KVM: VMX: flush TLB with INVEPT on cpu migration
[safe/jmp/linux-2.6] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "irq.h"
19 #include "mmu.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/mm.h>
25 #include <linux/highmem.h>
26 #include <linux/sched.h>
27 #include <linux/moduleparam.h>
28 #include <linux/ftrace_event.h>
29 #include "kvm_cache_regs.h"
30 #include "x86.h"
31
32 #include <asm/io.h>
33 #include <asm/desc.h>
34 #include <asm/vmx.h>
35 #include <asm/virtext.h>
36 #include <asm/mce.h>
37
38 #include "trace.h"
39
40 #define __ex(x) __kvm_handle_fault_on_reboot(x)
41
42 MODULE_AUTHOR("Qumranet");
43 MODULE_LICENSE("GPL");
44
45 static int __read_mostly bypass_guest_pf = 1;
46 module_param(bypass_guest_pf, bool, S_IRUGO);
47
48 static int __read_mostly enable_vpid = 1;
49 module_param_named(vpid, enable_vpid, bool, 0444);
50
51 static int __read_mostly flexpriority_enabled = 1;
52 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
53
54 static int __read_mostly enable_ept = 1;
55 module_param_named(ept, enable_ept, bool, S_IRUGO);
56
57 static int __read_mostly enable_unrestricted_guest = 1;
58 module_param_named(unrestricted_guest,
59                         enable_unrestricted_guest, bool, S_IRUGO);
60
61 static int __read_mostly emulate_invalid_guest_state = 0;
62 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
63
64 struct vmcs {
65         u32 revision_id;
66         u32 abort;
67         char data[0];
68 };
69
70 struct vcpu_vmx {
71         struct kvm_vcpu       vcpu;
72         struct list_head      local_vcpus_link;
73         unsigned long         host_rsp;
74         int                   launched;
75         u8                    fail;
76         u32                   idt_vectoring_info;
77         struct kvm_msr_entry *guest_msrs;
78         struct kvm_msr_entry *host_msrs;
79         int                   nmsrs;
80         int                   save_nmsrs;
81         int                   msr_offset_efer;
82 #ifdef CONFIG_X86_64
83         int                   msr_offset_kernel_gs_base;
84 #endif
85         struct vmcs          *vmcs;
86         struct {
87                 int           loaded;
88                 u16           fs_sel, gs_sel, ldt_sel;
89                 int           gs_ldt_reload_needed;
90                 int           fs_reload_needed;
91                 int           guest_efer_loaded;
92         } host_state;
93         struct {
94                 int vm86_active;
95                 u8 save_iopl;
96                 struct kvm_save_segment {
97                         u16 selector;
98                         unsigned long base;
99                         u32 limit;
100                         u32 ar;
101                 } tr, es, ds, fs, gs;
102                 struct {
103                         bool pending;
104                         u8 vector;
105                         unsigned rip;
106                 } irq;
107         } rmode;
108         int vpid;
109         bool emulation_required;
110         enum emulation_result invalid_state_emulation_result;
111
112         /* Support for vnmi-less CPUs */
113         int soft_vnmi_blocked;
114         ktime_t entry_time;
115         s64 vnmi_blocked_time;
116         u32 exit_reason;
117 };
118
119 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
120 {
121         return container_of(vcpu, struct vcpu_vmx, vcpu);
122 }
123
124 static int init_rmode(struct kvm *kvm);
125 static u64 construct_eptp(unsigned long root_hpa);
126
127 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
128 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
129 static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
130
131 static unsigned long *vmx_io_bitmap_a;
132 static unsigned long *vmx_io_bitmap_b;
133 static unsigned long *vmx_msr_bitmap_legacy;
134 static unsigned long *vmx_msr_bitmap_longmode;
135
136 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
137 static DEFINE_SPINLOCK(vmx_vpid_lock);
138
139 static struct vmcs_config {
140         int size;
141         int order;
142         u32 revision_id;
143         u32 pin_based_exec_ctrl;
144         u32 cpu_based_exec_ctrl;
145         u32 cpu_based_2nd_exec_ctrl;
146         u32 vmexit_ctrl;
147         u32 vmentry_ctrl;
148 } vmcs_config;
149
150 static struct vmx_capability {
151         u32 ept;
152         u32 vpid;
153 } vmx_capability;
154
155 #define VMX_SEGMENT_FIELD(seg)                                  \
156         [VCPU_SREG_##seg] = {                                   \
157                 .selector = GUEST_##seg##_SELECTOR,             \
158                 .base = GUEST_##seg##_BASE,                     \
159                 .limit = GUEST_##seg##_LIMIT,                   \
160                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
161         }
162
163 static struct kvm_vmx_segment_field {
164         unsigned selector;
165         unsigned base;
166         unsigned limit;
167         unsigned ar_bytes;
168 } kvm_vmx_segment_fields[] = {
169         VMX_SEGMENT_FIELD(CS),
170         VMX_SEGMENT_FIELD(DS),
171         VMX_SEGMENT_FIELD(ES),
172         VMX_SEGMENT_FIELD(FS),
173         VMX_SEGMENT_FIELD(GS),
174         VMX_SEGMENT_FIELD(SS),
175         VMX_SEGMENT_FIELD(TR),
176         VMX_SEGMENT_FIELD(LDTR),
177 };
178
179 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
180
181 /*
182  * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
183  * away by decrementing the array size.
184  */
185 static const u32 vmx_msr_index[] = {
186 #ifdef CONFIG_X86_64
187         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
188 #endif
189         MSR_EFER, MSR_K6_STAR,
190 };
191 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
192
193 static void load_msrs(struct kvm_msr_entry *e, int n)
194 {
195         int i;
196
197         for (i = 0; i < n; ++i)
198                 wrmsrl(e[i].index, e[i].data);
199 }
200
201 static void save_msrs(struct kvm_msr_entry *e, int n)
202 {
203         int i;
204
205         for (i = 0; i < n; ++i)
206                 rdmsrl(e[i].index, e[i].data);
207 }
208
209 static inline int is_page_fault(u32 intr_info)
210 {
211         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
212                              INTR_INFO_VALID_MASK)) ==
213                 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
214 }
215
216 static inline int is_no_device(u32 intr_info)
217 {
218         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
219                              INTR_INFO_VALID_MASK)) ==
220                 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
221 }
222
223 static inline int is_invalid_opcode(u32 intr_info)
224 {
225         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
226                              INTR_INFO_VALID_MASK)) ==
227                 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
228 }
229
230 static inline int is_external_interrupt(u32 intr_info)
231 {
232         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
233                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
234 }
235
236 static inline int is_machine_check(u32 intr_info)
237 {
238         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
239                              INTR_INFO_VALID_MASK)) ==
240                 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
241 }
242
243 static inline int cpu_has_vmx_msr_bitmap(void)
244 {
245         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
246 }
247
248 static inline int cpu_has_vmx_tpr_shadow(void)
249 {
250         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
251 }
252
253 static inline int vm_need_tpr_shadow(struct kvm *kvm)
254 {
255         return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
256 }
257
258 static inline int cpu_has_secondary_exec_ctrls(void)
259 {
260         return vmcs_config.cpu_based_exec_ctrl &
261                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
262 }
263
264 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
265 {
266         return vmcs_config.cpu_based_2nd_exec_ctrl &
267                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
268 }
269
270 static inline bool cpu_has_vmx_flexpriority(void)
271 {
272         return cpu_has_vmx_tpr_shadow() &&
273                 cpu_has_vmx_virtualize_apic_accesses();
274 }
275
276 static inline bool cpu_has_vmx_ept_execute_only(void)
277 {
278         return !!(vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT);
279 }
280
281 static inline bool cpu_has_vmx_eptp_uncacheable(void)
282 {
283         return !!(vmx_capability.ept & VMX_EPTP_UC_BIT);
284 }
285
286 static inline bool cpu_has_vmx_eptp_writeback(void)
287 {
288         return !!(vmx_capability.ept & VMX_EPTP_WB_BIT);
289 }
290
291 static inline bool cpu_has_vmx_ept_2m_page(void)
292 {
293         return !!(vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT);
294 }
295
296 static inline int cpu_has_vmx_invept_individual_addr(void)
297 {
298         return !!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT);
299 }
300
301 static inline int cpu_has_vmx_invept_context(void)
302 {
303         return !!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT);
304 }
305
306 static inline int cpu_has_vmx_invept_global(void)
307 {
308         return !!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT);
309 }
310
311 static inline int cpu_has_vmx_ept(void)
312 {
313         return vmcs_config.cpu_based_2nd_exec_ctrl &
314                 SECONDARY_EXEC_ENABLE_EPT;
315 }
316
317 static inline int cpu_has_vmx_unrestricted_guest(void)
318 {
319         return vmcs_config.cpu_based_2nd_exec_ctrl &
320                 SECONDARY_EXEC_UNRESTRICTED_GUEST;
321 }
322
323 static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
324 {
325         return flexpriority_enabled &&
326                 (cpu_has_vmx_virtualize_apic_accesses()) &&
327                 (irqchip_in_kernel(kvm));
328 }
329
330 static inline int cpu_has_vmx_vpid(void)
331 {
332         return vmcs_config.cpu_based_2nd_exec_ctrl &
333                 SECONDARY_EXEC_ENABLE_VPID;
334 }
335
336 static inline int cpu_has_virtual_nmis(void)
337 {
338         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
339 }
340
341 static inline bool report_flexpriority(void)
342 {
343         return flexpriority_enabled;
344 }
345
346 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
347 {
348         int i;
349
350         for (i = 0; i < vmx->nmsrs; ++i)
351                 if (vmx->guest_msrs[i].index == msr)
352                         return i;
353         return -1;
354 }
355
356 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
357 {
358     struct {
359         u64 vpid : 16;
360         u64 rsvd : 48;
361         u64 gva;
362     } operand = { vpid, 0, gva };
363
364     asm volatile (__ex(ASM_VMX_INVVPID)
365                   /* CF==1 or ZF==1 --> rc = -1 */
366                   "; ja 1f ; ud2 ; 1:"
367                   : : "a"(&operand), "c"(ext) : "cc", "memory");
368 }
369
370 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
371 {
372         struct {
373                 u64 eptp, gpa;
374         } operand = {eptp, gpa};
375
376         asm volatile (__ex(ASM_VMX_INVEPT)
377                         /* CF==1 or ZF==1 --> rc = -1 */
378                         "; ja 1f ; ud2 ; 1:\n"
379                         : : "a" (&operand), "c" (ext) : "cc", "memory");
380 }
381
382 static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
383 {
384         int i;
385
386         i = __find_msr_index(vmx, msr);
387         if (i >= 0)
388                 return &vmx->guest_msrs[i];
389         return NULL;
390 }
391
392 static void vmcs_clear(struct vmcs *vmcs)
393 {
394         u64 phys_addr = __pa(vmcs);
395         u8 error;
396
397         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
398                       : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
399                       : "cc", "memory");
400         if (error)
401                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
402                        vmcs, phys_addr);
403 }
404
405 static void __vcpu_clear(void *arg)
406 {
407         struct vcpu_vmx *vmx = arg;
408         int cpu = raw_smp_processor_id();
409
410         if (vmx->vcpu.cpu == cpu)
411                 vmcs_clear(vmx->vmcs);
412         if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
413                 per_cpu(current_vmcs, cpu) = NULL;
414         rdtscll(vmx->vcpu.arch.host_tsc);
415         list_del(&vmx->local_vcpus_link);
416         vmx->vcpu.cpu = -1;
417         vmx->launched = 0;
418 }
419
420 static void vcpu_clear(struct vcpu_vmx *vmx)
421 {
422         if (vmx->vcpu.cpu == -1)
423                 return;
424         smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
425 }
426
427 static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
428 {
429         if (vmx->vpid == 0)
430                 return;
431
432         __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
433 }
434
435 static inline void ept_sync_global(void)
436 {
437         if (cpu_has_vmx_invept_global())
438                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
439 }
440
441 static inline void ept_sync_context(u64 eptp)
442 {
443         if (enable_ept) {
444                 if (cpu_has_vmx_invept_context())
445                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
446                 else
447                         ept_sync_global();
448         }
449 }
450
451 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
452 {
453         if (enable_ept) {
454                 if (cpu_has_vmx_invept_individual_addr())
455                         __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
456                                         eptp, gpa);
457                 else
458                         ept_sync_context(eptp);
459         }
460 }
461
462 static unsigned long vmcs_readl(unsigned long field)
463 {
464         unsigned long value;
465
466         asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
467                       : "=a"(value) : "d"(field) : "cc");
468         return value;
469 }
470
471 static u16 vmcs_read16(unsigned long field)
472 {
473         return vmcs_readl(field);
474 }
475
476 static u32 vmcs_read32(unsigned long field)
477 {
478         return vmcs_readl(field);
479 }
480
481 static u64 vmcs_read64(unsigned long field)
482 {
483 #ifdef CONFIG_X86_64
484         return vmcs_readl(field);
485 #else
486         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
487 #endif
488 }
489
490 static noinline void vmwrite_error(unsigned long field, unsigned long value)
491 {
492         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
493                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
494         dump_stack();
495 }
496
497 static void vmcs_writel(unsigned long field, unsigned long value)
498 {
499         u8 error;
500
501         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
502                        : "=q"(error) : "a"(value), "d"(field) : "cc");
503         if (unlikely(error))
504                 vmwrite_error(field, value);
505 }
506
507 static void vmcs_write16(unsigned long field, u16 value)
508 {
509         vmcs_writel(field, value);
510 }
511
512 static void vmcs_write32(unsigned long field, u32 value)
513 {
514         vmcs_writel(field, value);
515 }
516
517 static void vmcs_write64(unsigned long field, u64 value)
518 {
519         vmcs_writel(field, value);
520 #ifndef CONFIG_X86_64
521         asm volatile ("");
522         vmcs_writel(field+1, value >> 32);
523 #endif
524 }
525
526 static void vmcs_clear_bits(unsigned long field, u32 mask)
527 {
528         vmcs_writel(field, vmcs_readl(field) & ~mask);
529 }
530
531 static void vmcs_set_bits(unsigned long field, u32 mask)
532 {
533         vmcs_writel(field, vmcs_readl(field) | mask);
534 }
535
536 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
537 {
538         u32 eb;
539
540         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR);
541         if (!vcpu->fpu_active)
542                 eb |= 1u << NM_VECTOR;
543         /*
544          * Unconditionally intercept #DB so we can maintain dr6 without
545          * reading it every exit.
546          */
547         eb |= 1u << DB_VECTOR;
548         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
549                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
550                         eb |= 1u << BP_VECTOR;
551         }
552         if (to_vmx(vcpu)->rmode.vm86_active)
553                 eb = ~0;
554         if (enable_ept)
555                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
556         vmcs_write32(EXCEPTION_BITMAP, eb);
557 }
558
559 static void reload_tss(void)
560 {
561         /*
562          * VT restores TR but not its size.  Useless.
