KVM: Lazify fpu activation and deactivation
[safe/jmp/linux-2.6] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "irq.h"
19 #include "mmu.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/mm.h>
25 #include <linux/highmem.h>
26 #include <linux/sched.h>
27 #include <linux/moduleparam.h>
28 #include <linux/ftrace_event.h>
29 #include "kvm_cache_regs.h"
30 #include "x86.h"
31
32 #include <asm/io.h>
33 #include <asm/desc.h>
34 #include <asm/vmx.h>
35 #include <asm/virtext.h>
36 #include <asm/mce.h>
37
38 #include "trace.h"
39
40 #define __ex(x) __kvm_handle_fault_on_reboot(x)
41
42 MODULE_AUTHOR("Qumranet");
43 MODULE_LICENSE("GPL");
44
45 static int __read_mostly bypass_guest_pf = 1;
46 module_param(bypass_guest_pf, bool, S_IRUGO);
47
48 static int __read_mostly enable_vpid = 1;
49 module_param_named(vpid, enable_vpid, bool, 0444);
50
51 static int __read_mostly flexpriority_enabled = 1;
52 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
53
54 static int __read_mostly enable_ept = 1;
55 module_param_named(ept, enable_ept, bool, S_IRUGO);
56
57 static int __read_mostly enable_unrestricted_guest = 1;
58 module_param_named(unrestricted_guest,
59                         enable_unrestricted_guest, bool, S_IRUGO);
60
61 static int __read_mostly emulate_invalid_guest_state = 0;
62 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
63
64 #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST                           \
65         (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
66 #define KVM_GUEST_CR0_MASK                                              \
67         (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
68 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST                         \
69         (X86_CR0_WP | X86_CR0_NE | X86_CR0_MP)
70 #define KVM_VM_CR0_ALWAYS_ON                                            \
71         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
72 #define KVM_CR4_GUEST_OWNED_BITS                                      \
73         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
74          | X86_CR4_OSXMMEXCPT)
75
76 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
77 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
78
79 /*
80  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
81  * ple_gap:    upper bound on the amount of time between two successive
82  *             executions of PAUSE in a loop. Also indicate if ple enabled.
83  *             According to test, this time is usually small than 41 cycles.
84  * ple_window: upper bound on the amount of time a guest is allowed to execute
85  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
86  *             less than 2^12 cycles
87  * Time is measured based on a counter that runs at the same rate as the TSC,
88  * refer SDM volume 3b section 21.6.13 & 22.1.3.
89  */
90 #define KVM_VMX_DEFAULT_PLE_GAP    41
91 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
92 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
93 module_param(ple_gap, int, S_IRUGO);
94
95 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
96 module_param(ple_window, int, S_IRUGO);
97
98 struct vmcs {
99         u32 revision_id;
100         u32 abort;
101         char data[0];
102 };
103
104 struct shared_msr_entry {
105         unsigned index;
106         u64 data;
107         u64 mask;
108 };
109
110 struct vcpu_vmx {
111         struct kvm_vcpu       vcpu;
112         struct list_head      local_vcpus_link;
113         unsigned long         host_rsp;
114         int                   launched;
115         u8                    fail;
116         u32                   idt_vectoring_info;
117         struct shared_msr_entry *guest_msrs;
118         int                   nmsrs;
119         int                   save_nmsrs;
120 #ifdef CONFIG_X86_64
121         u64                   msr_host_kernel_gs_base;
122         u64                   msr_guest_kernel_gs_base;
123 #endif
124         struct vmcs          *vmcs;
125         struct {
126                 int           loaded;
127                 u16           fs_sel, gs_sel, ldt_sel;
128                 int           gs_ldt_reload_needed;
129                 int           fs_reload_needed;
130         } host_state;
131         struct {
132                 int vm86_active;
133                 u8 save_iopl;
134                 struct kvm_save_segment {
135                         u16 selector;
136                         unsigned long base;
137                         u32 limit;
138                         u32 ar;
139                 } tr, es, ds, fs, gs;
140                 struct {
141                         bool pending;
142                         u8 vector;
143                         unsigned rip;
144                 } irq;
145         } rmode;
146         int vpid;
147         bool emulation_required;
148
149         /* Support for vnmi-less CPUs */
150         int soft_vnmi_blocked;
151         ktime_t entry_time;
152         s64 vnmi_blocked_time;
153         u32 exit_reason;
154
155         bool rdtscp_enabled;
156 };
157
158 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
159 {
160         return container_of(vcpu, struct vcpu_vmx, vcpu);
161 }
162
163 static int init_rmode(struct kvm *kvm);
164 static u64 construct_eptp(unsigned long root_hpa);
165
166 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
167 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
168 static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
169
170 static unsigned long *vmx_io_bitmap_a;
171 static unsigned long *vmx_io_bitmap_b;
172 static unsigned long *vmx_msr_bitmap_legacy;
173 static unsigned long *vmx_msr_bitmap_longmode;
174
175 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
176 static DEFINE_SPINLOCK(vmx_vpid_lock);
177
178 static struct vmcs_config {
179         int size;
180         int order;
181         u32 revision_id;
182         u32 pin_based_exec_ctrl;
183         u32 cpu_based_exec_ctrl;
184         u32 cpu_based_2nd_exec_ctrl;
185         u32 vmexit_ctrl;
186         u32 vmentry_ctrl;
187 } vmcs_config;
188
189 static struct vmx_capability {
190         u32 ept;
191         u32 vpid;
192 } vmx_capability;
193
194 #define VMX_SEGMENT_FIELD(seg)                                  \
195         [VCPU_SREG_##seg] = {                                   \
196                 .selector = GUEST_##seg##_SELECTOR,             \
197                 .base = GUEST_##seg##_BASE,                     \
198                 .limit = GUEST_##seg##_LIMIT,                   \
199                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
200         }
201
202 static struct kvm_vmx_segment_field {
203         unsigned selector;
204         unsigned base;
205         unsigned limit;
206         unsigned ar_bytes;
207 } kvm_vmx_segment_fields[] = {
208         VMX_SEGMENT_FIELD(CS),
209         VMX_SEGMENT_FIELD(DS),
210         VMX_SEGMENT_FIELD(ES),
211         VMX_SEGMENT_FIELD(FS),
212         VMX_SEGMENT_FIELD(GS),
213         VMX_SEGMENT_FIELD(SS),
214         VMX_SEGMENT_FIELD(TR),
215         VMX_SEGMENT_FIELD(LDTR),
216 };
217
218 static u64 host_efer;
219
220 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
221
222 /*
223  * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
224  * away by decrementing the array size.
225  */
226 static const u32 vmx_msr_index[] = {
227 #ifdef CONFIG_X86_64
228         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
229 #endif
230         MSR_EFER, MSR_TSC_AUX, MSR_K6_STAR,
231 };
232 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
233
234 static inline int is_page_fault(u32 intr_info)
235 {
236         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
237                              INTR_INFO_VALID_MASK)) ==
238                 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
239 }
240
241 static inline int is_no_device(u32 intr_info)
242 {
243         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
244                              INTR_INFO_VALID_MASK)) ==
245                 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
246 }
247
248 static inline int is_invalid_opcode(u32 intr_info)
249 {
250         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
251                              INTR_INFO_VALID_MASK)) ==
252                 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
253 }
254
255 static inline int is_external_interrupt(u32 intr_info)
256 {
257         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
258                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
259 }
260
261 static inline int is_machine_check(u32 intr_info)
262 {
263         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
264                              INTR_INFO_VALID_MASK)) ==
265                 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
266 }
267
268 static inline int cpu_has_vmx_msr_bitmap(void)
269 {
270         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
271 }
272
273 static inline int cpu_has_vmx_tpr_shadow(void)
274 {
275         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
276 }
277
278 static inline int vm_need_tpr_shadow(struct kvm *kvm)
279 {
280         return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
281 }
282
283 static inline int cpu_has_secondary_exec_ctrls(void)
284 {
285         return vmcs_config.cpu_based_exec_ctrl &
286                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
287 }
288
289 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
290 {
291         return vmcs_config.cpu_based_2nd_exec_ctrl &
292                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
293 }
294
295 static inline bool cpu_has_vmx_flexpriority(void)
296 {
297         return cpu_has_vmx_tpr_shadow() &&
298                 cpu_has_vmx_virtualize_apic_accesses();
299 }
300
301 static inline bool cpu_has_vmx_ept_execute_only(void)
302 {
303         return !!(vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT);
304 }
305
306 static inline bool cpu_has_vmx_eptp_uncacheable(void)
307 {
308         return !!(vmx_capability.ept & VMX_EPTP_UC_BIT);
309 }
310
311 static inline bool cpu_has_vmx_eptp_writeback(void)
312 {
313         return !!(vmx_capability.ept & VMX_EPTP_WB_BIT);
314 }
315
316 static inline bool cpu_has_vmx_ept_2m_page(void)
317 {
318         return !!(vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT);
319 }
320
321 static inline bool cpu_has_vmx_ept_1g_page(void)
322 {
323         return !!(vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT);
324 }
325
326 static inline int cpu_has_vmx_invept_individual_addr(void)
327 {
328         return !!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT);
329 }
330
331 static inline int cpu_has_vmx_invept_context(void)
332 {
333         return !!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT);
334 }
335
336 static inline int cpu_has_vmx_invept_global(void)
337 {
338         return !!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT);
339 }
340
341 static inline int cpu_has_vmx_ept(void)
342 {
343         return vmcs_config.cpu_based_2nd_exec_ctrl &
344                 SECONDARY_EXEC_ENABLE_EPT;
345 }
346
347 static inline int cpu_has_vmx_unrestricted_guest(void)
348 {
349         return vmcs_config.cpu_based_2nd_exec_ctrl &
350                 SECONDARY_EXEC_UNRESTRICTED_GUEST;
351 }
352
353 static inline int cpu_has_vmx_ple(void)
354 {
355         return vmcs_config.cpu_based_2nd_exec_ctrl &
356                 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
357 }
358
359 static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
360 {
361         return flexpriority_enabled &&
362                 (cpu_has_vmx_virtualize_apic_accesses()) &&
363                 (irqchip_in_kernel(kvm));
364 }
365
366 static inline int cpu_has_vmx_vpid(void)
367 {
368         return vmcs_config.cpu_based_2nd_exec_ctrl &
369                 SECONDARY_EXEC_ENABLE_VPID;
370 }
371
372 static inline int cpu_has_vmx_rdtscp(void)
373 {
374         return vmcs_config.cpu_based_2nd_exec_ctrl &
375                 SECONDARY_EXEC_RDTSCP;
376 }
377
378 static inline int cpu_has_virtual_nmis(void)
379 {
380         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
381 }
382
383 static inline bool report_flexpriority(void)
384 {
385         return flexpriority_enabled;
386 }
387
388 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
389 {
390         int i;
391
392         for (i = 0; i < vmx->nmsrs; ++i)
393                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
394                         return i;
395         return -1;
396 }
397
398 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
399 {
400     struct {
401         u64 vpid : 16;
402         u64 rsvd : 48;
403         u64 gva;
404     } operand = { vpid, 0, gva };
405
406     asm volatile (__ex(ASM_VMX_INVVPID)
407                   /* CF==1 or ZF==1 --> rc = -1 */
408                   "; ja 1f ; ud2 ; 1:"
409                   : : "a"(&operand), "c"(ext) : "cc", "memory");
410 }
411
412 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
413 {
414         struct {
415                 u64 eptp, gpa;
416         } operand = {eptp, gpa};
417
418         asm volatile (__ex(ASM_VMX_INVEPT)
419                         /* CF==1 or ZF==1 --> rc = -1 */
420                         "; ja 1f ; ud2 ; 1:\n"
421                         : : "a" (&operand), "c" (ext) : "cc", "memory");
422 }
423
424 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
425 {
426         int i;
427
428         i = __find_msr_index(vmx, msr);
429         if (i >= 0)
430                 return &vmx->guest_msrs[i];
431         return NULL;
432 }
433
434 static void vmcs_clear(struct vmcs *vmcs)
435 {
436         u64 phys_addr = __pa(vmcs);
437         u8 error;
438
439         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
440                       : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
441                       : "cc", "memory");
442         if (error)
443                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
444                        vmcs, phys_addr);
445 }
446
447 static void __vcpu_clear(void *arg)
448 {
449         struct vcpu_vmx *vmx = arg;
450         int cpu = raw_smp_processor_id();
451
452         if (vmx->vcpu.cpu == cpu)
453                 vmcs_clear(vmx->vmcs);
454         if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
455                 per_cpu(current_vmcs, cpu) = NULL;
456         rdtscll(vmx->vcpu.arch.host_tsc);
457         list_del(&vmx->local_vcpus_link);
458         vmx->vcpu.cpu = -1;
459         vmx->launched = 0;
460 }
461
462 static void vcpu_clear(struct vcpu_vmx *vmx)
463 {
464         if (vmx->vcpu.cpu == -1)
465                 return;
466         smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
467 }
468
469 static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
470 {
471         if (vmx->vpid == 0)
472                 return;
473
474         __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
475 }
476
477 static inline void ept_sync_global(void)
478 {
479         if (cpu_has_vmx_invept_global())
480                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
481 }
482
483 static inline void ept_sync_context(u64 eptp)
484 {
485         if (enable_ept) {
486                 if (cpu_has_vmx_invept_context())
487                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
488                 else
489                         ept_sync_global();
490         }
491 }
492
493 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
494 {
495         if (enable_ept) {
496                 if (cpu_has_vmx_invept_individual_addr())
497                         __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
498                                         eptp, gpa);
499                 else
500                         ept_sync_context(eptp);
501         }
502 }
503
504 static unsigned long vmcs_readl(unsigned long field)
505 {
506         unsigned long value;
507
508         asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
509                       : "=a"(value) : "d"(field) : "cc");
510         return value;
511 }
512
513 static u16 vmcs_read16(unsigned long field)
514 {
515         return vmcs_readl(field);
516 }
517
518 static u32 vmcs_read32(unsigned long field)
519 {
520         return vmcs_readl(field);
521 }
522
523 static u64 vmcs_read64(unsigned long field)
524 {
525 #ifdef CONFIG_X86_64
526         return vmcs_readl(field);
527 #else
528         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
529 #endif
530 }
531
532 static noinline void vmwrite_error(unsigned long field, unsigned long value)
533 {
534         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
535                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
536         dump_stack();
537 }
538
539 static void vmcs_writel(unsigned long field, unsigned long value)
540 {
541         u8 error;
542
543         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
544                        : "=q"(error) : "a"(value), "d"(field) : "cc");
545         if (unlikely(error))
546                 vmwrite_error(field, value);
547 }
548
549 static void vmcs_write16(unsigned long field, u16 value)
550 {
551         vmcs_writel(field, value);
552 }
553
554 static void vmcs_write32(unsigned long field, u32 value)
555 {
556         vmcs_writel(field, value);
557 }
558
559 static void vmcs_write64(unsigned long field, u64 value)
560 {
561         vmcs_writel(field, value);
562 #ifndef CONFIG_X86_64
563         asm volatile ("");
564         vmcs_writel(field+1, value >> 32);
565 #endif
566 }
567
568 static void vmcs_clear_bits(unsigned long field, u32 mask)
569 {
570         vmcs_writel(field, vmcs_readl(field) & ~mask);
571 }
572
573 static void vmcs_set_bits(unsigned long field, u32 mask)
574 {
575         vmcs_writel(field, vmcs_readl(field) | mask);
576 }
577
578 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
579 {
580         u32 eb;
581
582         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR)
583                 | (1u << NM_VECTOR);
584         /*
585          * Unconditionally intercept #DB so we can maintain dr6 without
586          * reading it every exit.
587          */
588         eb |= 1u << DB_VECTOR;
589         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
590                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
591                         eb |= 1u << BP_VECTOR;
592         }
593         if (to_vmx(vcpu)->rmode.vm86_active)
594                 eb = ~0;
595         if (enable_ept)
596                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
597         if (vcpu->fpu_active)
598                 eb &= ~(1u << NM_VECTOR);
599         vmcs_write32(EXCEPTION_BITMAP, eb);
600 }
601
602 static void reload_tss(void)
603 {
604         /*
605          * VT restores TR but not its size.  Useless.
