KVM: VMX: When using ept, allow the guest to own cr4.pge
[safe/jmp/linux-2.6] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "irq.h"
19 #include "mmu.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/mm.h>
25 #include <linux/highmem.h>
26 #include <linux/sched.h>
27 #include <linux/moduleparam.h>
28 #include <linux/ftrace_event.h>
29 #include "kvm_cache_regs.h"
30 #include "x86.h"
31
32 #include <asm/io.h>
33 #include <asm/desc.h>
34 #include <asm/vmx.h>
35 #include <asm/virtext.h>
36 #include <asm/mce.h>
37
38 #include "trace.h"
39
40 #define __ex(x) __kvm_handle_fault_on_reboot(x)
41
42 MODULE_AUTHOR("Qumranet");
43 MODULE_LICENSE("GPL");
44
45 static int __read_mostly bypass_guest_pf = 1;
46 module_param(bypass_guest_pf, bool, S_IRUGO);
47
48 static int __read_mostly enable_vpid = 1;
49 module_param_named(vpid, enable_vpid, bool, 0444);
50
51 static int __read_mostly flexpriority_enabled = 1;
52 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
53
54 static int __read_mostly enable_ept = 1;
55 module_param_named(ept, enable_ept, bool, S_IRUGO);
56
57 static int __read_mostly enable_unrestricted_guest = 1;
58 module_param_named(unrestricted_guest,
59                         enable_unrestricted_guest, bool, S_IRUGO);
60
61 static int __read_mostly emulate_invalid_guest_state = 0;
62 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
63
64 #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST                           \
65         (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
66 #define KVM_GUEST_CR0_MASK                                              \
67         (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
68 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST                         \
69         (X86_CR0_WP | X86_CR0_NE | X86_CR0_TS | X86_CR0_MP)
70 #define KVM_VM_CR0_ALWAYS_ON                                            \
71         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
72 #define KVM_CR4_GUEST_OWNED_BITS                                      \
73         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
74          | X86_CR4_OSXMMEXCPT)
75
76 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
77 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
78
79 /*
80  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
81  * ple_gap:    upper bound on the amount of time between two successive
82  *             executions of PAUSE in a loop. Also indicate if ple enabled.
83  *             According to test, this time is usually small than 41 cycles.
84  * ple_window: upper bound on the amount of time a guest is allowed to execute
85  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
86  *             less than 2^12 cycles
87  * Time is measured based on a counter that runs at the same rate as the TSC,
88  * refer SDM volume 3b section 21.6.13 & 22.1.3.
89  */
90 #define KVM_VMX_DEFAULT_PLE_GAP    41
91 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
92 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
93 module_param(ple_gap, int, S_IRUGO);
94
95 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
96 module_param(ple_window, int, S_IRUGO);
97
98 struct vmcs {
99         u32 revision_id;
100         u32 abort;
101         char data[0];
102 };
103
104 struct shared_msr_entry {
105         unsigned index;
106         u64 data;
107         u64 mask;
108 };
109
110 struct vcpu_vmx {
111         struct kvm_vcpu       vcpu;
112         struct list_head      local_vcpus_link;
113         unsigned long         host_rsp;
114         int                   launched;
115         u8                    fail;
116         u32                   idt_vectoring_info;
117         struct shared_msr_entry *guest_msrs;
118         int                   nmsrs;
119         int                   save_nmsrs;
120 #ifdef CONFIG_X86_64
121         u64                   msr_host_kernel_gs_base;
122         u64                   msr_guest_kernel_gs_base;
123 #endif
124         struct vmcs          *vmcs;
125         struct {
126                 int           loaded;
127                 u16           fs_sel, gs_sel, ldt_sel;
128                 int           gs_ldt_reload_needed;
129                 int           fs_reload_needed;
130         } host_state;
131         struct {
132                 int vm86_active;
133                 u8 save_iopl;
134                 struct kvm_save_segment {
135                         u16 selector;
136                         unsigned long base;
137                         u32 limit;
138                         u32 ar;
139                 } tr, es, ds, fs, gs;
140                 struct {
141                         bool pending;
142                         u8 vector;
143                         unsigned rip;
144                 } irq;
145         } rmode;
146         int vpid;
147         bool emulation_required;
148
149         /* Support for vnmi-less CPUs */
150         int soft_vnmi_blocked;
151         ktime_t entry_time;
152         s64 vnmi_blocked_time;
153         u32 exit_reason;
154 };
155
156 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
157 {
158         return container_of(vcpu, struct vcpu_vmx, vcpu);
159 }
160
161 static int init_rmode(struct kvm *kvm);
162 static u64 construct_eptp(unsigned long root_hpa);
163
164 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
165 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
166 static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
167
168 static unsigned long *vmx_io_bitmap_a;
169 static unsigned long *vmx_io_bitmap_b;
170 static unsigned long *vmx_msr_bitmap_legacy;
171 static unsigned long *vmx_msr_bitmap_longmode;
172
173 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
174 static DEFINE_SPINLOCK(vmx_vpid_lock);
175
176 static struct vmcs_config {
177         int size;
178         int order;
179         u32 revision_id;
180         u32 pin_based_exec_ctrl;
181         u32 cpu_based_exec_ctrl;
182         u32 cpu_based_2nd_exec_ctrl;
183         u32 vmexit_ctrl;
184         u32 vmentry_ctrl;
185 } vmcs_config;
186
187 static struct vmx_capability {
188         u32 ept;
189         u32 vpid;
190 } vmx_capability;
191
192 #define VMX_SEGMENT_FIELD(seg)                                  \
193         [VCPU_SREG_##seg] = {                                   \
194                 .selector = GUEST_##seg##_SELECTOR,             \
195                 .base = GUEST_##seg##_BASE,                     \
196                 .limit = GUEST_##seg##_LIMIT,                   \
197                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
198         }
199
200 static struct kvm_vmx_segment_field {
201         unsigned selector;
202         unsigned base;
203         unsigned limit;
204         unsigned ar_bytes;
205 } kvm_vmx_segment_fields[] = {
206         VMX_SEGMENT_FIELD(CS),
207         VMX_SEGMENT_FIELD(DS),
208         VMX_SEGMENT_FIELD(ES),
209         VMX_SEGMENT_FIELD(FS),
210         VMX_SEGMENT_FIELD(GS),
211         VMX_SEGMENT_FIELD(SS),
212         VMX_SEGMENT_FIELD(TR),
213         VMX_SEGMENT_FIELD(LDTR),
214 };
215
216 static u64 host_efer;
217
218 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
219
220 /*
221  * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
222  * away by decrementing the array size.
223  */
224 static const u32 vmx_msr_index[] = {
225 #ifdef CONFIG_X86_64
226         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
227 #endif
228         MSR_EFER, MSR_K6_STAR,
229 };
230 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
231
232 static inline int is_page_fault(u32 intr_info)
233 {
234         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
235                              INTR_INFO_VALID_MASK)) ==
236                 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
237 }
238
239 static inline int is_no_device(u32 intr_info)
240 {
241         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
242                              INTR_INFO_VALID_MASK)) ==
243                 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
244 }
245
246 static inline int is_invalid_opcode(u32 intr_info)
247 {
248         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
249                              INTR_INFO_VALID_MASK)) ==
250                 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
251 }
252
253 static inline int is_external_interrupt(u32 intr_info)
254 {
255         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
256                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
257 }
258
259 static inline int is_machine_check(u32 intr_info)
260 {
261         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
262                              INTR_INFO_VALID_MASK)) ==
263                 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
264 }
265
266 static inline int cpu_has_vmx_msr_bitmap(void)
267 {
268         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
269 }
270
271 static inline int cpu_has_vmx_tpr_shadow(void)
272 {
273         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
274 }
275
276 static inline int vm_need_tpr_shadow(struct kvm *kvm)
277 {
278         return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
279 }
280
281 static inline int cpu_has_secondary_exec_ctrls(void)
282 {
283         return vmcs_config.cpu_based_exec_ctrl &
284                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
285 }
286
287 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
288 {
289         return vmcs_config.cpu_based_2nd_exec_ctrl &
290                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
291 }
292
293 static inline bool cpu_has_vmx_flexpriority(void)
294 {
295         return cpu_has_vmx_tpr_shadow() &&
296                 cpu_has_vmx_virtualize_apic_accesses();
297 }
298
299 static inline bool cpu_has_vmx_ept_execute_only(void)
300 {
301         return !!(vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT);
302 }
303
304 static inline bool cpu_has_vmx_eptp_uncacheable(void)
305 {
306         return !!(vmx_capability.ept & VMX_EPTP_UC_BIT);
307 }
308
309 static inline bool cpu_has_vmx_eptp_writeback(void)
310 {
311         return !!(vmx_capability.ept & VMX_EPTP_WB_BIT);
312 }
313
314 static inline bool cpu_has_vmx_ept_2m_page(void)
315 {
316         return !!(vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT);
317 }
318
319 static inline int cpu_has_vmx_invept_individual_addr(void)
320 {
321         return !!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT);
322 }
323
324 static inline int cpu_has_vmx_invept_context(void)
325 {
326         return !!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT);
327 }
328
329 static inline int cpu_has_vmx_invept_global(void)
330 {
331         return !!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT);
332 }
333
334 static inline int cpu_has_vmx_ept(void)
335 {
336         return vmcs_config.cpu_based_2nd_exec_ctrl &
337                 SECONDARY_EXEC_ENABLE_EPT;
338 }
339
340 static inline int cpu_has_vmx_unrestricted_guest(void)
341 {
342         return vmcs_config.cpu_based_2nd_exec_ctrl &
343                 SECONDARY_EXEC_UNRESTRICTED_GUEST;
344 }
345
346 static inline int cpu_has_vmx_ple(void)
347 {
348         return vmcs_config.cpu_based_2nd_exec_ctrl &
349                 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
350 }
351
352 static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
353 {
354         return flexpriority_enabled &&
355                 (cpu_has_vmx_virtualize_apic_accesses()) &&
356                 (irqchip_in_kernel(kvm));
357 }
358
359 static inline int cpu_has_vmx_vpid(void)
360 {
361         return vmcs_config.cpu_based_2nd_exec_ctrl &
362                 SECONDARY_EXEC_ENABLE_VPID;
363 }
364
365 static inline int cpu_has_virtual_nmis(void)
366 {
367         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
368 }
369
370 static inline bool report_flexpriority(void)
371 {
372         return flexpriority_enabled;
373 }
374
375 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
376 {
377         int i;
378
379         for (i = 0; i < vmx->nmsrs; ++i)
380                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
381                         return i;
382         return -1;
383 }
384
385 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
386 {
387     struct {
388         u64 vpid : 16;
389         u64 rsvd : 48;
390         u64 gva;
391     } operand = { vpid, 0, gva };
392
393     asm volatile (__ex(ASM_VMX_INVVPID)
394                   /* CF==1 or ZF==1 --> rc = -1 */
395                   "; ja 1f ; ud2 ; 1:"
396                   : : "a"(&operand), "c"(ext) : "cc", "memory");
397 }
398
399 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
400 {
401         struct {
402                 u64 eptp, gpa;
403         } operand = {eptp, gpa};
404
405         asm volatile (__ex(ASM_VMX_INVEPT)
406                         /* CF==1 or ZF==1 --> rc = -1 */
407                         "; ja 1f ; ud2 ; 1:\n"
408                         : : "a" (&operand), "c" (ext) : "cc", "memory");
409 }
410
411 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
412 {
413         int i;
414
415         i = __find_msr_index(vmx, msr);
416         if (i >= 0)
417                 return &vmx->guest_msrs[i];
418         return NULL;
419 }
420
421 static void vmcs_clear(struct vmcs *vmcs)
422 {
423         u64 phys_addr = __pa(vmcs);
424         u8 error;
425
426         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
427                       : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
428                       : "cc", "memory");
429         if (error)
430                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
431                        vmcs, phys_addr);
432 }
433
434 static void __vcpu_clear(void *arg)
435 {
436         struct vcpu_vmx *vmx = arg;
437         int cpu = raw_smp_processor_id();
438
439         if (vmx->vcpu.cpu == cpu)
440                 vmcs_clear(vmx->vmcs);
441         if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
442                 per_cpu(current_vmcs, cpu) = NULL;
443         rdtscll(vmx->vcpu.arch.host_tsc);
444         list_del(&vmx->local_vcpus_link);
445         vmx->vcpu.cpu = -1;
446         vmx->launched = 0;
447 }
448
449 static void vcpu_clear(struct vcpu_vmx *vmx)
450 {
451         if (vmx->vcpu.cpu == -1)
452                 return;
453         smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
454 }
455
456 static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
457 {
458         if (vmx->vpid == 0)
459                 return;
460
461         __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
462 }
463
464 static inline void ept_sync_global(void)
465 {
466         if (cpu_has_vmx_invept_global())
467                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
468 }
469
470 static inline void ept_sync_context(u64 eptp)
471 {
472         if (enable_ept) {
473                 if (cpu_has_vmx_invept_context())
474                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
475                 else
476                         ept_sync_global();
477         }
478 }
479
480 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
481 {
482         if (enable_ept) {
483                 if (cpu_has_vmx_invept_individual_addr())
484                         __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
485                                         eptp, gpa);
486                 else
487                         ept_sync_context(eptp);
488         }
489 }
490
491 static unsigned long vmcs_readl(unsigned long field)
492 {
493         unsigned long value;
494
495         asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
496                       : "=a"(value) : "d"(field) : "cc");
497         return value;
498 }
499
500 static u16 vmcs_read16(unsigned long field)
501 {
502         return vmcs_readl(field);
503 }
504
505 static u32 vmcs_read32(unsigned long field)
506 {
507         return vmcs_readl(field);
508 }
509
510 static u64 vmcs_read64(unsigned long field)
511 {
512 #ifdef CONFIG_X86_64
513         return vmcs_readl(field);
514 #else
515         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
516 #endif
517 }
518
519 static noinline void vmwrite_error(unsigned long field, unsigned long value)
520 {
521         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
522                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
523         dump_stack();
524 }
525
526 static void vmcs_writel(unsigned long field, unsigned long value)
527 {
528         u8 error;
529
530         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
531                        : "=q"(error) : "a"(value), "d"(field) : "cc");
532         if (unlikely(error))
533                 vmwrite_error(field, value);
534 }
535
536 static void vmcs_write16(unsigned long field, u16 value)
537 {
538         vmcs_writel(field, value);
539 }
540
541 static void vmcs_write32(unsigned long field, u32 value)
542 {
543         vmcs_writel(field, value);
544 }
545
546 static void vmcs_write64(unsigned long field, u64 value)
547 {
548         vmcs_writel(field, value);
549 #ifndef CONFIG_X86_64
550         asm volatile ("");
551         vmcs_writel(field+1, value >> 32);
552 #endif
553 }
554
555 static void vmcs_clear_bits(unsigned long field, u32 mask)
556 {
557         vmcs_writel(field, vmcs_readl(field) & ~mask);
558 }
559
560 static void vmcs_set_bits(unsigned long field, u32 mask)
561 {
562         vmcs_writel(field, vmcs_readl(field) | mask);
563 }
564
565 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
566 {
567         u32 eb;
568
569         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR);
570         if (!vcpu->fpu_active)
571                 eb |= 1u << NM_VECTOR;
572         /*
573          * Unconditionally intercept #DB so we can maintain dr6 without
574          * reading it every exit.
575          */
576         eb |= 1u << DB_VECTOR;
577         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
578                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
579                         eb |= 1u << BP_VECTOR;
580         }
581         if (to_vmx(vcpu)->rmode.vm86_active)
582                 eb = ~0;
583         if (enable_ept)
584                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
585         vmcs_write32(EXCEPTION_BITMAP, eb);
586 }
587
588 static void reload_tss(void)
589 {
590         /*
591          * VT restores TR but not its size.  Useless.