563          */
564         struct descriptor_table gdt;
565         struct desc_struct *descs;
566
567         kvm_get_gdt(&gdt);
568         descs = (void *)gdt.base;
569         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
570         load_TR_desc();
571 }
572
573 static void load_transition_efer(struct vcpu_vmx *vmx)
574 {
575         int efer_offset = vmx->msr_offset_efer;
576         u64 host_efer;
577         u64 guest_efer;
578         u64 ignore_bits;
579
580         if (efer_offset < 0)
581                 return;
582         host_efer = vmx->host_msrs[efer_offset].data;
583         guest_efer = vmx->guest_msrs[efer_offset].data;
584
585         /*
586          * NX is emulated; LMA and LME handled by hardware; SCE meaninless
587          * outside long mode
588          */
589         ignore_bits = EFER_NX | EFER_SCE;
590 #ifdef CONFIG_X86_64
591         ignore_bits |= EFER_LMA | EFER_LME;
592         /* SCE is meaningful only in long mode on Intel */
593         if (guest_efer & EFER_LMA)
594                 ignore_bits &= ~(u64)EFER_SCE;
595 #endif
596         if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
597                 return;
598
599         vmx->host_state.guest_efer_loaded = 1;
600         guest_efer &= ~ignore_bits;
601         guest_efer |= host_efer & ignore_bits;
602         wrmsrl(MSR_EFER, guest_efer);
603         vmx->vcpu.stat.efer_reload++;
604 }
605
606 static void reload_host_efer(struct vcpu_vmx *vmx)
607 {
608         if (vmx->host_state.guest_efer_loaded) {
609                 vmx->host_state.guest_efer_loaded = 0;
610                 load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
611         }
612 }
613
614 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
615 {
616         struct vcpu_vmx *vmx = to_vmx(vcpu);
617
618         if (vmx->host_state.loaded)
619                 return;
620
621         vmx->host_state.loaded = 1;
622         /*
623          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
624          * allow segment selectors with cpl > 0 or ti == 1.
625          */
626         vmx->host_state.ldt_sel = kvm_read_ldt();
627         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
628         vmx->host_state.fs_sel = kvm_read_fs();
629         if (!(vmx->host_state.fs_sel & 7)) {
630                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
631                 vmx->host_state.fs_reload_needed = 0;
632         } else {
633                 vmcs_write16(HOST_FS_SELECTOR, 0);
634                 vmx->host_state.fs_reload_needed = 1;
635         }
636         vmx->host_state.gs_sel = kvm_read_gs();
637         if (!(vmx->host_state.gs_sel & 7))
638                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
639         else {
640                 vmcs_write16(HOST_GS_SELECTOR, 0);
641                 vmx->host_state.gs_ldt_reload_needed = 1;
642         }
643
644 #ifdef CONFIG_X86_64
645         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
646         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
647 #else
648         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
649         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
650 #endif
651
652 #ifdef CONFIG_X86_64
653         if (is_long_mode(&vmx->vcpu))
654                 save_msrs(vmx->host_msrs +
655                           vmx->msr_offset_kernel_gs_base, 1);
656
657 #endif
658         load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
659         load_transition_efer(vmx);
660 }
661
662 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
663 {
664         unsigned long flags;
665
666         if (!vmx->host_state.loaded)
667                 return;
668
669         ++vmx->vcpu.stat.host_state_reload;
670         vmx->host_state.loaded = 0;
671         if (vmx->host_state.fs_reload_needed)
672                 kvm_load_fs(vmx->host_state.fs_sel);
673         if (vmx->host_state.gs_ldt_reload_needed) {
674                 kvm_load_ldt(vmx->host_state.ldt_sel);
675                 /*
676                  * If we have to reload gs, we must take care to
677                  * preserve our gs base.
678                  */
679                 local_irq_save(flags);
680                 kvm_load_gs(vmx->host_state.gs_sel);
681 #ifdef CONFIG_X86_64
682                 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
683 #endif
684                 local_irq_restore(flags);
685         }
686         reload_tss();
687         save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
688         load_msrs(vmx->host_msrs, vmx->save_nmsrs);
689         reload_host_efer(vmx);
690 }
691
692 static void vmx_load_host_state(struct vcpu_vmx *vmx)
693 {
694         preempt_disable();
695         __vmx_load_host_state(vmx);
696         preempt_enable();
697 }
698
699 /*
700  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
701  * vcpu mutex is already taken.
702  */
703 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
704 {
705         struct vcpu_vmx *vmx = to_vmx(vcpu);
706         u64 phys_addr = __pa(vmx->vmcs);
707         u64 tsc_this, delta, new_offset;
708
709         if (vcpu->cpu != cpu) {
710                 vcpu_clear(vmx);
711                 kvm_migrate_timers(vcpu);
712                 set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
713                 local_irq_disable();
714                 list_add(&vmx->local_vcpus_link,
715                          &per_cpu(vcpus_on_cpu, cpu));
716                 local_irq_enable();
717         }
718
719         if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
720                 u8 error;
721
722                 per_cpu(current_vmcs, cpu) = vmx->vmcs;
723                 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
724                               : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
725                               : "cc");
726                 if (error)
727                         printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
728                                vmx->vmcs, phys_addr);
729         }
730
731         if (vcpu->cpu != cpu) {
732                 struct descriptor_table dt;
733                 unsigned long sysenter_esp;
734
735                 vcpu->cpu = cpu;
736                 /*
737                  * Linux uses per-cpu TSS and GDT, so set these when switching
738                  * processors.
739                  */
740                 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
741                 kvm_get_gdt(&dt);
742                 vmcs_writel(HOST_GDTR_BASE, dt.base);   /* 22.2.4 */
743
744                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
745                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
746
747                 /*
748                  * Make sure the time stamp counter is monotonous.
749                  */
750                 rdtscll(tsc_this);
751                 if (tsc_this < vcpu->arch.host_tsc) {
752                         delta = vcpu->arch.host_tsc - tsc_this;
753                         new_offset = vmcs_read64(TSC_OFFSET) + delta;
754                         vmcs_write64(TSC_OFFSET, new_offset);
755                 }
756         }
757 }
758
759 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
760 {
761         __vmx_load_host_state(to_vmx(vcpu));
762 }
763
764 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
765 {
766         if (vcpu->fpu_active)
767                 return;
768         vcpu->fpu_active = 1;
769         vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
770         if (vcpu->arch.cr0 & X86_CR0_TS)
771                 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
772         update_exception_bitmap(vcpu);
773 }
774
775 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
776 {
777         if (!vcpu->fpu_active)
778                 return;
779         vcpu->fpu_active = 0;
780         vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
781         update_exception_bitmap(vcpu);
782 }
783
784 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
785 {
786         unsigned long rflags;
787
788         rflags = vmcs_readl(GUEST_RFLAGS);
789         if (to_vmx(vcpu)->rmode.vm86_active)
790                 rflags &= ~(unsigned long)(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
791         return rflags;
792 }
793
794 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
795 {
796         if (to_vmx(vcpu)->rmode.vm86_active)
797                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
798         vmcs_writel(GUEST_RFLAGS, rflags);
799 }
800
801 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
802 {
803         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
804         int ret = 0;
805
806         if (interruptibility & GUEST_INTR_STATE_STI)
807                 ret |= X86_SHADOW_INT_STI;
808         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
809                 ret |= X86_SHADOW_INT_MOV_SS;
810
811         return ret & mask;
812 }
813
814 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
815 {
816         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
817         u32 interruptibility = interruptibility_old;
818
819         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
820
821         if (mask & X86_SHADOW_INT_MOV_SS)
822                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
823         if (mask & X86_SHADOW_INT_STI)
824                 interruptibility |= GUEST_INTR_STATE_STI;
825
826         if ((interruptibility != interruptibility_old))
827                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
828 }
829
830 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
831 {
832         unsigned long rip;
833
834         rip = kvm_rip_read(vcpu);
835         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
836         kvm_rip_write(vcpu, rip);
837
838         /* skipping an emulated instruction also counts */
839         vmx_set_interrupt_shadow(vcpu, 0);
840 }
841
842 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
843                                 bool has_error_code, u32 error_code)
844 {
845         struct vcpu_vmx *vmx = to_vmx(vcpu);
846         u32 intr_info = nr | INTR_INFO_VALID_MASK;
847
848         if (has_error_code) {
849                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
850                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
851         }
852
853         if (vmx->rmode.vm86_active) {
854                 vmx->rmode.irq.pending = true;
855                 vmx->rmode.irq.vector = nr;
856                 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
857                 if (kvm_exception_is_soft(nr))
858                         vmx->rmode.irq.rip +=
859                                 vmx->vcpu.arch.event_exit_inst_len;
860                 intr_info |= INTR_TYPE_SOFT_INTR;
861                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
862                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
863                 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
864                 return;
865         }
866
867         if (kvm_exception_is_soft(nr)) {
868                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
869                              vmx->vcpu.arch.event_exit_inst_len);
870                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
871         } else
872                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
873
874         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
875 }
876
877 /*
878  * Swap MSR entry in host/guest MSR entry array.
879  */
880 #ifdef CONFIG_X86_64
881 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
882 {
883         struct kvm_msr_entry tmp;
884
885         tmp = vmx->guest_msrs[to];
886         vmx->guest_msrs[to] = vmx->guest_msrs[from];
887         vmx->guest_msrs[from] = tmp;
888         tmp = vmx->host_msrs[to];
889         vmx->host_msrs[to] = vmx->host_msrs[from];
890         vmx->host_msrs[from] = tmp;
891 }
892 #endif
893
894 /*
895  * Set up the vmcs to automatically save and restore system
896  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
897  * mode, as fiddling with msrs is very expensive.
898  */
899 static void setup_msrs(struct vcpu_vmx *vmx)
900 {
901         int save_nmsrs;
902         unsigned long *msr_bitmap;
903
904         vmx_load_host_state(vmx);
905         save_nmsrs = 0;
906 #ifdef CONFIG_X86_64
907         if (is_long_mode(&vmx->vcpu)) {
908                 int index;
909
910                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
911                 if (index >= 0)
912                         move_msr_up(vmx, index, save_nmsrs++);
913                 index = __find_msr_index(vmx, MSR_LSTAR);
914                 if (index >= 0)
915                         move_msr_up(vmx, index, save_nmsrs++);
916                 index = __find_msr_index(vmx, MSR_CSTAR);
917                 if (index >= 0)
918                         move_msr_up(vmx, index, save_nmsrs++);
919                 index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
920                 if (index >= 0)
921                         move_msr_up(vmx, index, save_nmsrs++);
922                 /*
923                  * MSR_K6_STAR is only needed on long mode guests, and only
924                  * if efer.sce is enabled.
925                  */
926                 index = __find_msr_index(vmx, MSR_K6_STAR);
927                 if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
928                         move_msr_up(vmx, index, save_nmsrs++);
929         }
930 #endif
931         vmx->save_nmsrs = save_nmsrs;
932
933 #ifdef CONFIG_X86_64
934         vmx->msr_offset_kernel_gs_base =
935                 __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
936 #endif
937         vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
938
939         if (cpu_has_vmx_msr_bitmap()) {
940                 if (is_long_mode(&vmx->vcpu))
941                         msr_bitmap = vmx_msr_bitmap_longmode;
942                 else
943                         msr_bitmap = vmx_msr_bitmap_legacy;
944
945                 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
946         }
947 }
948
949 /*
950  * reads and returns guest's timestamp counter "register"
951  * guest_tsc = host_tsc + tsc_offset    -- 21.3
952  */
953 static u64 guest_read_tsc(void)
954 {
955         u64 host_tsc, tsc_offset;
956
957         rdtscll(host_tsc);
958         tsc_offset = vmcs_read64(TSC_OFFSET);
959         return host_tsc + tsc_offset;
960 }
961
962 /*
963  * writes 'guest_tsc' into guest's timestamp counter "register"
964  * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
965  */
966 static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
967 {
968         vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
969 }
970
971 /*
972  * Reads an msr value (of 'msr_index') into 'pdata'.
973  * Returns 0 on success, non-0 otherwise.
974  * Assumes vcpu_load() was already called.
975  */
976 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
977 {
978         u64 data;
979         struct kvm_msr_entry *msr;
980
981         if (!pdata) {
982                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
983                 return -EINVAL;
984         }
985
986         switch (msr_index) {
987 #ifdef CONFIG_X86_64
988         case MSR_FS_BASE:
989                 data = vmcs_readl(GUEST_FS_BASE);
990                 break;
991         case MSR_GS_BASE:
992                 data = vmcs_readl(GUEST_GS_BASE);
993                 break;
994         case MSR_EFER:
995                 return kvm_get_msr_common(vcpu, msr_index, pdata);
996 #endif
997         case MSR_IA32_TSC:
998                 data = guest_read_tsc();
999                 break;
1000         case MSR_IA32_SYSENTER_CS:
1001                 data = vmcs_read32(GUEST_SYSENTER_CS);
1002                 break;
1003         case MSR_IA32_SYSENTER_EIP:
1004                 data = vmcs_readl(GUEST_SYSENTER_EIP);
1005                 break;
1006         case MSR_IA32_SYSENTER_ESP:
1007                 data = vmcs_readl(GUEST_SYSENTER_ESP);
1008                 break;
1009         default:
1010                 msr = find_msr_entry(to_vmx(vcpu), msr_index);
1011                 if (msr) {
1012                         vmx_load_host_state(to_vmx(vcpu));
1013                         data = msr->data;
1014                         break;
1015                 }
1016                 return kvm_get_msr_common(vcpu, msr_index, pdata);
1017         }
1018
1019         *pdata = data;
1020         return 0;
1021 }
1022
1023 /*
1024  * Writes msr value into into the appropriate "register".
1025  * Returns 0 on success, non-0 otherwise.
1026  * Assumes vcpu_load() was already called.