606          */
607         struct descriptor_table gdt;
608         struct desc_struct *descs;
609
610         kvm_get_gdt(&gdt);
611         descs = (void *)gdt.base;
612         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
613         load_TR_desc();
614 }
615
616 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
617 {
618         u64 guest_efer;
619         u64 ignore_bits;
620
621         guest_efer = vmx->vcpu.arch.shadow_efer;
622
623         /*
624          * NX is emulated; LMA and LME handled by hardware; SCE meaninless
625          * outside long mode
626          */
627         ignore_bits = EFER_NX | EFER_SCE;
628 #ifdef CONFIG_X86_64
629         ignore_bits |= EFER_LMA | EFER_LME;
630         /* SCE is meaningful only in long mode on Intel */
631         if (guest_efer & EFER_LMA)
632                 ignore_bits &= ~(u64)EFER_SCE;
633 #endif
634         guest_efer &= ~ignore_bits;
635         guest_efer |= host_efer & ignore_bits;
636         vmx->guest_msrs[efer_offset].data = guest_efer;
637         vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
638         return true;
639 }
640
641 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
642 {
643         struct vcpu_vmx *vmx = to_vmx(vcpu);
644         int i;
645
646         if (vmx->host_state.loaded)
647                 return;
648
649         vmx->host_state.loaded = 1;
650         /*
651          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
652          * allow segment selectors with cpl > 0 or ti == 1.
653          */
654         vmx->host_state.ldt_sel = kvm_read_ldt();
655         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
656         vmx->host_state.fs_sel = kvm_read_fs();
657         if (!(vmx->host_state.fs_sel & 7)) {
658                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
659                 vmx->host_state.fs_reload_needed = 0;
660         } else {
661                 vmcs_write16(HOST_FS_SELECTOR, 0);
662                 vmx->host_state.fs_reload_needed = 1;
663         }
664         vmx->host_state.gs_sel = kvm_read_gs();
665         if (!(vmx->host_state.gs_sel & 7))
666                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
667         else {
668                 vmcs_write16(HOST_GS_SELECTOR, 0);
669                 vmx->host_state.gs_ldt_reload_needed = 1;
670         }
671
672 #ifdef CONFIG_X86_64
673         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
674         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
675 #else
676         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
677         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
678 #endif
679
680 #ifdef CONFIG_X86_64
681         if (is_long_mode(&vmx->vcpu)) {
682                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
683                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
684         }
685 #endif
686         for (i = 0; i < vmx->save_nmsrs; ++i)
687                 kvm_set_shared_msr(vmx->guest_msrs[i].index,
688                                    vmx->guest_msrs[i].data,
689                                    vmx->guest_msrs[i].mask);
690 }
691
692 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
693 {
694         unsigned long flags;
695
696         if (!vmx->host_state.loaded)
697                 return;
698
699         ++vmx->vcpu.stat.host_state_reload;
700         vmx->host_state.loaded = 0;
701         if (vmx->host_state.fs_reload_needed)
702                 kvm_load_fs(vmx->host_state.fs_sel);
703         if (vmx->host_state.gs_ldt_reload_needed) {
704                 kvm_load_ldt(vmx->host_state.ldt_sel);
705                 /*
706                  * If we have to reload gs, we must take care to
707                  * preserve our gs base.
708                  */
709                 local_irq_save(flags);
710                 kvm_load_gs(vmx->host_state.gs_sel);
711 #ifdef CONFIG_X86_64
712                 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
713 #endif
714                 local_irq_restore(flags);
715         }
716         reload_tss();
717 #ifdef CONFIG_X86_64
718         if (is_long_mode(&vmx->vcpu)) {
719                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
720                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
721         }
722 #endif
723 }
724
725 static void vmx_load_host_state(struct vcpu_vmx *vmx)
726 {
727         preempt_disable();
728         __vmx_load_host_state(vmx);
729         preempt_enable();
730 }
731
732 /*
733  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
734  * vcpu mutex is already taken.
735  */
736 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
737 {
738         struct vcpu_vmx *vmx = to_vmx(vcpu);
739         u64 phys_addr = __pa(vmx->vmcs);
740         u64 tsc_this, delta, new_offset;
741
742         if (vcpu->cpu != cpu) {
743                 vcpu_clear(vmx);
744                 kvm_migrate_timers(vcpu);
745                 set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
746                 local_irq_disable();
747                 list_add(&vmx->local_vcpus_link,
748                          &per_cpu(vcpus_on_cpu, cpu));
749                 local_irq_enable();
750         }
751
752         if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
753                 u8 error;
754
755                 per_cpu(current_vmcs, cpu) = vmx->vmcs;
756                 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
757                               : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
758                               : "cc");
759                 if (error)
760                         printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
761                                vmx->vmcs, phys_addr);
762         }
763
764         if (vcpu->cpu != cpu) {
765                 struct descriptor_table dt;
766                 unsigned long sysenter_esp;
767
768                 vcpu->cpu = cpu;
769                 /*
770                  * Linux uses per-cpu TSS and GDT, so set these when switching
771                  * processors.
772                  */
773                 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
774                 kvm_get_gdt(&dt);
775                 vmcs_writel(HOST_GDTR_BASE, dt.base);   /* 22.2.4 */
776
777                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
778                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
779
780                 /*
781                  * Make sure the time stamp counter is monotonous.
782                  */
783                 rdtscll(tsc_this);
784                 if (tsc_this < vcpu->arch.host_tsc) {
785                         delta = vcpu->arch.host_tsc - tsc_this;
786                         new_offset = vmcs_read64(TSC_OFFSET) + delta;
787                         vmcs_write64(TSC_OFFSET, new_offset);
788                 }
789         }
790 }
791
792 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
793 {
794         __vmx_load_host_state(to_vmx(vcpu));
795 }
796
797 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
798 {
799         if (vcpu->fpu_active)
800                 return;
801         vcpu->fpu_active = 1;
802         vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
803         if (kvm_read_cr0_bits(vcpu, X86_CR0_TS))
804                 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
805         update_exception_bitmap(vcpu);
806 }
807
808 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
809 {
810         vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
811         update_exception_bitmap(vcpu);
812 }
813
814 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
815 {
816         unsigned long rflags;
817
818         rflags = vmcs_readl(GUEST_RFLAGS);
819         if (to_vmx(vcpu)->rmode.vm86_active)
820                 rflags &= ~(unsigned long)(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
821         return rflags;
822 }
823
824 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
825 {
826         if (to_vmx(vcpu)->rmode.vm86_active)
827                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
828         vmcs_writel(GUEST_RFLAGS, rflags);
829 }
830
831 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
832 {
833         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
834         int ret = 0;
835
836         if (interruptibility & GUEST_INTR_STATE_STI)
837                 ret |= X86_SHADOW_INT_STI;
838         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
839                 ret |= X86_SHADOW_INT_MOV_SS;
840
841         return ret & mask;
842 }
843
844 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
845 {
846         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
847         u32 interruptibility = interruptibility_old;
848
849         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
850
851         if (mask & X86_SHADOW_INT_MOV_SS)
852                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
853         if (mask & X86_SHADOW_INT_STI)
854                 interruptibility |= GUEST_INTR_STATE_STI;
855
856         if ((interruptibility != interruptibility_old))
857                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
858 }
859
860 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
861 {
862         unsigned long rip;
863
864         rip = kvm_rip_read(vcpu);
865         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
866         kvm_rip_write(vcpu, rip);
867
868         /* skipping an emulated instruction also counts */
869         vmx_set_interrupt_shadow(vcpu, 0);
870 }
871
872 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
873                                 bool has_error_code, u32 error_code)
874 {
875         struct vcpu_vmx *vmx = to_vmx(vcpu);
876         u32 intr_info = nr | INTR_INFO_VALID_MASK;
877
878         if (has_error_code) {
879                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
880                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
881         }
882
883         if (vmx->rmode.vm86_active) {
884                 vmx->rmode.irq.pending = true;
885                 vmx->rmode.irq.vector = nr;
886                 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
887                 if (kvm_exception_is_soft(nr))
888                         vmx->rmode.irq.rip +=
889                                 vmx->vcpu.arch.event_exit_inst_len;
890                 intr_info |= INTR_TYPE_SOFT_INTR;
891                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
892                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
893                 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
894                 return;
895         }
896
897         if (kvm_exception_is_soft(nr)) {
898                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
899                              vmx->vcpu.arch.event_exit_inst_len);
900                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
901         } else
902                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
903
904         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
905 }
906
907 static bool vmx_rdtscp_supported(void)
908 {
909         return cpu_has_vmx_rdtscp();
910 }
911
912 /*
913  * Swap MSR entry in host/guest MSR entry array.
914  */
915 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
916 {
917         struct shared_msr_entry tmp;
918
919         tmp = vmx->guest_msrs[to];
920         vmx->guest_msrs[to] = vmx->guest_msrs[from];
921         vmx->guest_msrs[from] = tmp;
922 }
923
924 /*
925  * Set up the vmcs to automatically save and restore system
926  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
927  * mode, as fiddling with msrs is very expensive.
928  */
929 static void setup_msrs(struct vcpu_vmx *vmx)
930 {
931         int save_nmsrs, index;
932         unsigned long *msr_bitmap;
933
934         vmx_load_host_state(vmx);
935         save_nmsrs = 0;
936 #ifdef CONFIG_X86_64
937         if (is_long_mode(&vmx->vcpu)) {
938                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
939                 if (index >= 0)
940                         move_msr_up(vmx, index, save_nmsrs++);
941                 index = __find_msr_index(vmx, MSR_LSTAR);
942                 if (index >= 0)
943                         move_msr_up(vmx, index, save_nmsrs++);
944                 index = __find_msr_index(vmx, MSR_CSTAR);
945                 if (index >= 0)
946                         move_msr_up(vmx, index, save_nmsrs++);
947                 index = __find_msr_index(vmx, MSR_TSC_AUX);
948                 if (index >= 0 && vmx->rdtscp_enabled)
949                         move_msr_up(vmx, index, save_nmsrs++);
950                 /*
951                  * MSR_K6_STAR is only needed on long mode guests, and only
952                  * if efer.sce is enabled.
953                  */
954                 index = __find_msr_index(vmx, MSR_K6_STAR);
955                 if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
956                         move_msr_up(vmx, index, save_nmsrs++);
957         }
958 #endif
959         index = __find_msr_index(vmx, MSR_EFER);
960         if (index >= 0 && update_transition_efer(vmx, index))
961                 move_msr_up(vmx, index, save_nmsrs++);
962
963         vmx->save_nmsrs = save_nmsrs;
964
965         if (cpu_has_vmx_msr_bitmap()) {
966                 if (is_long_mode(&vmx->vcpu))
967                         msr_bitmap = vmx_msr_bitmap_longmode;
968                 else
969                         msr_bitmap = vmx_msr_bitmap_legacy;
970
971                 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
972         }
973 }
974
975 /*
976  * reads and returns guest's timestamp counter "register"
977  * guest_tsc = host_tsc + tsc_offset    -- 21.3
978  */
979 static u64 guest_read_tsc(void)
980 {
981         u64 host_tsc, tsc_offset;
982
983         rdtscll(host_tsc);
984         tsc_offset = vmcs_read64(TSC_OFFSET);
985         return host_tsc + tsc_offset;
986 }
987
988 /*
989  * writes 'guest_tsc' into guest's timestamp counter "register"
990  * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
991  */
992 static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
993 {
994         vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
995 }
996
997 /*
998  * Reads an msr value (of 'msr_index') into 'pdata'.
999  * Returns 0 on success, non-0 otherwise.
1000  * Assumes vcpu_load() was already called.
1001  */
1002 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1003 {
1004         u64 data;
1005         struct shared_msr_entry *msr;
1006
1007         if (!pdata) {
1008                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
1009                 return -EINVAL;
1010         }
1011
1012         switch (msr_index) {
1013 #ifdef CONFIG_X86_64
1014         case MSR_FS_BASE:
1015                 data = vmcs_readl(GUEST_FS_BASE);
1016                 break;
1017         case MSR_GS_BASE:
1018                 data = vmcs_readl(GUEST_GS_BASE);
1019                 break;
1020         case MSR_KERNEL_GS_BASE:
1021                 vmx_load_host_state(to_vmx(vcpu));
1022                 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
1023                 break;
1024 #endif
1025         case MSR_EFER:
1026                 return kvm_get_msr_common(vcpu, msr_index, pdata);
1027         case MSR_IA32_TSC:
1028                 data = guest_read_tsc();
1029                 break;
1030         case MSR_IA32_SYSENTER_CS:
1031                 data = vmcs_read32(GUEST_SYSENTER_CS);
1032                 break;
1033         case MSR_IA32_SYSENTER_EIP:
1034                 data = vmcs_readl(GUEST_SYSENTER_EIP);
1035                 break;
1036         case MSR_IA32_SYSENTER_ESP:
1037                 data = vmcs_readl(GUEST_SYSENTER_ESP);
1038                 break;
1039         case MSR_TSC_AUX:
1040                 if (!to_vmx(vcpu)->rdtscp_enabled)
1041                         return 1;
1042                 /* Otherwise falls through */
1043         default:
1044                 vmx_load_host_state(to_vmx(vcpu));
1045                 msr = find_msr_entry(to_vmx(vcpu), msr_index);
1046                 if (msr) {
1047                         vmx_load_host_state(to_vmx(vcpu));
1048                         data = msr->data;
1049                         break;
1050                 }
1051                 return kvm_get_msr_common(vcpu, msr_index, pdata);
1052         }
1053
1054         *pdata = data;
1055         return 0;
1056 }
1057
1058 /*
1059  * Writes msr value into into the appropriate "register".
1060  * Returns 0 on success, non-0 otherwise.
1061  * Assumes vcpu_load() was already called.