592          */
593         struct descriptor_table gdt;
594         struct desc_struct *descs;
595
596         kvm_get_gdt(&gdt);
597         descs = (void *)gdt.base;
598         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
599         load_TR_desc();
600 }
601
602 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
603 {
604         u64 guest_efer;
605         u64 ignore_bits;
606
607         guest_efer = vmx->vcpu.arch.shadow_efer;
608
609         /*
610          * NX is emulated; LMA and LME handled by hardware; SCE meaninless
611          * outside long mode
612          */
613         ignore_bits = EFER_NX | EFER_SCE;
614 #ifdef CONFIG_X86_64
615         ignore_bits |= EFER_LMA | EFER_LME;
616         /* SCE is meaningful only in long mode on Intel */
617         if (guest_efer & EFER_LMA)
618                 ignore_bits &= ~(u64)EFER_SCE;
619 #endif
620         guest_efer &= ~ignore_bits;
621         guest_efer |= host_efer & ignore_bits;
622         vmx->guest_msrs[efer_offset].data = guest_efer;
623         vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
624         return true;
625 }
626
627 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
628 {
629         struct vcpu_vmx *vmx = to_vmx(vcpu);
630         int i;
631
632         if (vmx->host_state.loaded)
633                 return;
634
635         vmx->host_state.loaded = 1;
636         /*
637          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
638          * allow segment selectors with cpl > 0 or ti == 1.
639          */
640         vmx->host_state.ldt_sel = kvm_read_ldt();
641         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
642         vmx->host_state.fs_sel = kvm_read_fs();
643         if (!(vmx->host_state.fs_sel & 7)) {
644                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
645                 vmx->host_state.fs_reload_needed = 0;
646         } else {
647                 vmcs_write16(HOST_FS_SELECTOR, 0);
648                 vmx->host_state.fs_reload_needed = 1;
649         }
650         vmx->host_state.gs_sel = kvm_read_gs();
651         if (!(vmx->host_state.gs_sel & 7))
652                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
653         else {
654                 vmcs_write16(HOST_GS_SELECTOR, 0);
655                 vmx->host_state.gs_ldt_reload_needed = 1;
656         }
657
658 #ifdef CONFIG_X86_64
659         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
660         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
661 #else
662         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
663         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
664 #endif
665
666 #ifdef CONFIG_X86_64
667         if (is_long_mode(&vmx->vcpu)) {
668                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
669                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
670         }
671 #endif
672         for (i = 0; i < vmx->save_nmsrs; ++i)
673                 kvm_set_shared_msr(vmx->guest_msrs[i].index,
674                                    vmx->guest_msrs[i].data,
675                                    vmx->guest_msrs[i].mask);
676 }
677
678 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
679 {
680         unsigned long flags;
681
682         if (!vmx->host_state.loaded)
683                 return;
684
685         ++vmx->vcpu.stat.host_state_reload;
686         vmx->host_state.loaded = 0;
687         if (vmx->host_state.fs_reload_needed)
688                 kvm_load_fs(vmx->host_state.fs_sel);
689         if (vmx->host_state.gs_ldt_reload_needed) {
690                 kvm_load_ldt(vmx->host_state.ldt_sel);
691                 /*
692                  * If we have to reload gs, we must take care to
693                  * preserve our gs base.
694                  */
695                 local_irq_save(flags);
696                 kvm_load_gs(vmx->host_state.gs_sel);
697 #ifdef CONFIG_X86_64
698                 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
699 #endif
700                 local_irq_restore(flags);
701         }
702         reload_tss();
703 #ifdef CONFIG_X86_64
704         if (is_long_mode(&vmx->vcpu)) {
705                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
706                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
707         }
708 #endif
709 }
710
711 static void vmx_load_host_state(struct vcpu_vmx *vmx)
712 {
713         preempt_disable();
714         __vmx_load_host_state(vmx);
715         preempt_enable();
716 }
717
718 /*
719  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
720  * vcpu mutex is already taken.
721  */
722 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
723 {
724         struct vcpu_vmx *vmx = to_vmx(vcpu);
725         u64 phys_addr = __pa(vmx->vmcs);
726         u64 tsc_this, delta, new_offset;
727
728         if (vcpu->cpu != cpu) {
729                 vcpu_clear(vmx);
730                 kvm_migrate_timers(vcpu);
731                 set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
732                 local_irq_disable();
733                 list_add(&vmx->local_vcpus_link,
734                          &per_cpu(vcpus_on_cpu, cpu));
735                 local_irq_enable();
736         }
737
738         if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
739                 u8 error;
740
741                 per_cpu(current_vmcs, cpu) = vmx->vmcs;
742                 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
743                               : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
744                               : "cc");
745                 if (error)
746                         printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
747                                vmx->vmcs, phys_addr);
748         }
749
750         if (vcpu->cpu != cpu) {
751                 struct descriptor_table dt;
752                 unsigned long sysenter_esp;
753
754                 vcpu->cpu = cpu;
755                 /*
756                  * Linux uses per-cpu TSS and GDT, so set these when switching
757                  * processors.
758                  */
759                 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
760                 kvm_get_gdt(&dt);
761                 vmcs_writel(HOST_GDTR_BASE, dt.base);   /* 22.2.4 */
762
763                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
764                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
765
766                 /*
767                  * Make sure the time stamp counter is monotonous.
768                  */
769                 rdtscll(tsc_this);
770                 if (tsc_this < vcpu->arch.host_tsc) {
771                         delta = vcpu->arch.host_tsc - tsc_this;
772                         new_offset = vmcs_read64(TSC_OFFSET) + delta;
773                         vmcs_write64(TSC_OFFSET, new_offset);
774                 }
775         }
776 }
777
778 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
779 {
780         __vmx_load_host_state(to_vmx(vcpu));
781 }
782
783 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
784 {
785         if (vcpu->fpu_active)
786                 return;
787         vcpu->fpu_active = 1;
788         vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
789         if (vcpu->arch.cr0 & X86_CR0_TS)
790                 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
791         update_exception_bitmap(vcpu);
792 }
793
794 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
795 {
796         if (!vcpu->fpu_active)
797                 return;
798         vcpu->fpu_active = 0;
799         vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
800         update_exception_bitmap(vcpu);
801 }
802
803 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
804 {
805         unsigned long rflags;
806
807         rflags = vmcs_readl(GUEST_RFLAGS);
808         if (to_vmx(vcpu)->rmode.vm86_active)
809                 rflags &= ~(unsigned long)(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
810         return rflags;
811 }
812
813 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
814 {
815         if (to_vmx(vcpu)->rmode.vm86_active)
816                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
817         vmcs_writel(GUEST_RFLAGS, rflags);
818 }
819
820 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
821 {
822         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
823         int ret = 0;
824
825         if (interruptibility & GUEST_INTR_STATE_STI)
826                 ret |= X86_SHADOW_INT_STI;
827         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
828                 ret |= X86_SHADOW_INT_MOV_SS;
829
830         return ret & mask;
831 }
832
833 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
834 {
835         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
836         u32 interruptibility = interruptibility_old;
837
838         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
839
840         if (mask & X86_SHADOW_INT_MOV_SS)
841                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
842         if (mask & X86_SHADOW_INT_STI)
843                 interruptibility |= GUEST_INTR_STATE_STI;
844
845         if ((interruptibility != interruptibility_old))
846                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
847 }
848
849 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
850 {
851         unsigned long rip;
852
853         rip = kvm_rip_read(vcpu);
854         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
855         kvm_rip_write(vcpu, rip);
856
857         /* skipping an emulated instruction also counts */
858         vmx_set_interrupt_shadow(vcpu, 0);
859 }
860
861 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
862                                 bool has_error_code, u32 error_code)
863 {
864         struct vcpu_vmx *vmx = to_vmx(vcpu);
865         u32 intr_info = nr | INTR_INFO_VALID_MASK;
866
867         if (has_error_code) {
868                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
869                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
870         }
871
872         if (vmx->rmode.vm86_active) {
873                 vmx->rmode.irq.pending = true;
874                 vmx->rmode.irq.vector = nr;
875                 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
876                 if (kvm_exception_is_soft(nr))
877                         vmx->rmode.irq.rip +=
878                                 vmx->vcpu.arch.event_exit_inst_len;
879                 intr_info |= INTR_TYPE_SOFT_INTR;
880                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
881                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
882                 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
883                 return;
884         }
885
886         if (kvm_exception_is_soft(nr)) {
887                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
888                              vmx->vcpu.arch.event_exit_inst_len);
889                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
890         } else
891                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
892
893         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
894 }
895
896 /*
897  * Swap MSR entry in host/guest MSR entry array.
898  */
899 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
900 {
901         struct shared_msr_entry tmp;
902
903         tmp = vmx->guest_msrs[to];
904         vmx->guest_msrs[to] = vmx->guest_msrs[from];
905         vmx->guest_msrs[from] = tmp;
906 }
907
908 /*
909  * Set up the vmcs to automatically save and restore system
910  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
911  * mode, as fiddling with msrs is very expensive.
912  */
913 static void setup_msrs(struct vcpu_vmx *vmx)
914 {
915         int save_nmsrs, index;
916         unsigned long *msr_bitmap;
917
918         vmx_load_host_state(vmx);
919         save_nmsrs = 0;
920 #ifdef CONFIG_X86_64
921         if (is_long_mode(&vmx->vcpu)) {
922                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
923                 if (index >= 0)
924                         move_msr_up(vmx, index, save_nmsrs++);
925                 index = __find_msr_index(vmx, MSR_LSTAR);
926                 if (index >= 0)
927                         move_msr_up(vmx, index, save_nmsrs++);
928                 index = __find_msr_index(vmx, MSR_CSTAR);
929                 if (index >= 0)
930                         move_msr_up(vmx, index, save_nmsrs++);
931                 /*
932                  * MSR_K6_STAR is only needed on long mode guests, and only
933                  * if efer.sce is enabled.
934                  */
935                 index = __find_msr_index(vmx, MSR_K6_STAR);
936                 if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
937                         move_msr_up(vmx, index, save_nmsrs++);
938         }
939 #endif
940         index = __find_msr_index(vmx, MSR_EFER);
941         if (index >= 0 && update_transition_efer(vmx, index))
942                 move_msr_up(vmx, index, save_nmsrs++);
943
944         vmx->save_nmsrs = save_nmsrs;
945
946         if (cpu_has_vmx_msr_bitmap()) {
947                 if (is_long_mode(&vmx->vcpu))
948                         msr_bitmap = vmx_msr_bitmap_longmode;
949                 else
950                         msr_bitmap = vmx_msr_bitmap_legacy;
951
952                 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
953         }
954 }
955
956 /*
957  * reads and returns guest's timestamp counter "register"
958  * guest_tsc = host_tsc + tsc_offset    -- 21.3
959  */
960 static u64 guest_read_tsc(void)
961 {
962         u64 host_tsc, tsc_offset;
963
964         rdtscll(host_tsc);
965         tsc_offset = vmcs_read64(TSC_OFFSET);
966         return host_tsc + tsc_offset;
967 }
968
969 /*
970  * writes 'guest_tsc' into guest's timestamp counter "register"
971  * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
972  */
973 static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
974 {
975         vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
976 }
977
978 /*
979  * Reads an msr value (of 'msr_index') into 'pdata'.
980  * Returns 0 on success, non-0 otherwise.
981  * Assumes vcpu_load() was already called.
982  */
983 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
984 {
985         u64 data;
986         struct shared_msr_entry *msr;
987
988         if (!pdata) {
989                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
990                 return -EINVAL;
991         }
992
993         switch (msr_index) {
994 #ifdef CONFIG_X86_64
995         case MSR_FS_BASE:
996                 data = vmcs_readl(GUEST_FS_BASE);
997                 break;
998         case MSR_GS_BASE:
999                 data = vmcs_readl(GUEST_GS_BASE);
1000                 break;
1001         case MSR_KERNEL_GS_BASE:
1002                 vmx_load_host_state(to_vmx(vcpu));
1003                 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
1004                 break;
1005 #endif
1006         case MSR_EFER:
1007                 return kvm_get_msr_common(vcpu, msr_index, pdata);
1008         case MSR_IA32_TSC:
1009                 data = guest_read_tsc();
1010                 break;
1011         case MSR_IA32_SYSENTER_CS:
1012                 data = vmcs_read32(GUEST_SYSENTER_CS);
1013                 break;
1014         case MSR_IA32_SYSENTER_EIP:
1015                 data = vmcs_readl(GUEST_SYSENTER_EIP);
1016                 break;
1017         case MSR_IA32_SYSENTER_ESP:
1018                 data = vmcs_readl(GUEST_SYSENTER_ESP);
1019                 break;
1020         default:
1021                 vmx_load_host_state(to_vmx(vcpu));
1022                 msr = find_msr_entry(to_vmx(vcpu), msr_index);
1023                 if (msr) {
1024                         vmx_load_host_state(to_vmx(vcpu));
1025                         data = msr->data;
1026                         break;
1027                 }
1028                 return kvm_get_msr_common(vcpu, msr_index, pdata);
1029         }
1030
1031         *pdata = data;
1032         return 0;
1033 }
1034
1035 /*
1036  * Writes msr value into into the appropriate "register".
1037  * Returns 0 on success, non-0 otherwise.
1038  * Assumes vcpu_load() was already called.
1039  */
1040 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1041 {
1042         struct vcpu_vmx *vmx = to_vmx(vcpu);
1043         struct shared_msr_entry *msr;
1044         u64 host_tsc;
1045         int ret = 0;
1046
1047         switch (msr_index) {
1048         case MSR_EFER:
1049                 vmx_load_host_state(vmx);
1050                 ret = kvm_set_msr_common(vcpu, msr_index, data);
1051                 break;
1052 #ifdef CONFIG_X86_64
1053         case MSR_FS_BASE:
1054                 vmcs_writel(GUEST_FS_BASE, data);
1055                 break;
1056         case MSR_GS_BASE:
1057                 vmcs_writel(GUEST_GS_BASE, data);
1058                 break;
1059         case MSR_KERNEL_GS_BASE:
1060                 vmx_load_host_state(vmx);
1061                 vmx->msr_guest_kernel_gs_base = data;
1062                 break;
1063 #endif
1064         case MSR_IA32_SYSENTER_CS:
1065                 vmcs_write32(GUEST_SYSENTER_CS, data);
1066                 break;
1067         case MSR_IA32_SYSENTER_EIP:
1068                 vmcs_writel(GUEST_SYSENTER_EIP, data);
1069                 break;
1070         case MSR_IA32_SYSENTER_ESP:
1071                 vmcs_writel(GUEST_SYSENTER_ESP, data);
1072                 break;
1073         case MSR_IA32_TSC:
1074                 rdtscll(host_tsc);
1075                 guest_write_tsc(data, host_tsc);
1076                 break;
1077         case MSR_IA32_CR_PAT:
1078                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
1079                         vmcs_write64(GUEST_IA32_PAT, data);
1080                         vcpu->arch.pat = data;
1081                         break;
1082                 }
1083                 /* Otherwise falls through to kvm_set_msr_common */
1084         default:
1085                 msr = find_msr_entry(vmx, msr_index);
1086                 if (msr) {
1087                         vmx_load_host_state(vmx);
1088                         msr->data = data;
1089                         break;
1090                 }
1091                 ret = kvm_set_msr_common(vcpu, msr_index, data);
1092         }
1093
1094         return ret;
1095 }
1096
1097 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1098 {
1099         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
1100         switch (reg) {
1101         case VCPU_REGS_RSP:
1102                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
1103                 break;
1104         case VCPU_REGS_RIP:
1105                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
1106                 break;
1107         case VCPU_EXREG_PDPTR:
1108                 if (enable_ept)
1109                         ept_save_pdptrs(vcpu);
1110                 break;
1111         default:
1112                 break;
1113         }
1114 }
1115
1116 static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1117 {
1118         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1119                 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
1120         else
1121                 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
1122
1123         update_exception_bitmap(vcpu);
1124 }
1125
1126 static __init int cpu_has_kvm_support(void)
1127 {
1128         return cpu_has_vmx();
1129 }
1130
1131 static __init int vmx_disabled_by_bios(void)
1132 {
1133         u64 msr;
1134
1135         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
1136         return (msr & (FEATURE_CONTROL_LOCKED |
1137                        FEATURE_CONTROL_VMXON_ENABLED))
1138             == FEATURE_CONTROL_LOCKED;
1139         /* locked but not enabled */
1140 }
1141
1142 static int hardware_enable(void *garbage)
1143 {
1144         int cpu = raw_smp_processor_id();
1145         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1146         u64 old;
1147
1148         if (read_cr4() & X86_CR4_VMXE)
1149                 return -EBUSY;
1150
1151         INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
1152         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1153         if ((old & (FEATURE_CONTROL_LOCKED |
1154                     FEATURE_CONTROL_VMXON_ENABLED))
1155             != (FEATURE_CONTROL_LOCKED |
1156                 FEATURE_CONTROL_VMXON_ENABLED))
1157                 /* enable and lock */
1158                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
1159                        FEATURE_CONTROL_LOCKED |
1160                        FEATURE_CONTROL_VMXON_ENABLED);
1161         write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
1162         asm volatile (ASM_VMX_VMXON_RAX
1163                       : : "a"(&phys_addr), "m"(phys_addr)
1164                       : "memory", "cc");
1165
1166         ept_sync_global();
1167
1168         return 0;
1169 }
1170
1171 static void vmclear_local_vcpus(void)
1172 {
1173         int cpu = raw_smp_processor_id();
1174         struct vcpu_vmx *vmx, *n;
1175
1176         list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
1177                                  local_vcpus_link)
1178                 __vcpu_clear(vmx);
1179 }
1180
1181
1182 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
1183  * tricks.
