* TODO: Add support for VT-d/pass-through device */
3136         return 1;
3137 }
3138
3139 static int handle_apic_access(struct kvm_vcpu *vcpu)
3140 {
3141         unsigned long exit_qualification;
3142         enum emulation_result er;
3143         unsigned long offset;
3144
3145         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3146         offset = exit_qualification & 0xffful;
3147
3148         er = emulate_instruction(vcpu, 0, 0, 0);
3149
3150         if (er !=  EMULATE_DONE) {
3151                 printk(KERN_ERR
3152                        "Fail to handle apic access vmexit! Offset is 0x%lx\n",
3153                        offset);
3154                 return -ENOEXEC;
3155         }
3156         return 1;
3157 }
3158
3159 static int handle_task_switch(struct kvm_vcpu *vcpu)
3160 {
3161         struct vcpu_vmx *vmx = to_vmx(vcpu);
3162         unsigned long exit_qualification;
3163         u16 tss_selector;
3164         int reason, type, idt_v;
3165
3166         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
3167         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
3168
3169         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3170
3171         reason = (u32)exit_qualification >> 30;
3172         if (reason == TASK_SWITCH_GATE && idt_v) {
3173                 switch (type) {
3174                 case INTR_TYPE_NMI_INTR:
3175                         vcpu->arch.nmi_injected = false;
3176                         if (cpu_has_virtual_nmis())
3177                                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3178                                               GUEST_INTR_STATE_NMI);
3179                         break;
3180                 case INTR_TYPE_EXT_INTR:
3181                 case INTR_TYPE_SOFT_INTR:
3182                         kvm_clear_interrupt_queue(vcpu);
3183                         break;
3184                 case INTR_TYPE_HARD_EXCEPTION:
3185                 case INTR_TYPE_SOFT_EXCEPTION:
3186                         kvm_clear_exception_queue(vcpu);
3187                         break;
3188                 default:
3189                         break;
3190                 }
3191         }
3192         tss_selector = exit_qualification;
3193
3194         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
3195                        type != INTR_TYPE_EXT_INTR &&
3196                        type != INTR_TYPE_NMI_INTR))
3197                 skip_emulated_instruction(vcpu);
3198
3199         if (!kvm_task_switch(vcpu, tss_selector, reason))
3200                 return 0;
3201
3202         /* clear all local breakpoint enable flags */
3203         vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
3204
3205         /*
3206          * TODO: What about debug traps on tss switch?
3207          *       Are we supposed to inject them and update dr6?
3208          */
3209
3210         return 1;
3211 }
3212
3213 static int handle_ept_violation(struct kvm_vcpu *vcpu)
3214 {
3215         unsigned long exit_qualification;
3216         gpa_t gpa;
3217         int gla_validity;
3218
3219         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3220
3221         if (exit_qualification & (1 << 6)) {
3222                 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
3223                 return -EINVAL;
3224         }
3225
3226         gla_validity = (exit_qualification >> 7) & 0x3;
3227         if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
3228                 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
3229                 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
3230                         (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
3231                         vmcs_readl(GUEST_LINEAR_ADDRESS));
3232                 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
3233                         (long unsigned int)exit_qualification);
3234                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3235                 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
3236                 return 0;
3237         }
3238
3239         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3240         trace_kvm_page_fault(gpa, exit_qualification);
3241         return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
3242 }
3243
3244 static u64 ept_rsvd_mask(u64 spte, int level)
3245 {
3246         int i;
3247         u64 mask = 0;
3248
3249         for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
3250                 mask |= (1ULL << i);
3251
3252         if (level > 2)
3253                 /* bits 7:3 reserved */
3254                 mask |= 0xf8;
3255         else if (level == 2) {
3256                 if (spte & (1ULL << 7))
3257                         /* 2MB ref, bits 20:12 reserved */
3258                         mask |= 0x1ff000;
3259                 else
3260                         /* bits 6:3 reserved */
3261                         mask |= 0x78;
3262         }
3263
3264         return mask;
3265 }
3266
3267 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
3268                                        int level)
3269 {
3270         printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
3271
3272         /* 010b (write-only) */
3273         WARN_ON((spte & 0x7) == 0x2);
3274
3275         /* 110b (write/execute) */
3276         WARN_ON((spte & 0x7) == 0x6);
3277
3278         /* 100b (execute-only) and value not supported by logical processor */
3279         if (!cpu_has_vmx_ept_execute_only())
3280                 WARN_ON((spte & 0x7) == 0x4);
3281
3282         /* not 000b */
3283         if ((spte & 0x7)) {
3284                 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
3285
3286                 if (rsvd_bits != 0) {
3287                         printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
3288                                          __func__, rsvd_bits);