1062  */
1063 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1064 {
1065         struct vcpu_vmx *vmx = to_vmx(vcpu);
1066         struct shared_msr_entry *msr;
1067         u64 host_tsc;
1068         int ret = 0;
1069
1070         switch (msr_index) {
1071         case MSR_EFER:
1072                 vmx_load_host_state(vmx);
1073                 ret = kvm_set_msr_common(vcpu, msr_index, data);
1074                 break;
1075 #ifdef CONFIG_X86_64
1076         case MSR_FS_BASE:
1077                 vmcs_writel(GUEST_FS_BASE, data);
1078                 break;
1079         case MSR_GS_BASE:
1080                 vmcs_writel(GUEST_GS_BASE, data);
1081                 break;
1082         case MSR_KERNEL_GS_BASE:
1083                 vmx_load_host_state(vmx);
1084                 vmx->msr_guest_kernel_gs_base = data;
1085                 break;
1086 #endif
1087         case MSR_IA32_SYSENTER_CS:
1088                 vmcs_write32(GUEST_SYSENTER_CS, data);
1089                 break;
1090         case MSR_IA32_SYSENTER_EIP:
1091                 vmcs_writel(GUEST_SYSENTER_EIP, data);
1092                 break;
1093         case MSR_IA32_SYSENTER_ESP:
1094                 vmcs_writel(GUEST_SYSENTER_ESP, data);
1095                 break;
1096         case MSR_IA32_TSC:
1097                 rdtscll(host_tsc);
1098                 guest_write_tsc(data, host_tsc);
1099                 break;
1100         case MSR_IA32_CR_PAT:
1101                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
1102                         vmcs_write64(GUEST_IA32_PAT, data);
1103                         vcpu->arch.pat = data;
1104                         break;
1105                 }
1106                 ret = kvm_set_msr_common(vcpu, msr_index, data);
1107                 break;
1108         case MSR_TSC_AUX:
1109                 if (!vmx->rdtscp_enabled)
1110                         return 1;
1111                 /* Check reserved bit, higher 32 bits should be zero */
1112                 if ((data >> 32) != 0)
1113                         return 1;
1114                 /* Otherwise falls through */
1115         default:
1116                 msr = find_msr_entry(vmx, msr_index);
1117                 if (msr) {
1118                         vmx_load_host_state(vmx);
1119                         msr->data = data;
1120                         break;
1121                 }
1122                 ret = kvm_set_msr_common(vcpu, msr_index, data);
1123         }
1124
1125         return ret;
1126 }
1127
1128 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1129 {
1130         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
1131         switch (reg) {
1132         case VCPU_REGS_RSP:
1133                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
1134                 break;
1135         case VCPU_REGS_RIP:
1136                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
1137                 break;
1138         case VCPU_EXREG_PDPTR:
1139                 if (enable_ept)
1140                         ept_save_pdptrs(vcpu);
1141                 break;
1142         default:
1143                 break;
1144         }
1145 }
1146
1147 static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1148 {
1149         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1150                 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
1151         else
1152                 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
1153
1154         update_exception_bitmap(vcpu);
1155 }
1156
1157 static __init int cpu_has_kvm_support(void)
1158 {
1159         return cpu_has_vmx();
1160 }
1161
1162 static __init int vmx_disabled_by_bios(void)
1163 {
1164         u64 msr;
1165
1166         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
1167         return (msr & (FEATURE_CONTROL_LOCKED |
1168                        FEATURE_CONTROL_VMXON_ENABLED))
1169             == FEATURE_CONTROL_LOCKED;
1170         /* locked but not enabled */
1171 }
1172
1173 static int hardware_enable(void *garbage)
1174 {
1175         int cpu = raw_smp_processor_id();
1176         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1177         u64 old;
1178
1179         if (read_cr4() & X86_CR4_VMXE)
1180                 return -EBUSY;
1181
1182         INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
1183         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1184         if ((old & (FEATURE_CONTROL_LOCKED |
1185                     FEATURE_CONTROL_VMXON_ENABLED))
1186             != (FEATURE_CONTROL_LOCKED |
1187                 FEATURE_CONTROL_VMXON_ENABLED))
1188                 /* enable and lock */
1189                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
1190                        FEATURE_CONTROL_LOCKED |
1191                        FEATURE_CONTROL_VMXON_ENABLED);
1192         write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
1193         asm volatile (ASM_VMX_VMXON_RAX
1194                       : : "a"(&phys_addr), "m"(phys_addr)
1195                       : "memory", "cc");
1196
1197         ept_sync_global();
1198
1199         return 0;
1200 }
1201
1202 static void vmclear_local_vcpus(void)
1203 {
1204         int cpu = raw_smp_processor_id();
1205         struct vcpu_vmx *vmx, *n;
1206
1207         list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
1208                                  local_vcpus_link)
1209                 __vcpu_clear(vmx);
1210 }
1211
1212
1213 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
1214  * tricks.
1215  */
1216 static void kvm_cpu_vmxoff(void)
1217 {
1218         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1219         write_cr4(read_cr4() & ~X86_CR4_VMXE);
1220 }
1221
1222 static void hardware_disable(void *garbage)
1223 {
1224         vmclear_local_vcpus();
1225         kvm_cpu_vmxoff();
1226 }
1227
1228 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1229                                       u32 msr, u32 *result)
1230 {
1231         u32 vmx_msr_low, vmx_msr_high;
1232         u32 ctl = ctl_min | ctl_opt;
1233
1234         rdmsr(msr, vmx_msr_low, vmx_msr_high);
1235
1236         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1237         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
1238
1239         /* Ensure minimum (required) set of control bits are supported. */
1240         if (ctl_min & ~ctl)
1241                 return -EIO;
1242
1243         *result = ctl;
1244         return 0;
1245 }
1246
1247 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1248 {
1249         u32 vmx_msr_low, vmx_msr_high;
1250         u32 min, opt, min2, opt2;
1251         u32 _pin_based_exec_control = 0;
1252         u32 _cpu_based_exec_control = 0;
1253         u32 _cpu_based_2nd_exec_control = 0;
1254         u32 _vmexit_control = 0;
1255         u32 _vmentry_control = 0;
1256
1257         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1258         opt = PIN_BASED_VIRTUAL_NMIS;
1259         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1260                                 &_pin_based_exec_control) < 0)
1261                 return -EIO;
1262
1263         min = CPU_BASED_HLT_EXITING |
1264 #ifdef CONFIG_X86_64
1265               CPU_BASED_CR8_LOAD_EXITING |
1266               CPU_BASED_CR8_STORE_EXITING |
1267 #endif
1268               CPU_BASED_CR3_LOAD_EXITING |
1269               CPU_BASED_CR3_STORE_EXITING |
1270               CPU_BASED_USE_IO_BITMAPS |
1271               CPU_BASED_MOV_DR_EXITING |
1272               CPU_BASED_USE_TSC_OFFSETING |
1273               CPU_BASED_MWAIT_EXITING |
1274               CPU_BASED_MONITOR_EXITING |
1275               CPU_BASED_INVLPG_EXITING;
1276         opt = CPU_BASED_TPR_SHADOW |
1277               CPU_BASED_USE_MSR_BITMAPS |
1278               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1279         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1280                                 &_cpu_based_exec_control) < 0)
1281                 return -EIO;
1282 #ifdef CONFIG_X86_64
1283         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1284                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1285                                            ~CPU_BASED_CR8_STORE_EXITING;
1286 #endif
1287         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1288                 min2 = 0;
1289                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1290                         SECONDARY_EXEC_WBINVD_EXITING |
1291                         SECONDARY_EXEC_ENABLE_VPID |
1292                         SECONDARY_EXEC_ENABLE_EPT |
1293                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
1294                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
1295                         SECONDARY_EXEC_RDTSCP;
1296                 if (adjust_vmx_controls(min2, opt2,
1297                                         MSR_IA32_VMX_PROCBASED_CTLS2,
1298                                         &_cpu_based_2nd_exec_control) < 0)
1299                         return -EIO;
1300         }
1301 #ifndef CONFIG_X86_64
1302         if (!(_cpu_based_2nd_exec_control &
1303                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1304                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1305 #endif
1306         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1307                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
1308                    enabled */
1309                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
1310                                              CPU_BASED_CR3_STORE_EXITING |
1311                                              CPU_BASED_INVLPG_EXITING);
1312                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1313                       vmx_capability.ept, vmx_capability.vpid);
1314         }
1315
1316         min = 0;
1317 #ifdef CONFIG_X86_64
1318         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1319 #endif
1320         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
1321         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1322                                 &_vmexit_control) < 0)
1323                 return -EIO;
1324
1325         min = 0;
1326         opt = VM_ENTRY_LOAD_IA32_PAT;
1327         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1328                                 &_vmentry_control) < 0)
1329                 return -EIO;
1330
1331         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1332
1333         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1334         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1335                 return -EIO;
1336
1337 #ifdef CONFIG_X86_64
1338         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1339         if (vmx_msr_high & (1u<<16))
1340                 return -EIO;
1341 #endif
1342
1343         /* Require Write-Back (WB) memory type for VMCS accesses. */
1344         if (((vmx_msr_high >> 18) & 15) != 6)
1345                 return -EIO;
1346
1347         vmcs_conf->size = vmx_msr_high & 0x1fff;
1348         vmcs_conf->order = get_order(vmcs_config.size);
1349         vmcs_conf->revision_id = vmx_msr_low;
1350
1351         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1352         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1353         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1354         vmcs_conf->vmexit_ctrl         = _vmexit_control;
1355         vmcs_conf->vmentry_ctrl        = _vmentry_control;
1356
1357         return 0;
1358 }
1359
1360 static struct vmcs *alloc_vmcs_cpu(int cpu)
1361 {
1362         int node = cpu_to_node(cpu);
1363         struct page *pages;
1364         struct vmcs *vmcs;
1365
1366         pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
1367         if (!pages)
1368                 return NULL;
1369         vmcs = page_address(pages);
1370         memset(vmcs, 0, vmcs_config.size);
1371         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1372         return vmcs;
1373 }
1374
1375 static struct vmcs *alloc_vmcs(void)
1376 {
1377         return alloc_vmcs_cpu(raw_smp_processor_id());
1378 }
1379
1380 static void free_vmcs(struct vmcs *vmcs)
1381 {
1382         free_pages((unsigned long)vmcs, vmcs_config.order);
1383 }
1384
1385 static void free_kvm_area(void)
1386 {
1387         int cpu;
1388
1389         for_each_possible_cpu(cpu) {
1390                 free_vmcs(per_cpu(vmxarea, cpu));
1391                 per_cpu(vmxarea, cpu) = NULL;
1392         }
1393 }
1394
1395 static __init int alloc_kvm_area(void)
1396 {
1397         int cpu;
1398
1399         for_each_possible_cpu(cpu) {
1400                 struct vmcs *vmcs;
1401
1402                 vmcs = alloc_vmcs_cpu(cpu);
1403                 if (!vmcs) {
1404                         free_kvm_area();
1405                         return -ENOMEM;
1406                 }
1407
1408                 per_cpu(vmxarea, cpu) = vmcs;
1409         }
1410         return 0;
1411 }
1412
1413 static __init int hardware_setup(void)
1414 {
1415         if (setup_vmcs_config(&vmcs_config) < 0)
1416                 return -EIO;
1417
1418         if (boot_cpu_has(X86_FEATURE_NX))
1419                 kvm_enable_efer_bits(EFER_NX);
1420
1421         if (!cpu_has_vmx_vpid())
1422                 enable_vpid = 0;
1423
1424         if (!cpu_has_vmx_ept()) {
1425                 enable_ept = 0;
1426                 enable_unrestricted_guest = 0;
1427         }
1428
1429         if (!cpu_has_vmx_unrestricted_guest())
1430                 enable_unrestricted_guest = 0;
1431
1432         if (!cpu_has_vmx_flexpriority())
1433                 flexpriority_enabled = 0;
1434
1435         if (!cpu_has_vmx_tpr_shadow())
1436                 kvm_x86_ops->update_cr8_intercept = NULL;
1437
1438         if (enable_ept && !cpu_has_vmx_ept_2m_page())
1439                 kvm_disable_largepages();
1440
1441         if (!cpu_has_vmx_ple())
1442                 ple_gap = 0;
1443
1444         return alloc_kvm_area();
1445 }
1446
1447 static __exit void hardware_unsetup(void)
1448 {
1449         free_kvm_area();
1450 }
1451
1452 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1453 {
1454         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1455
1456         if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1457                 vmcs_write16(sf->selector, save->selector);
1458                 vmcs_writel(sf->base, save->base);
1459                 vmcs_write32(sf->limit, save->limit);
1460                 vmcs_write32(sf->ar_bytes, save->ar);
1461         } else {
1462                 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1463                         << AR_DPL_SHIFT;
1464                 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1465         }
1466 }
1467
1468 static void enter_pmode(struct kvm_vcpu *vcpu)
1469 {
1470         unsigned long flags;
1471         struct vcpu_vmx *vmx = to_vmx(vcpu);
1472
1473         vmx->emulation_required = 1;
1474         vmx->rmode.vm86_active = 0;
1475
1476         vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
1477         vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
1478         vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
1479
1480         flags = vmcs_readl(GUEST_RFLAGS);
1481         flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
1482         flags |= (vmx->rmode.save_iopl << IOPL_SHIFT);
1483         vmcs_writel(GUEST_RFLAGS, flags);
1484
1485         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1486                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1487
1488         update_exception_bitmap(vcpu);
1489
1490         if (emulate_invalid_guest_state)
1491                 return;
1492
1493         fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
1494         fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
1495         fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
1496         fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
1497
1498         vmcs_write16(GUEST_SS_SELECTOR, 0);
1499         vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1500
1501         vmcs_write16(GUEST_CS_SELECTOR,
1502                      vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1503         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1504 }
1505
1506 static gva_t rmode_tss_base(struct kvm *kvm)
1507 {
1508         if (!kvm->arch.tss_addr) {
1509                 struct kvm_memslots *slots;
1510                 gfn_t base_gfn;
1511
1512                 slots = rcu_dereference(kvm->memslots);
1513                 base_gfn = kvm->memslots->memslots[0].base_gfn +
1514                                  kvm->memslots->memslots[0].npages - 3;
1515                 return base_gfn << PAGE_SHIFT;
1516         }
1517         return kvm->arch.tss_addr;
1518 }
1519
1520 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1521 {
1522         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1523
1524         save->selector = vmcs_read16(sf->selector);
1525         save->base = vmcs_readl(sf->base);
1526         save->limit = vmcs_read32(sf->limit);
1527         save->ar = vmcs_read32(sf->ar_bytes);
1528         vmcs_write16(sf->selector, save->base >> 4);
1529         vmcs_write32(sf->base, save->base & 0xfffff);
1530         vmcs_write32(sf->limit, 0xffff);
1531         vmcs_write32(sf->ar_bytes, 0xf3);
1532 }
1533
1534 static void enter_rmode(struct kvm_vcpu *vcpu)
1535 {
1536         unsigned long flags;
1537         struct vcpu_vmx *vmx = to_vmx(vcpu);
1538
1539         if (enable_unrestricted_guest)
1540                 return;
1541
1542         vmx->emulation_required = 1;
1543         vmx->rmode.vm86_active = 1;
1544
1545         vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1546         vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1547
1548         vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1549         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1550
1551         vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1552         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1553
1554         flags = vmcs_readl(GUEST_RFLAGS);
1555         vmx->rmode.save_iopl
1556                 = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
1557
1558         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1559
1560         vmcs_writel(GUEST_RFLAGS, flags);
1561         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1562         update_exception_bitmap(vcpu);
1563
1564         if (emulate_invalid_guest_state)
1565                 goto continue_rmode;
1566
1567         vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1568         vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1569         vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1570
1571         vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1572         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1573         if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1574                 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1575         vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1576
1577         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
1578         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
1579         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
1580         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
1581
1582 continue_rmode:
1583         kvm_mmu_reset_context(vcpu);
1584         init_rmode(vcpu->kvm);
1585 }
1586
1587 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1588 {
1589         struct vcpu_vmx *vmx = to_vmx(vcpu);
1590         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1591
1592         if (!msr)
1593                 return;
1594
1595         /*
1596          * Force kernel_gs_base reloading before EFER changes, as control
1597          * of this msr depends on is_long_mode().