1184  */
1185 static void kvm_cpu_vmxoff(void)
1186 {
1187         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1188         write_cr4(read_cr4() & ~X86_CR4_VMXE);
1189 }
1190
1191 static void hardware_disable(void *garbage)
1192 {
1193         vmclear_local_vcpus();
1194         kvm_cpu_vmxoff();
1195 }
1196
1197 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1198                                       u32 msr, u32 *result)
1199 {
1200         u32 vmx_msr_low, vmx_msr_high;
1201         u32 ctl = ctl_min | ctl_opt;
1202
1203         rdmsr(msr, vmx_msr_low, vmx_msr_high);
1204
1205         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1206         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
1207
1208         /* Ensure minimum (required) set of control bits are supported. */
1209         if (ctl_min & ~ctl)
1210                 return -EIO;
1211
1212         *result = ctl;
1213         return 0;
1214 }
1215
1216 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1217 {
1218         u32 vmx_msr_low, vmx_msr_high;
1219         u32 min, opt, min2, opt2;
1220         u32 _pin_based_exec_control = 0;
1221         u32 _cpu_based_exec_control = 0;
1222         u32 _cpu_based_2nd_exec_control = 0;
1223         u32 _vmexit_control = 0;
1224         u32 _vmentry_control = 0;
1225
1226         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1227         opt = PIN_BASED_VIRTUAL_NMIS;
1228         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1229                                 &_pin_based_exec_control) < 0)
1230                 return -EIO;
1231
1232         min = CPU_BASED_HLT_EXITING |
1233 #ifdef CONFIG_X86_64
1234               CPU_BASED_CR8_LOAD_EXITING |
1235               CPU_BASED_CR8_STORE_EXITING |
1236 #endif
1237               CPU_BASED_CR3_LOAD_EXITING |
1238               CPU_BASED_CR3_STORE_EXITING |
1239               CPU_BASED_USE_IO_BITMAPS |
1240               CPU_BASED_MOV_DR_EXITING |
1241               CPU_BASED_USE_TSC_OFFSETING |
1242               CPU_BASED_MWAIT_EXITING |
1243               CPU_BASED_MONITOR_EXITING |
1244               CPU_BASED_INVLPG_EXITING;
1245         opt = CPU_BASED_TPR_SHADOW |
1246               CPU_BASED_USE_MSR_BITMAPS |
1247               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1248         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1249                                 &_cpu_based_exec_control) < 0)
1250                 return -EIO;
1251 #ifdef CONFIG_X86_64
1252         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1253                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1254                                            ~CPU_BASED_CR8_STORE_EXITING;
1255 #endif
1256         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1257                 min2 = 0;
1258                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1259                         SECONDARY_EXEC_WBINVD_EXITING |
1260                         SECONDARY_EXEC_ENABLE_VPID |
1261                         SECONDARY_EXEC_ENABLE_EPT |
1262                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
1263                         SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1264                 if (adjust_vmx_controls(min2, opt2,
1265                                         MSR_IA32_VMX_PROCBASED_CTLS2,
1266                                         &_cpu_based_2nd_exec_control) < 0)
1267                         return -EIO;
1268         }
1269 #ifndef CONFIG_X86_64
1270         if (!(_cpu_based_2nd_exec_control &
1271                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1272                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1273 #endif
1274         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1275                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
1276                    enabled */
1277                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
1278                                              CPU_BASED_CR3_STORE_EXITING |
1279                                              CPU_BASED_INVLPG_EXITING);
1280                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1281                       vmx_capability.ept, vmx_capability.vpid);
1282         }
1283
1284         min = 0;
1285 #ifdef CONFIG_X86_64
1286         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1287 #endif
1288         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
1289         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1290                                 &_vmexit_control) < 0)
1291                 return -EIO;
1292
1293         min = 0;
1294         opt = VM_ENTRY_LOAD_IA32_PAT;
1295         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1296                                 &_vmentry_control) < 0)
1297                 return -EIO;
1298
1299         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1300
1301         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1302         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1303                 return -EIO;
1304
1305 #ifdef CONFIG_X86_64
1306         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1307         if (vmx_msr_high & (1u<<16))
1308                 return -EIO;
1309 #endif
1310
1311         /* Require Write-Back (WB) memory type for VMCS accesses. */
1312         if (((vmx_msr_high >> 18) & 15) != 6)
1313                 return -EIO;
1314
1315         vmcs_conf->size = vmx_msr_high & 0x1fff;
1316         vmcs_conf->order = get_order(vmcs_config.size);
1317         vmcs_conf->revision_id = vmx_msr_low;
1318
1319         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1320         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1321         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1322         vmcs_conf->vmexit_ctrl         = _vmexit_control;
1323         vmcs_conf->vmentry_ctrl        = _vmentry_control;
1324
1325         return 0;
1326 }
1327
1328 static struct vmcs *alloc_vmcs_cpu(int cpu)
1329 {
1330         int node = cpu_to_node(cpu);
1331         struct page *pages;
1332         struct vmcs *vmcs;
1333
1334         pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
1335         if (!pages)
1336                 return NULL;
1337         vmcs = page_address(pages);
1338         memset(vmcs, 0, vmcs_config.size);
1339         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1340         return vmcs;
1341 }
1342
1343 static struct vmcs *alloc_vmcs(void)
1344 {
1345         return alloc_vmcs_cpu(raw_smp_processor_id());
1346 }
1347
1348 static void free_vmcs(struct vmcs *vmcs)
1349 {
1350         free_pages((unsigned long)vmcs, vmcs_config.order);
1351 }
1352
1353 static void free_kvm_area(void)
1354 {
1355         int cpu;
1356
1357         for_each_possible_cpu(cpu) {
1358                 free_vmcs(per_cpu(vmxarea, cpu));
1359                 per_cpu(vmxarea, cpu) = NULL;
1360         }
1361 }
1362
1363 static __init int alloc_kvm_area(void)
1364 {
1365         int cpu;
1366
1367         for_each_possible_cpu(cpu) {
1368                 struct vmcs *vmcs;
1369
1370                 vmcs = alloc_vmcs_cpu(cpu);
1371                 if (!vmcs) {
1372                         free_kvm_area();
1373                         return -ENOMEM;
1374                 }
1375
1376                 per_cpu(vmxarea, cpu) = vmcs;
1377         }
1378         return 0;
1379 }
1380
1381 static __init int hardware_setup(void)
1382 {
1383         if (setup_vmcs_config(&vmcs_config) < 0)
1384                 return -EIO;
1385
1386         if (boot_cpu_has(X86_FEATURE_NX))
1387                 kvm_enable_efer_bits(EFER_NX);
1388
1389         if (!cpu_has_vmx_vpid())
1390                 enable_vpid = 0;
1391
1392         if (!cpu_has_vmx_ept()) {
1393                 enable_ept = 0;
1394                 enable_unrestricted_guest = 0;
1395         }
1396
1397         if (!cpu_has_vmx_unrestricted_guest())
1398                 enable_unrestricted_guest = 0;
1399
1400         if (!cpu_has_vmx_flexpriority())
1401                 flexpriority_enabled = 0;
1402
1403         if (!cpu_has_vmx_tpr_shadow())
1404                 kvm_x86_ops->update_cr8_intercept = NULL;
1405
1406         if (enable_ept && !cpu_has_vmx_ept_2m_page())
1407                 kvm_disable_largepages();
1408
1409         if (!cpu_has_vmx_ple())
1410                 ple_gap = 0;
1411
1412         return alloc_kvm_area();
1413 }
1414
1415 static __exit void hardware_unsetup(void)
1416 {
1417         free_kvm_area();
1418 }
1419
1420 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1421 {
1422         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1423
1424         if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1425                 vmcs_write16(sf->selector, save->selector);
1426                 vmcs_writel(sf->base, save->base);
1427                 vmcs_write32(sf->limit, save->limit);
1428                 vmcs_write32(sf->ar_bytes, save->ar);
1429         } else {
1430                 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1431                         << AR_DPL_SHIFT;
1432                 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1433         }
1434 }
1435
1436 static void enter_pmode(struct kvm_vcpu *vcpu)
1437 {
1438         unsigned long flags;
1439         struct vcpu_vmx *vmx = to_vmx(vcpu);
1440
1441         vmx->emulation_required = 1;
1442         vmx->rmode.vm86_active = 0;
1443
1444         vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
1445         vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
1446         vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
1447
1448         flags = vmcs_readl(GUEST_RFLAGS);
1449         flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
1450         flags |= (vmx->rmode.save_iopl << IOPL_SHIFT);
1451         vmcs_writel(GUEST_RFLAGS, flags);
1452
1453         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1454                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1455
1456         update_exception_bitmap(vcpu);
1457
1458         if (emulate_invalid_guest_state)
1459                 return;
1460
1461         fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
1462         fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
1463         fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
1464         fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
1465
1466         vmcs_write16(GUEST_SS_SELECTOR, 0);
1467         vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1468
1469         vmcs_write16(GUEST_CS_SELECTOR,
1470                      vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1471         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1472 }
1473
1474 static gva_t rmode_tss_base(struct kvm *kvm)
1475 {
1476         if (!kvm->arch.tss_addr) {
1477                 gfn_t base_gfn = kvm->memslots[0].base_gfn +
1478                                  kvm->memslots[0].npages - 3;
1479                 return base_gfn << PAGE_SHIFT;
1480         }
1481         return kvm->arch.tss_addr;
1482 }
1483
1484 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1485 {
1486         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1487
1488         save->selector = vmcs_read16(sf->selector);
1489         save->base = vmcs_readl(sf->base);
1490         save->limit = vmcs_read32(sf->limit);
1491         save->ar = vmcs_read32(sf->ar_bytes);
1492         vmcs_write16(sf->selector, save->base >> 4);
1493         vmcs_write32(sf->base, save->base & 0xfffff);
1494         vmcs_write32(sf->limit, 0xffff);
1495         vmcs_write32(sf->ar_bytes, 0xf3);
1496 }
1497
1498 static void enter_rmode(struct kvm_vcpu *vcpu)
1499 {
1500         unsigned long flags;
1501         struct vcpu_vmx *vmx = to_vmx(vcpu);
1502
1503         if (enable_unrestricted_guest)
1504                 return;
1505
1506         vmx->emulation_required = 1;
1507         vmx->rmode.vm86_active = 1;
1508
1509         vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1510         vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1511
1512         vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1513         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1514
1515         vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1516         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1517
1518         flags = vmcs_readl(GUEST_RFLAGS);
1519         vmx->rmode.save_iopl
1520                 = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
1521
1522         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1523
1524         vmcs_writel(GUEST_RFLAGS, flags);
1525         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1526         update_exception_bitmap(vcpu);
1527
1528         if (emulate_invalid_guest_state)
1529                 goto continue_rmode;
1530
1531         vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1532         vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1533         vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1534
1535         vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1536         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1537         if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1538                 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1539         vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1540
1541         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
1542         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
1543         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
1544         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
1545
1546 continue_rmode:
1547         kvm_mmu_reset_context(vcpu);
1548         init_rmode(vcpu->kvm);
1549 }
1550
1551 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1552 {
1553         struct vcpu_vmx *vmx = to_vmx(vcpu);
1554         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1555
1556         if (!msr)
1557                 return;
1558
1559         /*
1560          * Force kernel_gs_base reloading before EFER changes, as control
1561          * of this msr depends on is_long_mode().