1027  */
1028 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1029 {
1030         struct vcpu_vmx *vmx = to_vmx(vcpu);
1031         struct kvm_msr_entry *msr;
1032         u64 host_tsc;
1033         int ret = 0;
1034
1035         switch (msr_index) {
1036         case MSR_EFER:
1037                 vmx_load_host_state(vmx);
1038                 ret = kvm_set_msr_common(vcpu, msr_index, data);
1039                 break;
1040 #ifdef CONFIG_X86_64
1041         case MSR_FS_BASE:
1042                 vmcs_writel(GUEST_FS_BASE, data);
1043                 break;
1044         case MSR_GS_BASE:
1045                 vmcs_writel(GUEST_GS_BASE, data);
1046                 break;
1047 #endif
1048         case MSR_IA32_SYSENTER_CS:
1049                 vmcs_write32(GUEST_SYSENTER_CS, data);
1050                 break;
1051         case MSR_IA32_SYSENTER_EIP:
1052                 vmcs_writel(GUEST_SYSENTER_EIP, data);
1053                 break;
1054         case MSR_IA32_SYSENTER_ESP:
1055                 vmcs_writel(GUEST_SYSENTER_ESP, data);
1056                 break;
1057         case MSR_IA32_TSC:
1058                 rdtscll(host_tsc);
1059                 guest_write_tsc(data, host_tsc);
1060                 break;
1061         case MSR_IA32_CR_PAT:
1062                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
1063                         vmcs_write64(GUEST_IA32_PAT, data);
1064                         vcpu->arch.pat = data;
1065                         break;
1066                 }
1067                 /* Otherwise falls through to kvm_set_msr_common */
1068         default:
1069                 msr = find_msr_entry(vmx, msr_index);
1070                 if (msr) {
1071                         vmx_load_host_state(vmx);
1072                         msr->data = data;
1073                         break;
1074                 }
1075                 ret = kvm_set_msr_common(vcpu, msr_index, data);
1076         }
1077
1078         return ret;
1079 }
1080
1081 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1082 {
1083         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
1084         switch (reg) {
1085         case VCPU_REGS_RSP:
1086                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
1087                 break;
1088         case VCPU_REGS_RIP:
1089                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
1090                 break;
1091         case VCPU_EXREG_PDPTR:
1092                 if (enable_ept)
1093                         ept_save_pdptrs(vcpu);
1094                 break;
1095         default:
1096                 break;
1097         }
1098 }
1099
1100 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1101 {
1102         int old_debug = vcpu->guest_debug;
1103         unsigned long flags;
1104
1105         vcpu->guest_debug = dbg->control;
1106         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
1107                 vcpu->guest_debug = 0;
1108
1109         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1110                 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
1111         else
1112                 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
1113
1114         flags = vmcs_readl(GUEST_RFLAGS);
1115         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
1116                 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1117         else if (old_debug & KVM_GUESTDBG_SINGLESTEP)
1118                 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1119         vmcs_writel(GUEST_RFLAGS, flags);
1120
1121         update_exception_bitmap(vcpu);
1122
1123         return 0;
1124 }
1125
1126 static __init int cpu_has_kvm_support(void)
1127 {
1128         return cpu_has_vmx();
1129 }
1130
1131 static __init int vmx_disabled_by_bios(void)
1132 {
1133         u64 msr;
1134
1135         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
1136         return (msr & (FEATURE_CONTROL_LOCKED |
1137                        FEATURE_CONTROL_VMXON_ENABLED))
1138             == FEATURE_CONTROL_LOCKED;
1139         /* locked but not enabled */
1140 }
1141
1142 static void hardware_enable(void *garbage)
1143 {
1144         int cpu = raw_smp_processor_id();
1145         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1146         u64 old;
1147
1148         INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
1149         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1150         if ((old & (FEATURE_CONTROL_LOCKED |
1151                     FEATURE_CONTROL_VMXON_ENABLED))
1152             != (FEATURE_CONTROL_LOCKED |
1153                 FEATURE_CONTROL_VMXON_ENABLED))
1154                 /* enable and lock */
1155                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
1156                        FEATURE_CONTROL_LOCKED |
1157                        FEATURE_CONTROL_VMXON_ENABLED);
1158         write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
1159         asm volatile (ASM_VMX_VMXON_RAX
1160                       : : "a"(&phys_addr), "m"(phys_addr)
1161                       : "memory", "cc");
1162 }
1163
1164 static void vmclear_local_vcpus(void)
1165 {
1166         int cpu = raw_smp_processor_id();
1167         struct vcpu_vmx *vmx, *n;
1168
1169         list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
1170                                  local_vcpus_link)
1171                 __vcpu_clear(vmx);
1172 }
1173
1174
1175 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
1176  * tricks.
1177  */
1178 static void kvm_cpu_vmxoff(void)
1179 {
1180         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1181         write_cr4(read_cr4() & ~X86_CR4_VMXE);
1182 }
1183
1184 static void hardware_disable(void *garbage)
1185 {
1186         vmclear_local_vcpus();
1187         kvm_cpu_vmxoff();
1188 }
1189
1190 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1191                                       u32 msr, u32 *result)
1192 {
1193         u32 vmx_msr_low, vmx_msr_high;
1194         u32 ctl = ctl_min | ctl_opt;
1195
1196         rdmsr(msr, vmx_msr_low, vmx_msr_high);
1197
1198         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1199         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
1200
1201         /* Ensure minimum (required) set of control bits are supported. */
1202         if (ctl_min & ~ctl)
1203                 return -EIO;
1204
1205         *result = ctl;
1206         return 0;
1207 }
1208
1209 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1210 {
1211         u32 vmx_msr_low, vmx_msr_high;
1212         u32 min, opt, min2, opt2;
1213         u32 _pin_based_exec_control = 0;
1214         u32 _cpu_based_exec_control = 0;
1215         u32 _cpu_based_2nd_exec_control = 0;
1216         u32 _vmexit_control = 0;
1217         u32 _vmentry_control = 0;
1218
1219         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1220         opt = PIN_BASED_VIRTUAL_NMIS;
1221         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1222                                 &_pin_based_exec_control) < 0)
1223                 return -EIO;
1224
1225         min = CPU_BASED_HLT_EXITING |
1226 #ifdef CONFIG_X86_64
1227               CPU_BASED_CR8_LOAD_EXITING |
1228               CPU_BASED_CR8_STORE_EXITING |
1229 #endif
1230               CPU_BASED_CR3_LOAD_EXITING |
1231               CPU_BASED_CR3_STORE_EXITING |
1232               CPU_BASED_USE_IO_BITMAPS |
1233               CPU_BASED_MOV_DR_EXITING |
1234               CPU_BASED_USE_TSC_OFFSETING |
1235               CPU_BASED_INVLPG_EXITING;
1236         opt = CPU_BASED_TPR_SHADOW |
1237               CPU_BASED_USE_MSR_BITMAPS |
1238               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1239         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1240                                 &_cpu_based_exec_control) < 0)
1241                 return -EIO;
1242 #ifdef CONFIG_X86_64
1243         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1244                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1245                                            ~CPU_BASED_CR8_STORE_EXITING;
1246 #endif
1247         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1248                 min2 = 0;
1249                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1250                         SECONDARY_EXEC_WBINVD_EXITING |
1251                         SECONDARY_EXEC_ENABLE_VPID |
1252                         SECONDARY_EXEC_ENABLE_EPT |
1253                         SECONDARY_EXEC_UNRESTRICTED_GUEST;
1254                 if (adjust_vmx_controls(min2, opt2,
1255                                         MSR_IA32_VMX_PROCBASED_CTLS2,
1256                                         &_cpu_based_2nd_exec_control) < 0)
1257                         return -EIO;
1258         }
1259 #ifndef CONFIG_X86_64
1260         if (!(_cpu_based_2nd_exec_control &
1261                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1262                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1263 #endif
1264         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1265                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
1266                    enabled */
1267                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
1268                                              CPU_BASED_CR3_STORE_EXITING |
1269                                              CPU_BASED_INVLPG_EXITING);
1270                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1271                       vmx_capability.ept, vmx_capability.vpid);
1272         }
1273
1274         min = 0;
1275 #ifdef CONFIG_X86_64
1276         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1277 #endif
1278         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
1279         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1280                                 &_vmexit_control) < 0)
1281                 return -EIO;
1282
1283         min = 0;
1284         opt = VM_ENTRY_LOAD_IA32_PAT;
1285         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1286                                 &_vmentry_control) < 0)
1287                 return -EIO;
1288
1289         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1290
1291         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1292         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1293                 return -EIO;
1294
1295 #ifdef CONFIG_X86_64
1296         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1297         if (vmx_msr_high & (1u<<16))
1298                 return -EIO;
1299 #endif
1300
1301         /* Require Write-Back (WB) memory type for VMCS accesses. */
1302         if (((vmx_msr_high >> 18) & 15) != 6)
1303                 return -EIO;
1304
1305         vmcs_conf->size = vmx_msr_high & 0x1fff;
1306         vmcs_conf->order = get_order(vmcs_config.size);
1307         vmcs_conf->revision_id = vmx_msr_low;
1308
1309         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1310         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1311         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1312         vmcs_conf->vmexit_ctrl         = _vmexit_control;
1313         vmcs_conf->vmentry_ctrl        = _vmentry_control;
1314
1315         return 0;
1316 }
1317
1318 static struct vmcs *alloc_vmcs_cpu(int cpu)
1319 {
1320         int node = cpu_to_node(cpu);
1321         struct page *pages;
1322         struct vmcs *vmcs;
1323
1324         pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
1325         if (!pages)
1326                 return NULL;
1327         vmcs = page_address(pages);
1328         memset(vmcs, 0, vmcs_config.size);
1329         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1330         return vmcs;
1331 }
1332
1333 static struct vmcs *alloc_vmcs(void)
1334 {
1335         return alloc_vmcs_cpu(raw_smp_processor_id());
1336 }
1337
1338 static void free_vmcs(struct vmcs *vmcs)
1339 {
1340         free_pages((unsigned long)vmcs, vmcs_config.order);
1341 }
1342
1343 static void free_kvm_area(void)
1344 {
1345         int cpu;
1346
1347         for_each_online_cpu(cpu)
1348                 free_vmcs(per_cpu(vmxarea, cpu));
1349 }
1350
1351 static __init int alloc_kvm_area(void)
1352 {
1353         int cpu;
1354
1355         for_each_online_cpu(cpu) {
1356                 struct vmcs *vmcs;
1357
1358                 vmcs = alloc_vmcs_cpu(cpu);
1359                 if (!vmcs) {
1360                         free_kvm_area();
1361                         return -ENOMEM;
1362                 }
1363
1364                 per_cpu(vmxarea, cpu) = vmcs;
1365         }
1366         return 0;
1367 }
1368
1369 static __init int hardware_setup(void)
1370 {
1371         if (setup_vmcs_config(&vmcs_config) < 0)
1372                 return -EIO;
1373
1374         if (boot_cpu_has(X86_FEATURE_NX))
1375                 kvm_enable_efer_bits(EFER_NX);
1376
1377         if (!cpu_has_vmx_vpid())
1378                 enable_vpid = 0;
1379
1380         if (!cpu_has_vmx_ept()) {
1381                 enable_ept = 0;
1382                 enable_unrestricted_guest = 0;
1383         }
1384
1385         if (!cpu_has_vmx_unrestricted_guest())
1386                 enable_unrestricted_guest = 0;
1387
1388         if (!cpu_has_vmx_flexpriority())
1389                 flexpriority_enabled = 0;
1390
1391         if (!cpu_has_vmx_tpr_shadow())
1392                 kvm_x86_ops->update_cr8_intercept = NULL;
1393
1394         if (enable_ept && !cpu_has_vmx_ept_2m_page())
1395                 kvm_disable_largepages();
1396
1397         return alloc_kvm_area();
1398 }
1399
1400 static __exit void hardware_unsetup(void)
1401 {
1402         free_kvm_area();
1403 }
1404
1405 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1406 {
1407         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1408
1409         if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1410                 vmcs_write16(sf->selector, save->selector);
1411                 vmcs_writel(sf->base, save->base);
1412                 vmcs_write32(sf->limit, save->limit);
1413                 vmcs_write32(sf->ar_bytes, save->ar);
1414         } else {
1415                 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1416                         << AR_DPL_SHIFT;
1417                 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1418         }
1419 }
1420
1421 static void enter_pmode(struct kvm_vcpu *vcpu)
1422 {
1423         unsigned long flags;
1424         struct vcpu_vmx *vmx = to_vmx(vcpu);
1425
1426         vmx->emulation_required = 1;
1427         vmx->rmode.vm86_active = 0;
1428
1429         vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
1430         vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
1431         vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
1432
1433         flags = vmcs_readl(GUEST_RFLAGS);
1434         flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
1435         flags |= (vmx->rmode.save_iopl << IOPL_SHIFT);
1436         vmcs_writel(GUEST_RFLAGS, flags);
1437
1438         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1439                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1440
1441         update_exception_bitmap(vcpu);
1442
1443         if (emulate_invalid_guest_state)
1444                 return;
1445
1446         fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
1447         fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
1448         fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
1449         fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
1450
1451         vmcs_write16(GUEST_SS_SELECTOR, 0);
1452         vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1453
1454         vmcs_write16(GUEST_CS_SELECTOR,
1455                      vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1456         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1457 }
1458
1459 static gva_t rmode_tss_base(struct kvm *kvm)
1460 {
1461         if (!kvm->arch.tss_addr) {
1462                 gfn_t base_gfn = kvm->memslots[0].base_gfn +
1463                                  kvm->memslots[0].npages - 3;
1464                 return base_gfn << PAGE_SHIFT;
1465         }
1466         return kvm->arch.tss_addr;
1467 }
1468
1469 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1470 {
1471         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1472
1473         save->selector = vmcs_read16(sf->selector);
1474         save->base = vmcs_readl(sf->base);
1475         save->limit = vmcs_read32(sf->limit);
1476         save->ar = vmcs_read32(sf->ar_bytes);
1477         vmcs_write16(sf->selector, save->base >> 4);
1478         vmcs_write32(sf->base, save->base & 0xfffff);
1479         vmcs_write32(sf->limit, 0xffff);
1480         vmcs_write32(sf->ar_bytes, 0xf3);
1481 }
1482
1483 static void enter_rmode(struct kvm_vcpu *vcpu)
1484 {
1485         unsigned long flags;
1486         struct vcpu_vmx *vmx = to_vmx(vcpu);
1487
1488         if (enable_unrestricted_guest)
1489                 return;
1490
1491         vmx->emulation_required = 1;
1492         vmx->rmode.vm86_active = 1;
1493
1494         vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1495         vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1496
1497         vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1498         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1499
1500         vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1501         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1502
1503         flags = vmcs_readl(GUEST_RFLAGS);
1504         vmx->rmode.save_iopl
1505                 = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
1506
1507         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1508
1509         vmcs_writel(GUEST_RFLAGS, flags);
1510         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1511         update_exception_bitmap(vcpu);
1512
1513         if (emulate_invalid_guest_state)
1514                 goto continue_rmode;
1515
1516         vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1517         vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1518         vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1519