1598          */
1599         vmx_load_host_state(to_vmx(vcpu));
1600         vcpu->arch.shadow_efer = efer;
1601         if (!msr)
1602                 return;
1603         if (efer & EFER_LMA) {
1604                 vmcs_write32(VM_ENTRY_CONTROLS,
1605                              vmcs_read32(VM_ENTRY_CONTROLS) |
1606                              VM_ENTRY_IA32E_MODE);
1607                 msr->data = efer;
1608         } else {
1609                 vmcs_write32(VM_ENTRY_CONTROLS,
1610                              vmcs_read32(VM_ENTRY_CONTROLS) &
1611                              ~VM_ENTRY_IA32E_MODE);
1612
1613                 msr->data = efer & ~EFER_LME;
1614         }
1615         setup_msrs(vmx);
1616 }
1617
1618 #ifdef CONFIG_X86_64
1619
1620 static void enter_lmode(struct kvm_vcpu *vcpu)
1621 {
1622         u32 guest_tr_ar;
1623
1624         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1625         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1626                 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1627                        __func__);
1628                 vmcs_write32(GUEST_TR_AR_BYTES,
1629                              (guest_tr_ar & ~AR_TYPE_MASK)
1630                              | AR_TYPE_BUSY_64_TSS);
1631         }
1632         vcpu->arch.shadow_efer |= EFER_LMA;
1633         vmx_set_efer(vcpu, vcpu->arch.shadow_efer);
1634 }
1635
1636 static void exit_lmode(struct kvm_vcpu *vcpu)
1637 {
1638         vcpu->arch.shadow_efer &= ~EFER_LMA;
1639
1640         vmcs_write32(VM_ENTRY_CONTROLS,
1641                      vmcs_read32(VM_ENTRY_CONTROLS)
1642                      & ~VM_ENTRY_IA32E_MODE);
1643 }
1644
1645 #endif
1646
1647 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1648 {
1649         vpid_sync_vcpu_all(to_vmx(vcpu));
1650         if (enable_ept)
1651                 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
1652 }
1653
1654 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1655 {
1656         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
1657
1658         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
1659         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
1660 }
1661
1662 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1663 {
1664         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
1665
1666         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
1667         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
1668 }
1669
1670 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
1671 {
1672         if (!test_bit(VCPU_EXREG_PDPTR,
1673                       (unsigned long *)&vcpu->arch.regs_dirty))
1674                 return;
1675
1676         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1677                 vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
1678                 vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
1679                 vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
1680                 vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
1681         }
1682 }
1683
1684 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
1685 {
1686         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1687                 vcpu->arch.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
1688                 vcpu->arch.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
1689                 vcpu->arch.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
1690                 vcpu->arch.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
1691         }
1692
1693         __set_bit(VCPU_EXREG_PDPTR,
1694                   (unsigned long *)&vcpu->arch.regs_avail);
1695         __set_bit(VCPU_EXREG_PDPTR,
1696                   (unsigned long *)&vcpu->arch.regs_dirty);
1697 }
1698
1699 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1700
1701 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
1702                                         unsigned long cr0,
1703                                         struct kvm_vcpu *vcpu)
1704 {
1705         if (!(cr0 & X86_CR0_PG)) {
1706                 /* From paging/starting to nonpaging */
1707                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1708                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1709                              (CPU_BASED_CR3_LOAD_EXITING |
1710                               CPU_BASED_CR3_STORE_EXITING));
1711                 vcpu->arch.cr0 = cr0;
1712                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1713         } else if (!is_paging(vcpu)) {
1714                 /* From nonpaging to paging */
1715                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1716                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1717                              ~(CPU_BASED_CR3_LOAD_EXITING |
1718                                CPU_BASED_CR3_STORE_EXITING));
1719                 vcpu->arch.cr0 = cr0;
1720                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1721         }
1722
1723         if (!(cr0 & X86_CR0_WP))
1724                 *hw_cr0 &= ~X86_CR0_WP;
1725 }
1726
1727 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1728 {
1729         struct vcpu_vmx *vmx = to_vmx(vcpu);
1730         unsigned long hw_cr0;
1731
1732         if (enable_unrestricted_guest)
1733                 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
1734                         | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
1735         else
1736                 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
1737
1738         if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
1739                 enter_pmode(vcpu);
1740
1741         if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
1742                 enter_rmode(vcpu);
1743
1744 #ifdef CONFIG_X86_64
1745         if (vcpu->arch.shadow_efer & EFER_LME) {
1746                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1747                         enter_lmode(vcpu);
1748                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1749                         exit_lmode(vcpu);
1750         }
1751 #endif
1752
1753         if (enable_ept)
1754                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
1755
1756         if (!vcpu->fpu_active)
1757                 hw_cr0 |= X86_CR0_TS;
1758
1759         vmcs_writel(CR0_READ_SHADOW, cr0);
1760         vmcs_writel(GUEST_CR0, hw_cr0);
1761         vcpu->arch.cr0 = cr0;
1762 }
1763
1764 static u64 construct_eptp(unsigned long root_hpa)
1765 {
1766         u64 eptp;
1767
1768         /* TODO write the value reading from MSR */
1769         eptp = VMX_EPT_DEFAULT_MT |
1770                 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
1771         eptp |= (root_hpa & PAGE_MASK);
1772
1773         return eptp;
1774 }
1775
1776 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1777 {
1778         unsigned long guest_cr3;
1779         u64 eptp;
1780
1781         guest_cr3 = cr3;
1782         if (enable_ept) {
1783                 eptp = construct_eptp(cr3);
1784                 vmcs_write64(EPT_POINTER, eptp);
1785                 guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
1786                         vcpu->kvm->arch.ept_identity_map_addr;
1787                 ept_load_pdptrs(vcpu);
1788         }
1789
1790         vmx_flush_tlb(vcpu);
1791         vmcs_writel(GUEST_CR3, guest_cr3);
1792 }
1793
1794 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1795 {
1796         unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
1797                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1798
1799         vcpu->arch.cr4 = cr4;
1800         if (enable_ept) {
1801                 if (!is_paging(vcpu)) {
1802                         hw_cr4 &= ~X86_CR4_PAE;
1803                         hw_cr4 |= X86_CR4_PSE;
1804                 } else if (!(cr4 & X86_CR4_PAE)) {
1805                         hw_cr4 &= ~X86_CR4_PAE;
1806                 }
1807         }
1808
1809         vmcs_writel(CR4_READ_SHADOW, cr4);
1810         vmcs_writel(GUEST_CR4, hw_cr4);
1811 }
1812
1813 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1814 {
1815         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1816
1817         return vmcs_readl(sf->base);
1818 }
1819
1820 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1821                             struct kvm_segment *var, int seg)
1822 {
1823         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1824         u32 ar;
1825
1826         var->base = vmcs_readl(sf->base);
1827         var->limit = vmcs_read32(sf->limit);
1828         var->selector = vmcs_read16(sf->selector);
1829         ar = vmcs_read32(sf->ar_bytes);
1830         if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
1831                 ar = 0;
1832         var->type = ar & 15;
1833         var->s = (ar >> 4) & 1;
1834         var->dpl = (ar >> 5) & 3;
1835         var->present = (ar >> 7) & 1;
1836         var->avl = (ar >> 12) & 1;
1837         var->l = (ar >> 13) & 1;
1838         var->db = (ar >> 14) & 1;
1839         var->g = (ar >> 15) & 1;
1840         var->unusable = (ar >> 16) & 1;
1841 }
1842
1843 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
1844 {
1845         if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) /* if real mode */
1846                 return 0;
1847
1848         if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
1849                 return 3;
1850
1851         return vmcs_read16(GUEST_CS_SELECTOR) & 3;
1852 }
1853
1854 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1855 {
1856         u32 ar;
1857
1858         if (var->unusable)
1859                 ar = 1 << 16;
1860         else {
1861                 ar = var->type & 15;
1862                 ar |= (var->s & 1) << 4;
1863                 ar |= (var->dpl & 3) << 5;
1864                 ar |= (var->present & 1) << 7;
1865                 ar |= (var->avl & 1) << 12;
1866                 ar |= (var->l & 1) << 13;
1867                 ar |= (var->db & 1) << 14;
1868                 ar |= (var->g & 1) << 15;
1869         }
1870         if (ar == 0) /* a 0 value means unusable */
1871                 ar = AR_UNUSABLE_MASK;
1872
1873         return ar;
1874 }
1875
1876 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1877                             struct kvm_segment *var, int seg)
1878 {
1879         struct vcpu_vmx *vmx = to_vmx(vcpu);
1880         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1881         u32 ar;
1882
1883         if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
1884                 vmx->rmode.tr.selector = var->selector;
1885                 vmx->rmode.tr.base = var->base;
1886                 vmx->rmode.tr.limit = var->limit;
1887                 vmx->rmode.tr.ar = vmx_segment_access_rights(var);
1888                 return;
1889         }
1890         vmcs_writel(sf->base, var->base);
1891         vmcs_write32(sf->limit, var->limit);
1892         vmcs_write16(sf->selector, var->selector);
1893         if (vmx->rmode.vm86_active && var->s) {
1894                 /*
1895                  * Hack real-mode segments into vm86 compatibility.
1896                  */
1897                 if (var->base == 0xffff0000 && var->selector == 0xf000)
1898                         vmcs_writel(sf->base, 0xf0000);
1899                 ar = 0xf3;
1900         } else
1901                 ar = vmx_segment_access_rights(var);
1902
1903         /*
1904          *   Fix the "Accessed" bit in AR field of segment registers for older
1905          * qemu binaries.
1906          *   IA32 arch specifies that at the time of processor reset the
1907          * "Accessed" bit in the AR field of segment registers is 1. And qemu
1908          * is setting it to 0 in the usedland code. This causes invalid guest
1909          * state vmexit when "unrestricted guest" mode is turned on.
1910          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
1911          * tree. Newer qemu binaries with that qemu fix would not need this
1912          * kvm hack.
1913          */
1914         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
1915                 ar |= 0x1; /* Accessed */
1916
1917         vmcs_write32(sf->ar_bytes, ar);
1918 }
1919
1920 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1921 {
1922         u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1923
1924         *db = (ar >> 14) & 1;
1925         *l = (ar >> 13) & 1;
1926 }
1927
1928 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1929 {
1930         dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1931         dt->base = vmcs_readl(GUEST_IDTR_BASE);
1932 }
1933
1934 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1935 {
1936         vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1937         vmcs_writel(GUEST_IDTR_BASE, dt->base);
1938 }
1939
1940 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1941 {
1942         dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1943         dt->base = vmcs_readl(GUEST_GDTR_BASE);
1944 }
1945
1946 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1947 {
1948         vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1949         vmcs_writel(GUEST_GDTR_BASE, dt->base);
1950 }
1951
1952 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
1953 {
1954         struct kvm_segment var;
1955         u32 ar;
1956
1957         vmx_get_segment(vcpu, &var, seg);
1958         ar = vmx_segment_access_rights(&var);
1959
1960         if (var.base != (var.selector << 4))
1961                 return false;
1962         if (var.limit != 0xffff)
1963                 return false;
1964         if (ar != 0xf3)
1965                 return false;
1966
1967         return true;
1968 }
1969
1970 static bool code_segment_valid(struct kvm_vcpu *vcpu)
1971 {
1972         struct kvm_segment cs;
1973         unsigned int cs_rpl;
1974
1975         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
1976         cs_rpl = cs.selector & SELECTOR_RPL_MASK;
1977
1978         if (cs.unusable)
1979                 return false;
1980         if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
1981                 return false;
1982         if (!cs.s)
1983                 return false;
1984         if (cs.type & AR_TYPE_WRITEABLE_MASK) {
1985                 if (cs.dpl > cs_rpl)
1986                         return false;
1987         } else {
1988                 if (cs.dpl != cs_rpl)
1989                         return false;
1990         }
1991         if (!cs.present)
1992                 return false;
1993
1994         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
1995         return true;
1996 }
1997
1998 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
1999 {
2000         struct kvm_segment ss;
2001         unsigned int ss_rpl;
2002
2003         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
2004         ss_rpl = ss.selector & SELECTOR_RPL_MASK;
2005
2006         if (ss.unusable)
2007                 return true;
2008         if (ss.type != 3 && ss.type != 7)
2009                 return false;
2010         if (!ss.s)
2011                 return false;
2012         if (ss.dpl != ss_rpl) /* DPL != RPL */
2013                 return false;
2014         if (!ss.present)
2015                 return false;
2016
2017         return true;
2018 }
2019
2020 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
2021 {
2022         struct kvm_segment var;
2023         unsigned int rpl;
2024
2025         vmx_get_segment(vcpu, &var, seg);
2026         rpl = var.selector & SELECTOR_RPL_MASK;
2027
2028         if (var.unusable)
2029                 return true;
2030         if (!var.s)
2031                 return false;
2032         if (!var.present)
2033                 return false;
2034         if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
2035                 if (var.dpl < rpl) /* DPL < RPL */
2036                         return false;
2037         }
2038
2039         /* TODO: Add other members to kvm_segment_field to allow checking for other access
2040          * rights flags
2041          */
2042         return true;
2043 }
2044
2045 static bool tr_valid(struct kvm_vcpu *vcpu)
2046 {
2047         struct kvm_segment tr;
2048
2049         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
2050
2051         if (tr.unusable)
2052                 return false;
2053         if (tr.selector & SELECTOR_TI_MASK)     /* TI = 1 */
2054                 return false;
2055         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
2056                 return false;
2057         if (!tr.present)
2058                 return false;
2059
2060         return true;
2061 }
2062
2063 static bool ldtr_valid(struct kvm_vcpu *vcpu)
2064 {
2065         struct kvm_segment ldtr;
2066
2067         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
2068
2069         if (ldtr.unusable)
2070                 return true;
2071         if (ldtr.selector & SELECTOR_TI_MASK)   /* TI = 1 */
2072                 return false;
2073         if (ldtr.type != 2)
2074                 return false;
2075         if (!ldtr.present)
2076                 return false;
2077
2078         return true;
2079 }
2080
2081 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
2082 {
2083         struct kvm_segment cs, ss;
2084
2085         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
2086         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
2087
2088         return ((cs.selector & SELECTOR_RPL_MASK) ==
2089                  (ss.selector & SELECTOR_RPL_MASK));
2090 }
2091
2092 /*
2093  * Check if guest state is valid. Returns true if valid, false if
2094  * not.
2095  * We assume that registers are always usable
2096  */
2097 static bool guest_state_valid(struct kvm_vcpu *vcpu)
2098 {
2099         /* real mode guest state checks */
2100         if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
2101                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
2102                         return false;
2103                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
2104                         return false;
2105                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
2106                         return false;
2107                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
2108                         return false;
2109                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
2110                         return false;
2111                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
2112                         return false;
2113         } else {
2114         /* protected mode guest state checks */
2115                 if (!cs_ss_rpl_check(vcpu))
2116                         return false;
2117                 if (!code_segment_valid(vcpu))
2118                         return false;
2119                 if (!stack_segment_valid(vcpu))
2120                         return false;
2121                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
2122                         return false;
2123                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
2124                         return false;
2125                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
2126                         return false;
2127                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
2128                         return false;
2129                 if (!tr_valid(vcpu))
2130                         return false;
2131                 if (!ldtr_valid(vcpu))
2132                         return false;
2133         }
2134         /* TODO:
2135          * - Add checks on RIP
2136          * - Add checks on RFLAGS
2137          */
2138
2139         return true;
2140 }
2141
2142 static int init_rmode_tss(struct kvm *kvm)
2143 {
2144         gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
2145         u16 data = 0;
2146         int ret = 0;
2147         int r;
2148
2149         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2150         if (r < 0)
2151                 goto out;
2152         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
2153         r = kvm_write_guest_page(kvm, fn++, &data,
2154                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
2155         if (r < 0)
2156                 goto out;
2157         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
2158         if (r < 0)
2159                 goto out;
2160         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2161         if (r < 0)
2162                 goto out;
2163         data = ~0;
2164         r = kvm_write_guest_page(kvm, fn, &data,
2165                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
2166                                  sizeof(u8));
2167         if (r < 0)
2168                 goto out;
2169
2170         ret = 1;
2171 out:
2172         return ret;
2173 }
2174
2175 static int init_rmode_identity_map(struct kvm *kvm)
2176 {
2177         int i, r, ret;
2178         pfn_t identity_map_pfn;
2179         u32 tmp;
2180
2181         if (!enable_ept)
2182                 return 1;
2183         if (unlikely(!kvm->arch.ept_identity_pagetable)) {
2184                 printk(KERN_ERR "EPT: identity-mapping pagetable "
2185                         "haven't been allocated!\n");
2186                 return 0;
2187         }
2188         if (likely(kvm->arch.ept_identity_pagetable_done))
2189                 return 1;
2190         ret = 0;
2191         identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
2192         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
2193         if (r < 0)
2194                 goto out;
2195         /* Set up identity-mapping pagetable for EPT in real mode */
2196         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
2197                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
2198                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
2199                 r = kvm_write_guest_page(kvm, identity_map_pfn,
2200                                 &tmp, i * sizeof(tmp), sizeof(tmp));
2201                 if (r < 0)
2202                         goto out;
2203         }
2204         kvm->arch.ept_identity_pagetable_done = true;
2205         ret = 1;
2206 out:
2207         return ret;
2208 }
2209
2210 static void seg_setup(int seg)
2211 {
2212         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2213         unsigned int ar;
2214
2215         vmcs_write16(sf->selector, 0);
2216         vmcs_writel(sf->base, 0);
2217         vmcs_write32(sf->limit, 0xffff);
2218         if (enable_unrestricted_guest) {
2219                 ar = 0x93;
2220                 if (seg == VCPU_SREG_CS)
2221                         ar |= 0x08; /* code segment */
2222         } else
2223                 ar = 0xf3;
2224
2225         vmcs_write32(sf->ar_bytes, ar);
2226 }
2227
2228 static int alloc_apic_access_page(struct kvm *kvm)
2229 {
2230         struct kvm_userspace_memory_region kvm_userspace_mem;
2231         int r = 0;
2232
2233         mutex_lock(&kvm->slots_lock);
2234         if (kvm->arch.apic_access_page)
2235                 goto out;
2236         kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
2237         kvm_userspace_mem.flags = 0;
2238         kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
2239         kvm_userspace_mem.memory_size = PAGE_SIZE;
2240         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2241         if (r)
2242                 goto out;
2243
2244         kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
2245 out:
2246         mutex_unlock(&kvm->slots_lock);
2247         return r;
2248 }
2249
2250 static int alloc_identity_pagetable(struct kvm *kvm)
2251 {
2252         struct kvm_userspace_memory_region kvm_userspace_mem;
2253         int r = 0;
2254
2255         mutex_lock(&kvm->slots_lock);
2256         if (kvm->arch.ept_identity_pagetable)
2257                 goto out;
2258         kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
2259         kvm_userspace_mem.flags = 0;
2260         kvm_userspace_mem.guest_phys_addr =
2261                 kvm->arch.ept_identity_map_addr;
2262         kvm_userspace_mem.memory_size = PAGE_SIZE;
2263         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2264         if (r)
2265                 goto out;
2266
2267         kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
2268                         kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
2269 out:
2270         mutex_unlock(&kvm->slots_lock);
2271         return r;
2272 }
2273
2274 static void allocate_vpid(struct vcpu_vmx *vmx)
2275 {
2276         int vpid;
2277
2278         vmx->vpid = 0;
2279         if (!enable_vpid)
2280                 return;
2281         spin_lock(&vmx_vpid_lock);
2282         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
2283         if (vpid < VMX_NR_VPIDS) {
2284                 vmx->vpid = vpid;
2285                 __set_bit(vpid, vmx_vpid_bitmap);
2286         }
2287         spin_unlock(&vmx_vpid_lock);
2288 }
2289
2290 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
2291 {
2292         int f = sizeof(unsigned long);
2293
2294         if (!cpu_has_vmx_msr_bitmap())
2295                 return;
2296
2297         /*
2298          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
2299          * have the write-low and read-high bitmap offsets the wrong way round.