1562          */
1563         vmx_load_host_state(to_vmx(vcpu));
1564         vcpu->arch.shadow_efer = efer;
1565         if (!msr)
1566                 return;
1567         if (efer & EFER_LMA) {
1568                 vmcs_write32(VM_ENTRY_CONTROLS,
1569                              vmcs_read32(VM_ENTRY_CONTROLS) |
1570                              VM_ENTRY_IA32E_MODE);
1571                 msr->data = efer;
1572         } else {
1573                 vmcs_write32(VM_ENTRY_CONTROLS,
1574                              vmcs_read32(VM_ENTRY_CONTROLS) &
1575                              ~VM_ENTRY_IA32E_MODE);
1576
1577                 msr->data = efer & ~EFER_LME;
1578         }
1579         setup_msrs(vmx);
1580 }
1581
1582 #ifdef CONFIG_X86_64
1583
1584 static void enter_lmode(struct kvm_vcpu *vcpu)
1585 {
1586         u32 guest_tr_ar;
1587
1588         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1589         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1590                 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1591                        __func__);
1592                 vmcs_write32(GUEST_TR_AR_BYTES,
1593                              (guest_tr_ar & ~AR_TYPE_MASK)
1594                              | AR_TYPE_BUSY_64_TSS);
1595         }
1596         vcpu->arch.shadow_efer |= EFER_LMA;
1597         vmx_set_efer(vcpu, vcpu->arch.shadow_efer);
1598 }
1599
1600 static void exit_lmode(struct kvm_vcpu *vcpu)
1601 {
1602         vcpu->arch.shadow_efer &= ~EFER_LMA;
1603
1604         vmcs_write32(VM_ENTRY_CONTROLS,
1605                      vmcs_read32(VM_ENTRY_CONTROLS)
1606                      & ~VM_ENTRY_IA32E_MODE);
1607 }
1608
1609 #endif
1610
1611 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1612 {
1613         vpid_sync_vcpu_all(to_vmx(vcpu));
1614         if (enable_ept)
1615                 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
1616 }
1617
1618 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1619 {
1620         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
1621
1622         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
1623         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
1624 }
1625
1626 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
1627 {
1628         if (!test_bit(VCPU_EXREG_PDPTR,
1629                       (unsigned long *)&vcpu->arch.regs_dirty))
1630                 return;
1631
1632         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1633                 vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
1634                 vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
1635                 vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
1636                 vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
1637         }
1638 }
1639
1640 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
1641 {
1642         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1643                 vcpu->arch.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
1644                 vcpu->arch.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
1645                 vcpu->arch.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
1646                 vcpu->arch.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
1647         }
1648
1649         __set_bit(VCPU_EXREG_PDPTR,
1650                   (unsigned long *)&vcpu->arch.regs_avail);
1651         __set_bit(VCPU_EXREG_PDPTR,
1652                   (unsigned long *)&vcpu->arch.regs_dirty);
1653 }
1654
1655 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1656
1657 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
1658                                         unsigned long cr0,
1659                                         struct kvm_vcpu *vcpu)
1660 {
1661         if (!(cr0 & X86_CR0_PG)) {
1662                 /* From paging/starting to nonpaging */
1663                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1664                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1665                              (CPU_BASED_CR3_LOAD_EXITING |
1666                               CPU_BASED_CR3_STORE_EXITING));
1667                 vcpu->arch.cr0 = cr0;
1668                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1669         } else if (!is_paging(vcpu)) {
1670                 /* From nonpaging to paging */
1671                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1672                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1673                              ~(CPU_BASED_CR3_LOAD_EXITING |
1674                                CPU_BASED_CR3_STORE_EXITING));
1675                 vcpu->arch.cr0 = cr0;
1676                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1677         }
1678
1679         if (!(cr0 & X86_CR0_WP))
1680                 *hw_cr0 &= ~X86_CR0_WP;
1681 }
1682
1683 static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
1684                                         struct kvm_vcpu *vcpu)
1685 {
1686         if (!is_paging(vcpu)) {
1687                 *hw_cr4 &= ~X86_CR4_PAE;
1688                 *hw_cr4 |= X86_CR4_PSE;
1689         } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
1690                 *hw_cr4 &= ~X86_CR4_PAE;
1691 }
1692
1693 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1694 {
1695         struct vcpu_vmx *vmx = to_vmx(vcpu);
1696         unsigned long hw_cr0;
1697
1698         if (enable_unrestricted_guest)
1699                 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
1700                         | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
1701         else
1702                 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
1703
1704         vmx_fpu_deactivate(vcpu);
1705
1706         if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
1707                 enter_pmode(vcpu);
1708
1709         if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
1710                 enter_rmode(vcpu);
1711
1712 #ifdef CONFIG_X86_64
1713         if (vcpu->arch.shadow_efer & EFER_LME) {
1714                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1715                         enter_lmode(vcpu);
1716                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1717                         exit_lmode(vcpu);
1718         }
1719 #endif
1720
1721         if (enable_ept)
1722                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
1723
1724         vmcs_writel(CR0_READ_SHADOW, cr0);
1725         vmcs_writel(GUEST_CR0, hw_cr0);
1726         vcpu->arch.cr0 = cr0;
1727
1728         if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1729                 vmx_fpu_activate(vcpu);
1730 }
1731
1732 static u64 construct_eptp(unsigned long root_hpa)
1733 {
1734         u64 eptp;
1735
1736         /* TODO write the value reading from MSR */
1737         eptp = VMX_EPT_DEFAULT_MT |
1738                 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
1739         eptp |= (root_hpa & PAGE_MASK);
1740
1741         return eptp;
1742 }
1743
1744 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1745 {
1746         unsigned long guest_cr3;
1747         u64 eptp;
1748
1749         guest_cr3 = cr3;
1750         if (enable_ept) {
1751                 eptp = construct_eptp(cr3);
1752                 vmcs_write64(EPT_POINTER, eptp);
1753                 guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
1754                         vcpu->kvm->arch.ept_identity_map_addr;
1755                 ept_load_pdptrs(vcpu);
1756         }
1757
1758         vmx_flush_tlb(vcpu);
1759         vmcs_writel(GUEST_CR3, guest_cr3);
1760         if (vcpu->arch.cr0 & X86_CR0_PE)
1761                 vmx_fpu_deactivate(vcpu);
1762 }
1763
1764 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1765 {
1766         unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
1767                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1768
1769         vcpu->arch.cr4 = cr4;
1770         if (enable_ept)
1771                 ept_update_paging_mode_cr4(&hw_cr4, vcpu);
1772
1773         vmcs_writel(CR4_READ_SHADOW, cr4);
1774         vmcs_writel(GUEST_CR4, hw_cr4);
1775 }
1776
1777 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1778 {
1779         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1780
1781         return vmcs_readl(sf->base);
1782 }
1783
1784 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1785                             struct kvm_segment *var, int seg)
1786 {
1787         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1788         u32 ar;
1789
1790         var->base = vmcs_readl(sf->base);
1791         var->limit = vmcs_read32(sf->limit);
1792         var->selector = vmcs_read16(sf->selector);
1793         ar = vmcs_read32(sf->ar_bytes);
1794         if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
1795                 ar = 0;
1796         var->type = ar & 15;
1797         var->s = (ar >> 4) & 1;
1798         var->dpl = (ar >> 5) & 3;
1799         var->present = (ar >> 7) & 1;
1800         var->avl = (ar >> 12) & 1;
1801         var->l = (ar >> 13) & 1;
1802         var->db = (ar >> 14) & 1;
1803         var->g = (ar >> 15) & 1;
1804         var->unusable = (ar >> 16) & 1;
1805 }
1806
1807 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
1808 {
1809         if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
1810                 return 0;
1811
1812         if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
1813                 return 3;
1814
1815         return vmcs_read16(GUEST_CS_SELECTOR) & 3;
1816 }
1817
1818 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1819 {
1820         u32 ar;
1821
1822         if (var->unusable)
1823                 ar = 1 << 16;
1824         else {
1825                 ar = var->type & 15;
1826                 ar |= (var->s & 1) << 4;
1827                 ar |= (var->dpl & 3) << 5;
1828                 ar |= (var->present & 1) << 7;
1829                 ar |= (var->avl & 1) << 12;
1830                 ar |= (var->l & 1) << 13;
1831                 ar |= (var->db & 1) << 14;
1832                 ar |= (var->g & 1) << 15;
1833         }
1834         if (ar == 0) /* a 0 value means unusable */
1835                 ar = AR_UNUSABLE_MASK;
1836
1837         return ar;
1838 }
1839
1840 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1841                             struct kvm_segment *var, int seg)
1842 {
1843         struct vcpu_vmx *vmx = to_vmx(vcpu);
1844         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1845         u32 ar;
1846
1847         if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
1848                 vmx->rmode.tr.selector = var->selector;
1849                 vmx->rmode.tr.base = var->base;
1850                 vmx->rmode.tr.limit = var->limit;
1851                 vmx->rmode.tr.ar = vmx_segment_access_rights(var);
1852                 return;
1853         }
1854         vmcs_writel(sf->base, var->base);
1855         vmcs_write32(sf->limit, var->limit);
1856         vmcs_write16(sf->selector, var->selector);
1857         if (vmx->rmode.vm86_active && var->s) {
1858                 /*
1859                  * Hack real-mode segments into vm86 compatibility.
1860                  */
1861                 if (var->base == 0xffff0000 && var->selector == 0xf000)
1862                         vmcs_writel(sf->base, 0xf0000);
1863                 ar = 0xf3;
1864         } else
1865                 ar = vmx_segment_access_rights(var);
1866
1867         /*
1868          *   Fix the "Accessed" bit in AR field of segment registers for older
1869          * qemu binaries.
1870          *   IA32 arch specifies that at the time of processor reset the
1871          * "Accessed" bit in the AR field of segment registers is 1. And qemu
1872          * is setting it to 0 in the usedland code. This causes invalid guest
1873          * state vmexit when "unrestricted guest" mode is turned on.
1874          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
1875          * tree. Newer qemu binaries with that qemu fix would not need this
1876          * kvm hack.
1877          */
1878         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
1879                 ar |= 0x1; /* Accessed */
1880
1881         vmcs_write32(sf->ar_bytes, ar);
1882 }
1883
1884 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1885 {
1886         u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1887
1888         *db = (ar >> 14) & 1;
1889         *l = (ar >> 13) & 1;
1890 }
1891
1892 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1893 {
1894         dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1895         dt->base = vmcs_readl(GUEST_IDTR_BASE);
1896 }
1897
1898 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1899 {
1900         vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1901         vmcs_writel(GUEST_IDTR_BASE, dt->base);
1902 }
1903
1904 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1905 {
1906         dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1907         dt->base = vmcs_readl(GUEST_GDTR_BASE);
1908 }
1909
1910 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1911 {
1912         vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1913         vmcs_writel(GUEST_GDTR_BASE, dt->base);
1914 }
1915
1916 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
1917 {
1918         struct kvm_segment var;
1919         u32 ar;
1920
1921         vmx_get_segment(vcpu, &var, seg);
1922         ar = vmx_segment_access_rights(&var);
1923
1924         if (var.base != (var.selector << 4))
1925                 return false;
1926         if (var.limit != 0xffff)
1927                 return false;
1928         if (ar != 0xf3)
1929                 return false;
1930
1931         return true;
1932 }
1933
1934 static bool code_segment_valid(struct kvm_vcpu *vcpu)
1935 {
1936         struct kvm_segment cs;
1937         unsigned int cs_rpl;
1938
1939         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
1940         cs_rpl = cs.selector & SELECTOR_RPL_MASK;
1941
1942         if (cs.unusable)
1943                 return false;
1944         if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
1945                 return false;
1946         if (!cs.s)
1947                 return false;
1948         if (cs.type & AR_TYPE_WRITEABLE_MASK) {
1949                 if (cs.dpl > cs_rpl)
1950                         return false;
1951         } else {
1952                 if (cs.dpl != cs_rpl)
1953                         return false;
1954         }
1955         if (!cs.present)
1956                 return false;
1957
1958         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
1959         return true;
1960 }
1961
1962 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
1963 {
1964         struct kvm_segment ss;
1965         unsigned int ss_rpl;
1966
1967         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
1968         ss_rpl = ss.selector & SELECTOR_RPL_MASK;
1969
1970         if (ss.unusable)
1971                 return true;
1972         if (ss.type != 3 && ss.type != 7)
1973                 return false;
1974         if (!ss.s)
1975                 return false;
1976         if (ss.dpl != ss_rpl) /* DPL != RPL */
1977                 return false;
1978         if (!ss.present)
1979                 return false;
1980
1981         return true;
1982 }
1983
1984 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
1985 {
1986         struct kvm_segment var;
1987         unsigned int rpl;
1988
1989         vmx_get_segment(vcpu, &var, seg);
1990         rpl = var.selector & SELECTOR_RPL_MASK;
1991
1992         if (var.unusable)
1993                 return true;
1994         if (!var.s)
1995                 return false;
1996         if (!var.present)
1997                 return false;
1998         if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
1999                 if (var.dpl < rpl) /* DPL < RPL */
2000                         return false;
2001         }
2002
2003         /* TODO: Add other members to kvm_segment_field to allow checking for other access
2004          * rights flags
2005          */
2006         return true;
2007 }
2008
2009 static bool tr_valid(struct kvm_vcpu *vcpu)
2010 {
2011         struct kvm_segment tr;
2012
2013         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
2014
2015         if (tr.unusable)
2016                 return false;
2017         if (tr.selector & SELECTOR_TI_MASK)     /* TI = 1 */
2018                 return false;
2019         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
2020                 return false;
2021         if (!tr.present)
2022                 return false;
2023
2024         return true;
2025 }
2026
2027 static bool ldtr_valid(struct kvm_vcpu *vcpu)
2028 {
2029         struct kvm_segment ldtr;
2030
2031         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
2032
2033         if (ldtr.unusable)
2034                 return true;
2035         if (ldtr.selector & SELECTOR_TI_MASK)   /* TI = 1 */
2036                 return false;
2037         if (ldtr.type != 2)
2038                 return false;
2039         if (!ldtr.present)
2040                 return false;
2041
2042         return true;
2043 }
2044
2045 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
2046 {
2047         struct kvm_segment cs, ss;
2048
2049         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
2050         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
2051
2052         return ((cs.selector & SELECTOR_RPL_MASK) ==
2053                  (ss.selector & SELECTOR_RPL_MASK));
2054 }
2055
2056 /*
2057  * Check if guest state is valid. Returns true if valid, false if
2058  * not.
2059  * We assume that registers are always usable
2060  */
2061 static bool guest_state_valid(struct kvm_vcpu *vcpu)
2062 {
2063         /* real mode guest state checks */
2064         if (!(vcpu->arch.cr0 & X86_CR0_PE)) {
2065                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
2066                         return false;
2067                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
2068                         return false;
2069                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
2070                         return false;
2071                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
2072                         return false;
2073                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
2074                         return false;
2075                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
2076                         return false;
2077         } else {
2078         /* protected mode guest state checks */
2079                 if (!cs_ss_rpl_check(vcpu))
2080                         return false;
2081                 if (!code_segment_valid(vcpu))
2082                         return false;
2083                 if (!stack_segment_valid(vcpu))
2084                         return false;
2085                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
2086                         return false;
2087                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
2088                         return false;
2089                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
2090                         return false;
2091                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
2092                         return false;
2093                 if (!tr_valid(vcpu))
2094                         return false;
2095                 if (!ldtr_valid(vcpu))
2096                         return false;
2097         }
2098         /* TODO:
2099          * - Add checks on RIP
2100          * - Add checks on RFLAGS
2101          */
2102
2103         return true;
2104 }
2105
2106 static int init_rmode_tss(struct kvm *kvm)
2107 {
2108         gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
2109         u16 data = 0;
2110         int ret = 0;
2111         int r;
2112
2113         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2114         if (r < 0)
2115                 goto out;
2116         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
2117         r = kvm_write_guest_page(kvm, fn++, &data,
2118                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
2119         if (r < 0)
2120                 goto out;
2121         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
2122         if (r < 0)
2123                 goto out;
2124         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2125         if (r < 0)
2126                 goto out;
2127         data = ~0;
2128         r = kvm_write_guest_page(kvm, fn, &data,
2129                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
2130                                  sizeof(u8));
2131         if (r < 0)
2132                 goto out;
2133
2134         ret = 1;
2135 out:
2136         return ret;
2137 }
2138
2139 static int init_rmode_identity_map(struct kvm *kvm)
2140 {
2141         int i, r, ret;
2142         pfn_t identity_map_pfn;
2143         u32 tmp;
2144
2145         if (!enable_ept)
2146                 return 1;
2147         if (unlikely(!kvm->arch.ept_identity_pagetable)) {
2148                 printk(KERN_ERR "EPT: identity-mapping pagetable "
2149                         "haven't been allocated!\n");
2150                 return 0;
2151         }
2152         if (likely(kvm->arch.ept_identity_pagetable_done))
2153                 return 1;
2154         ret = 0;
2155         identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
2156         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
2157         if (r < 0)
2158                 goto out;
2159         /* Set up identity-mapping pagetable for EPT in real mode */
2160         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
2161                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
2162                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
2163                 r = kvm_write_guest_page(kvm, identity_map_pfn,
2164                                 &tmp, i * sizeof(tmp), sizeof(tmp));
2165                 if (r < 0)
2166                         goto out;
2167         }
2168         kvm->arch.ept_identity_pagetable_done = true;
2169         ret = 1;
2170 out:
2171         return ret;
2172 }
2173
2174 static void seg_setup(int seg)
2175 {
2176         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2177         unsigned int ar;
2178
2179         vmcs_write16(sf->selector, 0);
2180         vmcs_writel(sf->base, 0);
2181         vmcs_write32(sf->limit, 0xffff);
2182         if (enable_unrestricted_guest) {
2183                 ar = 0x93;
2184                 if (seg == VCPU_SREG_CS)
2185                         ar |= 0x08; /* code segment */
2186         } else
2187                 ar = 0xf3;
2188
2189         vmcs_write32(sf->ar_bytes, ar);
2190 }
2191
2192 static int alloc_apic_access_page(struct kvm *kvm)
2193 {
2194         struct kvm_userspace_memory_region kvm_userspace_mem;
2195         int r = 0;
2196
2197         down_write(&kvm->slots_lock);
2198         if (kvm->arch.apic_access_page)
2199                 goto out;
2200         kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
2201         kvm_userspace_mem.flags = 0;
2202         kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
2203         kvm_userspace_mem.memory_size = PAGE_SIZE;
2204         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2205         if (r)
2206                 goto out;
2207
2208         kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
2209 out:
2210         up_write(&kvm->slots_lock);
2211         return r;
2212 }
2213
2214 static int alloc_identity_pagetable(struct kvm *kvm)
2215 {
2216         struct kvm_userspace_memory_region kvm_userspace_mem;
2217         int r = 0;
2218
2219         down_write(&kvm->slots_lock);
2220         if (kvm->arch.ept_identity_pagetable)
2221                 goto out;
2222         kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
2223         kvm_userspace_mem.flags = 0;
2224         kvm_userspace_mem.guest_phys_addr =
2225                 kvm->arch.ept_identity_map_addr;
2226         kvm_userspace_mem.memory_size = PAGE_SIZE;
2227         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2228         if (r)
2229                 goto out;
2230
2231         kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
2232                         kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
2233 out:
2234         up_write(&kvm->slots_lock);
2235         return r;
2236 }
2237
2238 static void allocate_vpid(struct vcpu_vmx *vmx)
2239 {
2240         int vpid;
2241
2242         vmx->vpid = 0;
2243         if (!enable_vpid)
2244                 return;
2245         spin_lock(&vmx_vpid_lock);
2246         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
2247         if (vpid < VMX_NR_VPIDS) {
2248                 vmx->vpid = vpid;
2249                 __set_bit(vpid, vmx_vpid_bitmap);
2250         }
2251         spin_unlock(&vmx_vpid_lock);
2252 }
2253
2254 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
2255 {
2256         int f = sizeof(unsigned long);
2257
2258         if (!cpu_has_vmx_msr_bitmap())
2259                 return;
2260
2261         /*
2262          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
2263          * have the write-low and read-high bitmap offsets the wrong way round.