3289                         WARN_ON(1);
3290                 }
3291
3292                 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
3293                         u64 ept_mem_type = (spte & 0x38) >> 3;
3294
3295                         if (ept_mem_type == 2 || ept_mem_type == 3 ||
3296                             ept_mem_type == 7) {
3297                                 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
3298                                                 __func__, ept_mem_type);
3299                                 WARN_ON(1);
3300                         }
3301                 }
3302         }
3303 }
3304
3305 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
3306 {
3307         u64 sptes[4];
3308         int nr_sptes, i;
3309         gpa_t gpa;
3310
3311         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3312
3313         printk(KERN_ERR "EPT: Misconfiguration.\n");
3314         printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
3315
3316         nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
3317
3318         for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
3319                 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
3320
3321         vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3322         vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
3323
3324         return 0;
3325 }
3326
3327 static int handle_nmi_window(struct kvm_vcpu *vcpu)
3328 {
3329         u32 cpu_based_vm_exec_control;
3330
3331         /* clear pending NMI */
3332         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3333         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
3334         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3335         ++vcpu->stat.nmi_window_exits;
3336
3337         return 1;
3338 }
3339
3340 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
3341 {
3342         struct vcpu_vmx *vmx = to_vmx(vcpu);
3343         enum emulation_result err = EMULATE_DONE;
3344         int ret = 1;
3345
3346         while (!guest_state_valid(vcpu)) {
3347                 err = emulate_instruction(vcpu, 0, 0, 0);
3348
3349                 if (err == EMULATE_DO_MMIO) {
3350                         ret = 0;
3351                         goto out;
3352                 }
3353
3354                 if (err != EMULATE_DONE) {
3355                         kvm_report_emulation_failure(vcpu, "emulation failure");
3356                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3357                         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3358                         ret = 0;
3359                         goto out;
3360                 }
3361
3362                 if (signal_pending(current))
3363                         goto out;
3364                 if (need_resched())
3365                         schedule();
3366         }
3367
3368         vmx->emulation_required = 0;
3369 out:
3370         return ret;
3371 }
3372
3373 /*
3374  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
3375  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
3376  */
3377 static int handle_pause(struct kvm_vcpu *vcpu)
3378 {
3379         skip_emulated_instruction(vcpu);
3380         kvm_vcpu_on_spin(vcpu);
3381
3382         return 1;
3383 }
3384
3385 /*
3386  * The exit handlers return 1 if the exit was handled fully and guest execution
3387  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
3388  * to be done to userspace and return 0.
3389  */
3390 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3391         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
3392         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
3393         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
3394         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
3395         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
3396         [EXIT_REASON_CR_ACCESS]               = handle_cr,
3397         [EXIT_REASON_DR_ACCESS]               = handle_dr,
3398         [EXIT_REASON_CPUID]                   = handle_cpuid,
3399         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
3400         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
3401         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
3402         [EXIT_REASON_HLT]                     = handle_halt,
3403         [EXIT_REASON_INVLPG]                  = handle_invlpg,
3404         [EXIT_REASON_VMCALL]                  = handle_vmcall,
3405         [EXIT_REASON_VMCLEAR]                 = handle_vmx_insn,
3406         [EXIT_REASON_VMLAUNCH]                = handle_vmx_insn,
3407         [EXIT_REASON_VMPTRLD]                 = handle_vmx_insn,
3408         [EXIT_REASON_VMPTRST]                 = handle_vmx_insn,
3409         [EXIT_REASON_VMREAD]                  = handle_vmx_insn,
3410         [EXIT_REASON_VMRESUME]                = handle_vmx_insn,
3411         [EXIT_REASON_VMWRITE]                 = handle_vmx_insn,
3412         [EXIT_REASON_VMOFF]                   = handle_vmx_insn,
3413         [EXIT_REASON_VMON]                    = handle_vmx_insn,
3414         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
3415         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
3416         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
3417         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
3418         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
3419         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
3420         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
3421         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
3422 };
3423
3424 static const int kvm_vmx_max_exit_handlers =
3425         ARRAY_SIZE(kvm_vmx_exit_handlers);
3426
3427 /*
3428  * The guest has exited.  See if we can fix it or if we need userspace
3429  * assistance.