2300          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
2301          */
2302         if (msr <= 0x1fff) {
2303                 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
2304                 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
2305         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2306                 msr &= 0x1fff;
2307                 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
2308                 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
2309         }
2310 }
2311
2312 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
2313 {
2314         if (!longmode_only)
2315                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
2316         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
2317 }
2318
2319 /*
2320  * Sets up the vmcs for emulated real mode.
2321  */
2322 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
2323 {
2324         u32 host_sysenter_cs, msr_low, msr_high;
2325         u32 junk;
2326         u64 host_pat, tsc_this, tsc_base;
2327         unsigned long a;
2328         struct descriptor_table dt;
2329         int i;
2330         unsigned long kvm_vmx_return;
2331         u32 exec_control;
2332
2333         /* I/O */
2334         vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
2335         vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
2336
2337         if (cpu_has_vmx_msr_bitmap())
2338                 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
2339
2340         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
2341
2342         /* Control */
2343         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
2344                 vmcs_config.pin_based_exec_ctrl);
2345
2346         exec_control = vmcs_config.cpu_based_exec_ctrl;
2347         if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
2348                 exec_control &= ~CPU_BASED_TPR_SHADOW;
2349 #ifdef CONFIG_X86_64
2350                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
2351                                 CPU_BASED_CR8_LOAD_EXITING;
2352 #endif
2353         }
2354         if (!enable_ept)
2355                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
2356                                 CPU_BASED_CR3_LOAD_EXITING  |
2357                                 CPU_BASED_INVLPG_EXITING;
2358         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
2359
2360         if (cpu_has_secondary_exec_ctrls()) {
2361                 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
2362                 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2363                         exec_control &=
2364                                 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
2365                 if (vmx->vpid == 0)
2366                         exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
2367                 if (!enable_ept) {
2368                         exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
2369                         enable_unrestricted_guest = 0;
2370                 }
2371                 if (!enable_unrestricted_guest)
2372                         exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2373                 if (!ple_gap)
2374                         exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
2375                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
2376         }
2377
2378         if (ple_gap) {
2379                 vmcs_write32(PLE_GAP, ple_gap);
2380                 vmcs_write32(PLE_WINDOW, ple_window);
2381         }
2382
2383         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
2384         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
2385         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
2386
2387         vmcs_writel(HOST_CR0, read_cr0());  /* 22.2.3 */
2388         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
2389         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
2390
2391         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
2392         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2393         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2394         vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs());    /* 22.2.4 */
2395         vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs());    /* 22.2.4 */
2396         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2397 #ifdef CONFIG_X86_64
2398         rdmsrl(MSR_FS_BASE, a);
2399         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
2400         rdmsrl(MSR_GS_BASE, a);
2401         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
2402 #else
2403         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
2404         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
2405 #endif
2406
2407         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
2408
2409         kvm_get_idt(&dt);
2410         vmcs_writel(HOST_IDTR_BASE, dt.base);   /* 22.2.4 */
2411
2412         asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
2413         vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
2414         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
2415         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2416         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2417
2418         rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
2419         vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
2420         rdmsrl(MSR_IA32_SYSENTER_ESP, a);
2421         vmcs_writel(HOST_IA32_SYSENTER_ESP, a);   /* 22.2.3 */
2422         rdmsrl(MSR_IA32_SYSENTER_EIP, a);
2423         vmcs_writel(HOST_IA32_SYSENTER_EIP, a);   /* 22.2.3 */
2424
2425         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
2426                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2427                 host_pat = msr_low | ((u64) msr_high << 32);
2428                 vmcs_write64(HOST_IA32_PAT, host_pat);
2429         }
2430         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2431                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2432                 host_pat = msr_low | ((u64) msr_high << 32);
2433                 /* Write the default value follow host pat */
2434                 vmcs_write64(GUEST_IA32_PAT, host_pat);
2435                 /* Keep arch.pat sync with GUEST_IA32_PAT */
2436                 vmx->vcpu.arch.pat = host_pat;
2437         }
2438
2439         for (i = 0; i < NR_VMX_MSR; ++i) {
2440                 u32 index = vmx_msr_index[i];
2441                 u32 data_low, data_high;
2442                 int j = vmx->nmsrs;
2443
2444                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
2445                         continue;
2446                 if (wrmsr_safe(index, data_low, data_high) < 0)
2447                         continue;
2448                 vmx->guest_msrs[j].index = i;
2449                 vmx->guest_msrs[j].data = 0;
2450                 vmx->guest_msrs[j].mask = -1ull;
2451                 ++vmx->nmsrs;
2452         }
2453
2454         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
2455
2456         /* 22.2.1, 20.8.1 */
2457         vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
2458
2459         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
2460         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
2461         if (enable_ept)
2462                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
2463         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
2464
2465         tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
2466         rdtscll(tsc_this);
2467         if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
2468                 tsc_base = tsc_this;
2469
2470         guest_write_tsc(0, tsc_base);
2471
2472         return 0;
2473 }
2474
2475 static int init_rmode(struct kvm *kvm)
2476 {
2477         if (!init_rmode_tss(kvm))
2478                 return 0;
2479         if (!init_rmode_identity_map(kvm))
2480                 return 0;
2481         return 1;
2482 }
2483
2484 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
2485 {
2486         struct vcpu_vmx *vmx = to_vmx(vcpu);
2487         u64 msr;
2488         int ret, idx;
2489
2490         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
2491         idx = srcu_read_lock(&vcpu->kvm->srcu);
2492         if (!init_rmode(vmx->vcpu.kvm)) {
2493                 ret = -ENOMEM;
2494                 goto out;
2495         }
2496
2497         vmx->rmode.vm86_active = 0;
2498
2499         vmx->soft_vnmi_blocked = 0;
2500
2501         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2502         kvm_set_cr8(&vmx->vcpu, 0);
2503         msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
2504         if (kvm_vcpu_is_bsp(&vmx->vcpu))
2505                 msr |= MSR_IA32_APICBASE_BSP;
2506         kvm_set_apic_base(&vmx->vcpu, msr);
2507
2508         fx_init(&vmx->vcpu);
2509
2510         seg_setup(VCPU_SREG_CS);
2511         /*
2512          * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2513          * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh.
2514          */
2515         if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
2516                 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
2517                 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
2518         } else {
2519                 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
2520                 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
2521         }
2522
2523         seg_setup(VCPU_SREG_DS);
2524         seg_setup(VCPU_SREG_ES);
2525         seg_setup(VCPU_SREG_FS);
2526         seg_setup(VCPU_SREG_GS);
2527         seg_setup(VCPU_SREG_SS);
2528
2529         vmcs_write16(GUEST_TR_SELECTOR, 0);
2530         vmcs_writel(GUEST_TR_BASE, 0);
2531         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
2532         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2533
2534         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
2535         vmcs_writel(GUEST_LDTR_BASE, 0);
2536         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
2537         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
2538
2539         vmcs_write32(GUEST_SYSENTER_CS, 0);
2540         vmcs_writel(GUEST_SYSENTER_ESP, 0);
2541         vmcs_writel(GUEST_SYSENTER_EIP, 0);
2542
2543         vmcs_writel(GUEST_RFLAGS, 0x02);
2544         if (kvm_vcpu_is_bsp(&vmx->vcpu))
2545                 kvm_rip_write(vcpu, 0xfff0);
2546         else
2547                 kvm_rip_write(vcpu, 0);
2548         kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
2549
2550         vmcs_writel(GUEST_DR7, 0x400);
2551
2552         vmcs_writel(GUEST_GDTR_BASE, 0);
2553         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
2554
2555         vmcs_writel(GUEST_IDTR_BASE, 0);
2556         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
2557
2558         vmcs_write32(GUEST_ACTIVITY_STATE, 0);
2559         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
2560         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
2561
2562         /* Special registers */
2563         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
2564
2565         setup_msrs(vmx);
2566
2567         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
2568
2569         if (cpu_has_vmx_tpr_shadow()) {
2570                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
2571                 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
2572                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
2573                                 page_to_phys(vmx->vcpu.arch.apic->regs_page));
2574                 vmcs_write32(TPR_THRESHOLD, 0);
2575         }
2576
2577         if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2578                 vmcs_write64(APIC_ACCESS_ADDR,
2579                              page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
2580
2581         if (vmx->vpid != 0)
2582                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2583
2584         vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
2585         vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
2586         vmx_set_cr4(&vmx->vcpu, 0);
2587         vmx_set_efer(&vmx->vcpu, 0);
2588         vmx_fpu_activate(&vmx->vcpu);
2589         update_exception_bitmap(&vmx->vcpu);
2590
2591         vpid_sync_vcpu_all(vmx);
2592
2593         ret = 0;
2594
2595         /* HACK: Don't enable emulation on guest boot/reset */
2596         vmx->emulation_required = 0;
2597
2598 out:
2599         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2600         return ret;
2601 }
2602
2603 static void enable_irq_window(struct kvm_vcpu *vcpu)
2604 {
2605         u32 cpu_based_vm_exec_control;
2606
2607         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2608         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2609         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2610 }
2611
2612 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2613 {
2614         u32 cpu_based_vm_exec_control;
2615
2616         if (!cpu_has_virtual_nmis()) {
2617                 enable_irq_window(vcpu);
2618                 return;
2619         }
2620
2621         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2622         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
2623         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2624 }
2625
2626 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
2627 {
2628         struct vcpu_vmx *vmx = to_vmx(vcpu);
2629         uint32_t intr;
2630         int irq = vcpu->arch.interrupt.nr;
2631
2632         trace_kvm_inj_virq(irq);
2633
2634         ++vcpu->stat.irq_injections;
2635         if (vmx->rmode.vm86_active) {
2636                 vmx->rmode.irq.pending = true;
2637                 vmx->rmode.irq.vector = irq;
2638                 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2639                 if (vcpu->arch.interrupt.soft)
2640                         vmx->rmode.irq.rip +=
2641                                 vmx->vcpu.arch.event_exit_inst_len;
2642                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2643                              irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
2644                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2645                 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2646                 return;
2647         }
2648         intr = irq | INTR_INFO_VALID_MASK;
2649         if (vcpu->arch.interrupt.soft) {
2650                 intr |= INTR_TYPE_SOFT_INTR;
2651                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2652                              vmx->vcpu.arch.event_exit_inst_len);
2653         } else
2654                 intr |= INTR_TYPE_EXT_INTR;
2655         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
2656 }
2657
2658 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
2659 {
2660         struct vcpu_vmx *vmx = to_vmx(vcpu);
2661
2662         if (!cpu_has_virtual_nmis()) {
2663                 /*
2664                  * Tracking the NMI-blocked state in software is built upon
2665                  * finding the next open IRQ window. This, in turn, depends on
2666                  * well-behaving guests: They have to keep IRQs disabled at
2667                  * least as long as the NMI handler runs. Otherwise we may
2668                  * cause NMI nesting, maybe breaking the guest. But as this is
2669                  * highly unlikely, we can live with the residual risk.
2670                  */
2671                 vmx->soft_vnmi_blocked = 1;
2672                 vmx->vnmi_blocked_time = 0;
2673         }
2674
2675         ++vcpu->stat.nmi_injections;
2676         if (vmx->rmode.vm86_active) {
2677                 vmx->rmode.irq.pending = true;
2678                 vmx->rmode.irq.vector = NMI_VECTOR;
2679                 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2680                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2681                              NMI_VECTOR | INTR_TYPE_SOFT_INTR |
2682                              INTR_INFO_VALID_MASK);
2683                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2684                 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2685                 return;
2686         }
2687         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2688                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
2689 }
2690
2691 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
2692 {
2693         if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
2694                 return 0;
2695
2696         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2697                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS |
2698                                 GUEST_INTR_STATE_NMI));
2699 }
2700
2701 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
2702 {
2703         if (!cpu_has_virtual_nmis())
2704                 return to_vmx(vcpu)->soft_vnmi_blocked;
2705         else
2706                 return !!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2707                           GUEST_INTR_STATE_NMI);
2708 }
2709
2710 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
2711 {
2712         struct vcpu_vmx *vmx = to_vmx(vcpu);
2713
2714         if (!cpu_has_virtual_nmis()) {
2715                 if (vmx->soft_vnmi_blocked != masked) {
2716                         vmx->soft_vnmi_blocked = masked;
2717                         vmx->vnmi_blocked_time = 0;
2718                 }
2719         } else {
2720                 if (masked)
2721                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
2722                                       GUEST_INTR_STATE_NMI);
2723                 else
2724                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
2725                                         GUEST_INTR_STATE_NMI);
2726         }
2727 }
2728
2729 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
2730 {
2731         return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2732                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2733                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
2734 }
2735
2736 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
2737 {
2738         int ret;
2739         struct kvm_userspace_memory_region tss_mem = {
2740                 .slot = TSS_PRIVATE_MEMSLOT,
2741                 .guest_phys_addr = addr,
2742                 .memory_size = PAGE_SIZE * 3,
2743                 .flags = 0,
2744         };
2745
2746         ret = kvm_set_memory_region(kvm, &tss_mem, 0);
2747         if (ret)
2748                 return ret;
2749         kvm->arch.tss_addr = addr;
2750         return 0;
2751 }
2752
2753 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
2754                                   int vec, u32 err_code)
2755 {
2756         /*
2757          * Instruction with address size override prefix opcode 0x67
2758          * Cause the #SS fault with 0 error code in VM86 mode.
2759          */
2760         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
2761                 if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE)
2762                         return 1;
2763         /*
2764          * Forward all other exceptions that are valid in real mode.
2765          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
2766          *        the required debugging infrastructure rework.