2264          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
2265          */
2266         if (msr <= 0x1fff) {
2267                 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
2268                 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
2269         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2270                 msr &= 0x1fff;
2271                 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
2272                 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
2273         }
2274 }
2275
2276 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
2277 {
2278         if (!longmode_only)
2279                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
2280         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
2281 }
2282
2283 /*
2284  * Sets up the vmcs for emulated real mode.
2285  */
2286 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
2287 {
2288         u32 host_sysenter_cs, msr_low, msr_high;
2289         u32 junk;
2290         u64 host_pat, tsc_this, tsc_base;
2291         unsigned long a;
2292         struct descriptor_table dt;
2293         int i;
2294         unsigned long kvm_vmx_return;
2295         u32 exec_control;
2296
2297         /* I/O */
2298         vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
2299         vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
2300
2301         if (cpu_has_vmx_msr_bitmap())
2302                 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
2303
2304         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
2305
2306         /* Control */
2307         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
2308                 vmcs_config.pin_based_exec_ctrl);
2309
2310         exec_control = vmcs_config.cpu_based_exec_ctrl;
2311         if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
2312                 exec_control &= ~CPU_BASED_TPR_SHADOW;
2313 #ifdef CONFIG_X86_64
2314                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
2315                                 CPU_BASED_CR8_LOAD_EXITING;
2316 #endif
2317         }
2318         if (!enable_ept)
2319                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
2320                                 CPU_BASED_CR3_LOAD_EXITING  |
2321                                 CPU_BASED_INVLPG_EXITING;
2322         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
2323
2324         if (cpu_has_secondary_exec_ctrls()) {
2325                 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
2326                 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2327                         exec_control &=
2328                                 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
2329                 if (vmx->vpid == 0)
2330                         exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
2331                 if (!enable_ept) {
2332                         exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
2333                         enable_unrestricted_guest = 0;
2334                 }
2335                 if (!enable_unrestricted_guest)
2336                         exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2337                 if (!ple_gap)
2338                         exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
2339                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
2340         }
2341
2342         if (ple_gap) {
2343                 vmcs_write32(PLE_GAP, ple_gap);
2344                 vmcs_write32(PLE_WINDOW, ple_window);
2345         }
2346
2347         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
2348         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
2349         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
2350
2351         vmcs_writel(HOST_CR0, read_cr0());  /* 22.2.3 */
2352         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
2353         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
2354
2355         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
2356         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2357         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2358         vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs());    /* 22.2.4 */
2359         vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs());    /* 22.2.4 */
2360         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2361 #ifdef CONFIG_X86_64
2362         rdmsrl(MSR_FS_BASE, a);
2363         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
2364         rdmsrl(MSR_GS_BASE, a);
2365         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
2366 #else
2367         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
2368         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
2369 #endif
2370
2371         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
2372
2373         kvm_get_idt(&dt);
2374         vmcs_writel(HOST_IDTR_BASE, dt.base);   /* 22.2.4 */
2375
2376         asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
2377         vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
2378         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
2379         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2380         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2381
2382         rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
2383         vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
2384         rdmsrl(MSR_IA32_SYSENTER_ESP, a);
2385         vmcs_writel(HOST_IA32_SYSENTER_ESP, a);   /* 22.2.3 */
2386         rdmsrl(MSR_IA32_SYSENTER_EIP, a);
2387         vmcs_writel(HOST_IA32_SYSENTER_EIP, a);   /* 22.2.3 */
2388
2389         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
2390                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2391                 host_pat = msr_low | ((u64) msr_high << 32);
2392                 vmcs_write64(HOST_IA32_PAT, host_pat);
2393         }
2394         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2395                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2396                 host_pat = msr_low | ((u64) msr_high << 32);
2397                 /* Write the default value follow host pat */
2398                 vmcs_write64(GUEST_IA32_PAT, host_pat);
2399                 /* Keep arch.pat sync with GUEST_IA32_PAT */
2400                 vmx->vcpu.arch.pat = host_pat;
2401         }
2402
2403         for (i = 0; i < NR_VMX_MSR; ++i) {
2404                 u32 index = vmx_msr_index[i];
2405                 u32 data_low, data_high;
2406                 u64 data;
2407                 int j = vmx->nmsrs;
2408
2409                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
2410                         continue;
2411                 if (wrmsr_safe(index, data_low, data_high) < 0)
2412                         continue;
2413                 data = data_low | ((u64)data_high << 32);
2414                 vmx->guest_msrs[j].index = i;
2415                 vmx->guest_msrs[j].data = 0;
2416                 vmx->guest_msrs[j].mask = -1ull;
2417                 ++vmx->nmsrs;
2418         }
2419
2420         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
2421
2422         /* 22.2.1, 20.8.1 */
2423         vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
2424
2425         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
2426         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
2427         if (enable_ept)
2428                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
2429         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
2430
2431         tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
2432         rdtscll(tsc_this);
2433         if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
2434                 tsc_base = tsc_this;
2435
2436         guest_write_tsc(0, tsc_base);
2437
2438         return 0;
2439 }
2440
2441 static int init_rmode(struct kvm *kvm)
2442 {
2443         if (!init_rmode_tss(kvm))
2444                 return 0;
2445         if (!init_rmode_identity_map(kvm))
2446                 return 0;
2447         return 1;
2448 }
2449
2450 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
2451 {
2452         struct vcpu_vmx *vmx = to_vmx(vcpu);
2453         u64 msr;
2454         int ret;
2455
2456         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
2457         down_read(&vcpu->kvm->slots_lock);
2458         if (!init_rmode(vmx->vcpu.kvm)) {
2459                 ret = -ENOMEM;
2460                 goto out;
2461         }
2462
2463         vmx->rmode.vm86_active = 0;
2464
2465         vmx->soft_vnmi_blocked = 0;
2466
2467         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2468         kvm_set_cr8(&vmx->vcpu, 0);
2469         msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
2470         if (kvm_vcpu_is_bsp(&vmx->vcpu))
2471                 msr |= MSR_IA32_APICBASE_BSP;
2472         kvm_set_apic_base(&vmx->vcpu, msr);
2473
2474         fx_init(&vmx->vcpu);
2475
2476         seg_setup(VCPU_SREG_CS);
2477         /*
2478          * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2479          * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh.
2480          */
2481         if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
2482                 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
2483                 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
2484         } else {
2485                 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
2486                 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
2487         }
2488
2489         seg_setup(VCPU_SREG_DS);
2490         seg_setup(VCPU_SREG_ES);
2491         seg_setup(VCPU_SREG_FS);
2492         seg_setup(VCPU_SREG_GS);
2493         seg_setup(VCPU_SREG_SS);
2494
2495         vmcs_write16(GUEST_TR_SELECTOR, 0);
2496         vmcs_writel(GUEST_TR_BASE, 0);
2497         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
2498         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2499
2500         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
2501         vmcs_writel(GUEST_LDTR_BASE, 0);
2502         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
2503         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
2504
2505         vmcs_write32(GUEST_SYSENTER_CS, 0);
2506         vmcs_writel(GUEST_SYSENTER_ESP, 0);
2507         vmcs_writel(GUEST_SYSENTER_EIP, 0);
2508
2509         vmcs_writel(GUEST_RFLAGS, 0x02);
2510         if (kvm_vcpu_is_bsp(&vmx->vcpu))
2511                 kvm_rip_write(vcpu, 0xfff0);
2512         else
2513                 kvm_rip_write(vcpu, 0);
2514         kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
2515
2516         vmcs_writel(GUEST_DR7, 0x400);
2517
2518         vmcs_writel(GUEST_GDTR_BASE, 0);
2519         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
2520
2521         vmcs_writel(GUEST_IDTR_BASE, 0);
2522         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
2523
2524         vmcs_write32(GUEST_ACTIVITY_STATE, 0);
2525         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
2526         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
2527
2528         /* Special registers */
2529         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
2530
2531         setup_msrs(vmx);
2532
2533         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
2534
2535         if (cpu_has_vmx_tpr_shadow()) {
2536                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
2537                 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
2538                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
2539                                 page_to_phys(vmx->vcpu.arch.apic->regs_page));
2540                 vmcs_write32(TPR_THRESHOLD, 0);
2541         }
2542
2543         if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2544                 vmcs_write64(APIC_ACCESS_ADDR,
2545                              page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
2546
2547         if (vmx->vpid != 0)
2548                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2549
2550         vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
2551         vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
2552         vmx_set_cr4(&vmx->vcpu, 0);
2553         vmx_set_efer(&vmx->vcpu, 0);
2554         vmx_fpu_activate(&vmx->vcpu);
2555         update_exception_bitmap(&vmx->vcpu);
2556
2557         vpid_sync_vcpu_all(vmx);
2558
2559         ret = 0;
2560
2561         /* HACK: Don't enable emulation on guest boot/reset */
2562         vmx->emulation_required = 0;
2563
2564 out:
2565         up_read(&vcpu->kvm->slots_lock);
2566         return ret;
2567 }
2568
2569 static void enable_irq_window(struct kvm_vcpu *vcpu)
2570 {
2571         u32 cpu_based_vm_exec_control;
2572
2573         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2574         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2575         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2576 }
2577
2578 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2579 {
2580         u32 cpu_based_vm_exec_control;
2581
2582         if (!cpu_has_virtual_nmis()) {
2583                 enable_irq_window(vcpu);
2584                 return;
2585         }
2586
2587         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2588         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
2589         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2590 }
2591
2592 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
2593 {
2594         struct vcpu_vmx *vmx = to_vmx(vcpu);
2595         uint32_t intr;
2596         int irq = vcpu->arch.interrupt.nr;
2597
2598         trace_kvm_inj_virq(irq);
2599
2600         ++vcpu->stat.irq_injections;
2601         if (vmx->rmode.vm86_active) {
2602                 vmx->rmode.irq.pending = true;
2603                 vmx->rmode.irq.vector = irq;
2604                 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2605                 if (vcpu->arch.interrupt.soft)
2606                         vmx->rmode.irq.rip +=
2607                                 vmx->vcpu.arch.event_exit_inst_len;
2608                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2609                              irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
2610                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2611                 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2612                 return;
2613         }
2614         intr = irq | INTR_INFO_VALID_MASK;
2615         if (vcpu->arch.interrupt.soft) {
2616                 intr |= INTR_TYPE_SOFT_INTR;
2617                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2618                              vmx->vcpu.arch.event_exit_inst_len);
2619         } else
2620                 intr |= INTR_TYPE_EXT_INTR;
2621         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
2622 }
2623
2624 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
2625 {
2626         struct vcpu_vmx *vmx = to_vmx(vcpu);
2627
2628         if (!cpu_has_virtual_nmis()) {
2629                 /*
2630                  * Tracking the NMI-blocked state in software is built upon
2631                  * finding the next open IRQ window. This, in turn, depends on
2632                  * well-behaving guests: They have to keep IRQs disabled at
2633                  * least as long as the NMI handler runs. Otherwise we may
2634                  * cause NMI nesting, maybe breaking the guest. But as this is
2635                  * highly unlikely, we can live with the residual risk.
2636                  */
2637                 vmx->soft_vnmi_blocked = 1;
2638                 vmx->vnmi_blocked_time = 0;
2639         }
2640
2641         ++vcpu->stat.nmi_injections;
2642         if (vmx->rmode.vm86_active) {
2643                 vmx->rmode.irq.pending = true;
2644                 vmx->rmode.irq.vector = NMI_VECTOR;
2645                 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2646                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2647                              NMI_VECTOR | INTR_TYPE_SOFT_INTR |
2648                              INTR_INFO_VALID_MASK);
2649                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2650                 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2651                 return;
2652         }
2653         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2654                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
2655 }
2656
2657 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
2658 {
2659         if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
2660                 return 0;
2661
2662         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2663                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS |
2664                                 GUEST_INTR_STATE_NMI));
2665 }
2666
2667 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
2668 {
2669         if (!cpu_has_virtual_nmis())
2670                 return to_vmx(vcpu)->soft_vnmi_blocked;
2671         else
2672                 return !!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2673                           GUEST_INTR_STATE_NMI);
2674 }
2675
2676 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
2677 {
2678         struct vcpu_vmx *vmx = to_vmx(vcpu);
2679
2680         if (!cpu_has_virtual_nmis()) {
2681                 if (vmx->soft_vnmi_blocked != masked) {
2682                         vmx->soft_vnmi_blocked = masked;
2683                         vmx->vnmi_blocked_time = 0;
2684                 }
2685         } else {
2686                 if (masked)
2687                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
2688                                       GUEST_INTR_STATE_NMI);
2689                 else
2690                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
2691                                         GUEST_INTR_STATE_NMI);
2692         }
2693 }
2694
2695 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
2696 {
2697         return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2698                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2699                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
2700 }
2701
2702 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
2703 {
2704         int ret;
2705         struct kvm_userspace_memory_region tss_mem = {
2706                 .slot = TSS_PRIVATE_MEMSLOT,
2707                 .guest_phys_addr = addr,
2708                 .memory_size = PAGE_SIZE * 3,
2709                 .flags = 0,
2710         };
2711
2712         ret = kvm_set_memory_region(kvm, &tss_mem, 0);
2713         if (ret)
2714                 return ret;
2715         kvm->arch.tss_addr = addr;
2716         return 0;
2717 }
2718
2719 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
2720                                   int vec, u32 err_code)
2721 {
2722         /*
2723          * Instruction with address size override prefix opcode 0x67
2724          * Cause the #SS fault with 0 error code in VM86 mode.
2725          */
2726         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
2727                 if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE)
2728                         return 1;
2729         /*
2730          * Forward all other exceptions that are valid in real mode.