3430  */
3431 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
3432 {
3433         struct vcpu_vmx *vmx = to_vmx(vcpu);
3434         u32 exit_reason = vmx->exit_reason;
3435         u32 vectoring_info = vmx->idt_vectoring_info;
3436
3437         trace_kvm_exit(exit_reason, kvm_rip_read(vcpu));
3438
3439         /* If guest state is invalid, start emulating */
3440         if (vmx->emulation_required && emulate_invalid_guest_state)
3441                 return handle_invalid_guest_state(vcpu);
3442
3443         /* Access CR3 don't cause VMExit in paging mode, so we need
3444          * to sync with guest real CR3. */
3445         if (enable_ept && is_paging(vcpu))
3446                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3447
3448         if (unlikely(vmx->fail)) {
3449                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3450                 vcpu->run->fail_entry.hardware_entry_failure_reason
3451                         = vmcs_read32(VM_INSTRUCTION_ERROR);
3452                 return 0;
3453         }
3454
3455         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
3456                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
3457                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
3458                         exit_reason != EXIT_REASON_TASK_SWITCH))
3459                 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
3460                        "(0x%x) and exit reason is 0x%x\n",
3461                        __func__, vectoring_info, exit_reason);
3462
3463         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
3464                 if (vmx_interrupt_allowed(vcpu)) {
3465                         vmx->soft_vnmi_blocked = 0;
3466                 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
3467                            vcpu->arch.nmi_pending) {
3468                         /*
3469                          * This CPU don't support us in finding the end of an
3470                          * NMI-blocked window if the guest runs with IRQs
3471                          * disabled. So we pull the trigger after 1 s of
3472                          * futile waiting, but inform the user about this.
3473                          */
3474                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
3475                                "state on VCPU %d after 1 s timeout\n",
3476                                __func__, vcpu->vcpu_id);
3477                         vmx->soft_vnmi_blocked = 0;
3478                 }
3479         }
3480
3481         if (exit_reason < kvm_vmx_max_exit_handlers
3482             && kvm_vmx_exit_handlers[exit_reason])
3483                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
3484         else {
3485                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3486                 vcpu->run->hw.hardware_exit_reason = exit_reason;
3487         }
3488         return 0;
3489 }
3490
3491 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3492 {
3493         if (irr == -1 || tpr < irr) {
3494                 vmcs_write32(TPR_THRESHOLD, 0);
3495                 return;
3496         }
3497
3498         vmcs_write32(TPR_THRESHOLD, irr);
3499 }
3500
3501 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
3502 {
3503         u32 exit_intr_info;
3504         u32 idt_vectoring_info = vmx->idt_vectoring_info;
3505         bool unblock_nmi;
3506         u8 vector;
3507         int type;
3508         bool idtv_info_valid;
3509
3510         exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3511
3512         vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
3513
3514         /* Handle machine checks before interrupts are enabled */
3515         if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
3516             || (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI
3517                 && is_machine_check(exit_intr_info)))
3518                 kvm_machine_check();
3519
3520         /* We need to handle NMIs before interrupts are enabled */
3521         if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
3522             (exit_intr_info & INTR_INFO_VALID_MASK))
3523                 asm("int $2");
3524
3525         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
3526
3527         if (cpu_has_virtual_nmis()) {
3528                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
3529                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
3530                 /*
3531                  * SDM 3: 27.7.1.2 (September 2008)
3532                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
3533                  * a guest IRET fault.
3534                  * SDM 3: 23.2.2 (September 2008)
3535                  * Bit 12 is undefined in any of the following cases:
3536                  *  If the VM exit sets the valid bit in the IDT-vectoring
3537                  *   information field.
3538                  *  If the VM exit is due to a double fault.