2767          */
2768         switch (vec) {
2769         case DB_VECTOR:
2770                 if (vcpu->guest_debug &
2771                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
2772                         return 0;
2773                 kvm_queue_exception(vcpu, vec);
2774                 return 1;
2775         case BP_VECTOR:
2776                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2777                         return 0;
2778                 /* fall through */
2779         case DE_VECTOR:
2780         case OF_VECTOR:
2781         case BR_VECTOR:
2782         case UD_VECTOR:
2783         case DF_VECTOR:
2784         case SS_VECTOR:
2785         case GP_VECTOR:
2786         case MF_VECTOR:
2787                 kvm_queue_exception(vcpu, vec);
2788                 return 1;
2789         }
2790         return 0;
2791 }
2792
2793 /*
2794  * Trigger machine check on the host. We assume all the MSRs are already set up
2795  * by the CPU and that we still run on the same CPU as the MCE occurred on.
2796  * We pass a fake environment to the machine check handler because we want
2797  * the guest to be always treated like user space, no matter what context
2798  * it used internally.
2799  */
2800 static void kvm_machine_check(void)
2801 {
2802 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
2803         struct pt_regs regs = {
2804                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
2805                 .flags = X86_EFLAGS_IF,
2806         };
2807
2808         do_machine_check(&regs, 0);
2809 #endif
2810 }
2811
2812 static int handle_machine_check(struct kvm_vcpu *vcpu)
2813 {
2814         /* already handled by vcpu_run */
2815         return 1;
2816 }
2817
2818 static int handle_exception(struct kvm_vcpu *vcpu)
2819 {
2820         struct vcpu_vmx *vmx = to_vmx(vcpu);
2821         struct kvm_run *kvm_run = vcpu->run;
2822         u32 intr_info, ex_no, error_code;
2823         unsigned long cr2, rip, dr6;
2824         u32 vect_info;
2825         enum emulation_result er;
2826
2827         vect_info = vmx->idt_vectoring_info;
2828         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2829
2830         if (is_machine_check(intr_info))
2831                 return handle_machine_check(vcpu);
2832
2833         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
2834             !is_page_fault(intr_info)) {
2835                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2836                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
2837                 vcpu->run->internal.ndata = 2;
2838                 vcpu->run->internal.data[0] = vect_info;
2839                 vcpu->run->internal.data[1] = intr_info;
2840                 return 0;
2841         }
2842
2843         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
2844                 return 1;  /* already handled by vmx_vcpu_run() */
2845
2846         if (is_no_device(intr_info)) {
2847                 vmx_fpu_activate(vcpu);
2848                 return 1;
2849         }
2850
2851         if (is_invalid_opcode(intr_info)) {
2852                 er = emulate_instruction(vcpu, 0, 0, EMULTYPE_TRAP_UD);
2853                 if (er != EMULATE_DONE)
2854                         kvm_queue_exception(vcpu, UD_VECTOR);
2855                 return 1;
2856         }
2857
2858         error_code = 0;
2859         rip = kvm_rip_read(vcpu);
2860         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
2861                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
2862         if (is_page_fault(intr_info)) {
2863                 /* EPT won't cause page fault directly */
2864                 if (enable_ept)
2865                         BUG();
2866                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
2867                 trace_kvm_page_fault(cr2, error_code);
2868
2869                 if (kvm_event_needs_reinjection(vcpu))
2870                         kvm_mmu_unprotect_page_virt(vcpu, cr2);
2871                 return kvm_mmu_page_fault(vcpu, cr2, error_code);
2872         }
2873
2874         if (vmx->rmode.vm86_active &&
2875             handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
2876                                                                 error_code)) {
2877                 if (vcpu->arch.halt_request) {
2878                         vcpu->arch.halt_request = 0;
2879                         return kvm_emulate_halt(vcpu);
2880                 }
2881                 return 1;
2882         }
2883
2884         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
2885         switch (ex_no) {
2886         case DB_VECTOR:
2887                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
2888                 if (!(vcpu->guest_debug &
2889                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
2890                         vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
2891                         kvm_queue_exception(vcpu, DB_VECTOR);
2892                         return 1;
2893                 }
2894                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
2895                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
2896                 /* fall through */
2897         case BP_VECTOR:
2898                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2899                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
2900                 kvm_run->debug.arch.exception = ex_no;
2901                 break;
2902         default:
2903                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
2904                 kvm_run->ex.exception = ex_no;
2905                 kvm_run->ex.error_code = error_code;
2906                 break;
2907         }
2908         return 0;
2909 }
2910
2911 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
2912 {
2913         ++vcpu->stat.irq_exits;
2914         return 1;
2915 }
2916
2917 static int handle_triple_fault(struct kvm_vcpu *vcpu)
2918 {
2919         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
2920         return 0;
2921 }
2922
2923 static int handle_io(struct kvm_vcpu *vcpu)
2924 {
2925         unsigned long exit_qualification;
2926         int size, in, string;
2927         unsigned port;
2928
2929         ++vcpu->stat.io_exits;
2930         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2931         string = (exit_qualification & 16) != 0;
2932
2933         if (string) {
2934                 if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DO_MMIO)
2935                         return 0;
2936                 return 1;
2937         }
2938
2939         size = (exit_qualification & 7) + 1;
2940         in = (exit_qualification & 8) != 0;
2941         port = exit_qualification >> 16;
2942
2943         skip_emulated_instruction(vcpu);
2944         return kvm_emulate_pio(vcpu, in, size, port);
2945 }
2946
2947 static void
2948 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2949 {
2950         /*
2951          * Patch in the VMCALL instruction:
2952          */
2953         hypercall[0] = 0x0f;
2954         hypercall[1] = 0x01;
2955         hypercall[2] = 0xc1;
2956 }
2957
2958 static int handle_cr(struct kvm_vcpu *vcpu)
2959 {
2960         unsigned long exit_qualification, val;
2961         int cr;
2962         int reg;
2963
2964         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2965         cr = exit_qualification & 15;
2966         reg = (exit_qualification >> 8) & 15;
2967         switch ((exit_qualification >> 4) & 3) {
2968         case 0: /* mov to cr */
2969                 val = kvm_register_read(vcpu, reg);
2970                 trace_kvm_cr_write(cr, val);
2971                 switch (cr) {
2972                 case 0:
2973                         kvm_set_cr0(vcpu, val);
2974                         skip_emulated_instruction(vcpu);
2975                         return 1;
2976                 case 3:
2977                         kvm_set_cr3(vcpu, val);
2978                         skip_emulated_instruction(vcpu);
2979                         return 1;
2980                 case 4:
2981                         kvm_set_cr4(vcpu, val);
2982                         skip_emulated_instruction(vcpu);
2983                         return 1;
2984                 case 8: {
2985                                 u8 cr8_prev = kvm_get_cr8(vcpu);
2986                                 u8 cr8 = kvm_register_read(vcpu, reg);
2987                                 kvm_set_cr8(vcpu, cr8);
2988                                 skip_emulated_instruction(vcpu);
2989                                 if (irqchip_in_kernel(vcpu->kvm))
2990                                         return 1;
2991                                 if (cr8_prev <= cr8)
2992                                         return 1;
2993                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2994                                 return 0;
2995                         }
2996                 };
2997                 break;
2998         case 2: /* clts */
2999                 vcpu->arch.cr0 &= ~X86_CR0_TS;
3000                 vmcs_writel(CR0_READ_SHADOW, kvm_read_cr0(vcpu));
3001                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
3002                 skip_emulated_instruction(vcpu);
3003                 return 1;
3004         case 1: /*mov from cr*/
3005                 switch (cr) {
3006                 case 3:
3007                         kvm_register_write(vcpu, reg, vcpu->arch.cr3);
3008                         trace_kvm_cr_read(cr, vcpu->arch.cr3);
3009                         skip_emulated_instruction(vcpu);
3010                         return 1;
3011                 case 8:
3012                         val = kvm_get_cr8(vcpu);
3013                         kvm_register_write(vcpu, reg, val);
3014                         trace_kvm_cr_read(cr, val);
3015                         skip_emulated_instruction(vcpu);
3016                         return 1;
3017                 }
3018                 break;
3019         case 3: /* lmsw */
3020                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
3021                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
3022                 kvm_lmsw(vcpu, val);
3023
3024                 skip_emulated_instruction(vcpu);
3025                 return 1;
3026         default:
3027                 break;
3028         }
3029         vcpu->run->exit_reason = 0;
3030         pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
3031                (int)(exit_qualification >> 4) & 3, cr);
3032         return 0;
3033 }
3034
3035 static int handle_dr(struct kvm_vcpu *vcpu)
3036 {
3037         unsigned long exit_qualification;
3038         unsigned long val;
3039         int dr, reg;
3040
3041         if (!kvm_require_cpl(vcpu, 0))
3042                 return 1;
3043         dr = vmcs_readl(GUEST_DR7);
3044         if (dr & DR7_GD) {
3045                 /*
3046                  * As the vm-exit takes precedence over the debug trap, we
3047                  * need to emulate the latter, either for the host or the
3048                  * guest debugging itself.
3049                  */
3050                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
3051                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
3052                         vcpu->run->debug.arch.dr7 = dr;
3053                         vcpu->run->debug.arch.pc =
3054                                 vmcs_readl(GUEST_CS_BASE) +
3055                                 vmcs_readl(GUEST_RIP);
3056                         vcpu->run->debug.arch.exception = DB_VECTOR;
3057                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
3058                         return 0;
3059                 } else {
3060                         vcpu->arch.dr7 &= ~DR7_GD;
3061                         vcpu->arch.dr6 |= DR6_BD;
3062                         vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
3063                         kvm_queue_exception(vcpu, DB_VECTOR);
3064                         return 1;
3065                 }
3066         }
3067
3068         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3069         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
3070         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
3071         if (exit_qualification & TYPE_MOV_FROM_DR) {
3072                 switch (dr) {
3073                 case 0 ... 3:
3074                         val = vcpu->arch.db[dr];
3075                         break;
3076                 case 6:
3077                         val = vcpu->arch.dr6;
3078                         break;
3079                 case 7:
3080                         val = vcpu->arch.dr7;
3081                         break;
3082                 default:
3083                         val = 0;
3084                 }
3085                 kvm_register_write(vcpu, reg, val);
3086         } else {
3087                 val = vcpu->arch.regs[reg];
3088                 switch (dr) {
3089                 case 0 ... 3:
3090                         vcpu->arch.db[dr] = val;
3091                         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
3092                                 vcpu->arch.eff_db[dr] = val;
3093                         break;
3094                 case 4 ... 5:
3095                         if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
3096                                 kvm_queue_exception(vcpu, UD_VECTOR);
3097                         break;
3098                 case 6:
3099                         if (val & 0xffffffff00000000ULL) {
3100                                 kvm_queue_exception(vcpu, GP_VECTOR);
3101                                 break;
3102                         }
3103                         vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
3104                         break;
3105                 case 7:
3106                         if (val & 0xffffffff00000000ULL) {
3107                                 kvm_queue_exception(vcpu, GP_VECTOR);
3108                                 break;
3109                         }
3110                         vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
3111                         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
3112                                 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
3113                                 vcpu->arch.switch_db_regs =
3114                                         (val & DR7_BP_EN_MASK);
3115                         }
3116                         break;
3117                 }
3118         }
3119         skip_emulated_instruction(vcpu);
3120         return 1;
3121 }
3122
3123 static int handle_cpuid(struct kvm_vcpu *vcpu)
3124 {
3125         kvm_emulate_cpuid(vcpu);
3126         return 1;
3127 }
3128
3129 static int handle_rdmsr(struct kvm_vcpu *vcpu)
3130 {
3131         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3132         u64 data;
3133
3134         if (vmx_get_msr(vcpu, ecx, &data)) {
3135                 kvm_inject_gp(vcpu, 0);
3136                 return 1;
3137         }
3138
3139         trace_kvm_msr_read(ecx, data);
3140
3141         /* FIXME: handling of bits 32:63 of rax, rdx */
3142         vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
3143         vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
3144         skip_emulated_instruction(vcpu);
3145         return 1;
3146 }
3147
3148 static int handle_wrmsr(struct kvm_vcpu *vcpu)
3149 {
3150         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3151         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
3152                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3153
3154         trace_kvm_msr_write(ecx, data);
3155
3156         if (vmx_set_msr(vcpu, ecx, data) != 0) {
3157                 kvm_inject_gp(vcpu, 0);
3158                 return 1;
3159         }
3160
3161         skip_emulated_instruction(vcpu);
3162         return 1;
3163 }
3164
3165 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
3166 {
3167         return 1;
3168 }
3169
3170 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
3171 {
3172         u32 cpu_based_vm_exec_control;
3173
3174         /* clear pending irq */
3175         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3176         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
3177         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3178
3179         ++vcpu->stat.irq_window_exits;
3180
3181         /*
3182          * If the user space waits to inject interrupts, exit as soon as
3183          * possible
3184          */
3185         if (!irqchip_in_kernel(vcpu->kvm) &&
3186             vcpu->run->request_interrupt_window &&
3187             !kvm_cpu_has_interrupt(vcpu)) {
3188                 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3189                 return 0;
3190         }
3191         return 1;
3192 }
3193
3194 static int handle_halt(struct kvm_vcpu *vcpu)
3195 {
3196         skip_emulated_instruction(vcpu);
3197         return kvm_emulate_halt(vcpu);
3198 }
3199
3200 static int handle_vmcall(struct kvm_vcpu *vcpu)
3201 {
3202         skip_emulated_instruction(vcpu);
3203         kvm_emulate_hypercall(vcpu);
3204         return 1;
3205 }
3206
3207 static int handle_vmx_insn(struct kvm_vcpu *vcpu)
3208 {
3209         kvm_queue_exception(vcpu, UD_VECTOR);
3210         return 1;
3211 }
3212
3213 static int handle_invlpg(struct kvm_vcpu *vcpu)
3214 {
3215         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3216
3217         kvm_mmu_invlpg(vcpu, exit_qualification);
3218         skip_emulated_instruction(vcpu);
3219         return 1;
3220 }
3221
3222 static int handle_wbinvd(struct kvm_vcpu *vcpu)
3223 {
3224         skip_emulated_instruction(vcpu);
3225         /* TODO: Add support for VT-d/pass-through device */
3226         return 1;
3227 }
3228
3229 static int handle_apic_access(struct kvm_vcpu *vcpu)
3230 {
3231         unsigned long exit_qualification;
3232         enum emulation_result er;
3233         unsigned long offset;
3234
3235         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3236         offset = exit_qualification & 0xffful;
3237
3238         er = emulate_instruction(vcpu, 0, 0, 0);
3239
3240         if (er !=  EMULATE_DONE) {
3241                 printk(KERN_ERR
3242                        "Fail to handle apic access vmexit! Offset is 0x%lx\n",
3243                        offset);
3244                 return -ENOEXEC;
3245         }
3246         return 1;
3247 }
3248
3249 static int handle_task_switch(struct kvm_vcpu *vcpu)
3250 {
3251         struct vcpu_vmx *vmx = to_vmx(vcpu);
3252         unsigned long exit_qualification;
3253         u16 tss_selector;
3254         int reason, type, idt_v;
3255
3256         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
3257         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
3258
3259         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3260
3261         reason = (u32)exit_qualification >> 30;
3262         if (reason == TASK_SWITCH_GATE && idt_v) {
3263                 switch (type) {
3264                 case INTR_TYPE_NMI_INTR:
3265                         vcpu->arch.nmi_injected = false;
3266                         if (cpu_has_virtual_nmis())
3267                                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3268                                               GUEST_INTR_STATE_NMI);
3269                         break;
3270                 case INTR_TYPE_EXT_INTR:
3271                 case INTR_TYPE_SOFT_INTR:
3272                         kvm_clear_interrupt_queue(vcpu);
3273                         break;
3274                 case INTR_TYPE_HARD_EXCEPTION:
3275                 case INTR_TYPE_SOFT_EXCEPTION:
3276                         kvm_clear_exception_queue(vcpu);
3277                         break;
3278                 default:
3279                         break;
3280                 }
3281         }
3282         tss_selector = exit_qualification;
3283
3284         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
3285                        type != INTR_TYPE_EXT_INTR &&
3286                        type != INTR_TYPE_NMI_INTR))
3287                 skip_emulated_instruction(vcpu);
3288
3289         if (!kvm_task_switch(vcpu, tss_selector, reason))
3290                 return 0;
3291
3292         /* clear all local breakpoint enable flags */
3293         vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
3294
3295         /*
3296          * TODO: What about debug traps on tss switch?