1520         vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1521         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1522         if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1523                 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1524         vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1525
1526         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
1527         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
1528         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
1529         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
1530
1531 continue_rmode:
1532         kvm_mmu_reset_context(vcpu);
1533         init_rmode(vcpu->kvm);
1534 }
1535
1536 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1537 {
1538         struct vcpu_vmx *vmx = to_vmx(vcpu);
1539         struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1540
1541         vcpu->arch.shadow_efer = efer;
1542         if (!msr)
1543                 return;
1544         if (efer & EFER_LMA) {
1545                 vmcs_write32(VM_ENTRY_CONTROLS,
1546                              vmcs_read32(VM_ENTRY_CONTROLS) |
1547                              VM_ENTRY_IA32E_MODE);
1548                 msr->data = efer;
1549         } else {
1550                 vmcs_write32(VM_ENTRY_CONTROLS,
1551                              vmcs_read32(VM_ENTRY_CONTROLS) &
1552                              ~VM_ENTRY_IA32E_MODE);
1553
1554                 msr->data = efer & ~EFER_LME;
1555         }
1556         setup_msrs(vmx);
1557 }
1558
1559 #ifdef CONFIG_X86_64
1560
1561 static void enter_lmode(struct kvm_vcpu *vcpu)
1562 {
1563         u32 guest_tr_ar;
1564
1565         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1566         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1567                 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1568                        __func__);
1569                 vmcs_write32(GUEST_TR_AR_BYTES,
1570                              (guest_tr_ar & ~AR_TYPE_MASK)
1571                              | AR_TYPE_BUSY_64_TSS);
1572         }
1573         vcpu->arch.shadow_efer |= EFER_LMA;
1574         vmx_set_efer(vcpu, vcpu->arch.shadow_efer);
1575 }
1576
1577 static void exit_lmode(struct kvm_vcpu *vcpu)
1578 {
1579         vcpu->arch.shadow_efer &= ~EFER_LMA;
1580
1581         vmcs_write32(VM_ENTRY_CONTROLS,
1582                      vmcs_read32(VM_ENTRY_CONTROLS)
1583                      & ~VM_ENTRY_IA32E_MODE);
1584 }
1585
1586 #endif
1587
1588 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1589 {
1590         vpid_sync_vcpu_all(to_vmx(vcpu));
1591         if (enable_ept)
1592                 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
1593 }
1594
1595 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1596 {
1597         vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
1598         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
1599 }
1600
1601 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
1602 {
1603         if (!test_bit(VCPU_EXREG_PDPTR,
1604                       (unsigned long *)&vcpu->arch.regs_dirty))
1605                 return;
1606
1607         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1608                 vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
1609                 vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
1610                 vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
1611                 vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
1612         }
1613 }
1614
1615 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
1616 {
1617         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1618                 vcpu->arch.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
1619                 vcpu->arch.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
1620                 vcpu->arch.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
1621                 vcpu->arch.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
1622         }
1623
1624         __set_bit(VCPU_EXREG_PDPTR,
1625                   (unsigned long *)&vcpu->arch.regs_avail);
1626         __set_bit(VCPU_EXREG_PDPTR,
1627                   (unsigned long *)&vcpu->arch.regs_dirty);
1628 }
1629
1630 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1631
1632 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
1633                                         unsigned long cr0,
1634                                         struct kvm_vcpu *vcpu)
1635 {
1636         if (!(cr0 & X86_CR0_PG)) {
1637                 /* From paging/starting to nonpaging */
1638                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1639                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1640                              (CPU_BASED_CR3_LOAD_EXITING |
1641                               CPU_BASED_CR3_STORE_EXITING));
1642                 vcpu->arch.cr0 = cr0;
1643                 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1644         } else if (!is_paging(vcpu)) {
1645                 /* From nonpaging to paging */
1646                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1647                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1648                              ~(CPU_BASED_CR3_LOAD_EXITING |
1649                                CPU_BASED_CR3_STORE_EXITING));
1650                 vcpu->arch.cr0 = cr0;
1651                 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1652         }
1653
1654         if (!(cr0 & X86_CR0_WP))
1655                 *hw_cr0 &= ~X86_CR0_WP;
1656 }
1657
1658 static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
1659                                         struct kvm_vcpu *vcpu)
1660 {
1661         if (!is_paging(vcpu)) {
1662                 *hw_cr4 &= ~X86_CR4_PAE;
1663                 *hw_cr4 |= X86_CR4_PSE;
1664         } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
1665                 *hw_cr4 &= ~X86_CR4_PAE;
1666 }
1667
1668 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1669 {
1670         struct vcpu_vmx *vmx = to_vmx(vcpu);
1671         unsigned long hw_cr0;
1672
1673         if (enable_unrestricted_guest)
1674                 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
1675                         | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
1676         else
1677                 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
1678
1679         vmx_fpu_deactivate(vcpu);
1680
1681         if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
1682                 enter_pmode(vcpu);
1683
1684         if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
1685                 enter_rmode(vcpu);
1686
1687 #ifdef CONFIG_X86_64
1688         if (vcpu->arch.shadow_efer & EFER_LME) {
1689                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1690                         enter_lmode(vcpu);
1691                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1692                         exit_lmode(vcpu);
1693         }
1694 #endif
1695
1696         if (enable_ept)
1697                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
1698
1699         vmcs_writel(CR0_READ_SHADOW, cr0);
1700         vmcs_writel(GUEST_CR0, hw_cr0);
1701         vcpu->arch.cr0 = cr0;
1702
1703         if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1704                 vmx_fpu_activate(vcpu);
1705 }
1706
1707 static u64 construct_eptp(unsigned long root_hpa)
1708 {
1709         u64 eptp;
1710
1711         /* TODO write the value reading from MSR */
1712         eptp = VMX_EPT_DEFAULT_MT |
1713                 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
1714         eptp |= (root_hpa & PAGE_MASK);
1715
1716         return eptp;
1717 }
1718
1719 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1720 {
1721         unsigned long guest_cr3;
1722         u64 eptp;
1723
1724         guest_cr3 = cr3;
1725         if (enable_ept) {
1726                 eptp = construct_eptp(cr3);
1727                 vmcs_write64(EPT_POINTER, eptp);
1728                 guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
1729                         vcpu->kvm->arch.ept_identity_map_addr;
1730         }
1731
1732         vmx_flush_tlb(vcpu);
1733         vmcs_writel(GUEST_CR3, guest_cr3);
1734         if (vcpu->arch.cr0 & X86_CR0_PE)
1735                 vmx_fpu_deactivate(vcpu);
1736 }
1737
1738 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1739 {
1740         unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
1741                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1742
1743         vcpu->arch.cr4 = cr4;
1744         if (enable_ept)
1745                 ept_update_paging_mode_cr4(&hw_cr4, vcpu);
1746
1747         vmcs_writel(CR4_READ_SHADOW, cr4);
1748         vmcs_writel(GUEST_CR4, hw_cr4);
1749 }
1750
1751 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1752 {
1753         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1754
1755         return vmcs_readl(sf->base);
1756 }
1757
1758 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1759                             struct kvm_segment *var, int seg)
1760 {
1761         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1762         u32 ar;
1763
1764         var->base = vmcs_readl(sf->base);
1765         var->limit = vmcs_read32(sf->limit);
1766         var->selector = vmcs_read16(sf->selector);
1767         ar = vmcs_read32(sf->ar_bytes);
1768         if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
1769                 ar = 0;
1770         var->type = ar & 15;
1771         var->s = (ar >> 4) & 1;
1772         var->dpl = (ar >> 5) & 3;
1773         var->present = (ar >> 7) & 1;
1774         var->avl = (ar >> 12) & 1;
1775         var->l = (ar >> 13) & 1;
1776         var->db = (ar >> 14) & 1;
1777         var->g = (ar >> 15) & 1;
1778         var->unusable = (ar >> 16) & 1;
1779 }
1780
1781 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
1782 {
1783         if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
1784                 return 0;
1785
1786         if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
1787                 return 3;
1788
1789         return vmcs_read16(GUEST_CS_SELECTOR) & 3;
1790 }
1791
1792 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1793 {
1794         u32 ar;
1795
1796         if (var->unusable)
1797                 ar = 1 << 16;
1798         else {
1799                 ar = var->type & 15;
1800                 ar |= (var->s & 1) << 4;
1801                 ar |= (var->dpl & 3) << 5;
1802                 ar |= (var->present & 1) << 7;
1803                 ar |= (var->avl & 1) << 12;
1804                 ar |= (var->l & 1) << 13;
1805                 ar |= (var->db & 1) << 14;
1806                 ar |= (var->g & 1) << 15;
1807         }
1808         if (ar == 0) /* a 0 value means unusable */
1809                 ar = AR_UNUSABLE_MASK;
1810
1811         return ar;
1812 }
1813
1814 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1815                             struct kvm_segment *var, int seg)
1816 {
1817         struct vcpu_vmx *vmx = to_vmx(vcpu);
1818         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1819         u32 ar;
1820
1821         if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
1822                 vmx->rmode.tr.selector = var->selector;
1823                 vmx->rmode.tr.base = var->base;
1824                 vmx->rmode.tr.limit = var->limit;
1825                 vmx->rmode.tr.ar = vmx_segment_access_rights(var);
1826                 return;
1827         }
1828         vmcs_writel(sf->base, var->base);
1829         vmcs_write32(sf->limit, var->limit);
1830         vmcs_write16(sf->selector, var->selector);
1831         if (vmx->rmode.vm86_active && var->s) {
1832                 /*
1833                  * Hack real-mode segments into vm86 compatibility.
1834                  */
1835                 if (var->base == 0xffff0000 && var->selector == 0xf000)
1836                         vmcs_writel(sf->base, 0xf0000);
1837                 ar = 0xf3;
1838         } else
1839                 ar = vmx_segment_access_rights(var);
1840
1841         /*
1842          *   Fix the "Accessed" bit in AR field of segment registers for older
1843          * qemu binaries.
1844          *   IA32 arch specifies that at the time of processor reset the
1845          * "Accessed" bit in the AR field of segment registers is 1. And qemu
1846          * is setting it to 0 in the usedland code. This causes invalid guest
1847          * state vmexit when "unrestricted guest" mode is turned on.
1848          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
1849          * tree. Newer qemu binaries with that qemu fix would not need this
1850          * kvm hack.
1851          */
1852         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
1853                 ar |= 0x1; /* Accessed */
1854
1855         vmcs_write32(sf->ar_bytes, ar);
1856 }
1857
1858 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1859 {
1860         u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1861
1862         *db = (ar >> 14) & 1;
1863         *l = (ar >> 13) & 1;
1864 }
1865
1866 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1867 {
1868         dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1869         dt->base = vmcs_readl(GUEST_IDTR_BASE);
1870 }
1871
1872 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1873 {
1874         vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1875         vmcs_writel(GUEST_IDTR_BASE, dt->base);
1876 }
1877
1878 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1879 {
1880         dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1881         dt->base = vmcs_readl(GUEST_GDTR_BASE);
1882 }
1883
1884 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1885 {
1886         vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1887         vmcs_writel(GUEST_GDTR_BASE, dt->base);
1888 }
1889
1890 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
1891 {
1892         struct kvm_segment var;
1893         u32 ar;
1894
1895         vmx_get_segment(vcpu, &var, seg);
1896         ar = vmx_segment_access_rights(&var);
1897
1898         if (var.base != (var.selector << 4))
1899                 return false;
1900         if (var.limit != 0xffff)
1901                 return false;
1902         if (ar != 0xf3)
1903                 return false;
1904
1905         return true;
1906 }
1907
1908 static bool code_segment_valid(struct kvm_vcpu *vcpu)
1909 {
1910         struct kvm_segment cs;
1911         unsigned int cs_rpl;
1912
1913         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
1914         cs_rpl = cs.selector & SELECTOR_RPL_MASK;
1915
1916         if (cs.unusable)
1917                 return false;
1918         if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
1919                 return false;
1920         if (!cs.s)
1921                 return false;
1922         if (cs.type & AR_TYPE_WRITEABLE_MASK) {
1923                 if (cs.dpl > cs_rpl)
1924                         return false;
1925         } else {
1926                 if (cs.dpl != cs_rpl)
1927                         return false;
1928         }
1929         if (!cs.present)
1930                 return false;
1931
1932         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
1933         return true;
1934 }
1935
1936 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
1937 {
1938         struct kvm_segment ss;
1939         unsigned int ss_rpl;
1940
1941         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
1942         ss_rpl = ss.selector & SELECTOR_RPL_MASK;
1943
1944         if (ss.unusable)
1945                 return true;
1946         if (ss.type != 3 && ss.type != 7)
1947                 return false;
1948         if (!ss.s)
1949                 return false;
1950         if (ss.dpl != ss_rpl) /* DPL != RPL */
1951                 return false;
1952         if (!ss.present)
1953                 return false;
1954
1955         return true;
1956 }
1957
1958 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
1959 {
1960         struct kvm_segment var;
1961         unsigned int rpl;
1962
1963         vmx_get_segment(vcpu, &var, seg);
1964         rpl = var.selector & SELECTOR_RPL_MASK;
1965
1966         if (var.unusable)
1967                 return true;
1968         if (!var.s)
1969                 return false;
1970         if (!var.present)
1971                 return false;
1972         if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
1973                 if (var.dpl < rpl) /* DPL < RPL */
1974                         return false;
1975         }
1976
1977         /* TODO: Add other members to kvm_segment_field to allow checking for other access
1978          * rights flags
1979          */
1980         return true;
1981 }
1982
1983 static bool tr_valid(struct kvm_vcpu *vcpu)
1984 {
1985         struct kvm_segment tr;
1986
1987         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
1988
1989         if (tr.unusable)
1990                 return false;
1991         if (tr.selector & SELECTOR_TI_MASK)     /* TI = 1 */
1992                 return false;
1993         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
1994                 return false;
1995         if (!tr.present)
1996                 return false;
1997
1998         return true;
1999 }
2000
2001 static bool ldtr_valid(struct kvm_vcpu *vcpu)
2002 {
2003         struct kvm_segment ldtr;
2004
2005         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
2006
2007         if (ldtr.unusable)
2008                 return true;
2009         if (ldtr.selector & SELECTOR_TI_MASK)   /* TI = 1 */
2010                 return false;
2011         if (ldtr.type != 2)
2012                 return false;
2013         if (!ldtr.present)
2014                 return false;
2015
2016         return true;
2017 }
2018
2019 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
2020 {
2021         struct kvm_segment cs, ss;
2022
2023         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
2024         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
2025
2026         return ((cs.selector & SELECTOR_RPL_MASK) ==
2027                  (ss.selector & SELECTOR_RPL_MASK));
2028 }
2029
2030 /*
2031  * Check if guest state is valid. Returns true if valid, false if
2032  * not.