3539                  */
3540                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
3541                     vector != DF_VECTOR && !idtv_info_valid)
3542                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3543                                       GUEST_INTR_STATE_NMI);
3544         } else if (unlikely(vmx->soft_vnmi_blocked))
3545                 vmx->vnmi_blocked_time +=
3546                         ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
3547
3548         vmx->vcpu.arch.nmi_injected = false;
3549         kvm_clear_exception_queue(&vmx->vcpu);
3550         kvm_clear_interrupt_queue(&vmx->vcpu);
3551
3552         if (!idtv_info_valid)
3553                 return;
3554
3555         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
3556         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
3557
3558         switch (type) {
3559         case INTR_TYPE_NMI_INTR:
3560                 vmx->vcpu.arch.nmi_injected = true;
3561                 /*
3562                  * SDM 3: 27.7.1.2 (September 2008)
3563                  * Clear bit "block by NMI" before VM entry if a NMI
3564                  * delivery faulted.
3565                  */
3566                 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
3567                                 GUEST_INTR_STATE_NMI);
3568                 break;
3569         case INTR_TYPE_SOFT_EXCEPTION:
3570                 vmx->vcpu.arch.event_exit_inst_len =
3571                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3572                 /* fall through */
3573         case INTR_TYPE_HARD_EXCEPTION:
3574                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
3575                         u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE);
3576                         kvm_queue_exception_e(&vmx->vcpu, vector, err);
3577                 } else
3578                         kvm_queue_exception(&vmx->vcpu, vector);
3579                 break;
3580         case INTR_TYPE_SOFT_INTR:
3581                 vmx->vcpu.arch.event_exit_inst_len =
3582                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3583                 /* fall through */
3584         case INTR_TYPE_EXT_INTR:
3585                 kvm_queue_interrupt(&vmx->vcpu, vector,
3586                         type == INTR_TYPE_SOFT_INTR);
3587                 break;
3588         default:
3589                 break;
3590         }
3591 }
3592
3593 /*
3594  * Failure to inject an interrupt should give us the information
3595  * in IDT_VECTORING_INFO_FIELD.  However, if the failure occurs
3596  * when fetching the interrupt redirection bitmap in the real-mode
3597  * tss, this doesn't happen.  So we do it ourselves.
3598  */
3599 static void fixup_rmode_irq(struct vcpu_vmx *vmx)
3600 {
3601         vmx->rmode.irq.pending = 0;
3602         if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
3603                 return;
3604         kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
3605         if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
3606                 vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
3607                 vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
3608                 return;
3609         }
3610         vmx->idt_vectoring_info =
3611                 VECTORING_INFO_VALID_MASK
3612                 | INTR_TYPE_EXT_INTR
3613                 | vmx->rmode.irq.vector;
3614 }
3615
3616 #ifdef CONFIG_X86_64
3617 #define R "r"
3618 #define Q "q"
3619 #else
3620 #define R "e"
3621 #define Q "l"
3622 #endif
3623
3624 static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
3625 {
3626         struct vcpu_vmx *vmx = to_vmx(vcpu);
3627
3628         if (enable_ept && is_paging(vcpu)) {
3629                 vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3630                 ept_load_pdptrs(vcpu);
3631         }
3632         /* Record the guest's net vcpu time for enforced NMI injections. */
3633         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
3634                 vmx->entry_time = ktime_get();
3635
3636         /* Don't enter VMX if guest state is invalid, let the exit handler
3637            start emulation until we arrive back to a valid state */
3638         if (vmx->emulation_required && emulate_invalid_guest_state)
3639                 return;
3640
3641         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
3642                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
3643         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
3644                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
3645
3646         /* When single-stepping over STI and MOV SS, we must clear the
3647          * corresponding interruptibility bits in the guest state. Otherwise
3648          * vmentry fails as it then expects bit 14 (BS) in pending debug