2731          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
2732          *        the required debugging infrastructure rework.
2733          */
2734         switch (vec) {
2735         case DB_VECTOR:
2736                 if (vcpu->guest_debug &
2737                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
2738                         return 0;
2739                 kvm_queue_exception(vcpu, vec);
2740                 return 1;
2741         case BP_VECTOR:
2742                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2743                         return 0;
2744                 /* fall through */
2745         case DE_VECTOR:
2746         case OF_VECTOR:
2747         case BR_VECTOR:
2748         case UD_VECTOR:
2749         case DF_VECTOR:
2750         case SS_VECTOR:
2751         case GP_VECTOR:
2752         case MF_VECTOR:
2753                 kvm_queue_exception(vcpu, vec);
2754                 return 1;
2755         }
2756         return 0;
2757 }
2758
2759 /*
2760  * Trigger machine check on the host. We assume all the MSRs are already set up
2761  * by the CPU and that we still run on the same CPU as the MCE occurred on.
2762  * We pass a fake environment to the machine check handler because we want
2763  * the guest to be always treated like user space, no matter what context
2764  * it used internally.
2765  */
2766 static void kvm_machine_check(void)
2767 {
2768 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
2769         struct pt_regs regs = {
2770                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
2771                 .flags = X86_EFLAGS_IF,
2772         };
2773
2774         do_machine_check(&regs, 0);
2775 #endif
2776 }
2777
2778 static int handle_machine_check(struct kvm_vcpu *vcpu)
2779 {
2780         /* already handled by vcpu_run */
2781         return 1;
2782 }
2783
2784 static int handle_exception(struct kvm_vcpu *vcpu)
2785 {
2786         struct vcpu_vmx *vmx = to_vmx(vcpu);
2787         struct kvm_run *kvm_run = vcpu->run;
2788         u32 intr_info, ex_no, error_code;
2789         unsigned long cr2, rip, dr6;
2790         u32 vect_info;
2791         enum emulation_result er;
2792
2793         vect_info = vmx->idt_vectoring_info;
2794         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2795
2796         if (is_machine_check(intr_info))
2797                 return handle_machine_check(vcpu);
2798
2799         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
2800             !is_page_fault(intr_info)) {
2801                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2802                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
2803                 vcpu->run->internal.ndata = 2;
2804                 vcpu->run->internal.data[0] = vect_info;
2805                 vcpu->run->internal.data[1] = intr_info;
2806                 return 0;
2807         }
2808
2809         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
2810                 return 1;  /* already handled by vmx_vcpu_run() */
2811
2812         if (is_no_device(intr_info)) {
2813                 vmx_fpu_activate(vcpu);
2814                 return 1;
2815         }
2816
2817         if (is_invalid_opcode(intr_info)) {
2818                 er = emulate_instruction(vcpu, 0, 0, EMULTYPE_TRAP_UD);
2819                 if (er != EMULATE_DONE)
2820                         kvm_queue_exception(vcpu, UD_VECTOR);
2821                 return 1;
2822         }
2823
2824         error_code = 0;
2825         rip = kvm_rip_read(vcpu);
2826         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
2827                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
2828         if (is_page_fault(intr_info)) {
2829                 /* EPT won't cause page fault directly */
2830                 if (enable_ept)
2831                         BUG();
2832                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
2833                 trace_kvm_page_fault(cr2, error_code);
2834
2835                 if (kvm_event_needs_reinjection(vcpu))
2836                         kvm_mmu_unprotect_page_virt(vcpu, cr2);
2837                 return kvm_mmu_page_fault(vcpu, cr2, error_code);
2838         }
2839
2840         if (vmx->rmode.vm86_active &&
2841             handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
2842                                                                 error_code)) {
2843                 if (vcpu->arch.halt_request) {
2844                         vcpu->arch.halt_request = 0;
2845                         return kvm_emulate_halt(vcpu);
2846                 }
2847                 return 1;
2848         }
2849
2850         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
2851         switch (ex_no) {
2852         case DB_VECTOR:
2853                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
2854                 if (!(vcpu->guest_debug &
2855                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
2856                         vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
2857                         kvm_queue_exception(vcpu, DB_VECTOR);
2858                         return 1;
2859                 }
2860                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
2861                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
2862                 /* fall through */
2863         case BP_VECTOR:
2864                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2865                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
2866                 kvm_run->debug.arch.exception = ex_no;
2867                 break;
2868         default:
2869                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
2870                 kvm_run->ex.exception = ex_no;
2871                 kvm_run->ex.error_code = error_code;
2872                 break;
2873         }
2874         return 0;
2875 }
2876
2877 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
2878 {
2879         ++vcpu->stat.irq_exits;
2880         return 1;
2881 }
2882
2883 static int handle_triple_fault(struct kvm_vcpu *vcpu)
2884 {
2885         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
2886         return 0;
2887 }
2888
2889 static int handle_io(struct kvm_vcpu *vcpu)
2890 {
2891         unsigned long exit_qualification;
2892         int size, in, string;
2893         unsigned port;
2894
2895         ++vcpu->stat.io_exits;
2896         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2897         string = (exit_qualification & 16) != 0;
2898
2899         if (string) {
2900                 if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DO_MMIO)
2901                         return 0;
2902                 return 1;
2903         }
2904
2905         size = (exit_qualification & 7) + 1;
2906         in = (exit_qualification & 8) != 0;
2907         port = exit_qualification >> 16;
2908
2909         skip_emulated_instruction(vcpu);
2910         return kvm_emulate_pio(vcpu, in, size, port);
2911 }
2912
2913 static void
2914 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2915 {
2916         /*
2917          * Patch in the VMCALL instruction:
2918          */
2919         hypercall[0] = 0x0f;
2920         hypercall[1] = 0x01;
2921         hypercall[2] = 0xc1;
2922 }
2923
2924 static int handle_cr(struct kvm_vcpu *vcpu)
2925 {
2926         unsigned long exit_qualification, val;
2927         int cr;
2928         int reg;
2929
2930         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2931         cr = exit_qualification & 15;
2932         reg = (exit_qualification >> 8) & 15;
2933         switch ((exit_qualification >> 4) & 3) {
2934         case 0: /* mov to cr */
2935                 val = kvm_register_read(vcpu, reg);
2936                 trace_kvm_cr_write(cr, val);
2937                 switch (cr) {
2938                 case 0:
2939                         kvm_set_cr0(vcpu, val);
2940                         skip_emulated_instruction(vcpu);
2941                         return 1;
2942                 case 3:
2943                         kvm_set_cr3(vcpu, val);
2944                         skip_emulated_instruction(vcpu);
2945                         return 1;
2946                 case 4:
2947                         kvm_set_cr4(vcpu, val);
2948                         skip_emulated_instruction(vcpu);
2949                         return 1;
2950                 case 8: {
2951                                 u8 cr8_prev = kvm_get_cr8(vcpu);
2952                                 u8 cr8 = kvm_register_read(vcpu, reg);
2953                                 kvm_set_cr8(vcpu, cr8);
2954                                 skip_emulated_instruction(vcpu);
2955                                 if (irqchip_in_kernel(vcpu->kvm))
2956                                         return 1;
2957                                 if (cr8_prev <= cr8)
2958                                         return 1;
2959                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2960                                 return 0;
2961                         }
2962                 };
2963                 break;
2964         case 2: /* clts */
2965                 vmx_fpu_deactivate(vcpu);
2966                 vcpu->arch.cr0 &= ~X86_CR0_TS;
2967                 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2968                 vmx_fpu_activate(vcpu);
2969                 skip_emulated_instruction(vcpu);
2970                 return 1;
2971         case 1: /*mov from cr*/
2972                 switch (cr) {
2973                 case 3:
2974                         kvm_register_write(vcpu, reg, vcpu->arch.cr3);
2975                         trace_kvm_cr_read(cr, vcpu->arch.cr3);
2976                         skip_emulated_instruction(vcpu);
2977                         return 1;
2978                 case 8:
2979                         val = kvm_get_cr8(vcpu);
2980                         kvm_register_write(vcpu, reg, val);
2981                         trace_kvm_cr_read(cr, val);
2982                         skip_emulated_instruction(vcpu);
2983                         return 1;
2984                 }
2985                 break;
2986         case 3: /* lmsw */
2987                 kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
2988
2989                 skip_emulated_instruction(vcpu);
2990                 return 1;
2991         default:
2992                 break;
2993         }
2994         vcpu->run->exit_reason = 0;
2995         pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
2996                (int)(exit_qualification >> 4) & 3, cr);
2997         return 0;
2998 }
2999
3000 static int handle_dr(struct kvm_vcpu *vcpu)
3001 {
3002         unsigned long exit_qualification;
3003         unsigned long val;
3004         int dr, reg;
3005
3006         if (!kvm_require_cpl(vcpu, 0))
3007                 return 1;
3008         dr = vmcs_readl(GUEST_DR7);
3009         if (dr & DR7_GD) {
3010                 /*
3011                  * As the vm-exit takes precedence over the debug trap, we
3012                  * need to emulate the latter, either for the host or the
3013                  * guest debugging itself.
3014                  */
3015                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
3016                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
3017                         vcpu->run->debug.arch.dr7 = dr;
3018                         vcpu->run->debug.arch.pc =
3019                                 vmcs_readl(GUEST_CS_BASE) +
3020                                 vmcs_readl(GUEST_RIP);
3021                         vcpu->run->debug.arch.exception = DB_VECTOR;
3022                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
3023                         return 0;
3024                 } else {
3025                         vcpu->arch.dr7 &= ~DR7_GD;
3026                         vcpu->arch.dr6 |= DR6_BD;
3027                         vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
3028                         kvm_queue_exception(vcpu, DB_VECTOR);
3029                         return 1;
3030                 }
3031         }
3032
3033         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3034         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
3035         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
3036         if (exit_qualification & TYPE_MOV_FROM_DR) {
3037                 switch (dr) {
3038                 case 0 ... 3:
3039                         val = vcpu->arch.db[dr];
3040                         break;
3041                 case 6:
3042                         val = vcpu->arch.dr6;
3043                         break;
3044                 case 7:
3045                         val = vcpu->arch.dr7;
3046                         break;
3047                 default:
3048                         val = 0;
3049                 }
3050                 kvm_register_write(vcpu, reg, val);
3051         } else {
3052                 val = vcpu->arch.regs[reg];
3053                 switch (dr) {
3054                 case 0 ... 3:
3055                         vcpu->arch.db[dr] = val;
3056                         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
3057                                 vcpu->arch.eff_db[dr] = val;
3058                         break;
3059                 case 4 ... 5:
3060                         if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
3061                                 kvm_queue_exception(vcpu, UD_VECTOR);
3062                         break;
3063                 case 6:
3064                         if (val & 0xffffffff00000000ULL) {
3065                                 kvm_queue_exception(vcpu, GP_VECTOR);
3066                                 break;
3067                         }
3068                         vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
3069                         break;
3070                 case 7:
3071                         if (val & 0xffffffff00000000ULL) {
3072                                 kvm_queue_exception(vcpu, GP_VECTOR);
3073                                 break;
3074                         }
3075                         vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
3076                         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
3077                                 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
3078                                 vcpu->arch.switch_db_regs =
3079                                         (val & DR7_BP_EN_MASK);
3080                         }
3081                         break;
3082                 }
3083         }
3084         skip_emulated_instruction(vcpu);
3085         return 1;
3086 }
3087
3088 static int handle_cpuid(struct kvm_vcpu *vcpu)
3089 {
3090         kvm_emulate_cpuid(vcpu);
3091         return 1;
3092 }
3093
3094 static int handle_rdmsr(struct kvm_vcpu *vcpu)
3095 {
3096         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3097         u64 data;
3098
3099         if (vmx_get_msr(vcpu, ecx, &data)) {
3100                 kvm_inject_gp(vcpu, 0);
3101                 return 1;
3102         }
3103
3104         trace_kvm_msr_read(ecx, data);
3105
3106         /* FIXME: handling of bits 32:63 of rax, rdx */
3107         vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
3108         vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
3109         skip_emulated_instruction(vcpu);
3110         return 1;
3111 }
3112
3113 static int handle_wrmsr(struct kvm_vcpu *vcpu)
3114 {
3115         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3116         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
3117                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3118
3119         trace_kvm_msr_write(ecx, data);
3120
3121         if (vmx_set_msr(vcpu, ecx, data) != 0) {
3122                 kvm_inject_gp(vcpu, 0);
3123                 return 1;
3124         }
3125
3126         skip_emulated_instruction(vcpu);
3127         return 1;
3128 }
3129
3130 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
3131 {
3132         return 1;
3133 }
3134
3135 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
3136 {
3137         u32 cpu_based_vm_exec_control;
3138
3139         /* clear pending irq */
3140         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3141         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
3142         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3143
3144         ++vcpu->stat.irq_window_exits;
3145
3146         /*
3147          * If the user space waits to inject interrupts, exit as soon as
3148          * possible
3149          */
3150         if (!irqchip_in_kernel(vcpu->kvm) &&
3151             vcpu->run->request_interrupt_window &&
3152             !kvm_cpu_has_interrupt(vcpu)) {
3153                 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3154                 return 0;
3155         }
3156         return 1;
3157 }
3158
3159 static int handle_halt(struct kvm_vcpu *vcpu)
3160 {
3161         skip_emulated_instruction(vcpu);
3162         return kvm_emulate_halt(vcpu);
3163 }
3164
3165 static int handle_vmcall(struct kvm_vcpu *vcpu)
3166 {
3167         skip_emulated_instruction(vcpu);
3168         kvm_emulate_hypercall(vcpu);
3169         return 1;
3170 }
3171
3172 static int handle_vmx_insn(struct kvm_vcpu *vcpu)
3173 {
3174         kvm_queue_exception(vcpu, UD_VECTOR);
3175         return 1;
3176 }
3177
3178 static int handle_invlpg(struct kvm_vcpu *vcpu)
3179 {
3180         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3181
3182         kvm_mmu_invlpg(vcpu, exit_qualification);
3183         skip_emulated_instruction(vcpu);
3184         return 1;
3185 }
3186
3187 static int handle_wbinvd(struct kvm_vcpu *vcpu)
3188 {
3189         skip_emulated_instruction(vcpu);
3190         /* TODO: Add support for VT-d/pass-through device */
3191         return 1;
3192 }
3193
3194 static int handle_apic_access(struct kvm_vcpu *vcpu)
3195 {
3196         unsigned long exit_qualification;
3197         enum emulation_result er;
3198         unsigned long offset;
3199
3200         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3201         offset = exit_qualification & 0xffful;
3202
3203         er = emulate_instruction(vcpu, 0, 0, 0);
3204
3205         if (er !=  EMULATE_DONE) {
3206                 printk(KERN_ERR
3207                        "Fail to handle apic access vmexit! Offset is 0x%lx\n",
3208                        offset);
3209                 return -ENOEXEC;
3210         }
3211         return 1;
3212 }
3213
3214 static int handle_task_switch(struct kvm_vcpu *vcpu)
3215 {
3216         struct vcpu_vmx *vmx = to_vmx(vcpu);
3217         unsigned long exit_qualification;
3218         u16 tss_selector;
3219         int reason, type, idt_v;
3220
3221         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
3222         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
3223
3224         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3225
3226         reason = (u32)exit_qualification >> 30;
3227         if (reason == TASK_SWITCH_GATE && idt_v) {
3228                 switch (type) {
3229                 case INTR_TYPE_NMI_INTR:
3230                         vcpu->arch.nmi_injected = false;
3231                         if (cpu_has_virtual_nmis())
3232                                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3233                                               GUEST_INTR_STATE_NMI);
3234                         break;
3235                 case INTR_TYPE_EXT_INTR:
3236                 case INTR_TYPE_SOFT_INTR:
3237                         kvm_clear_interrupt_queue(vcpu);
3238                         break;
3239                 case INTR_TYPE_HARD_EXCEPTION:
3240                 case INTR_TYPE_SOFT_EXCEPTION:
3241                         kvm_clear_exception_queue(vcpu);
3242                         break;
3243                 default:
3244                         break;
3245                 }
3246         }
3247         tss_selector = exit_qualification;
3248
3249         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
3250                        type != INTR_TYPE_EXT_INTR &&
3251                        type != INTR_TYPE_NMI_INTR))
3252                 skip_emulated_instruction(vcpu);
3253
3254         if (!kvm_task_switch(vcpu, tss_selector, reason))
3255                 return 0;
3256
3257         /* clear all local breakpoint enable flags */
3258         vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
3259
3260         /*
3261          * TODO: What about debug traps on tss switch?