2033  * We assume that registers are always usable
2034  */
2035 static bool guest_state_valid(struct kvm_vcpu *vcpu)
2036 {
2037         /* real mode guest state checks */
2038         if (!(vcpu->arch.cr0 & X86_CR0_PE)) {
2039                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
2040                         return false;
2041                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
2042                         return false;
2043                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
2044                         return false;
2045                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
2046                         return false;
2047                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
2048                         return false;
2049                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
2050                         return false;
2051         } else {
2052         /* protected mode guest state checks */
2053                 if (!cs_ss_rpl_check(vcpu))
2054                         return false;
2055                 if (!code_segment_valid(vcpu))
2056                         return false;
2057                 if (!stack_segment_valid(vcpu))
2058                         return false;
2059                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
2060                         return false;
2061                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
2062                         return false;
2063                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
2064                         return false;
2065                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
2066                         return false;
2067                 if (!tr_valid(vcpu))
2068                         return false;
2069                 if (!ldtr_valid(vcpu))
2070                         return false;
2071         }
2072         /* TODO:
2073          * - Add checks on RIP
2074          * - Add checks on RFLAGS
2075          */
2076
2077         return true;
2078 }
2079
2080 static int init_rmode_tss(struct kvm *kvm)
2081 {
2082         gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
2083         u16 data = 0;
2084         int ret = 0;
2085         int r;
2086
2087         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2088         if (r < 0)
2089                 goto out;
2090         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
2091         r = kvm_write_guest_page(kvm, fn++, &data,
2092                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
2093         if (r < 0)
2094                 goto out;
2095         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
2096         if (r < 0)
2097                 goto out;
2098         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2099         if (r < 0)
2100                 goto out;
2101         data = ~0;
2102         r = kvm_write_guest_page(kvm, fn, &data,
2103                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
2104                                  sizeof(u8));
2105         if (r < 0)
2106                 goto out;
2107
2108         ret = 1;
2109 out:
2110         return ret;
2111 }
2112
2113 static int init_rmode_identity_map(struct kvm *kvm)
2114 {
2115         int i, r, ret;
2116         pfn_t identity_map_pfn;
2117         u32 tmp;
2118
2119         if (!enable_ept)
2120                 return 1;
2121         if (unlikely(!kvm->arch.ept_identity_pagetable)) {
2122                 printk(KERN_ERR "EPT: identity-mapping pagetable "
2123                         "haven't been allocated!\n");
2124                 return 0;
2125         }
2126         if (likely(kvm->arch.ept_identity_pagetable_done))
2127                 return 1;
2128         ret = 0;
2129         identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
2130         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
2131         if (r < 0)
2132                 goto out;
2133         /* Set up identity-mapping pagetable for EPT in real mode */
2134         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
2135                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
2136                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
2137                 r = kvm_write_guest_page(kvm, identity_map_pfn,
2138                                 &tmp, i * sizeof(tmp), sizeof(tmp));
2139                 if (r < 0)
2140                         goto out;
2141         }
2142         kvm->arch.ept_identity_pagetable_done = true;
2143         ret = 1;
2144 out:
2145         return ret;
2146 }
2147
2148 static void seg_setup(int seg)
2149 {
2150         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2151         unsigned int ar;
2152
2153         vmcs_write16(sf->selector, 0);
2154         vmcs_writel(sf->base, 0);
2155         vmcs_write32(sf->limit, 0xffff);
2156         if (enable_unrestricted_guest) {
2157                 ar = 0x93;
2158                 if (seg == VCPU_SREG_CS)
2159                         ar |= 0x08; /* code segment */
2160         } else
2161                 ar = 0xf3;
2162
2163         vmcs_write32(sf->ar_bytes, ar);
2164 }
2165
2166 static int alloc_apic_access_page(struct kvm *kvm)
2167 {
2168         struct kvm_userspace_memory_region kvm_userspace_mem;
2169         int r = 0;
2170
2171         down_write(&kvm->slots_lock);
2172         if (kvm->arch.apic_access_page)
2173                 goto out;
2174         kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
2175         kvm_userspace_mem.flags = 0;
2176         kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
2177         kvm_userspace_mem.memory_size = PAGE_SIZE;
2178         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2179         if (r)
2180                 goto out;
2181
2182         kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
2183 out:
2184         up_write(&kvm->slots_lock);
2185         return r;
2186 }
2187
2188 static int alloc_identity_pagetable(struct kvm *kvm)
2189 {
2190         struct kvm_userspace_memory_region kvm_userspace_mem;
2191         int r = 0;
2192
2193         down_write(&kvm->slots_lock);
2194         if (kvm->arch.ept_identity_pagetable)
2195                 goto out;
2196         kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
2197         kvm_userspace_mem.flags = 0;
2198         kvm_userspace_mem.guest_phys_addr =
2199                 kvm->arch.ept_identity_map_addr;
2200         kvm_userspace_mem.memory_size = PAGE_SIZE;
2201         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2202         if (r)
2203                 goto out;
2204
2205         kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
2206                         kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
2207 out:
2208         up_write(&kvm->slots_lock);
2209         return r;
2210 }
2211
2212 static void allocate_vpid(struct vcpu_vmx *vmx)
2213 {
2214         int vpid;
2215
2216         vmx->vpid = 0;
2217         if (!enable_vpid)
2218                 return;
2219         spin_lock(&vmx_vpid_lock);
2220         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
2221         if (vpid < VMX_NR_VPIDS) {
2222                 vmx->vpid = vpid;
2223                 __set_bit(vpid, vmx_vpid_bitmap);
2224         }
2225         spin_unlock(&vmx_vpid_lock);
2226 }
2227
2228 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
2229 {
2230         int f = sizeof(unsigned long);
2231
2232         if (!cpu_has_vmx_msr_bitmap())
2233                 return;
2234
2235         /*
2236          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
2237          * have the write-low and read-high bitmap offsets the wrong way round.
2238          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
2239          */
2240         if (msr <= 0x1fff) {
2241                 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
2242                 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
2243         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2244                 msr &= 0x1fff;
2245                 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
2246                 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
2247         }
2248 }
2249
2250 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
2251 {
2252         if (!longmode_only)
2253                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
2254         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
2255 }
2256
2257 /*
2258  * Sets up the vmcs for emulated real mode.
2259  */
2260 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
2261 {
2262         u32 host_sysenter_cs, msr_low, msr_high;
2263         u32 junk;
2264         u64 host_pat, tsc_this, tsc_base;
2265         unsigned long a;
2266         struct descriptor_table dt;
2267         int i;
2268         unsigned long kvm_vmx_return;
2269         u32 exec_control;
2270
2271         /* I/O */
2272         vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
2273         vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
2274
2275         if (cpu_has_vmx_msr_bitmap())
2276                 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
2277
2278         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
2279
2280         /* Control */
2281         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
2282                 vmcs_config.pin_based_exec_ctrl);
2283
2284         exec_control = vmcs_config.cpu_based_exec_ctrl;
2285         if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
2286                 exec_control &= ~CPU_BASED_TPR_SHADOW;
2287 #ifdef CONFIG_X86_64
2288                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
2289                                 CPU_BASED_CR8_LOAD_EXITING;
2290 #endif
2291         }
2292         if (!enable_ept)
2293                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
2294                                 CPU_BASED_CR3_LOAD_EXITING  |
2295                                 CPU_BASED_INVLPG_EXITING;
2296         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
2297
2298         if (cpu_has_secondary_exec_ctrls()) {
2299                 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
2300                 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2301                         exec_control &=
2302                                 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
2303                 if (vmx->vpid == 0)
2304                         exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
2305                 if (!enable_ept)
2306                         exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
2307                 if (!enable_unrestricted_guest)
2308                         exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2309                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
2310         }
2311
2312         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
2313         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
2314         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
2315
2316         vmcs_writel(HOST_CR0, read_cr0());  /* 22.2.3 */
2317         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
2318         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
2319
2320         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
2321         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2322         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2323         vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs());    /* 22.2.4 */
2324         vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs());    /* 22.2.4 */
2325         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2326 #ifdef CONFIG_X86_64
2327         rdmsrl(MSR_FS_BASE, a);
2328         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
2329         rdmsrl(MSR_GS_BASE, a);
2330         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
2331 #else
2332         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
2333         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
2334 #endif
2335
2336         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
2337
2338         kvm_get_idt(&dt);
2339         vmcs_writel(HOST_IDTR_BASE, dt.base);   /* 22.2.4 */
2340
2341         asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
2342         vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
2343         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
2344         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2345         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2346
2347         rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
2348         vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
2349         rdmsrl(MSR_IA32_SYSENTER_ESP, a);
2350         vmcs_writel(HOST_IA32_SYSENTER_ESP, a);   /* 22.2.3 */
2351         rdmsrl(MSR_IA32_SYSENTER_EIP, a);
2352         vmcs_writel(HOST_IA32_SYSENTER_EIP, a);   /* 22.2.3 */
2353
2354         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
2355                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2356                 host_pat = msr_low | ((u64) msr_high << 32);
2357                 vmcs_write64(HOST_IA32_PAT, host_pat);
2358         }
2359         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2360                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2361                 host_pat = msr_low | ((u64) msr_high << 32);
2362                 /* Write the default value follow host pat */
2363                 vmcs_write64(GUEST_IA32_PAT, host_pat);
2364                 /* Keep arch.pat sync with GUEST_IA32_PAT */
2365                 vmx->vcpu.arch.pat = host_pat;
2366         }
2367
2368         for (i = 0; i < NR_VMX_MSR; ++i) {
2369                 u32 index = vmx_msr_index[i];
2370                 u32 data_low, data_high;
2371                 u64 data;
2372                 int j = vmx->nmsrs;
2373
2374                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
2375                         continue;
2376                 if (wrmsr_safe(index, data_low, data_high) < 0)
2377                         continue;
2378                 data = data_low | ((u64)data_high << 32);
2379                 vmx->host_msrs[j].index = index;
2380                 vmx->host_msrs[j].reserved = 0;
2381                 vmx->host_msrs[j].data = data;
2382                 vmx->guest_msrs[j] = vmx->host_msrs[j];
2383                 ++vmx->nmsrs;
2384         }
2385
2386         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
2387
2388         /* 22.2.1, 20.8.1 */
2389         vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
2390
2391         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
2392         vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
2393
2394         tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
2395         rdtscll(tsc_this);
2396         if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
2397                 tsc_base = tsc_this;
2398
2399         guest_write_tsc(0, tsc_base);
2400
2401         return 0;
2402 }
2403
2404 static int init_rmode(struct kvm *kvm)
2405 {
2406         if (!init_rmode_tss(kvm))
2407                 return 0;
2408         if (!init_rmode_identity_map(kvm))
2409                 return 0;
2410         return 1;
2411 }
2412
2413 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
2414 {
2415         struct vcpu_vmx *vmx = to_vmx(vcpu);
2416         u64 msr;
2417         int ret;
2418
2419         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
2420         down_read(&vcpu->kvm->slots_lock);
2421         if (!init_rmode(vmx->vcpu.kvm)) {
2422                 ret = -ENOMEM;
2423                 goto out;
2424         }
2425
2426         vmx->rmode.vm86_active = 0;
2427
2428         vmx->soft_vnmi_blocked = 0;
2429
2430         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2431         kvm_set_cr8(&vmx->vcpu, 0);
2432         msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
2433         if (kvm_vcpu_is_bsp(&vmx->vcpu))
2434                 msr |= MSR_IA32_APICBASE_BSP;
2435         kvm_set_apic_base(&vmx->vcpu, msr);
2436
2437         fx_init(&vmx->vcpu);
2438
2439         seg_setup(VCPU_SREG_CS);
2440         /*
2441          * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2442          * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh.
2443          */
2444         if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
2445                 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
2446                 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
2447         } else {
2448                 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
2449                 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
2450         }
2451
2452         seg_setup(VCPU_SREG_DS);
2453         seg_setup(VCPU_SREG_ES);
2454         seg_setup(VCPU_SREG_FS);
2455         seg_setup(VCPU_SREG_GS);
2456         seg_setup(VCPU_SREG_SS);
2457
2458         vmcs_write16(GUEST_TR_SELECTOR, 0);
2459         vmcs_writel(GUEST_TR_BASE, 0);
2460         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
2461         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2462
2463         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
2464         vmcs_writel(GUEST_LDTR_BASE, 0);
2465         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
2466         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
2467
2468         vmcs_write32(GUEST_SYSENTER_CS, 0);
2469         vmcs_writel(GUEST_SYSENTER_ESP, 0);
2470         vmcs_writel(GUEST_SYSENTER_EIP, 0);
2471
2472         vmcs_writel(GUEST_RFLAGS, 0x02);
2473         if (kvm_vcpu_is_bsp(&vmx->vcpu))
2474                 kvm_rip_write(vcpu, 0xfff0);
2475         else
2476                 kvm_rip_write(vcpu, 0);
2477         kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
2478
2479         vmcs_writel(GUEST_DR7, 0x400);
2480
2481         vmcs_writel(GUEST_GDTR_BASE, 0);
2482         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
2483
2484         vmcs_writel(GUEST_IDTR_BASE, 0);
2485         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
2486
2487         vmcs_write32(GUEST_ACTIVITY_STATE, 0);
2488         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
2489         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
2490
2491         /* Special registers */
2492         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
2493
2494         setup_msrs(vmx);
2495
2496         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
2497
2498         if (cpu_has_vmx_tpr_shadow()) {
2499                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
2500                 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
2501                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
2502                                 page_to_phys(vmx->vcpu.arch.apic->regs_page));
2503                 vmcs_write32(TPR_THRESHOLD, 0);
2504         }
2505
2506         if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2507                 vmcs_write64(APIC_ACCESS_ADDR,
2508                              page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
2509
2510         if (vmx->vpid != 0)
2511                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2512
2513         vmx->vcpu.arch.cr0 = 0x60000010;
2514         vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
2515         vmx_set_cr4(&vmx->vcpu, 0);
2516         vmx_set_efer(&vmx->vcpu, 0);
2517         vmx_fpu_activate(&vmx->vcpu);
2518         update_exception_bitmap(&vmx->vcpu);
2519
2520         vpid_sync_vcpu_all(vmx);
2521
2522         ret = 0;
2523
2524         /* HACK: Don't enable emulation on guest boot/reset */
2525         vmx->emulation_required = 0;
2526
2527 out:
2528         up_read(&vcpu->kvm->slots_lock);
2529         return ret;
2530 }
2531
2532 static void enable_irq_window(struct kvm_vcpu *vcpu)
2533 {
2534         u32 cpu_based_vm_exec_control;
2535
2536         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2537         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2538         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2539 }
2540
2541 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2542 {
2543         u32 cpu_based_vm_exec_control;
2544
2545         if (!cpu_has_virtual_nmis()) {
2546                 enable_irq_window(vcpu);
2547                 return;
2548         }
2549
2550         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2551         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
2552         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2553 }
2554
2555 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
2556 {
2557         struct vcpu_vmx *vmx = to_vmx(vcpu);
2558         uint32_t intr;
2559         int irq = vcpu->arch.interrupt.nr;
2560
2561         trace_kvm_inj_virq(irq);
2562
2563         ++vcpu->stat.irq_injections;
2564         if (vmx->rmode.vm86_active) {
2565                 vmx->rmode.irq.pending = true;
2566                 vmx->rmode.irq.vector = irq;
2567                 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2568                 if (vcpu->arch.interrupt.soft)
2569                         vmx->rmode.irq.rip +=
2570                                 vmx->vcpu.arch.event_exit_inst_len;
2571                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2572                              irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
2573                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2574                 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2575                 return;
2576         }
2577         intr = irq | INTR_INFO_VALID_MASK;
2578         if (vcpu->arch.interrupt.soft) {
2579                 intr |= INTR_TYPE_SOFT_INTR;
2580                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2581                              vmx->vcpu.arch.event_exit_inst_len);
2582         } else
2583                 intr |= INTR_TYPE_EXT_INTR;
2584         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
2585 }
2586
2587 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
2588 {
2589         struct vcpu_vmx *vmx = to_vmx(vcpu);
2590
2591         if (!cpu_has_virtual_nmis()) {
2592                 /*
2593                  * Tracking the NMI-blocked state in software is built upon
2594                  * finding the next open IRQ window. This, in turn, depends on
2595                  * well-behaving guests: They have to keep IRQs disabled at
2596                  * least as long as the NMI handler runs. Otherwise we may
2597                  * cause NMI nesting, maybe breaking the guest. But as this is
2598                  * highly unlikely, we can live with the residual risk.
2599                  */
2600                 vmx->soft_vnmi_blocked = 1;
2601                 vmx->vnmi_blocked_time = 0;
2602         }
2603
2604         ++vcpu->stat.nmi_injections;
2605         if (vmx->rmode.vm86_active) {
2606                 vmx->rmode.irq.pending = true;
2607                 vmx->rmode.irq.vector = NMI_VECTOR;
2608                 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2609                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2610                              NMI_VECTOR | INTR_TYPE_SOFT_INTR |
2611                              INTR_INFO_VALID_MASK);
2612                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2613                 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2614                 return;
2615         }
2616         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2617                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
2618 }
2619
2620 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
2621 {
2622         if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
2623                 return 0;
2624
2625         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2626                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS |
2627                                 GUEST_INTR_STATE_NMI));
2628 }
2629
2630 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
2631 {
2632         return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2633                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2634                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
2635 }
2636
2637 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
2638 {
2639         int ret;
2640         struct kvm_userspace_memory_region tss_mem = {
2641                 .slot = TSS_PRIVATE_MEMSLOT,
2642                 .guest_phys_addr = addr,
2643                 .memory_size = PAGE_SIZE * 3,
2644                 .flags = 0,
2645         };
2646
2647         ret = kvm_set_memory_region(kvm, &tss_mem, 0);
2648         if (ret)
2649                 return ret;
2650         kvm->arch.tss_addr = addr;
2651         return 0;
2652 }
2653
2654 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
2655                                   int vec, u32 err_code)
2656 {
2657         /*
2658          * Instruction with address size override prefix opcode 0x67
2659          * Cause the #SS fault with 0 error code in VM86 mode.