3649          * exceptions being set, but that's not correct for the guest debugging
3650          * case. */
3651         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3652                 vmx_set_interrupt_shadow(vcpu, 0);
3653
3654         /*
3655          * Loading guest fpu may have cleared host cr0.ts
3656          */
3657         vmcs_writel(HOST_CR0, read_cr0());
3658
3659         if (vcpu->arch.switch_db_regs)
3660                 set_debugreg(vcpu->arch.dr6, 6);
3661
3662         asm(
3663                 /* Store host registers */
3664                 "push %%"R"dx; push %%"R"bp;"
3665                 "push %%"R"cx \n\t"
3666                 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
3667                 "je 1f \n\t"
3668                 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
3669                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
3670                 "1: \n\t"
3671                 /* Reload cr2 if changed */
3672                 "mov %c[cr2](%0), %%"R"ax \n\t"
3673                 "mov %%cr2, %%"R"dx \n\t"
3674                 "cmp %%"R"ax, %%"R"dx \n\t"
3675                 "je 2f \n\t"
3676                 "mov %%"R"ax, %%cr2 \n\t"
3677                 "2: \n\t"
3678                 /* Check if vmlaunch of vmresume is needed */
3679                 "cmpl $0, %c[launched](%0) \n\t"
3680                 /* Load guest registers.  Don't clobber flags. */
3681                 "mov %c[rax](%0), %%"R"ax \n\t"
3682                 "mov %c[rbx](%0), %%"R"bx \n\t"
3683                 "mov %c[rdx](%0), %%"R"dx \n\t"
3684                 "mov %c[rsi](%0), %%"R"si \n\t"
3685                 "mov %c[rdi](%0), %%"R"di \n\t"
3686                 "mov %c[rbp](%0), %%"R"bp \n\t"
3687 #ifdef CONFIG_X86_64
3688                 "mov %c[r8](%0),  %%r8  \n\t"
3689                 "mov %c[r9](%0),  %%r9  \n\t"
3690                 "mov %c[r10](%0), %%r10 \n\t"
3691                 "mov %c[r11](%0), %%r11 \n\t"
3692                 "mov %c[r12](%0), %%r12 \n\t"
3693                 "mov %c[r13](%0), %%r13 \n\t"
3694                 "mov %c[r14](%0), %%r14 \n\t"
3695                 "mov %c[r15](%0), %%r15 \n\t"
3696 #endif
3697                 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
3698
3699                 /* Enter guest mode */
3700                 "jne .Llaunched \n\t"
3701                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
3702                 "jmp .Lkvm_vmx_return \n\t"
3703                 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
3704                 ".Lkvm_vmx_return: "
3705                 /* Save guest registers, load host registers, keep flags */
3706                 "xchg %0,     (%%"R"sp) \n\t"
3707                 "mov %%"R"ax, %c[rax](%0) \n\t"
3708                 "mov %%"R"bx, %c[rbx](%0) \n\t"
3709                 "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
3710                 "mov %%"R"dx, %c[rdx](%0) \n\t"
3711                 "mov %%"R"si, %c[rsi](%0) \n\t"
3712                 "mov %%"R"di, %c[rdi](%0) \n\t"
3713                 "mov %%"R"bp, %c[rbp](%0) \n\t"
3714 #ifdef CONFIG_X86_64
3715                 "mov %%r8,  %c[r8](%0) \n\t"
3716                 "mov %%r9,  %c[r9](%0) \n\t"
3717                 "mov %%r10, %c[r10](%0) \n\t"
3718                 "mov %%r11, %c[r11](%0) \n\t"
3719                 "mov %%r12, %c[r12](%0) \n\t"
3720                 "mov %%r13, %c[r13](%0) \n\t"
3721                 "mov %%r14, %c[r14](%0) \n\t"
3722                 "mov %%r15, %c[r15](%0) \n\t"
3723 #endif
3724                 "mov %%cr2, %%"R"ax   \n\t"
3725                 "mov %%"R"ax, %c[cr2](%0) \n\t"
3726
3727                 "pop  %%"R"bp; pop  %%"R"bp; pop  %%"R"dx \n\t"
3728                 "setbe %c[fail](%0) \n\t"
3729               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
3730                 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
3731                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
3732                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
3733                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
3734                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
3735                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
3736                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
3737                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
3738                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
3739                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
3740 #ifdef CONFIG_X86_64
3741                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
3742                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
3743                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