3297          *       Are we supposed to inject them and update dr6?
3298          */
3299
3300         return 1;
3301 }
3302
3303 static int handle_ept_violation(struct kvm_vcpu *vcpu)
3304 {
3305         unsigned long exit_qualification;
3306         gpa_t gpa;
3307         int gla_validity;
3308
3309         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3310
3311         if (exit_qualification & (1 << 6)) {
3312                 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
3313                 return -EINVAL;
3314         }
3315
3316         gla_validity = (exit_qualification >> 7) & 0x3;
3317         if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
3318                 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
3319                 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
3320                         (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
3321                         vmcs_readl(GUEST_LINEAR_ADDRESS));
3322                 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
3323                         (long unsigned int)exit_qualification);
3324                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3325                 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
3326                 return 0;
3327         }
3328
3329         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3330         trace_kvm_page_fault(gpa, exit_qualification);
3331         return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
3332 }
3333
3334 static u64 ept_rsvd_mask(u64 spte, int level)
3335 {
3336         int i;
3337         u64 mask = 0;
3338
3339         for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
3340                 mask |= (1ULL << i);
3341
3342         if (level > 2)
3343                 /* bits 7:3 reserved */
3344                 mask |= 0xf8;
3345         else if (level == 2) {
3346                 if (spte & (1ULL << 7))
3347                         /* 2MB ref, bits 20:12 reserved */
3348                         mask |= 0x1ff000;
3349                 else
3350                         /* bits 6:3 reserved */
3351                         mask |= 0x78;
3352         }
3353
3354         return mask;
3355 }
3356
3357 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
3358                                        int level)
3359 {
3360         printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
3361
3362         /* 010b (write-only) */
3363         WARN_ON((spte & 0x7) == 0x2);
3364
3365         /* 110b (write/execute) */
3366         WARN_ON((spte & 0x7) == 0x6);
3367
3368         /* 100b (execute-only) and value not supported by logical processor */
3369         if (!cpu_has_vmx_ept_execute_only())
3370                 WARN_ON((spte & 0x7) == 0x4);
3371
3372         /* not 000b */
3373         if ((spte & 0x7)) {
3374                 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
3375
3376                 if (rsvd_bits != 0) {
3377                         printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
3378                                          __func__, rsvd_bits);
3379                         WARN_ON(1);
3380                 }
3381
3382                 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
3383                         u64 ept_mem_type = (spte & 0x38) >> 3;
3384
3385                         if (ept_mem_type == 2 || ept_mem_type == 3 ||
3386                             ept_mem_type == 7) {
3387                                 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
3388                                                 __func__, ept_mem_type);
3389                                 WARN_ON(1);
3390                         }
3391                 }
3392         }
3393 }
3394
3395 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
3396 {
3397         u64 sptes[4];
3398         int nr_sptes, i;
3399         gpa_t gpa;
3400
3401         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3402
3403         printk(KERN_ERR "EPT: Misconfiguration.\n");
3404         printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
3405
3406         nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
3407
3408         for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
3409                 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
3410
3411         vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3412         vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
3413
3414         return 0;
3415 }
3416
3417 static int handle_nmi_window(struct kvm_vcpu *vcpu)
3418 {
3419         u32 cpu_based_vm_exec_control;
3420
3421         /* clear pending NMI */
3422         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3423         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
3424         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3425         ++vcpu->stat.nmi_window_exits;
3426
3427         return 1;
3428 }
3429
3430 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
3431 {
3432         struct vcpu_vmx *vmx = to_vmx(vcpu);
3433         enum emulation_result err = EMULATE_DONE;
3434         int ret = 1;
3435
3436         while (!guest_state_valid(vcpu)) {
3437                 err = emulate_instruction(vcpu, 0, 0, 0);
3438
3439                 if (err == EMULATE_DO_MMIO) {
3440                         ret = 0;
3441                         goto out;
3442                 }
3443
3444                 if (err != EMULATE_DONE) {
3445                         kvm_report_emulation_failure(vcpu, "emulation failure");
3446                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3447                         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3448                         vcpu->run->internal.ndata = 0;
3449                         ret = 0;
3450                         goto out;
3451                 }
3452
3453                 if (signal_pending(current))
3454                         goto out;
3455                 if (need_resched())
3456                         schedule();
3457         }
3458
3459         vmx->emulation_required = 0;
3460 out:
3461         return ret;
3462 }
3463
3464 /*
3465  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
3466  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
3467  */
3468 static int handle_pause(struct kvm_vcpu *vcpu)
3469 {
3470         skip_emulated_instruction(vcpu);
3471         kvm_vcpu_on_spin(vcpu);
3472
3473         return 1;
3474 }
3475
3476 static int handle_invalid_op(struct kvm_vcpu *vcpu)
3477 {
3478         kvm_queue_exception(vcpu, UD_VECTOR);
3479         return 1;
3480 }
3481
3482 /*
3483  * The exit handlers return 1 if the exit was handled fully and guest execution
3484  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
3485  * to be done to userspace and return 0.
3486  */
3487 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3488         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
3489         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
3490         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
3491         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
3492         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
3493         [EXIT_REASON_CR_ACCESS]               = handle_cr,
3494         [EXIT_REASON_DR_ACCESS]               = handle_dr,
3495         [EXIT_REASON_CPUID]                   = handle_cpuid,
3496         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
3497         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
3498         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
3499         [EXIT_REASON_HLT]                     = handle_halt,
3500         [EXIT_REASON_INVLPG]                  = handle_invlpg,
3501         [EXIT_REASON_VMCALL]                  = handle_vmcall,
3502         [EXIT_REASON_VMCLEAR]                 = handle_vmx_insn,
3503         [EXIT_REASON_VMLAUNCH]                = handle_vmx_insn,
3504         [EXIT_REASON_VMPTRLD]                 = handle_vmx_insn,
3505         [EXIT_REASON_VMPTRST]                 = handle_vmx_insn,
3506         [EXIT_REASON_VMREAD]                  = handle_vmx_insn,
3507         [EXIT_REASON_VMRESUME]                = handle_vmx_insn,
3508         [EXIT_REASON_VMWRITE]                 = handle_vmx_insn,
3509         [EXIT_REASON_VMOFF]                   = handle_vmx_insn,
3510         [EXIT_REASON_VMON]                    = handle_vmx_insn,
3511         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
3512         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
3513         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
3514         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
3515         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
3516         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
3517         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
3518         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
3519         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_invalid_op,
3520         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_invalid_op,
3521 };
3522
3523 static const int kvm_vmx_max_exit_handlers =
3524         ARRAY_SIZE(kvm_vmx_exit_handlers);
3525
3526 /*
3527  * The guest has exited.  See if we can fix it or if we need userspace
3528  * assistance.
3529  */
3530 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
3531 {
3532         struct vcpu_vmx *vmx = to_vmx(vcpu);
3533         u32 exit_reason = vmx->exit_reason;
3534         u32 vectoring_info = vmx->idt_vectoring_info;
3535
3536         trace_kvm_exit(exit_reason, kvm_rip_read(vcpu));
3537
3538         /* If guest state is invalid, start emulating */
3539         if (vmx->emulation_required && emulate_invalid_guest_state)
3540                 return handle_invalid_guest_state(vcpu);
3541
3542         /* Access CR3 don't cause VMExit in paging mode, so we need
3543          * to sync with guest real CR3. */
3544         if (enable_ept && is_paging(vcpu))
3545                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3546
3547         if (unlikely(vmx->fail)) {
3548                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3549                 vcpu->run->fail_entry.hardware_entry_failure_reason
3550                         = vmcs_read32(VM_INSTRUCTION_ERROR);
3551                 return 0;
3552         }
3553
3554         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
3555                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
3556                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
3557                         exit_reason != EXIT_REASON_TASK_SWITCH))
3558                 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
3559                        "(0x%x) and exit reason is 0x%x\n",
3560                        __func__, vectoring_info, exit_reason);
3561
3562         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
3563                 if (vmx_interrupt_allowed(vcpu)) {
3564                         vmx->soft_vnmi_blocked = 0;
3565                 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
3566                            vcpu->arch.nmi_pending) {
3567                         /*
3568                          * This CPU don't support us in finding the end of an
3569                          * NMI-blocked window if the guest runs with IRQs
3570                          * disabled. So we pull the trigger after 1 s of
3571                          * futile waiting, but inform the user about this.
3572                          */
3573                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
3574                                "state on VCPU %d after 1 s timeout\n",
3575                                __func__, vcpu->vcpu_id);
3576                         vmx->soft_vnmi_blocked = 0;
3577                 }
3578         }
3579
3580         if (exit_reason < kvm_vmx_max_exit_handlers
3581             && kvm_vmx_exit_handlers[exit_reason])
3582                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
3583         else {
3584                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3585                 vcpu->run->hw.hardware_exit_reason = exit_reason;
3586         }
3587         return 0;
3588 }
3589
3590 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3591 {
3592         if (irr == -1 || tpr < irr) {
3593                 vmcs_write32(TPR_THRESHOLD, 0);
3594                 return;
3595         }
3596
3597         vmcs_write32(TPR_THRESHOLD, irr);
3598 }
3599
3600 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
3601 {
3602         u32 exit_intr_info;
3603         u32 idt_vectoring_info = vmx->idt_vectoring_info;
3604         bool unblock_nmi;
3605         u8 vector;
3606         int type;
3607         bool idtv_info_valid;
3608
3609         exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3610
3611         vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
3612
3613         /* Handle machine checks before interrupts are enabled */
3614         if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
3615             || (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI
3616                 && is_machine_check(exit_intr_info)))
3617                 kvm_machine_check();
3618
3619         /* We need to handle NMIs before interrupts are enabled */
3620         if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
3621             (exit_intr_info & INTR_INFO_VALID_MASK))
3622                 asm("int $2");
3623
3624         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
3625
3626         if (cpu_has_virtual_nmis()) {
3627                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
3628                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
3629                 /*
3630                  * SDM 3: 27.7.1.2 (September 2008)
3631                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
3632                  * a guest IRET fault.
3633                  * SDM 3: 23.2.2 (September 2008)
3634                  * Bit 12 is undefined in any of the following cases:
3635                  *  If the VM exit sets the valid bit in the IDT-vectoring
3636                  *   information field.
3637                  *  If the VM exit is due to a double fault.
3638                  */
3639                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
3640                     vector != DF_VECTOR && !idtv_info_valid)
3641                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3642                                       GUEST_INTR_STATE_NMI);
3643         } else if (unlikely(vmx->soft_vnmi_blocked))
3644                 vmx->vnmi_blocked_time +=
3645                         ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
3646
3647         vmx->vcpu.arch.nmi_injected = false;
3648         kvm_clear_exception_queue(&vmx->vcpu);
3649         kvm_clear_interrupt_queue(&vmx->vcpu);
3650
3651         if (!idtv_info_valid)
3652                 return;
3653
3654         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
3655         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
3656
3657         switch (type) {
3658         case INTR_TYPE_NMI_INTR:
3659                 vmx->vcpu.arch.nmi_injected = true;
3660                 /*
3661                  * SDM 3: 27.7.1.2 (September 2008)
3662                  * Clear bit "block by NMI" before VM entry if a NMI
3663                  * delivery faulted.
3664                  */
3665                 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
3666                                 GUEST_INTR_STATE_NMI);
3667                 break;
3668         case INTR_TYPE_SOFT_EXCEPTION:
3669                 vmx->vcpu.arch.event_exit_inst_len =
3670                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3671                 /* fall through */
3672         case INTR_TYPE_HARD_EXCEPTION:
3673                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
3674                         u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE);
3675                         kvm_queue_exception_e(&vmx->vcpu, vector, err);
3676                 } else
3677                         kvm_queue_exception(&vmx->vcpu, vector);
3678                 break;
3679         case INTR_TYPE_SOFT_INTR:
3680                 vmx->vcpu.arch.event_exit_inst_len =
3681                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3682                 /* fall through */
3683         case INTR_TYPE_EXT_INTR:
3684                 kvm_queue_interrupt(&vmx->vcpu, vector,
3685                         type == INTR_TYPE_SOFT_INTR);
3686                 break;
3687         default:
3688                 break;
3689         }
3690 }
3691
3692 /*
3693  * Failure to inject an interrupt should give us the information
3694  * in IDT_VECTORING_INFO_FIELD.  However, if the failure occurs
3695  * when fetching the interrupt redirection bitmap in the real-mode
3696  * tss, this doesn't happen.  So we do it ourselves.