2660          */
2661         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
2662                 if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
2663                         return 1;
2664         /*
2665          * Forward all other exceptions that are valid in real mode.
2666          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
2667          *        the required debugging infrastructure rework.
2668          */
2669         switch (vec) {
2670         case DB_VECTOR:
2671                 if (vcpu->guest_debug &
2672                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
2673                         return 0;
2674                 kvm_queue_exception(vcpu, vec);
2675                 return 1;
2676         case BP_VECTOR:
2677                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2678                         return 0;
2679                 /* fall through */
2680         case DE_VECTOR:
2681         case OF_VECTOR:
2682         case BR_VECTOR:
2683         case UD_VECTOR:
2684         case DF_VECTOR:
2685         case SS_VECTOR:
2686         case GP_VECTOR:
2687         case MF_VECTOR:
2688                 kvm_queue_exception(vcpu, vec);
2689                 return 1;
2690         }
2691         return 0;
2692 }
2693
2694 /*
2695  * Trigger machine check on the host. We assume all the MSRs are already set up
2696  * by the CPU and that we still run on the same CPU as the MCE occurred on.
2697  * We pass a fake environment to the machine check handler because we want
2698  * the guest to be always treated like user space, no matter what context
2699  * it used internally.
2700  */
2701 static void kvm_machine_check(void)
2702 {
2703 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
2704         struct pt_regs regs = {
2705                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
2706                 .flags = X86_EFLAGS_IF,
2707         };
2708
2709         do_machine_check(&regs, 0);
2710 #endif
2711 }
2712
2713 static int handle_machine_check(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2714 {
2715         /* already handled by vcpu_run */
2716         return 1;
2717 }
2718
2719 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2720 {
2721         struct vcpu_vmx *vmx = to_vmx(vcpu);
2722         u32 intr_info, ex_no, error_code;
2723         unsigned long cr2, rip, dr6;
2724         u32 vect_info;
2725         enum emulation_result er;
2726
2727         vect_info = vmx->idt_vectoring_info;
2728         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2729
2730         if (is_machine_check(intr_info))
2731                 return handle_machine_check(vcpu, kvm_run);
2732
2733         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
2734                                                 !is_page_fault(intr_info))
2735                 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
2736                        "intr info 0x%x\n", __func__, vect_info, intr_info);
2737
2738         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
2739                 return 1;  /* already handled by vmx_vcpu_run() */
2740
2741         if (is_no_device(intr_info)) {
2742                 vmx_fpu_activate(vcpu);
2743                 return 1;
2744         }
2745
2746         if (is_invalid_opcode(intr_info)) {
2747                 er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
2748                 if (er != EMULATE_DONE)
2749                         kvm_queue_exception(vcpu, UD_VECTOR);
2750                 return 1;
2751         }
2752
2753         error_code = 0;
2754         rip = kvm_rip_read(vcpu);
2755         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
2756                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
2757         if (is_page_fault(intr_info)) {
2758                 /* EPT won't cause page fault directly */
2759                 if (enable_ept)
2760                         BUG();
2761                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
2762                 trace_kvm_page_fault(cr2, error_code);
2763
2764                 if (kvm_event_needs_reinjection(vcpu))
2765                         kvm_mmu_unprotect_page_virt(vcpu, cr2);
2766                 return kvm_mmu_page_fault(vcpu, cr2, error_code);
2767         }
2768
2769         if (vmx->rmode.vm86_active &&
2770             handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
2771                                                                 error_code)) {
2772                 if (vcpu->arch.halt_request) {
2773                         vcpu->arch.halt_request = 0;
2774                         return kvm_emulate_halt(vcpu);
2775                 }
2776                 return 1;
2777         }
2778
2779         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
2780         switch (ex_no) {
2781         case DB_VECTOR:
2782                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
2783                 if (!(vcpu->guest_debug &
2784                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
2785                         vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
2786                         kvm_queue_exception(vcpu, DB_VECTOR);
2787                         return 1;
2788                 }
2789                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
2790                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
2791                 /* fall through */
2792         case BP_VECTOR:
2793                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2794                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
2795                 kvm_run->debug.arch.exception = ex_no;
2796                 break;
2797         default:
2798                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
2799                 kvm_run->ex.exception = ex_no;
2800                 kvm_run->ex.error_code = error_code;
2801                 break;
2802         }
2803         return 0;
2804 }
2805
2806 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
2807                                      struct kvm_run *kvm_run)
2808 {
2809         ++vcpu->stat.irq_exits;
2810         return 1;
2811 }
2812
2813 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2814 {
2815         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2816         return 0;
2817 }
2818
2819 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2820 {
2821         unsigned long exit_qualification;
2822         int size, in, string;
2823         unsigned port;
2824
2825         ++vcpu->stat.io_exits;
2826         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2827         string = (exit_qualification & 16) != 0;
2828
2829         if (string) {
2830                 if (emulate_instruction(vcpu,
2831                                         kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
2832                         return 0;
2833                 return 1;
2834         }
2835
2836         size = (exit_qualification & 7) + 1;
2837         in = (exit_qualification & 8) != 0;
2838         port = exit_qualification >> 16;
2839
2840         skip_emulated_instruction(vcpu);
2841         return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
2842 }
2843
2844 static void
2845 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2846 {
2847         /*
2848          * Patch in the VMCALL instruction:
2849          */
2850         hypercall[0] = 0x0f;
2851         hypercall[1] = 0x01;
2852         hypercall[2] = 0xc1;
2853 }
2854
2855 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2856 {
2857         unsigned long exit_qualification, val;
2858         int cr;
2859         int reg;
2860
2861         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2862         cr = exit_qualification & 15;
2863         reg = (exit_qualification >> 8) & 15;
2864         switch ((exit_qualification >> 4) & 3) {
2865         case 0: /* mov to cr */
2866                 val = kvm_register_read(vcpu, reg);
2867                 trace_kvm_cr_write(cr, val);
2868                 switch (cr) {
2869                 case 0:
2870                         kvm_set_cr0(vcpu, val);
2871                         skip_emulated_instruction(vcpu);
2872                         return 1;
2873                 case 3:
2874                         kvm_set_cr3(vcpu, val);
2875                         skip_emulated_instruction(vcpu);
2876                         return 1;
2877                 case 4:
2878                         kvm_set_cr4(vcpu, val);
2879                         skip_emulated_instruction(vcpu);
2880                         return 1;
2881                 case 8: {
2882                                 u8 cr8_prev = kvm_get_cr8(vcpu);
2883                                 u8 cr8 = kvm_register_read(vcpu, reg);
2884                                 kvm_set_cr8(vcpu, cr8);
2885                                 skip_emulated_instruction(vcpu);
2886                                 if (irqchip_in_kernel(vcpu->kvm))
2887                                         return 1;
2888                                 if (cr8_prev <= cr8)
2889                                         return 1;
2890                                 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2891                                 return 0;
2892                         }
2893                 };
2894                 break;
2895         case 2: /* clts */
2896                 vmx_fpu_deactivate(vcpu);
2897                 vcpu->arch.cr0 &= ~X86_CR0_TS;
2898                 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2899                 vmx_fpu_activate(vcpu);
2900                 skip_emulated_instruction(vcpu);
2901                 return 1;
2902         case 1: /*mov from cr*/
2903                 switch (cr) {
2904                 case 3:
2905                         kvm_register_write(vcpu, reg, vcpu->arch.cr3);
2906                         trace_kvm_cr_read(cr, vcpu->arch.cr3);
2907                         skip_emulated_instruction(vcpu);
2908                         return 1;
2909                 case 8:
2910                         val = kvm_get_cr8(vcpu);
2911                         kvm_register_write(vcpu, reg, val);
2912                         trace_kvm_cr_read(cr, val);
2913                         skip_emulated_instruction(vcpu);
2914                         return 1;
2915                 }
2916                 break;
2917         case 3: /* lmsw */
2918                 kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
2919
2920                 skip_emulated_instruction(vcpu);
2921                 return 1;
2922         default:
2923                 break;
2924         }
2925         kvm_run->exit_reason = 0;
2926         pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
2927                (int)(exit_qualification >> 4) & 3, cr);
2928         return 0;
2929 }
2930
2931 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2932 {
2933         unsigned long exit_qualification;
2934         unsigned long val;
2935         int dr, reg;
2936
2937         if (!kvm_require_cpl(vcpu, 0))
2938                 return 1;
2939         dr = vmcs_readl(GUEST_DR7);
2940         if (dr & DR7_GD) {
2941                 /*
2942                  * As the vm-exit takes precedence over the debug trap, we
2943                  * need to emulate the latter, either for the host or the
2944                  * guest debugging itself.
2945                  */
2946                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
2947                         kvm_run->debug.arch.dr6 = vcpu->arch.dr6;
2948                         kvm_run->debug.arch.dr7 = dr;
2949                         kvm_run->debug.arch.pc =
2950                                 vmcs_readl(GUEST_CS_BASE) +
2951                                 vmcs_readl(GUEST_RIP);
2952                         kvm_run->debug.arch.exception = DB_VECTOR;
2953                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
2954                         return 0;
2955                 } else {
2956                         vcpu->arch.dr7 &= ~DR7_GD;
2957                         vcpu->arch.dr6 |= DR6_BD;
2958                         vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
2959                         kvm_queue_exception(vcpu, DB_VECTOR);
2960                         return 1;
2961                 }
2962         }
2963
2964         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2965         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
2966         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
2967         if (exit_qualification & TYPE_MOV_FROM_DR) {
2968                 switch (dr) {
2969                 case 0 ... 3:
2970                         val = vcpu->arch.db[dr];
2971                         break;
2972                 case 6:
2973                         val = vcpu->arch.dr6;
2974                         break;
2975                 case 7:
2976                         val = vcpu->arch.dr7;
2977                         break;
2978                 default:
2979                         val = 0;
2980                 }
2981                 kvm_register_write(vcpu, reg, val);
2982         } else {
2983                 val = vcpu->arch.regs[reg];
2984                 switch (dr) {
2985                 case 0 ... 3:
2986                         vcpu->arch.db[dr] = val;
2987                         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
2988                                 vcpu->arch.eff_db[dr] = val;
2989                         break;
2990                 case 4 ... 5:
2991                         if (vcpu->arch.cr4 & X86_CR4_DE)
2992                                 kvm_queue_exception(vcpu, UD_VECTOR);
2993                         break;
2994                 case 6:
2995                         if (val & 0xffffffff00000000ULL) {
2996                                 kvm_queue_exception(vcpu, GP_VECTOR);
2997                                 break;
2998                         }
2999                         vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
3000                         break;
3001                 case 7:
3002                         if (val & 0xffffffff00000000ULL) {
3003                                 kvm_queue_exception(vcpu, GP_VECTOR);
3004                                 break;
3005                         }
3006                         vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
3007                         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
3008                                 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
3009                                 vcpu->arch.switch_db_regs =
3010                                         (val & DR7_BP_EN_MASK);
3011                         }
3012                         break;
3013                 }
3014         }
3015         skip_emulated_instruction(vcpu);
3016         return 1;
3017 }
3018
3019 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3020 {
3021         kvm_emulate_cpuid(vcpu);
3022         return 1;
3023 }
3024
3025 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3026 {
3027         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3028         u64 data;
3029
3030         if (vmx_get_msr(vcpu, ecx, &data)) {
3031                 kvm_inject_gp(vcpu, 0);
3032                 return 1;
3033         }
3034
3035         trace_kvm_msr_read(ecx, data);
3036
3037         /* FIXME: handling of bits 32:63 of rax, rdx */
3038         vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
3039         vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
3040         skip_emulated_instruction(vcpu);
3041         return 1;
3042 }
3043
3044 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3045 {
3046         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3047         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
3048                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3049
3050         trace_kvm_msr_write(ecx, data);
3051
3052         if (vmx_set_msr(vcpu, ecx, data) != 0) {
3053                 kvm_inject_gp(vcpu, 0);
3054                 return 1;
3055         }
3056
3057         skip_emulated_instruction(vcpu);
3058         return 1;
3059 }
3060
3061 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
3062                                       struct kvm_run *kvm_run)
3063 {
3064         return 1;
3065 }
3066
3067 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
3068                                    struct kvm_run *kvm_run)
3069 {
3070         u32 cpu_based_vm_exec_control;
3071
3072         /* clear pending irq */
3073         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3074         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
3075         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3076
3077         ++vcpu->stat.irq_window_exits;
3078
3079         /*
3080          * If the user space waits to inject interrupts, exit as soon as
3081          * possible
3082          */
3083         if (!irqchip_in_kernel(vcpu->kvm) &&
3084             kvm_run->request_interrupt_window &&
3085             !kvm_cpu_has_interrupt(vcpu)) {
3086                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3087                 return 0;
3088         }
3089         return 1;
3090 }
3091
3092 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3093 {
3094         skip_emulated_instruction(vcpu);
3095         return kvm_emulate_halt(vcpu);
3096 }
3097
3098 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3099 {
3100         skip_emulated_instruction(vcpu);
3101         kvm_emulate_hypercall(vcpu);
3102         return 1;
3103 }
3104
3105 static int handle_vmx_insn(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3106 {
3107         kvm_queue_exception(vcpu, UD_VECTOR);
3108         return 1;
3109 }
3110
3111 static int handle_invlpg(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3112 {
3113         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3114
3115         kvm_mmu_invlpg(vcpu, exit_qualification);
3116         skip_emulated_instruction(vcpu);
3117         return 1;
3118 }
3119
3120 static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3121 {
3122         skip_emulated_instruction(vcpu);
3123         /* TODO: Add support for VT-d/pass-through device */
3124         return 1;
3125 }
3126
3127 static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3128 {
3129         unsigned long exit_qualification;
3130         enum emulation_result er;
3131         unsigned long offset;
3132
3133         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3134         offset = exit_qualification & 0xffful;
3135
3136         er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
3137
3138         if (er !=  EMULATE_DONE) {
3139                 printk(KERN_ERR
3140                        "Fail to handle apic access vmexit! Offset is 0x%lx\n",
3141                        offset);
3142                 return -ENOEXEC;
3143         }
3144         return 1;
3145 }
3146
3147 static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3148 {
3149         struct vcpu_vmx *vmx = to_vmx(vcpu);
3150         unsigned long exit_qualification;
3151         u16 tss_selector;
3152         int reason, type, idt_v;
3153
3154         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
3155         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
3156
3157         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3158
3159         reason = (u32)exit_qualification >> 30;
3160         if (reason == TASK_SWITCH_GATE && idt_v) {
3161                 switch (type) {
3162                 case INTR_TYPE_NMI_INTR:
3163                         vcpu->arch.nmi_injected = false;
3164                         if (cpu_has_virtual_nmis())
3165                                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3166                                               GUEST_INTR_STATE_NMI);
3167                         break;
3168                 case INTR_TYPE_EXT_INTR:
3169                 case INTR_TYPE_SOFT_INTR:
3170                         kvm_clear_interrupt_queue(vcpu);
3171                         break;
3172                 case INTR_TYPE_HARD_EXCEPTION:
3173                 case INTR_TYPE_SOFT_EXCEPTION:
3174                         kvm_clear_exception_queue(vcpu);
3175                         break;
3176                 default:
3177                         break;
3178                 }
3179         }
3180         tss_selector = exit_qualification;
3181
3182         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
3183                        type != INTR_TYPE_EXT_INTR &&
3184                        type != INTR_TYPE_NMI_INTR))
3185                 skip_emulated_instruction(vcpu);
3186
3187         if (!kvm_task_switch(vcpu, tss_selector, reason))
3188                 return 0;
3189
3190         /* clear all local breakpoint enable flags */
3191         vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
3192
3193         /*
3194          * TODO: What about debug traps on tss switch?