3744                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
3745                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
3746                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
3747                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
3748                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
3749 #endif
3750                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
3751               : "cc", "memory"
3752                 , R"bx", R"di", R"si"
3753 #ifdef CONFIG_X86_64
3754                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
3755 #endif
3756               );
3757
3758         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
3759                                   | (1 << VCPU_EXREG_PDPTR));
3760         vcpu->arch.regs_dirty = 0;
3761
3762         if (vcpu->arch.switch_db_regs)
3763                 get_debugreg(vcpu->arch.dr6, 6);
3764
3765         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
3766         if (vmx->rmode.irq.pending)
3767                 fixup_rmode_irq(vmx);
3768
3769         asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
3770         vmx->launched = 1;
3771
3772         vmx_complete_interrupts(vmx);
3773 }
3774
3775 #undef R
3776 #undef Q
3777
3778 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
3779 {
3780         struct vcpu_vmx *vmx = to_vmx(vcpu);
3781
3782         if (vmx->vmcs) {
3783                 vcpu_clear(vmx);
3784                 free_vmcs(vmx->vmcs);
3785                 vmx->vmcs = NULL;
3786         }
3787 }
3788
3789 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
3790 {
3791         struct vcpu_vmx *vmx = to_vmx(vcpu);
3792
3793         spin_lock(&vmx_vpid_lock);
3794         if (vmx->vpid != 0)
3795                 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3796         spin_unlock(&vmx_vpid_lock);
3797         vmx_free_vmcs(vcpu);
3798         kfree(vmx->guest_msrs);
3799         kvm_vcpu_uninit(vcpu);
3800         kmem_cache_free(kvm_vcpu_cache, vmx);
3801 }
3802
3803 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
3804 {
3805         int err;
3806         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3807         int cpu;
3808
3809         if (!vmx)
3810                 return ERR_PTR(-ENOMEM);
3811
3812         allocate_vpid(vmx);
3813
3814         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
3815         if (err)
3816                 goto free_vcpu;
3817
3818         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3819         if (!vmx->guest_msrs) {
3820                 err = -ENOMEM;
3821                 goto uninit_vcpu;
3822         }
3823
3824         vmx->vmcs = alloc_vmcs();
3825         if (!vmx->vmcs)
3826                 goto free_msrs;
3827
3828         vmcs_clear(vmx->vmcs);
3829
3830         cpu = get_cpu();
3831         vmx_vcpu_load(&vmx->vcpu, cpu);
3832         err = vmx_vcpu_setup(vmx);
3833         vmx_vcpu_put(&vmx->vcpu);
3834         put_cpu();
3835         if (err)
3836                 goto free_vmcs;
3837         if (vm_need_virtualize_apic_accesses(kvm))
3838                 if (alloc_apic_access_page(kvm) != 0)
3839                         goto free_vmcs;
3840
3841         if (enable_ept) {
3842                 if (!kvm->arch.ept_identity_map_addr)
3843                         kvm->arch.ept_identity_map_addr =
3844                                 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3845                 if (alloc_identity_pagetable(kvm) != 0)
3846                         goto free_vmcs;
3847         }
3848
3849         return &vmx->vcpu;
3850
3851 free_vmcs:
3852         free_vmcs(vmx->vmcs);
3853 free_msrs:
3854         kfree(vmx->guest_msrs);
3855 uninit_vcpu:
3856         kvm_vcpu_uninit(&vmx->vcpu);
3857 free_vcpu:
3858         kmem_cache_free(kvm_vcpu_cache, vmx);
3859         return ERR_PTR(err);
3860 }
3861
3862 static void __init vmx_check_processor_compat(void *rtn)
3863 {
3864         struct vmcs_config vmcs_conf;
3865
3866         *(int *)rtn = 0;
3867         if (setup_vmcs_config(&vmcs_conf) < 0)
3868                 *(int *)rtn = -EIO;
3869         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
3870                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
3871                                 smp_processor_id());
3872                 *(int *)rtn = -EIO;
3873         }
3874 }
3875
3876 static int get_ept_level(void)
3877 {
3878         return VMX_EPT_DEFAULT_GAW + 1;
3879 }
3880
3881 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3882 {
3883         u64 ret;
3884
3885         /* For VT-d and EPT combination
3886          * 1. MMIO: always map as UC
3887          * 2. EPT with VT-d:
3888          *   a. VT-d without snooping control feature: can't guarantee the
3889          *      result, try to trust guest.