3262          *       Are we supposed to inject them and update dr6?
3263          */
3264
3265         return 1;
3266 }
3267
3268 static int handle_ept_violation(struct kvm_vcpu *vcpu)
3269 {
3270         unsigned long exit_qualification;
3271         gpa_t gpa;
3272         int gla_validity;
3273
3274         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3275
3276         if (exit_qualification & (1 << 6)) {
3277                 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
3278                 return -EINVAL;
3279         }
3280
3281         gla_validity = (exit_qualification >> 7) & 0x3;
3282         if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
3283                 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
3284                 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
3285                         (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
3286                         vmcs_readl(GUEST_LINEAR_ADDRESS));
3287                 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
3288                         (long unsigned int)exit_qualification);
3289                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3290                 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
3291                 return 0;
3292         }
3293
3294         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3295         trace_kvm_page_fault(gpa, exit_qualification);
3296         return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
3297 }
3298
3299 static u64 ept_rsvd_mask(u64 spte, int level)
3300 {
3301         int i;
3302         u64 mask = 0;
3303
3304         for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
3305                 mask |= (1ULL << i);
3306
3307         if (level > 2)
3308                 /* bits 7:3 reserved */
3309                 mask |= 0xf8;
3310         else if (level == 2) {
3311                 if (spte & (1ULL << 7))
3312                         /* 2MB ref, bits 20:12 reserved */
3313                         mask |= 0x1ff000;
3314                 else
3315                         /* bits 6:3 reserved */
3316                         mask |= 0x78;
3317         }
3318
3319         return mask;
3320 }
3321
3322 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
3323                                        int level)
3324 {
3325         printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
3326
3327         /* 010b (write-only) */
3328         WARN_ON((spte & 0x7) == 0x2);
3329
3330         /* 110b (write/execute) */
3331         WARN_ON((spte & 0x7) == 0x6);
3332
3333         /* 100b (execute-only) and value not supported by logical processor */
3334         if (!cpu_has_vmx_ept_execute_only())
3335                 WARN_ON((spte & 0x7) == 0x4);
3336
3337         /* not 000b */
3338         if ((spte & 0x7)) {
3339                 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
3340
3341                 if (rsvd_bits != 0) {
3342                         printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
3343                                          __func__, rsvd_bits);
3344                         WARN_ON(1);
3345                 }
3346
3347                 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
3348                         u64 ept_mem_type = (spte & 0x38) >> 3;
3349
3350                         if (ept_mem_type == 2 || ept_mem_type == 3 ||
3351                             ept_mem_type == 7) {
3352                                 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
3353                                                 __func__, ept_mem_type);
3354                                 WARN_ON(1);
3355                         }
3356                 }
3357         }
3358 }
3359
3360 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
3361 {
3362         u64 sptes[4];
3363         int nr_sptes, i;
3364         gpa_t gpa;
3365
3366         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3367
3368         printk(KERN_ERR "EPT: Misconfiguration.\n");
3369         printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
3370
3371         nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
3372
3373         for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
3374                 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
3375
3376         vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3377         vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
3378
3379         return 0;
3380 }
3381
3382 static int handle_nmi_window(struct kvm_vcpu *vcpu)
3383 {
3384         u32 cpu_based_vm_exec_control;
3385
3386         /* clear pending NMI */
3387         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3388         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
3389         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3390         ++vcpu->stat.nmi_window_exits;
3391
3392         return 1;
3393 }
3394
3395 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
3396 {
3397         struct vcpu_vmx *vmx = to_vmx(vcpu);
3398         enum emulation_result err = EMULATE_DONE;
3399         int ret = 1;
3400
3401         while (!guest_state_valid(vcpu)) {
3402                 err = emulate_instruction(vcpu, 0, 0, 0);
3403
3404                 if (err == EMULATE_DO_MMIO) {
3405                         ret = 0;
3406                         goto out;
3407                 }
3408
3409                 if (err != EMULATE_DONE) {
3410                         kvm_report_emulation_failure(vcpu, "emulation failure");
3411                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3412                         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3413                         vcpu->run->internal.ndata = 0;
3414                         ret = 0;
3415                         goto out;
3416                 }
3417
3418                 if (signal_pending(current))
3419                         goto out;
3420                 if (need_resched())
3421                         schedule();
3422         }
3423
3424         vmx->emulation_required = 0;
3425 out:
3426         return ret;
3427 }
3428
3429 /*
3430  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
3431  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
3432  */
3433 static int handle_pause(struct kvm_vcpu *vcpu)
3434 {
3435         skip_emulated_instruction(vcpu);
3436         kvm_vcpu_on_spin(vcpu);
3437
3438         return 1;
3439 }
3440
3441 static int handle_invalid_op(struct kvm_vcpu *vcpu)
3442 {
3443         kvm_queue_exception(vcpu, UD_VECTOR);
3444         return 1;
3445 }
3446
3447 /*
3448  * The exit handlers return 1 if the exit was handled fully and guest execution
3449  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
3450  * to be done to userspace and return 0.
3451  */
3452 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3453         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
3454         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
3455         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
3456         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
3457         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
3458         [EXIT_REASON_CR_ACCESS]               = handle_cr,
3459         [EXIT_REASON_DR_ACCESS]               = handle_dr,
3460         [EXIT_REASON_CPUID]                   = handle_cpuid,
3461         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
3462         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
3463         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
3464         [EXIT_REASON_HLT]                     = handle_halt,
3465         [EXIT_REASON_INVLPG]                  = handle_invlpg,
3466         [EXIT_REASON_VMCALL]                  = handle_vmcall,
3467         [EXIT_REASON_VMCLEAR]                 = handle_vmx_insn,
3468         [EXIT_REASON_VMLAUNCH]                = handle_vmx_insn,
3469         [EXIT_REASON_VMPTRLD]                 = handle_vmx_insn,
3470         [EXIT_REASON_VMPTRST]                 = handle_vmx_insn,
3471         [EXIT_REASON_VMREAD]                  = handle_vmx_insn,
3472         [EXIT_REASON_VMRESUME]                = handle_vmx_insn,
3473         [EXIT_REASON_VMWRITE]                 = handle_vmx_insn,
3474         [EXIT_REASON_VMOFF]                   = handle_vmx_insn,
3475         [EXIT_REASON_VMON]                    = handle_vmx_insn,
3476         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
3477         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
3478         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
3479         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
3480         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
3481         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
3482         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
3483         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
3484         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_invalid_op,
3485         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_invalid_op,
3486 };
3487
3488 static const int kvm_vmx_max_exit_handlers =
3489         ARRAY_SIZE(kvm_vmx_exit_handlers);
3490
3491 /*
3492  * The guest has exited.  See if we can fix it or if we need userspace
3493  * assistance.
3494  */
3495 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
3496 {
3497         struct vcpu_vmx *vmx = to_vmx(vcpu);
3498         u32 exit_reason = vmx->exit_reason;
3499         u32 vectoring_info = vmx->idt_vectoring_info;
3500
3501         trace_kvm_exit(exit_reason, kvm_rip_read(vcpu));
3502
3503         /* If guest state is invalid, start emulating */
3504         if (vmx->emulation_required && emulate_invalid_guest_state)
3505                 return handle_invalid_guest_state(vcpu);
3506
3507         /* Access CR3 don't cause VMExit in paging mode, so we need
3508          * to sync with guest real CR3. */
3509         if (enable_ept && is_paging(vcpu))
3510                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3511
3512         if (unlikely(vmx->fail)) {
3513                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3514                 vcpu->run->fail_entry.hardware_entry_failure_reason
3515                         = vmcs_read32(VM_INSTRUCTION_ERROR);
3516                 return 0;
3517         }
3518
3519         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
3520                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
3521                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
3522                         exit_reason != EXIT_REASON_TASK_SWITCH))
3523                 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
3524                        "(0x%x) and exit reason is 0x%x\n",
3525                        __func__, vectoring_info, exit_reason);
3526
3527         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
3528                 if (vmx_interrupt_allowed(vcpu)) {
3529                         vmx->soft_vnmi_blocked = 0;
3530                 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
3531                            vcpu->arch.nmi_pending) {
3532                         /*
3533                          * This CPU don't support us in finding the end of an
3534                          * NMI-blocked window if the guest runs with IRQs
3535                          * disabled. So we pull the trigger after 1 s of
3536                          * futile waiting, but inform the user about this.
3537                          */
3538                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
3539                                "state on VCPU %d after 1 s timeout\n",
3540                                __func__, vcpu->vcpu_id);
3541                         vmx->soft_vnmi_blocked = 0;
3542                 }
3543         }
3544
3545         if (exit_reason < kvm_vmx_max_exit_handlers
3546             && kvm_vmx_exit_handlers[exit_reason])
3547                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
3548         else {
3549                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3550                 vcpu->run->hw.hardware_exit_reason = exit_reason;
3551         }
3552         return 0;
3553 }
3554
3555 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3556 {
3557         if (irr == -1 || tpr < irr) {
3558                 vmcs_write32(TPR_THRESHOLD, 0);
3559                 return;
3560         }
3561
3562         vmcs_write32(TPR_THRESHOLD, irr);
3563 }
3564
3565 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
3566 {
3567         u32 exit_intr_info;
3568         u32 idt_vectoring_info = vmx->idt_vectoring_info;
3569         bool unblock_nmi;
3570         u8 vector;
3571         int type;
3572         bool idtv_info_valid;
3573
3574         exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3575
3576         vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
3577
3578         /* Handle machine checks before interrupts are enabled */
3579         if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
3580             || (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI
3581                 && is_machine_check(exit_intr_info)))
3582                 kvm_machine_check();
3583
3584         /* We need to handle NMIs before interrupts are enabled */
3585         if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
3586             (exit_intr_info & INTR_INFO_VALID_MASK))
3587                 asm("int $2");
3588
3589         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
3590
3591         if (cpu_has_virtual_nmis()) {
3592                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
3593                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
3594                 /*
3595                  * SDM 3: 27.7.1.2 (September 2008)
3596                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
3597                  * a guest IRET fault.
3598                  * SDM 3: 23.2.2 (September 2008)
3599                  * Bit 12 is undefined in any of the following cases:
3600                  *  If the VM exit sets the valid bit in the IDT-vectoring
3601                  *   information field.
3602                  *  If the VM exit is due to a double fault.
3603                  */
3604                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
3605                     vector != DF_VECTOR && !idtv_info_valid)
3606                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3607                                       GUEST_INTR_STATE_NMI);
3608         } else if (unlikely(vmx->soft_vnmi_blocked))
3609                 vmx->vnmi_blocked_time +=
3610                         ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
3611
3612         vmx->vcpu.arch.nmi_injected = false;
3613         kvm_clear_exception_queue(&vmx->vcpu);
3614         kvm_clear_interrupt_queue(&vmx->vcpu);
3615
3616         if (!idtv_info_valid)
3617                 return;
3618
3619         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
3620         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
3621
3622         switch (type) {
3623         case INTR_TYPE_NMI_INTR:
3624                 vmx->vcpu.arch.nmi_injected = true;
3625                 /*
3626                  * SDM 3: 27.7.1.2 (September 2008)
3627                  * Clear bit "block by NMI" before VM entry if a NMI
3628                  * delivery faulted.
3629                  */
3630                 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
3631                                 GUEST_INTR_STATE_NMI);
3632                 break;
3633         case INTR_TYPE_SOFT_EXCEPTION:
3634                 vmx->vcpu.arch.event_exit_inst_len =
3635                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3636                 /* fall through */
3637         case INTR_TYPE_HARD_EXCEPTION:
3638                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
3639                         u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE);
3640                         kvm_queue_exception_e(&vmx->vcpu, vector, err);
3641                 } else
3642                         kvm_queue_exception(&vmx->vcpu, vector);
3643                 break;
3644         case INTR_TYPE_SOFT_INTR:
3645                 vmx->vcpu.arch.event_exit_inst_len =
3646                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3647                 /* fall through */
3648         case INTR_TYPE_EXT_INTR:
3649                 kvm_queue_interrupt(&vmx->vcpu, vector,
3650                         type == INTR_TYPE_SOFT_INTR);
3651                 break;
3652         default:
3653                 break;
3654         }
3655 }
3656
3657 /*
3658  * Failure to inject an interrupt should give us the information
3659  * in IDT_VECTORING_INFO_FIELD.  However, if the failure occurs
3660  * when fetching the interrupt redirection bitmap in the real-mode
3661  * tss, this doesn't happen.  So we do it ourselves.