3195          *       Are we supposed to inject them and update dr6?
3196          */
3197
3198         return 1;
3199 }
3200
3201 static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3202 {
3203         unsigned long exit_qualification;
3204         gpa_t gpa;
3205         int gla_validity;
3206
3207         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3208
3209         if (exit_qualification & (1 << 6)) {
3210                 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
3211                 return -EINVAL;
3212         }
3213
3214         gla_validity = (exit_qualification >> 7) & 0x3;
3215         if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
3216                 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
3217                 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
3218                         (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
3219                         vmcs_readl(GUEST_LINEAR_ADDRESS));
3220                 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
3221                         (long unsigned int)exit_qualification);
3222                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3223                 kvm_run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
3224                 return 0;
3225         }
3226
3227         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3228         trace_kvm_page_fault(gpa, exit_qualification);
3229         return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
3230 }
3231
3232 static u64 ept_rsvd_mask(u64 spte, int level)
3233 {
3234         int i;
3235         u64 mask = 0;
3236
3237         for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
3238                 mask |= (1ULL << i);
3239
3240         if (level > 2)
3241                 /* bits 7:3 reserved */
3242                 mask |= 0xf8;
3243         else if (level == 2) {
3244                 if (spte & (1ULL << 7))
3245                         /* 2MB ref, bits 20:12 reserved */
3246                         mask |= 0x1ff000;
3247                 else
3248                         /* bits 6:3 reserved */
3249                         mask |= 0x78;
3250         }
3251
3252         return mask;
3253 }
3254
3255 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
3256                                        int level)
3257 {
3258         printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
3259
3260         /* 010b (write-only) */
3261         WARN_ON((spte & 0x7) == 0x2);
3262
3263         /* 110b (write/execute) */
3264         WARN_ON((spte & 0x7) == 0x6);
3265
3266         /* 100b (execute-only) and value not supported by logical processor */
3267         if (!cpu_has_vmx_ept_execute_only())
3268                 WARN_ON((spte & 0x7) == 0x4);
3269
3270         /* not 000b */
3271         if ((spte & 0x7)) {
3272                 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
3273
3274                 if (rsvd_bits != 0) {
3275                         printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
3276                                          __func__, rsvd_bits);
3277                         WARN_ON(1);
3278                 }
3279
3280                 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
3281                         u64 ept_mem_type = (spte & 0x38) >> 3;
3282
3283                         if (ept_mem_type == 2 || ept_mem_type == 3 ||
3284                             ept_mem_type == 7) {
3285                                 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
3286                                                 __func__, ept_mem_type);
3287                                 WARN_ON(1);
3288                         }
3289                 }
3290         }
3291 }
3292
3293 static int handle_ept_misconfig(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3294 {
3295         u64 sptes[4];
3296         int nr_sptes, i;
3297         gpa_t gpa;
3298
3299         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3300
3301         printk(KERN_ERR "EPT: Misconfiguration.\n");
3302         printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
3303
3304         nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
3305
3306         for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
3307                 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
3308
3309         kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3310         kvm_run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
3311
3312         return 0;
3313 }
3314
3315 static int handle_nmi_window(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3316 {
3317         u32 cpu_based_vm_exec_control;
3318
3319         /* clear pending NMI */
3320         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3321         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
3322         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3323         ++vcpu->stat.nmi_window_exits;
3324
3325         return 1;
3326 }
3327
3328 static void handle_invalid_guest_state(struct kvm_vcpu *vcpu,
3329                                 struct kvm_run *kvm_run)
3330 {
3331         struct vcpu_vmx *vmx = to_vmx(vcpu);
3332         enum emulation_result err = EMULATE_DONE;
3333
3334         local_irq_enable();
3335         preempt_enable();
3336
3337         while (!guest_state_valid(vcpu)) {
3338                 err = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
3339
3340                 if (err == EMULATE_DO_MMIO)
3341                         break;
3342
3343                 if (err != EMULATE_DONE) {
3344                         kvm_report_emulation_failure(vcpu, "emulation failure");
3345                         break;
3346                 }
3347
3348                 if (signal_pending(current))
3349                         break;
3350                 if (need_resched())
3351                         schedule();
3352         }
3353
3354         preempt_disable();
3355         local_irq_disable();
3356
3357         vmx->invalid_state_emulation_result = err;
3358 }
3359
3360 /*
3361  * The exit handlers return 1 if the exit was handled fully and guest execution
3362  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
3363  * to be done to userspace and return 0.
3364  */
3365 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
3366                                       struct kvm_run *kvm_run) = {
3367         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
3368         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
3369         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
3370         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
3371         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
3372         [EXIT_REASON_CR_ACCESS]               = handle_cr,
3373         [EXIT_REASON_DR_ACCESS]               = handle_dr,
3374         [EXIT_REASON_CPUID]                   = handle_cpuid,
3375         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
3376         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
3377         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
3378         [EXIT_REASON_HLT]                     = handle_halt,
3379         [EXIT_REASON_INVLPG]                  = handle_invlpg,
3380         [EXIT_REASON_VMCALL]                  = handle_vmcall,
3381         [EXIT_REASON_VMCLEAR]                 = handle_vmx_insn,
3382         [EXIT_REASON_VMLAUNCH]                = handle_vmx_insn,
3383         [EXIT_REASON_VMPTRLD]                 = handle_vmx_insn,
3384         [EXIT_REASON_VMPTRST]                 = handle_vmx_insn,
3385         [EXIT_REASON_VMREAD]                  = handle_vmx_insn,
3386         [EXIT_REASON_VMRESUME]                = handle_vmx_insn,
3387         [EXIT_REASON_VMWRITE]                 = handle_vmx_insn,
3388         [EXIT_REASON_VMOFF]                   = handle_vmx_insn,
3389         [EXIT_REASON_VMON]                    = handle_vmx_insn,
3390         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
3391         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
3392         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
3393         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
3394         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
3395         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
3396         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
3397 };
3398
3399 static const int kvm_vmx_max_exit_handlers =
3400         ARRAY_SIZE(kvm_vmx_exit_handlers);
3401
3402 /*
3403  * The guest has exited.  See if we can fix it or if we need userspace
3404  * assistance.
3405  */
3406 static int vmx_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3407 {
3408         struct vcpu_vmx *vmx = to_vmx(vcpu);
3409         u32 exit_reason = vmx->exit_reason;
3410         u32 vectoring_info = vmx->idt_vectoring_info;
3411
3412         trace_kvm_exit(exit_reason, kvm_rip_read(vcpu));
3413
3414         /* If we need to emulate an MMIO from handle_invalid_guest_state
3415          * we just return 0 */
3416         if (vmx->emulation_required && emulate_invalid_guest_state) {
3417                 if (guest_state_valid(vcpu))
3418                         vmx->emulation_required = 0;
3419                 return vmx->invalid_state_emulation_result != EMULATE_DO_MMIO;
3420         }
3421
3422         /* Access CR3 don't cause VMExit in paging mode, so we need
3423          * to sync with guest real CR3. */
3424         if (enable_ept && is_paging(vcpu))
3425                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3426
3427         if (unlikely(vmx->fail)) {
3428                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3429                 kvm_run->fail_entry.hardware_entry_failure_reason
3430                         = vmcs_read32(VM_INSTRUCTION_ERROR);
3431                 return 0;
3432         }
3433
3434         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
3435                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
3436                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
3437                         exit_reason != EXIT_REASON_TASK_SWITCH))
3438                 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
3439                        "(0x%x) and exit reason is 0x%x\n",
3440                        __func__, vectoring_info, exit_reason);
3441
3442         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
3443                 if (vmx_interrupt_allowed(vcpu)) {
3444                         vmx->soft_vnmi_blocked = 0;
3445                 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
3446                            vcpu->arch.nmi_pending) {
3447                         /*
3448                          * This CPU don't support us in finding the end of an
3449                          * NMI-blocked window if the guest runs with IRQs
3450                          * disabled. So we pull the trigger after 1 s of
3451                          * futile waiting, but inform the user about this.
3452                          */
3453                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
3454                                "state on VCPU %d after 1 s timeout\n",
3455                                __func__, vcpu->vcpu_id);
3456                         vmx->soft_vnmi_blocked = 0;
3457                 }
3458         }
3459
3460         if (exit_reason < kvm_vmx_max_exit_handlers
3461             && kvm_vmx_exit_handlers[exit_reason])
3462                 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
3463         else {
3464                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3465                 kvm_run->hw.hardware_exit_reason = exit_reason;
3466         }
3467         return 0;
3468 }
3469
3470 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3471 {
3472         if (irr == -1 || tpr < irr) {
3473                 vmcs_write32(TPR_THRESHOLD, 0);
3474                 return;
3475         }
3476
3477         vmcs_write32(TPR_THRESHOLD, irr);
3478 }
3479
3480 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
3481 {
3482         u32 exit_intr_info;
3483         u32 idt_vectoring_info = vmx->idt_vectoring_info;
3484         bool unblock_nmi;
3485         u8 vector;
3486         int type;
3487         bool idtv_info_valid;
3488
3489         exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3490
3491         vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
3492
3493         /* Handle machine checks before interrupts are enabled */
3494         if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
3495             || (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI
3496                 && is_machine_check(exit_intr_info)))
3497                 kvm_machine_check();
3498
3499         /* We need to handle NMIs before interrupts are enabled */
3500         if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
3501             (exit_intr_info & INTR_INFO_VALID_MASK))
3502                 asm("int $2");
3503
3504         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
3505
3506         if (cpu_has_virtual_nmis()) {
3507                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
3508                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
3509                 /*
3510                  * SDM 3: 27.7.1.2 (September 2008)
3511                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
3512                  * a guest IRET fault.
3513                  * SDM 3: 23.2.2 (September 2008)
3514                  * Bit 12 is undefined in any of the following cases:
3515                  *  If the VM exit sets the valid bit in the IDT-vectoring
3516                  *   information field.
3517                  *  If the VM exit is due to a double fault.
3518                  */
3519                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
3520                     vector != DF_VECTOR && !idtv_info_valid)
3521                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3522                                       GUEST_INTR_STATE_NMI);
3523         } else if (unlikely(vmx->soft_vnmi_blocked))
3524                 vmx->vnmi_blocked_time +=
3525                         ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
3526
3527         vmx->vcpu.arch.nmi_injected = false;
3528         kvm_clear_exception_queue(&vmx->vcpu);
3529         kvm_clear_interrupt_queue(&vmx->vcpu);
3530
3531         if (!idtv_info_valid)
3532                 return;
3533
3534         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
3535         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
3536
3537         switch (type) {
3538         case INTR_TYPE_NMI_INTR:
3539                 vmx->vcpu.arch.nmi_injected = true;
3540                 /*
3541                  * SDM 3: 27.7.1.2 (September 2008)
3542                  * Clear bit "block by NMI" before VM entry if a NMI
3543                  * delivery faulted.
3544                  */
3545                 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
3546                                 GUEST_INTR_STATE_NMI);
3547                 break;
3548         case INTR_TYPE_SOFT_EXCEPTION:
3549                 vmx->vcpu.arch.event_exit_inst_len =
3550                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3551                 /* fall through */
3552         case INTR_TYPE_HARD_EXCEPTION:
3553                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
3554                         u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE);
3555                         kvm_queue_exception_e(&vmx->vcpu, vector, err);
3556                 } else
3557                         kvm_queue_exception(&vmx->vcpu, vector);
3558                 break;
3559         case INTR_TYPE_SOFT_INTR:
3560                 vmx->vcpu.arch.event_exit_inst_len =
3561                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3562                 /* fall through */
3563         case INTR_TYPE_EXT_INTR:
3564                 kvm_queue_interrupt(&vmx->vcpu, vector,
3565                         type == INTR_TYPE_SOFT_INTR);
3566                 break;
3567         default:
3568                 break;
3569         }
3570 }
3571
3572 /*
3573  * Failure to inject an interrupt should give us the information
3574  * in IDT_VECTORING_INFO_FIELD.  However, if the failure occurs
3575  * when fetching the interrupt redirection bitmap in the real-mode
3576  * tss, this doesn't happen.  So we do it ourselves.