3890          *   b. VT-d with snooping control feature: snooping control feature of
3891          *      VT-d engine can guarantee the cache correctness. Just set it
3892          *      to WB to keep consistent with host. So the same as item 3.
3893          * 3. EPT without VT-d: always map as WB and set IGMT=1 to keep
3894          *    consistent with host MTRR
3895          */
3896         if (is_mmio)
3897                 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
3898         else if (vcpu->kvm->arch.iommu_domain &&
3899                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
3900                 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
3901                       VMX_EPT_MT_EPTE_SHIFT;
3902         else
3903                 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
3904                         | VMX_EPT_IGMT_BIT;
3905
3906         return ret;
3907 }
3908
3909 static const struct trace_print_flags vmx_exit_reasons_str[] = {
3910         { EXIT_REASON_EXCEPTION_NMI,           "exception" },
3911         { EXIT_REASON_EXTERNAL_INTERRUPT,      "ext_irq" },
3912         { EXIT_REASON_TRIPLE_FAULT,            "triple_fault" },
3913         { EXIT_REASON_NMI_WINDOW,              "nmi_window" },
3914         { EXIT_REASON_IO_INSTRUCTION,          "io_instruction" },
3915         { EXIT_REASON_CR_ACCESS,               "cr_access" },
3916         { EXIT_REASON_DR_ACCESS,               "dr_access" },
3917         { EXIT_REASON_CPUID,                   "cpuid" },
3918         { EXIT_REASON_MSR_READ,                "rdmsr" },
3919         { EXIT_REASON_MSR_WRITE,               "wrmsr" },
3920         { EXIT_REASON_PENDING_INTERRUPT,       "interrupt_window" },
3921         { EXIT_REASON_HLT,                     "halt" },
3922         { EXIT_REASON_INVLPG,                  "invlpg" },
3923         { EXIT_REASON_VMCALL,                  "hypercall" },
3924         { EXIT_REASON_TPR_BELOW_THRESHOLD,     "tpr_below_thres" },
3925         { EXIT_REASON_APIC_ACCESS,             "apic_access" },
3926         { EXIT_REASON_WBINVD,                  "wbinvd" },
3927         { EXIT_REASON_TASK_SWITCH,             "task_switch" },
3928         { EXIT_REASON_EPT_VIOLATION,           "ept_violation" },
3929         { -1, NULL }
3930 };
3931
3932 static bool vmx_gb_page_enable(void)
3933 {
3934         return false;
3935 }
3936
3937 static struct kvm_x86_ops vmx_x86_ops = {
3938         .cpu_has_kvm_support = cpu_has_kvm_support,
3939         .disabled_by_bios = vmx_disabled_by_bios,
3940         .hardware_setup = hardware_setup,
3941         .hardware_unsetup = hardware_unsetup,
3942         .check_processor_compatibility = vmx_check_processor_compat,
3943         .hardware_enable = hardware_enable,
3944         .hardware_disable = hardware_disable,
3945         .cpu_has_accelerated_tpr = report_flexpriority,
3946
3947         .vcpu_create = vmx_create_vcpu,
3948         .vcpu_free = vmx_free_vcpu,
3949         .vcpu_reset = vmx_vcpu_reset,
3950
3951         .prepare_guest_switch = vmx_save_host_state,
3952         .vcpu_load = vmx_vcpu_load,
3953         .vcpu_put = vmx_vcpu_put,
3954
3955         .set_guest_debug = set_guest_debug,
3956         .get_msr = vmx_get_msr,
3957         .set_msr = vmx_set_msr,
3958         .get_segment_base = vmx_get_segment_base,
3959         .get_segment = vmx_get_segment,
3960         .set_segment = vmx_set_segment,
3961         .get_cpl = vmx_get_cpl,
3962         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
3963         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
3964         .set_cr0 = vmx_set_cr0,
3965         .set_cr3 = vmx_set_cr3,
3966         .set_cr4 = vmx_set_cr4,
3967         .set_efer = vmx_set_efer,
3968         .get_idt = vmx_get_idt,
3969         .set_idt = vmx_set_idt,
3970         .get_gdt = vmx_get_gdt,
3971         .set_gdt = vmx_set_gdt,
3972         .cache_reg = vmx_cache_reg,
3973         .get_rflags = vmx_get_rflags,
3974         .set_rflags = vmx_set_rflags,
3975
3976         .tlb_flush = vmx_flush_tlb,
3977
3978         .run = vmx_vcpu_run,
3979         .handle_exit = vmx_handle_exit,
3980         .skip_emulated_instruction = skip_emulated_instruction,