3662  */
3663 static void fixup_rmode_irq(struct vcpu_vmx *vmx)
3664 {
3665         vmx->rmode.irq.pending = 0;
3666         if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
3667                 return;
3668         kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
3669         if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
3670                 vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
3671                 vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
3672                 return;
3673         }
3674         vmx->idt_vectoring_info =
3675                 VECTORING_INFO_VALID_MASK
3676                 | INTR_TYPE_EXT_INTR
3677                 | vmx->rmode.irq.vector;
3678 }
3679
3680 #ifdef CONFIG_X86_64
3681 #define R "r"
3682 #define Q "q"
3683 #else
3684 #define R "e"
3685 #define Q "l"
3686 #endif
3687
3688 static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
3689 {
3690         struct vcpu_vmx *vmx = to_vmx(vcpu);
3691
3692         /* Record the guest's net vcpu time for enforced NMI injections. */
3693         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
3694                 vmx->entry_time = ktime_get();
3695
3696         /* Don't enter VMX if guest state is invalid, let the exit handler
3697            start emulation until we arrive back to a valid state */
3698         if (vmx->emulation_required && emulate_invalid_guest_state)
3699                 return;
3700
3701         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
3702                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
3703         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
3704                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
3705
3706         /* When single-stepping over STI and MOV SS, we must clear the
3707          * corresponding interruptibility bits in the guest state. Otherwise
3708          * vmentry fails as it then expects bit 14 (BS) in pending debug
3709          * exceptions being set, but that's not correct for the guest debugging
3710          * case. */
3711         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3712                 vmx_set_interrupt_shadow(vcpu, 0);
3713
3714         /*
3715          * Loading guest fpu may have cleared host cr0.ts
3716          */
3717         vmcs_writel(HOST_CR0, read_cr0());
3718
3719         if (vcpu->arch.switch_db_regs)
3720                 set_debugreg(vcpu->arch.dr6, 6);
3721
3722         asm(
3723                 /* Store host registers */
3724                 "push %%"R"dx; push %%"R"bp;"
3725                 "push %%"R"cx \n\t"
3726                 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
3727                 "je 1f \n\t"
3728                 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
3729                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
3730                 "1: \n\t"
3731                 /* Reload cr2 if changed */
3732                 "mov %c[cr2](%0), %%"R"ax \n\t"
3733                 "mov %%cr2, %%"R"dx \n\t"
3734                 "cmp %%"R"ax, %%"R"dx \n\t"
3735                 "je 2f \n\t"
3736                 "mov %%"R"ax, %%cr2 \n\t"
3737                 "2: \n\t"
3738                 /* Check if vmlaunch of vmresume is needed */
3739                 "cmpl $0, %c[launched](%0) \n\t"
3740                 /* Load guest registers.  Don't clobber flags. */
3741                 "mov %c[rax](%0), %%"R"ax \n\t"
3742                 "mov %c[rbx](%0), %%"R"bx \n\t"
3743                 "mov %c[rdx](%0), %%"R"dx \n\t"
3744                 "mov %c[rsi](%0), %%"R"si \n\t"
3745                 "mov %c[rdi](%0), %%"R"di \n\t"
3746                 "mov %c[rbp](%0), %%"R"bp \n\t"
3747 #ifdef CONFIG_X86_64
3748                 "mov %c[r8](%0),  %%r8  \n\t"
3749                 "mov %c[r9](%0),  %%r9  \n\t"
3750                 "mov %c[r10](%0), %%r10 \n\t"
3751                 "mov %c[r11](%0), %%r11 \n\t"
3752                 "mov %c[r12](%0), %%r12 \n\t"
3753                 "mov %c[r13](%0), %%r13 \n\t"
3754                 "mov %c[r14](%0), %%r14 \n\t"
3755                 "mov %c[r15](%0), %%r15 \n\t"
3756 #endif
3757                 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
3758
3759                 /* Enter guest mode */
3760                 "jne .Llaunched \n\t"
3761                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
3762                 "jmp .Lkvm_vmx_return \n\t"
3763                 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
3764                 ".Lkvm_vmx_return: "
3765                 /* Save guest registers, load host registers, keep flags */
3766                 "xchg %0,     (%%"R"sp) \n\t"
3767                 "mov %%"R"ax, %c[rax](%0) \n\t"
3768                 "mov %%"R"bx, %c[rbx](%0) \n\t"
3769                 "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
3770                 "mov %%"R"dx, %c[rdx](%0) \n\t"
3771                 "mov %%"R"si, %c[rsi](%0) \n\t"
3772                 "mov %%"R"di, %c[rdi](%0) \n\t"
3773                 "mov %%"R"bp, %c[rbp](%0) \n\t"
3774 #ifdef CONFIG_X86_64
3775                 "mov %%r8,  %c[r8](%0) \n\t"
3776                 "mov %%r9,  %c[r9](%0) \n\t"
3777                 "mov %%r10, %c[r10](%0) \n\t"
3778                 "mov %%r11, %c[r11](%0) \n\t"
3779                 "mov %%r12, %c[r12](%0) \n\t"
3780                 "mov %%r13, %c[r13](%0) \n\t"
3781                 "mov %%r14, %c[r14](%0) \n\t"
3782                 "mov %%r15, %c[r15](%0) \n\t"
3783 #endif
3784                 "mov %%cr2, %%"R"ax   \n\t"
3785                 "mov %%"R"ax, %c[cr2](%0) \n\t"
3786
3787                 "pop  %%"R"bp; pop  %%"R"bp; pop  %%"R"dx \n\t"
3788                 "setbe %c[fail](%0) \n\t"
3789               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
3790                 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
3791                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
3792                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
3793                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
3794                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
3795                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
3796                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
3797                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
3798                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
3799                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
3800 #ifdef CONFIG_X86_64
3801                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
3802                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
3803                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
3804                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
3805                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
3806                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
3807                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
3808                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
3809 #endif
3810                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
3811               : "cc", "memory"
3812                 , R"bx", R"di", R"si"
3813 #ifdef CONFIG_X86_64
3814                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
3815 #endif
3816               );
3817
3818         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
3819                                   | (1 << VCPU_EXREG_PDPTR));
3820         vcpu->arch.regs_dirty = 0;
3821
3822         if (vcpu->arch.switch_db_regs)
3823                 get_debugreg(vcpu->arch.dr6, 6);
3824
3825         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
3826         if (vmx->rmode.irq.pending)
3827                 fixup_rmode_irq(vmx);
3828
3829         asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
3830         vmx->launched = 1;
3831
3832         vmx_complete_interrupts(vmx);
3833 }
3834
3835 #undef R
3836 #undef Q
3837
3838 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
3839 {
3840         struct vcpu_vmx *vmx = to_vmx(vcpu);
3841
3842         if (vmx->vmcs) {
3843                 vcpu_clear(vmx);
3844                 free_vmcs(vmx->vmcs);
3845                 vmx->vmcs = NULL;
3846         }
3847 }
3848
3849 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
3850 {
3851         struct vcpu_vmx *vmx = to_vmx(vcpu);
3852
3853         spin_lock(&vmx_vpid_lock);
3854         if (vmx->vpid != 0)
3855                 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3856         spin_unlock(&vmx_vpid_lock);
3857         vmx_free_vmcs(vcpu);
3858         kfree(vmx->guest_msrs);
3859         kvm_vcpu_uninit(vcpu);
3860         kmem_cache_free(kvm_vcpu_cache, vmx);
3861 }
3862
3863 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
3864 {
3865         int err;
3866         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3867         int cpu;
3868
3869         if (!vmx)
3870                 return ERR_PTR(-ENOMEM);
3871
3872         allocate_vpid(vmx);
3873
3874         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
3875         if (err)
3876                 goto free_vcpu;
3877
3878         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3879         if (!vmx->guest_msrs) {
3880                 err = -ENOMEM;
3881                 goto uninit_vcpu;
3882         }
3883
3884         vmx->vmcs = alloc_vmcs();
3885         if (!vmx->vmcs)
3886                 goto free_msrs;
3887
3888         vmcs_clear(vmx->vmcs);
3889
3890         cpu = get_cpu();
3891         vmx_vcpu_load(&vmx->vcpu, cpu);
3892         err = vmx_vcpu_setup(vmx);
3893         vmx_vcpu_put(&vmx->vcpu);
3894         put_cpu();
3895         if (err)
3896                 goto free_vmcs;
3897         if (vm_need_virtualize_apic_accesses(kvm))
3898                 if (alloc_apic_access_page(kvm) != 0)
3899                         goto free_vmcs;
3900
3901         if (enable_ept) {
3902                 if (!kvm->arch.ept_identity_map_addr)
3903                         kvm->arch.ept_identity_map_addr =
3904                                 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3905                 if (alloc_identity_pagetable(kvm) != 0)
3906                         goto free_vmcs;
3907         }
3908
3909         return &vmx->vcpu;
3910
3911 free_vmcs:
3912         free_vmcs(vmx->vmcs);
3913 free_msrs:
3914         kfree(vmx->guest_msrs);
3915 uninit_vcpu:
3916         kvm_vcpu_uninit(&vmx->vcpu);
3917 free_vcpu:
3918         kmem_cache_free(kvm_vcpu_cache, vmx);
3919         return ERR_PTR(err);
3920 }
3921
3922 static void __init vmx_check_processor_compat(void *rtn)
3923 {
3924         struct vmcs_config vmcs_conf;
3925
3926         *(int *)rtn = 0;
3927         if (setup_vmcs_config(&vmcs_conf) < 0)
3928                 *(int *)rtn = -EIO;
3929         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
3930                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
3931                                 smp_processor_id());
3932                 *(int *)rtn = -EIO;
3933         }
3934 }
3935
3936 static int get_ept_level(void)
3937 {
3938         return VMX_EPT_DEFAULT_GAW + 1;
3939 }
3940
3941 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3942 {
3943         u64 ret;
3944
3945         /* For VT-d and EPT combination
3946          * 1. MMIO: always map as UC
3947          * 2. EPT with VT-d:
3948          *   a. VT-d without snooping control feature: can't guarantee the
3949          *      result, try to trust guest.
3950          *   b. VT-d with snooping control feature: snooping control feature of
3951          *      VT-d engine can guarantee the cache correctness. Just set it
3952          *      to WB to keep consistent with host. So the same as item 3.
3953          * 3. EPT without VT-d: always map as WB and set IGMT=1 to keep
3954          *    consistent with host MTRR
3955          */
3956         if (is_mmio)
3957                 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
3958         else if (vcpu->kvm->arch.iommu_domain &&
3959                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
3960                 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
3961                       VMX_EPT_MT_EPTE_SHIFT;
3962         else
3963                 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
3964                         | VMX_EPT_IGMT_BIT;
3965
3966         return ret;
3967 }
3968
3969 static const struct trace_print_flags vmx_exit_reasons_str[] = {
3970         { EXIT_REASON_EXCEPTION_NMI,           "exception" },
3971         { EXIT_REASON_EXTERNAL_INTERRUPT,      "ext_irq" },
3972         { EXIT_REASON_TRIPLE_FAULT,            "triple_fault" },
3973         { EXIT_REASON_NMI_WINDOW,              "nmi_window" },
3974         { EXIT_REASON_IO_INSTRUCTION,          "io_instruction" },
3975         { EXIT_REASON_CR_ACCESS,               "cr_access" },
3976         { EXIT_REASON_DR_ACCESS,               "dr_access" },
3977         { EXIT_REASON_CPUID,                   "cpuid" },
3978         { EXIT_REASON_MSR_READ,                "rdmsr" },
3979         { EXIT_REASON_MSR_WRITE,               "wrmsr" },
3980         { EXIT_REASON_PENDING_INTERRUPT,       "interrupt_window" },
3981         { EXIT_REASON_HLT,                     "halt" },
3982         { EXIT_REASON_INVLPG,                  "invlpg" },
3983         { EXIT_REASON_VMCALL,                  "hypercall" },
3984         { EXIT_REASON_TPR_BELOW_THRESHOLD,     "tpr_below_thres" },
3985         { EXIT_REASON_APIC_ACCESS,             "apic_access" },
3986         { EXIT_REASON_WBINVD,                  "wbinvd" },
3987         { EXIT_REASON_TASK_SWITCH,             "task_switch" },
3988         { EXIT_REASON_EPT_VIOLATION,           "ept_violation" },
3989         { -1, NULL }
3990 };
3991
3992 static bool vmx_gb_page_enable(void)
3993 {
3994         return false;
3995 }
3996
3997 static struct kvm_x86_ops vmx_x86_ops = {
3998         .cpu_has_kvm_support = cpu_has_kvm_support,
3999         .disabled_by_bios = vmx_disabled_by_bios,
4000         .hardware_setup = hardware_setup,
4001         .hardware_unsetup = hardware_unsetup,
4002         .check_processor_compatibility = vmx_check_processor_compat,
4003         .hardware_enable = hardware_enable,
4004         .hardware_disable = hardware_disable,
4005         .cpu_has_accelerated_tpr = report_flexpriority,
4006
4007         .vcpu_create = vmx_create_vcpu,
4008         .vcpu_free = vmx_free_vcpu,
4009         .vcpu_reset = vmx_vcpu_reset,
4010
4011         .prepare_guest_switch = vmx_save_host_state,
4012         .vcpu_load = vmx_vcpu_load,
4013         .vcpu_put = vmx_vcpu_put,
4014
4015         .set_guest_debug = set_guest_debug,
4016         .get_msr = vmx_get_msr,
4017         .set_msr = vmx_set_msr,
4018         .get_segment_base = vmx_get_segment_base,
4019         .get_segment = vmx_get_segment,
4020         .set_segment = vmx_set_segment,
4021         .get_cpl = vmx_get_cpl,
4022         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
4023         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
4024         .set_cr0 = vmx_set_cr0,
4025         .set_cr3 = vmx_set_cr3,
4026         .set_cr4 = vmx_set_cr4,
4027         .set_efer = vmx_set_efer,
4028         .get_idt = vmx_get_idt,
4029         .set_idt = vmx_set_idt,
4030         .get_gdt = vmx_get_gdt,
4031         .set_gdt = vmx_set_gdt,
4032         .cache_reg = vmx_cache_reg,
4033         .get_rflags = vmx_get_rflags,
4034         .set_rflags = vmx_set_rflags,
4035
4036         .tlb_flush = vmx_flush_tlb,
4037
4038         .run = vmx_vcpu_run,
4039         .handle_exit = vmx_handle_exit,
4040         .skip_emulated_instruction = skip_emulated_instruction,
4041         .set_interrupt_shadow = vmx_set_interrupt_shadow,
4042         .get_interrupt_shadow = vmx_get_interrupt_shadow,
4043         .patch_hypercall = vmx_patch_hypercall,
4044         .set_irq = vmx_inject_irq,
4045         .set_nmi = vmx_inject_nmi,
4046         .queue_exception = vmx_queue_exception,
4047         .interrupt_allowed = vmx_interrupt_allowed,
4048         .nmi_allowed = vmx_nmi_allowed,
4049         .get_nmi_mask = vmx_get_nmi_mask,
4050         .set_nmi_mask = vmx_set_nmi_mask,
4051         .enable_nmi_window = enable_nmi_window,
4052         .enable_irq_window = enable_irq_window,
4053         .update_cr8_intercept = update_cr8_intercept,
4054
4055         .set_tss_addr = vmx_set_tss_addr,
4056         .get_tdp_level = get_ept_level,
4057         .get_mt_mask = vmx_get_mt_mask,
4058
4059         .exit_reasons_str = vmx_exit_reasons_str,
4060         .gb_page_enable = vmx_gb_page_enable,
4061 };
4062
4063 static int __init vmx_init(void)
4064 {
4065         int r, i;
4066
4067         rdmsrl_safe(MSR_EFER, &host_efer);
4068
4069         for (i = 0; i < NR_VMX_MSR; ++i)
4070                 kvm_define_shared_msr(i, vmx_msr_index[i]);
4071
4072         vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
4073         if (!vmx_io_bitmap_a)
4074                 return -ENOMEM;
4075
4076         vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
4077         if (!vmx_io_bitmap_b) {
4078                 r = -ENOMEM;
4079                 goto out;
4080         }
4081
4082         vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
4083         if (!vmx_msr_bitmap_legacy) {
4084                 r = -ENOMEM;
4085                 goto out1;
4086         }
4087
4088         vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
4089         if (!vmx_msr_bitmap_longmode) {
4090                 r = -ENOMEM;
4091                 goto out2;
4092         }
4093
4094         /*
4095          * Allow direct access to the PC debug port (it is often used for I/O
4096          * delays, but the vmexits simply slow things down).
4097          */
4098         memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
4099         clear_bit(0x80, vmx_io_bitmap_a);
4100
4101         memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
4102
4103         memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
4104         memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
4105
4106         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
4107
4108         r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
4109         if (r)
4110                 goto out3;
4111
4112         vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
4113         vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
4114         vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
4115         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
4116         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
4117         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
4118
4119         if (enable_ept) {
4120                 bypass_guest_pf = 0;
4121                 kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
4122                         VMX_EPT_WRITABLE_MASK);
4123                 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
4124                                 VMX_EPT_EXECUTABLE_MASK);
4125                 kvm_enable_tdp();
4126         } else
4127                 kvm_disable_tdp();
4128
4129         if (bypass_guest_pf)
4130                 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
4131
4132         return 0;
4133
4134 out3:
4135         free_page((unsigned long)vmx_msr_bitmap_longmode);
4136 out2:
4137         free_page((unsigned long)vmx_msr_bitmap_legacy);
4138 out1:
4139         free_page((unsigned long)vmx_io_bitmap_b);
4140 out:
4141         free_page((unsigned long)vmx_io_bitmap_a);
4142         return r;
4143 }
4144
4145 static void __exit vmx_exit(void)
4146 {
4147         free_page((unsigned long)vmx_msr_bitmap_legacy);
4148         free_page((unsigned long)vmx_msr_bitmap_longmode);
4149         free_page((unsigned long)vmx_io_bitmap_b);
4150         free_page((unsigned long)vmx_io_bitmap_a);
4151
4152         kvm_exit();
4153 }
4154
4155 module_init(vmx_init)
4156 module_exit(vmx_exit)