3577  */
3578 static void fixup_rmode_irq(struct vcpu_vmx *vmx)
3579 {
3580         vmx->rmode.irq.pending = 0;
3581         if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
3582                 return;
3583         kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
3584         if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
3585                 vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
3586                 vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
3587                 return;
3588         }
3589         vmx->idt_vectoring_info =
3590                 VECTORING_INFO_VALID_MASK
3591                 | INTR_TYPE_EXT_INTR
3592                 | vmx->rmode.irq.vector;
3593 }
3594
3595 #ifdef CONFIG_X86_64
3596 #define R "r"
3597 #define Q "q"
3598 #else
3599 #define R "e"
3600 #define Q "l"
3601 #endif
3602
3603 static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3604 {
3605         struct vcpu_vmx *vmx = to_vmx(vcpu);
3606
3607         if (enable_ept && is_paging(vcpu)) {
3608                 vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3609                 ept_load_pdptrs(vcpu);
3610         }
3611         /* Record the guest's net vcpu time for enforced NMI injections. */
3612         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
3613                 vmx->entry_time = ktime_get();
3614
3615         /* Handle invalid guest state instead of entering VMX */
3616         if (vmx->emulation_required && emulate_invalid_guest_state) {
3617                 handle_invalid_guest_state(vcpu, kvm_run);
3618                 return;
3619         }
3620
3621         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
3622                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
3623         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
3624                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
3625
3626         /* When single-stepping over STI and MOV SS, we must clear the
3627          * corresponding interruptibility bits in the guest state. Otherwise
3628          * vmentry fails as it then expects bit 14 (BS) in pending debug
3629          * exceptions being set, but that's not correct for the guest debugging
3630          * case. */
3631         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3632                 vmx_set_interrupt_shadow(vcpu, 0);
3633
3634         /*
3635          * Loading guest fpu may have cleared host cr0.ts
3636          */
3637         vmcs_writel(HOST_CR0, read_cr0());
3638
3639         if (vcpu->arch.switch_db_regs)
3640                 set_debugreg(vcpu->arch.dr6, 6);
3641
3642         asm(
3643                 /* Store host registers */
3644                 "push %%"R"dx; push %%"R"bp;"
3645                 "push %%"R"cx \n\t"
3646                 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
3647                 "je 1f \n\t"
3648                 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
3649                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
3650                 "1: \n\t"
3651                 /* Reload cr2 if changed */
3652                 "mov %c[cr2](%0), %%"R"ax \n\t"
3653                 "mov %%cr2, %%"R"dx \n\t"
3654                 "cmp %%"R"ax, %%"R"dx \n\t"
3655                 "je 2f \n\t"
3656                 "mov %%"R"ax, %%cr2 \n\t"
3657                 "2: \n\t"
3658                 /* Check if vmlaunch of vmresume is needed */
3659                 "cmpl $0, %c[launched](%0) \n\t"
3660                 /* Load guest registers.  Don't clobber flags. */
3661                 "mov %c[rax](%0), %%"R"ax \n\t"
3662                 "mov %c[rbx](%0), %%"R"bx \n\t"
3663                 "mov %c[rdx](%0), %%"R"dx \n\t"
3664                 "mov %c[rsi](%0), %%"R"si \n\t"
3665                 "mov %c[rdi](%0), %%"R"di \n\t"
3666                 "mov %c[rbp](%0), %%"R"bp \n\t"
3667 #ifdef CONFIG_X86_64
3668                 "mov %c[r8](%0),  %%r8  \n\t"
3669                 "mov %c[r9](%0),  %%r9  \n\t"
3670                 "mov %c[r10](%0), %%r10 \n\t"
3671                 "mov %c[r11](%0), %%r11 \n\t"
3672                 "mov %c[r12](%0), %%r12 \n\t"
3673                 "mov %c[r13](%0), %%r13 \n\t"
3674                 "mov %c[r14](%0), %%r14 \n\t"
3675                 "mov %c[r15](%0), %%r15 \n\t"
3676 #endif
3677                 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
3678
3679                 /* Enter guest mode */
3680                 "jne .Llaunched \n\t"
3681                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
3682                 "jmp .Lkvm_vmx_return \n\t"
3683                 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
3684                 ".Lkvm_vmx_return: "
3685                 /* Save guest registers, load host registers, keep flags */
3686                 "xchg %0,     (%%"R"sp) \n\t"
3687                 "mov %%"R"ax, %c[rax](%0) \n\t"
3688                 "mov %%"R"bx, %c[rbx](%0) \n\t"
3689                 "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
3690                 "mov %%"R"dx, %c[rdx](%0) \n\t"
3691                 "mov %%"R"si, %c[rsi](%0) \n\t"
3692                 "mov %%"R"di, %c[rdi](%0) \n\t"
3693                 "mov %%"R"bp, %c[rbp](%0) \n\t"
3694 #ifdef CONFIG_X86_64
3695                 "mov %%r8,  %c[r8](%0) \n\t"
3696                 "mov %%r9,  %c[r9](%0) \n\t"
3697                 "mov %%r10, %c[r10](%0) \n\t"
3698                 "mov %%r11, %c[r11](%0) \n\t"
3699                 "mov %%r12, %c[r12](%0) \n\t"
3700                 "mov %%r13, %c[r13](%0) \n\t"
3701                 "mov %%r14, %c[r14](%0) \n\t"
3702                 "mov %%r15, %c[r15](%0) \n\t"
3703 #endif
3704                 "mov %%cr2, %%"R"ax   \n\t"
3705                 "mov %%"R"ax, %c[cr2](%0) \n\t"
3706
3707                 "pop  %%"R"bp; pop  %%"R"bp; pop  %%"R"dx \n\t"
3708                 "setbe %c[fail](%0) \n\t"
3709               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
3710                 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
3711                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
3712                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
3713                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
3714                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
3715                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
3716                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
3717                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
3718                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
3719                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
3720 #ifdef CONFIG_X86_64
3721                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
3722                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
3723                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
3724                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
3725                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
3726                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
3727                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
3728                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
3729 #endif
3730                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
3731               : "cc", "memory"
3732                 , R"bx", R"di", R"si"
3733 #ifdef CONFIG_X86_64
3734                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
3735 #endif
3736               );
3737
3738         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
3739                                   | (1 << VCPU_EXREG_PDPTR));
3740         vcpu->arch.regs_dirty = 0;
3741
3742         if (vcpu->arch.switch_db_regs)
3743                 get_debugreg(vcpu->arch.dr6, 6);
3744
3745         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
3746         if (vmx->rmode.irq.pending)
3747                 fixup_rmode_irq(vmx);
3748
3749         asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
3750         vmx->launched = 1;
3751
3752         vmx_complete_interrupts(vmx);
3753 }
3754
3755 #undef R
3756 #undef Q
3757
3758 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
3759 {
3760         struct vcpu_vmx *vmx = to_vmx(vcpu);
3761
3762         if (vmx->vmcs) {
3763                 vcpu_clear(vmx);
3764                 free_vmcs(vmx->vmcs);
3765                 vmx->vmcs = NULL;
3766         }
3767 }
3768
3769 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
3770 {
3771         struct vcpu_vmx *vmx = to_vmx(vcpu);
3772
3773         spin_lock(&vmx_vpid_lock);
3774         if (vmx->vpid != 0)
3775                 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3776         spin_unlock(&vmx_vpid_lock);
3777         vmx_free_vmcs(vcpu);
3778         kfree(vmx->host_msrs);
3779         kfree(vmx->guest_msrs);
3780         kvm_vcpu_uninit(vcpu);
3781         kmem_cache_free(kvm_vcpu_cache, vmx);
3782 }
3783
3784 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
3785 {
3786         int err;
3787         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3788         int cpu;
3789
3790         if (!vmx)
3791                 return ERR_PTR(-ENOMEM);
3792
3793         allocate_vpid(vmx);
3794
3795         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
3796         if (err)
3797                 goto free_vcpu;
3798
3799         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3800         if (!vmx->guest_msrs) {
3801                 err = -ENOMEM;
3802                 goto uninit_vcpu;
3803         }
3804
3805         vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3806         if (!vmx->host_msrs)
3807                 goto free_guest_msrs;
3808
3809         vmx->vmcs = alloc_vmcs();
3810         if (!vmx->vmcs)
3811                 goto free_msrs;
3812
3813         vmcs_clear(vmx->vmcs);
3814
3815         cpu = get_cpu();
3816         vmx_vcpu_load(&vmx->vcpu, cpu);
3817         err = vmx_vcpu_setup(vmx);
3818         vmx_vcpu_put(&vmx->vcpu);
3819         put_cpu();
3820         if (err)
3821                 goto free_vmcs;
3822         if (vm_need_virtualize_apic_accesses(kvm))
3823                 if (alloc_apic_access_page(kvm) != 0)
3824                         goto free_vmcs;
3825
3826         if (enable_ept) {
3827                 if (!kvm->arch.ept_identity_map_addr)
3828                         kvm->arch.ept_identity_map_addr =
3829                                 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3830                 if (alloc_identity_pagetable(kvm) != 0)
3831                         goto free_vmcs;
3832         }
3833
3834         return &vmx->vcpu;
3835
3836 free_vmcs:
3837         free_vmcs(vmx->vmcs);
3838 free_msrs:
3839         kfree(vmx->host_msrs);
3840 free_guest_msrs:
3841         kfree(vmx->guest_msrs);
3842 uninit_vcpu:
3843         kvm_vcpu_uninit(&vmx->vcpu);
3844 free_vcpu:
3845         kmem_cache_free(kvm_vcpu_cache, vmx);
3846         return ERR_PTR(err);
3847 }
3848
3849 static void __init vmx_check_processor_compat(void *rtn)
3850 {
3851         struct vmcs_config vmcs_conf;
3852
3853         *(int *)rtn = 0;
3854         if (setup_vmcs_config(&vmcs_conf) < 0)
3855                 *(int *)rtn = -EIO;
3856         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
3857                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
3858                                 smp_processor_id());
3859                 *(int *)rtn = -EIO;
3860         }
3861 }
3862
3863 static int get_ept_level(void)
3864 {
3865         return VMX_EPT_DEFAULT_GAW + 1;
3866 }
3867
3868 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3869 {
3870         u64 ret;
3871
3872         /* For VT-d and EPT combination
3873          * 1. MMIO: always map as UC
3874          * 2. EPT with VT-d:
3875          *   a. VT-d without snooping control feature: can't guarantee the
3876          *      result, try to trust guest.
3877          *   b. VT-d with snooping control feature: snooping control feature of
3878          *      VT-d engine can guarantee the cache correctness. Just set it
3879          *      to WB to keep consistent with host. So the same as item 3.
3880          * 3. EPT without VT-d: always map as WB and set IGMT=1 to keep
3881          *    consistent with host MTRR
3882          */
3883         if (is_mmio)
3884                 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
3885         else if (vcpu->kvm->arch.iommu_domain &&
3886                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
3887                 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
3888                       VMX_EPT_MT_EPTE_SHIFT;
3889         else
3890                 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
3891                         | VMX_EPT_IGMT_BIT;
3892
3893         return ret;
3894 }
3895
3896 static const struct trace_print_flags vmx_exit_reasons_str[] = {
3897         { EXIT_REASON_EXCEPTION_NMI,           "exception" },
3898         { EXIT_REASON_EXTERNAL_INTERRUPT,      "ext_irq" },
3899         { EXIT_REASON_TRIPLE_FAULT,            "triple_fault" },
3900         { EXIT_REASON_NMI_WINDOW,              "nmi_window" },
3901         { EXIT_REASON_IO_INSTRUCTION,          "io_instruction" },
3902         { EXIT_REASON_CR_ACCESS,               "cr_access" },
3903         { EXIT_REASON_DR_ACCESS,               "dr_access" },
3904         { EXIT_REASON_CPUID,                   "cpuid" },
3905         { EXIT_REASON_MSR_READ,                "rdmsr" },
3906         { EXIT_REASON_MSR_WRITE,               "wrmsr" },
3907         { EXIT_REASON_PENDING_INTERRUPT,       "interrupt_window" },
3908         { EXIT_REASON_HLT,                     "halt" },
3909         { EXIT_REASON_INVLPG,                  "invlpg" },
3910         { EXIT_REASON_VMCALL,                  "hypercall" },
3911         { EXIT_REASON_TPR_BELOW_THRESHOLD,     "tpr_below_thres" },
3912         { EXIT_REASON_APIC_ACCESS,             "apic_access" },
3913         { EXIT_REASON_WBINVD,                  "wbinvd" },
3914         { EXIT_REASON_TASK_SWITCH,             "task_switch" },
3915         { EXIT_REASON_EPT_VIOLATION,           "ept_violation" },
3916         { -1, NULL }
3917 };
3918
3919 static bool vmx_gb_page_enable(void)
3920 {
3921         return false;
3922 }
3923
3924 static struct kvm_x86_ops vmx_x86_ops = {
3925         .cpu_has_kvm_support = cpu_has_kvm_support,
3926         .disabled_by_bios = vmx_disabled_by_bios,
3927         .hardware_setup = hardware_setup,
3928         .hardware_unsetup = hardware_unsetup,
3929         .check_processor_compatibility = vmx_check_processor_compat,
3930         .hardware_enable = hardware_enable,
3931         .hardware_disable = hardware_disable,
3932         .cpu_has_accelerated_tpr = report_flexpriority,
3933
3934         .vcpu_create = vmx_create_vcpu,
3935         .vcpu_free = vmx_free_vcpu,
3936         .vcpu_reset = vmx_vcpu_reset,
3937
3938         .prepare_guest_switch = vmx_save_host_state,
3939         .vcpu_load = vmx_vcpu_load,
3940         .vcpu_put = vmx_vcpu_put,
3941
3942         .set_guest_debug = set_guest_debug,
3943         .get_msr = vmx_get_msr,
3944         .set_msr = vmx_set_msr,
3945         .get_segment_base = vmx_get_segment_base,
3946         .get_segment = vmx_get_segment,
3947         .set_segment = vmx_set_segment,
3948         .get_cpl = vmx_get_cpl,
3949         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
3950         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
3951         .set_cr0 = vmx_set_cr0,
3952         .set_cr3 = vmx_set_cr3,
3953         .set_cr4 = vmx_set_cr4,
3954         .set_efer = vmx_set_efer,
3955         .get_idt = vmx_get_idt,
3956         .set_idt = vmx_set_idt,
3957         .get_gdt = vmx_get_gdt,
3958         .set_gdt = vmx_set_gdt,
3959         .cache_reg = vmx_cache_reg,
3960         .get_rflags = vmx_get_rflags,
3961         .set_rflags = vmx_set_rflags,
3962
3963         .tlb_flush = vmx_flush_tlb,
3964
3965         .run = vmx_vcpu_run,
3966         .handle_exit = vmx_handle_exit,
3967         .skip_emulated_instruction = skip_emulated_instruction,
3968         .set_interrupt_shadow = vmx_set_interrupt_shadow,
3969         .get_interrupt_shadow = vmx_get_interrupt_shadow,
3970         .patch_hypercall = vmx_patch_hypercall,
3971         .set_irq = vmx_inject_irq,
3972         .set_nmi = vmx_inject_nmi,
3973         .queue_exception = vmx_queue_exception,
3974         .interrupt_allowed = vmx_interrupt_allowed,
3975         .nmi_allowed = vmx_nmi_allowed,
3976         .enable_nmi_window = enable_nmi_window,
3977         .enable_irq_window = enable_irq_window,
3978         .update_cr8_intercept = update_cr8_intercept,
3979
3980         .set_tss_addr = vmx_set_tss_addr,
3981         .get_tdp_level = get_ept_level,
3982         .get_mt_mask = vmx_get_mt_mask,
3983
3984         .exit_reasons_str = vmx_exit_reasons_str,
3985         .gb_page_enable = vmx_gb_page_enable,
3986 };
3987
3988 static int __init vmx_init(void)
3989 {
3990         int r;
3991
3992         vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
3993         if (!vmx_io_bitmap_a)
3994                 return -ENOMEM;
3995
3996         vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
3997         if (!vmx_io_bitmap_b) {
3998                 r = -ENOMEM;
3999                 goto out;
4000         }
4001
4002         vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
4003         if (!vmx_msr_bitmap_legacy) {
4004                 r = -ENOMEM;
4005                 goto out1;
4006         }
4007
4008         vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
4009         if (!vmx_msr_bitmap_longmode) {
4010                 r = -ENOMEM;
4011                 goto out2;
4012         }
4013
4014         /*
4015          * Allow direct access to the PC debug port (it is often used for I/O
4016          * delays, but the vmexits simply slow things down).
4017          */
4018         memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
4019         clear_bit(0x80, vmx_io_bitmap_a);
4020
4021         memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
4022
4023         memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
4024         memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
4025
4026         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
4027
4028         r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
4029         if (r)
4030                 goto out3;
4031
4032         vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
4033         vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
4034         vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
4035         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
4036         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
4037         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
4038
4039         if (enable_ept) {
4040                 bypass_guest_pf = 0;
4041                 kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
4042                         VMX_EPT_WRITABLE_MASK);
4043                 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
4044                                 VMX_EPT_EXECUTABLE_MASK);
4045                 kvm_enable_tdp();
4046         } else
4047                 kvm_disable_tdp();
4048
4049         if (bypass_guest_pf)
4050                 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
4051
4052         ept_sync_global();
4053
4054         return 0;
4055
4056 out3:
4057         free_page((unsigned long)vmx_msr_bitmap_longmode);
4058 out2:
4059         free_page((unsigned long)vmx_msr_bitmap_legacy);
4060 out1:
4061         free_page((unsigned long)vmx_io_bitmap_b);
4062 out:
4063         free_page((unsigned long)vmx_io_bitmap_a);
4064         return r;
4065 }
4066
4067 static void __exit vmx_exit(void)
4068 {
4069         free_page((unsigned long)vmx_msr_bitmap_legacy);
4070         free_page((unsigned long)vmx_msr_bitmap_longmode);
4071         free_page((unsigned long)vmx_io_bitmap_b);
4072         free_page((unsigned long)vmx_io_bitmap_a);
4073
4074         kvm_exit();
4075 }
4076
4077 module_init(vmx_init)
4078 module_exit(vmx_exit)