3697  */
3698 static void fixup_rmode_irq(struct vcpu_vmx *vmx)
3699 {
3700         vmx->rmode.irq.pending = 0;
3701         if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
3702                 return;
3703         kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
3704         if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
3705                 vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
3706                 vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
3707                 return;
3708         }
3709         vmx->idt_vectoring_info =
3710                 VECTORING_INFO_VALID_MASK
3711                 | INTR_TYPE_EXT_INTR
3712                 | vmx->rmode.irq.vector;
3713 }
3714
3715 #ifdef CONFIG_X86_64
3716 #define R "r"
3717 #define Q "q"
3718 #else
3719 #define R "e"
3720 #define Q "l"
3721 #endif
3722
3723 static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
3724 {
3725         struct vcpu_vmx *vmx = to_vmx(vcpu);
3726
3727         /* Record the guest's net vcpu time for enforced NMI injections. */
3728         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
3729                 vmx->entry_time = ktime_get();
3730
3731         /* Don't enter VMX if guest state is invalid, let the exit handler
3732            start emulation until we arrive back to a valid state */
3733         if (vmx->emulation_required && emulate_invalid_guest_state)
3734                 return;
3735
3736         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
3737                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
3738         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
3739                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
3740
3741         /* When single-stepping over STI and MOV SS, we must clear the
3742          * corresponding interruptibility bits in the guest state. Otherwise
3743          * vmentry fails as it then expects bit 14 (BS) in pending debug
3744          * exceptions being set, but that's not correct for the guest debugging
3745          * case. */
3746         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3747                 vmx_set_interrupt_shadow(vcpu, 0);
3748
3749         /*
3750          * Loading guest fpu may have cleared host cr0.ts
3751          */
3752         vmcs_writel(HOST_CR0, read_cr0());
3753
3754         if (vcpu->arch.switch_db_regs)
3755                 set_debugreg(vcpu->arch.dr6, 6);
3756
3757         asm(
3758                 /* Store host registers */
3759                 "push %%"R"dx; push %%"R"bp;"
3760                 "push %%"R"cx \n\t"
3761                 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
3762                 "je 1f \n\t"
3763                 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
3764                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
3765                 "1: \n\t"
3766                 /* Reload cr2 if changed */
3767                 "mov %c[cr2](%0), %%"R"ax \n\t"
3768                 "mov %%cr2, %%"R"dx \n\t"
3769                 "cmp %%"R"ax, %%"R"dx \n\t"
3770                 "je 2f \n\t"
3771                 "mov %%"R"ax, %%cr2 \n\t"
3772                 "2: \n\t"
3773                 /* Check if vmlaunch of vmresume is needed */
3774                 "cmpl $0, %c[launched](%0) \n\t"
3775                 /* Load guest registers.  Don't clobber flags. */
3776                 "mov %c[rax](%0), %%"R"ax \n\t"
3777                 "mov %c[rbx](%0), %%"R"bx \n\t"
3778                 "mov %c[rdx](%0), %%"R"dx \n\t"
3779                 "mov %c[rsi](%0), %%"R"si \n\t"
3780                 "mov %c[rdi](%0), %%"R"di \n\t"
3781                 "mov %c[rbp](%0), %%"R"bp \n\t"
3782 #ifdef CONFIG_X86_64
3783                 "mov %c[r8](%0),  %%r8  \n\t"
3784                 "mov %c[r9](%0),  %%r9  \n\t"
3785                 "mov %c[r10](%0), %%r10 \n\t"
3786                 "mov %c[r11](%0), %%r11 \n\t"
3787                 "mov %c[r12](%0), %%r12 \n\t"
3788                 "mov %c[r13](%0), %%r13 \n\t"
3789                 "mov %c[r14](%0), %%r14 \n\t"
3790                 "mov %c[r15](%0), %%r15 \n\t"
3791 #endif
3792                 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
3793
3794                 /* Enter guest mode */
3795                 "jne .Llaunched \n\t"
3796                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
3797                 "jmp .Lkvm_vmx_return \n\t"
3798                 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
3799                 ".Lkvm_vmx_return: "
3800                 /* Save guest registers, load host registers, keep flags */
3801                 "xchg %0,     (%%"R"sp) \n\t"
3802                 "mov %%"R"ax, %c[rax](%0) \n\t"
3803                 "mov %%"R"bx, %c[rbx](%0) \n\t"
3804                 "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
3805                 "mov %%"R"dx, %c[rdx](%0) \n\t"
3806                 "mov %%"R"si, %c[rsi](%0) \n\t"
3807                 "mov %%"R"di, %c[rdi](%0) \n\t"
3808                 "mov %%"R"bp, %c[rbp](%0) \n\t"
3809 #ifdef CONFIG_X86_64
3810                 "mov %%r8,  %c[r8](%0) \n\t"
3811                 "mov %%r9,  %c[r9](%0) \n\t"
3812                 "mov %%r10, %c[r10](%0) \n\t"
3813                 "mov %%r11, %c[r11](%0) \n\t"
3814                 "mov %%r12, %c[r12](%0) \n\t"
3815                 "mov %%r13, %c[r13](%0) \n\t"
3816                 "mov %%r14, %c[r14](%0) \n\t"
3817                 "mov %%r15, %c[r15](%0) \n\t"
3818 #endif
3819                 "mov %%cr2, %%"R"ax   \n\t"
3820                 "mov %%"R"ax, %c[cr2](%0) \n\t"
3821
3822                 "pop  %%"R"bp; pop  %%"R"bp; pop  %%"R"dx \n\t"
3823                 "setbe %c[fail](%0) \n\t"
3824               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
3825                 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
3826                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
3827                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
3828                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
3829                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
3830                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
3831                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
3832                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
3833                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
3834                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
3835 #ifdef CONFIG_X86_64
3836                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
3837                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
3838                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
3839                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
3840                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
3841                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
3842                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
3843                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
3844 #endif
3845                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
3846               : "cc", "memory"
3847                 , R"bx", R"di", R"si"
3848 #ifdef CONFIG_X86_64
3849                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
3850 #endif
3851               );
3852
3853         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
3854                                   | (1 << VCPU_EXREG_PDPTR));
3855         vcpu->arch.regs_dirty = 0;
3856
3857         if (vcpu->arch.switch_db_regs)
3858                 get_debugreg(vcpu->arch.dr6, 6);
3859
3860         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
3861         if (vmx->rmode.irq.pending)
3862                 fixup_rmode_irq(vmx);
3863
3864         asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
3865         vmx->launched = 1;
3866
3867         vmx_complete_interrupts(vmx);
3868 }
3869
3870 #undef R
3871 #undef Q
3872
3873 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
3874 {
3875         struct vcpu_vmx *vmx = to_vmx(vcpu);
3876
3877         if (vmx->vmcs) {
3878                 vcpu_clear(vmx);
3879                 free_vmcs(vmx->vmcs);
3880                 vmx->vmcs = NULL;
3881         }
3882 }
3883
3884 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
3885 {
3886         struct vcpu_vmx *vmx = to_vmx(vcpu);
3887
3888         spin_lock(&vmx_vpid_lock);
3889         if (vmx->vpid != 0)
3890                 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3891         spin_unlock(&vmx_vpid_lock);
3892         vmx_free_vmcs(vcpu);
3893         kfree(vmx->guest_msrs);
3894         kvm_vcpu_uninit(vcpu);
3895         kmem_cache_free(kvm_vcpu_cache, vmx);
3896 }
3897
3898 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
3899 {
3900         int err;
3901         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3902         int cpu;
3903
3904         if (!vmx)
3905                 return ERR_PTR(-ENOMEM);
3906
3907         allocate_vpid(vmx);
3908
3909         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
3910         if (err)
3911                 goto free_vcpu;
3912
3913         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3914         if (!vmx->guest_msrs) {
3915                 err = -ENOMEM;
3916                 goto uninit_vcpu;
3917         }
3918
3919         vmx->vmcs = alloc_vmcs();
3920         if (!vmx->vmcs)
3921                 goto free_msrs;
3922
3923         vmcs_clear(vmx->vmcs);
3924
3925         cpu = get_cpu();
3926         vmx_vcpu_load(&vmx->vcpu, cpu);
3927         err = vmx_vcpu_setup(vmx);
3928         vmx_vcpu_put(&vmx->vcpu);
3929         put_cpu();
3930         if (err)
3931                 goto free_vmcs;
3932         if (vm_need_virtualize_apic_accesses(kvm))
3933                 if (alloc_apic_access_page(kvm) != 0)
3934                         goto free_vmcs;
3935
3936         if (enable_ept) {
3937                 if (!kvm->arch.ept_identity_map_addr)
3938                         kvm->arch.ept_identity_map_addr =
3939                                 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3940                 if (alloc_identity_pagetable(kvm) != 0)
3941                         goto free_vmcs;
3942         }
3943
3944         return &vmx->vcpu;
3945
3946 free_vmcs:
3947         free_vmcs(vmx->vmcs);
3948 free_msrs:
3949         kfree(vmx->guest_msrs);
3950 uninit_vcpu:
3951         kvm_vcpu_uninit(&vmx->vcpu);
3952 free_vcpu:
3953         kmem_cache_free(kvm_vcpu_cache, vmx);
3954         return ERR_PTR(err);
3955 }
3956
3957 static void __init vmx_check_processor_compat(void *rtn)
3958 {
3959         struct vmcs_config vmcs_conf;
3960
3961         *(int *)rtn = 0;
3962         if (setup_vmcs_config(&vmcs_conf) < 0)
3963                 *(int *)rtn = -EIO;
3964         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
3965                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
3966                                 smp_processor_id());
3967                 *(int *)rtn = -EIO;
3968         }
3969 }
3970
3971 static int get_ept_level(void)
3972 {
3973         return VMX_EPT_DEFAULT_GAW + 1;
3974 }
3975
3976 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3977 {
3978         u64 ret;
3979
3980         /* For VT-d and EPT combination
3981          * 1. MMIO: always map as UC
3982          * 2. EPT with VT-d:
3983          *   a. VT-d without snooping control feature: can't guarantee the
3984          *      result, try to trust guest.
3985          *   b. VT-d with snooping control feature: snooping control feature of
3986          *      VT-d engine can guarantee the cache correctness. Just set it
3987          *      to WB to keep consistent with host. So the same as item 3.
3988          * 3. EPT without VT-d: always map as WB and set IGMT=1 to keep
3989          *    consistent with host MTRR
3990          */
3991         if (is_mmio)
3992                 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
3993         else if (vcpu->kvm->arch.iommu_domain &&
3994                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
3995                 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
3996                       VMX_EPT_MT_EPTE_SHIFT;
3997         else
3998                 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
3999                         | VMX_EPT_IGMT_BIT;
4000
4001         return ret;
4002 }
4003
4004 #define _ER(x) { EXIT_REASON_##x, #x }
4005
4006 static const struct trace_print_flags vmx_exit_reasons_str[] = {
4007         _ER(EXCEPTION_NMI),
4008         _ER(EXTERNAL_INTERRUPT),
4009         _ER(TRIPLE_FAULT),
4010         _ER(PENDING_INTERRUPT),
4011         _ER(NMI_WINDOW),
4012         _ER(TASK_SWITCH),
4013         _ER(CPUID),
4014         _ER(HLT),
4015         _ER(INVLPG),
4016         _ER(RDPMC),
4017         _ER(RDTSC),
4018         _ER(VMCALL),
4019         _ER(VMCLEAR),
4020         _ER(VMLAUNCH),
4021         _ER(VMPTRLD),
4022         _ER(VMPTRST),
4023         _ER(VMREAD),
4024         _ER(VMRESUME),
4025         _ER(VMWRITE),
4026         _ER(VMOFF),
4027         _ER(VMON),
4028         _ER(CR_ACCESS),
4029         _ER(DR_ACCESS),
4030         _ER(IO_INSTRUCTION),
4031         _ER(MSR_READ),
4032         _ER(MSR_WRITE),
4033         _ER(MWAIT_INSTRUCTION),
4034         _ER(MONITOR_INSTRUCTION),
4035         _ER(PAUSE_INSTRUCTION),
4036         _ER(MCE_DURING_VMENTRY),
4037         _ER(TPR_BELOW_THRESHOLD),
4038         _ER(APIC_ACCESS),
4039         _ER(EPT_VIOLATION),
4040         _ER(EPT_MISCONFIG),
4041         _ER(WBINVD),
4042         { -1, NULL }
4043 };
4044
4045 #undef _ER
4046
4047 static int vmx_get_lpage_level(void)
4048 {
4049         if (enable_ept && !cpu_has_vmx_ept_1g_page())
4050                 return PT_DIRECTORY_LEVEL;
4051         else
4052                 /* For shadow and EPT supported 1GB page */
4053                 return PT_PDPE_LEVEL;
4054 }
4055
4056 static inline u32 bit(int bitno)
4057 {
4058         return 1 << (bitno & 31);
4059 }
4060
4061 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
4062 {
4063         struct kvm_cpuid_entry2 *best;
4064         struct vcpu_vmx *vmx = to_vmx(vcpu);
4065         u32 exec_control;
4066
4067         vmx->rdtscp_enabled = false;
4068         if (vmx_rdtscp_supported()) {
4069                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
4070                 if (exec_control & SECONDARY_EXEC_RDTSCP) {
4071                         best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
4072                         if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
4073                                 vmx->rdtscp_enabled = true;
4074                         else {
4075                                 exec_control &= ~SECONDARY_EXEC_RDTSCP;
4076                                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4077                                                 exec_control);
4078                         }
4079                 }
4080         }
4081 }
4082
4083 static struct kvm_x86_ops vmx_x86_ops = {
4084         .cpu_has_kvm_support = cpu_has_kvm_support,
4085         .disabled_by_bios = vmx_disabled_by_bios,
4086         .hardware_setup = hardware_setup,
4087         .hardware_unsetup = hardware_unsetup,
4088         .check_processor_compatibility = vmx_check_processor_compat,
4089         .hardware_enable = hardware_enable,
4090         .hardware_disable = hardware_disable,
4091         .cpu_has_accelerated_tpr = report_flexpriority,
4092
4093         .vcpu_create = vmx_create_vcpu,
4094         .vcpu_free = vmx_free_vcpu,
4095         .vcpu_reset = vmx_vcpu_reset,
4096
4097         .prepare_guest_switch = vmx_save_host_state,
4098         .vcpu_load = vmx_vcpu_load,
4099         .vcpu_put = vmx_vcpu_put,
4100
4101         .set_guest_debug = set_guest_debug,
4102         .get_msr = vmx_get_msr,
4103         .set_msr = vmx_set_msr,
4104         .get_segment_base = vmx_get_segment_base,
4105         .get_segment = vmx_get_segment,
4106         .set_segment = vmx_set_segment,
4107         .get_cpl = vmx_get_cpl,
4108         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
4109         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
4110         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
4111         .set_cr0 = vmx_set_cr0,
4112         .set_cr3 = vmx_set_cr3,
4113         .set_cr4 = vmx_set_cr4,
4114         .set_efer = vmx_set_efer,
4115         .get_idt = vmx_get_idt,
4116         .set_idt = vmx_set_idt,
4117         .get_gdt = vmx_get_gdt,
4118         .set_gdt = vmx_set_gdt,
4119         .cache_reg = vmx_cache_reg,
4120         .get_rflags = vmx_get_rflags,
4121         .set_rflags = vmx_set_rflags,
4122         .fpu_deactivate = vmx_fpu_deactivate,
4123
4124         .tlb_flush = vmx_flush_tlb,
4125
4126         .run = vmx_vcpu_run,
4127         .handle_exit = vmx_handle_exit,
4128         .skip_emulated_instruction = skip_emulated_instruction,
4129         .set_interrupt_shadow = vmx_set_interrupt_shadow,
4130         .get_interrupt_shadow = vmx_get_interrupt_shadow,
4131         .patch_hypercall = vmx_patch_hypercall,
4132         .set_irq = vmx_inject_irq,
4133         .set_nmi = vmx_inject_nmi,
4134         .queue_exception = vmx_queue_exception,
4135         .interrupt_allowed = vmx_interrupt_allowed,
4136         .nmi_allowed = vmx_nmi_allowed,
4137         .get_nmi_mask = vmx_get_nmi_mask,
4138         .set_nmi_mask = vmx_set_nmi_mask,
4139         .enable_nmi_window = enable_nmi_window,
4140         .enable_irq_window = enable_irq_window,
4141         .update_cr8_intercept = update_cr8_intercept,
4142
4143         .set_tss_addr = vmx_set_tss_addr,
4144         .get_tdp_level = get_ept_level,
4145         .get_mt_mask = vmx_get_mt_mask,
4146
4147         .exit_reasons_str = vmx_exit_reasons_str,
4148         .get_lpage_level = vmx_get_lpage_level,
4149
4150         .cpuid_update = vmx_cpuid_update,
4151
4152         .rdtscp_supported = vmx_rdtscp_supported,
4153 };
4154
4155 static int __init vmx_init(void)
4156 {
4157         int r, i;
4158
4159         rdmsrl_safe(MSR_EFER, &host_efer);
4160
4161         for (i = 0; i < NR_VMX_MSR; ++i)
4162                 kvm_define_shared_msr(i, vmx_msr_index[i]);
4163
4164         vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
4165         if (!vmx_io_bitmap_a)
4166                 return -ENOMEM;
4167
4168         vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
4169         if (!vmx_io_bitmap_b) {
4170                 r = -ENOMEM;
4171                 goto out;
4172         }
4173
4174         vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
4175         if (!vmx_msr_bitmap_legacy) {
4176                 r = -ENOMEM;
4177                 goto out1;
4178         }
4179
4180         vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
4181         if (!vmx_msr_bitmap_longmode) {
4182                 r = -ENOMEM;
4183                 goto out2;
4184         }
4185
4186         /*
4187          * Allow direct access to the PC debug port (it is often used for I/O
4188          * delays, but the vmexits simply slow things down).
4189          */
4190         memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
4191         clear_bit(0x80, vmx_io_bitmap_a);
4192
4193         memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
4194
4195         memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
4196         memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
4197
4198         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
4199
4200         r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
4201         if (r)
4202                 goto out3;
4203
4204         vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
4205         vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
4206         vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
4207         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
4208         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
4209         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
4210
4211         if (enable_ept) {
4212                 bypass_guest_pf = 0;
4213                 kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
4214                         VMX_EPT_WRITABLE_MASK);
4215                 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
4216                                 VMX_EPT_EXECUTABLE_MASK);
4217                 kvm_enable_tdp();
4218         } else
4219                 kvm_disable_tdp();
4220
4221         if (bypass_guest_pf)
4222                 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
4223
4224         return 0;
4225
4226 out3:
4227         free_page((unsigned long)vmx_msr_bitmap_longmode);
4228 out2:
4229         free_page((unsigned long)vmx_msr_bitmap_legacy);
4230 out1:
4231         free_page((unsigned long)vmx_io_bitmap_b);
4232 out:
4233         free_page((unsigned long)vmx_io_bitmap_a);
4234         return r;
4235 }
4236
4237 static void __exit vmx_exit(void)
4238 {
4239         free_page((unsigned long)vmx_msr_bitmap_legacy);
4240         free_page((unsigned long)vmx_msr_bitmap_longmode);
4241         free_page((unsigned long)vmx_io_bitmap_b);
4242         free_page((unsigned long)vmx_io_bitmap_a);
4243
4244         kvm_exit();
4245 }
4246
4247 module_init(vmx_init)
4248 module_exit(vmx_exit)