3981         .set_interrupt_shadow = vmx_set_interrupt_shadow,
3982         .get_interrupt_shadow = vmx_get_interrupt_shadow,
3983         .patch_hypercall = vmx_patch_hypercall,
3984         .set_irq = vmx_inject_irq,
3985         .set_nmi = vmx_inject_nmi,
3986         .queue_exception = vmx_queue_exception,
3987         .interrupt_allowed = vmx_interrupt_allowed,
3988         .nmi_allowed = vmx_nmi_allowed,
3989         .enable_nmi_window = enable_nmi_window,
3990         .enable_irq_window = enable_irq_window,
3991         .update_cr8_intercept = update_cr8_intercept,
3992
3993         .set_tss_addr = vmx_set_tss_addr,
3994         .get_tdp_level = get_ept_level,
3995         .get_mt_mask = vmx_get_mt_mask,
3996
3997         .exit_reasons_str = vmx_exit_reasons_str,
3998         .gb_page_enable = vmx_gb_page_enable,
3999 };
4000
4001 static int __init vmx_init(void)
4002 {
4003         int r, i;
4004
4005         rdmsrl_safe(MSR_EFER, &host_efer);
4006
4007         for (i = 0; i < NR_VMX_MSR; ++i)
4008                 kvm_define_shared_msr(i, vmx_msr_index[i]);
4009
4010         vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
4011         if (!vmx_io_bitmap_a)
4012                 return -ENOMEM;
4013
4014         vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
4015         if (!vmx_io_bitmap_b) {
4016                 r = -ENOMEM;
4017                 goto out;
4018         }
4019
4020         vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
4021         if (!vmx_msr_bitmap_legacy) {
4022                 r = -ENOMEM;
4023                 goto out1;
4024         }
4025
4026         vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
4027         if (!vmx_msr_bitmap_longmode) {
4028                 r = -ENOMEM;
4029                 goto out2;
4030         }
4031
4032         /*
4033          * Allow direct access to the PC debug port (it is often used for I/O
4034          * delays, but the vmexits simply slow things down).
4035          */
4036         memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
4037         clear_bit(0x80, vmx_io_bitmap_a);
4038
4039         memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
4040
4041         memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
4042         memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
4043
4044         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
4045
4046         r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
4047         if (r)
4048                 goto out3;
4049
4050         vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
4051         vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
4052         vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
4053         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
4054         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
4055         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
4056
4057         if (enable_ept) {
4058                 bypass_guest_pf = 0;
4059                 kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
4060                         VMX_EPT_WRITABLE_MASK);
4061                 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
4062                                 VMX_EPT_EXECUTABLE_MASK);
4063                 kvm_enable_tdp();
4064         } else
4065                 kvm_disable_tdp();
4066
4067         if (bypass_guest_pf)
4068                 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
4069
4070         return 0;
4071
4072 out3:
4073         free_page((unsigned long)vmx_msr_bitmap_longmode);
4074 out2:
4075         free_page((unsigned long)vmx_msr_bitmap_legacy);
4076 out1:
4077         free_page((unsigned long)vmx_io_bitmap_b);
4078 out:
4079         free_page((unsigned long)vmx_io_bitmap_a);
4080         return r;
4081 }
4082
4083 static void __exit vmx_exit(void)
4084 {
4085         free_page((unsigned long)vmx_msr_bitmap_legacy);
4086         free_page((unsigned long)vmx_msr_bitmap_longmode);
4087         free_page((unsigned long)vmx_io_bitmap_b);
4088         free_page((unsigned long)vmx_io_bitmap_a);
4089
4090         kvm_exit();
4091 }
4092
4093 module_init(vmx_init)
4094 module_exit(vmx_exit)