KVM: MMU: Infer shadow root level in direct_map()
[safe/jmp/linux-2.6] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  *
11  * Authors:
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Avi Kivity   <avi@qumranet.com>
14  *
15  * This work is licensed under the terms of the GNU GPL, version 2.  See
16  * the COPYING file in the top-level directory.
17  *
18  */
19
20 #include "vmx.h"
21 #include "mmu.h"
22
23 #include <linux/kvm_host.h>
24 #include <linux/types.h>
25 #include <linux/string.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/module.h>
29 #include <linux/swap.h>
30 #include <linux/hugetlb.h>
31 #include <linux/compiler.h>
32
33 #include <asm/page.h>
34 #include <asm/cmpxchg.h>
35 #include <asm/io.h>
36
37 /*
38  * When setting this variable to true it enables Two-Dimensional-Paging
39  * where the hardware walks 2 page tables:
40  * 1. the guest-virtual to guest-physical
41  * 2. while doing 1. it walks guest-physical to host-physical
42  * If the hardware supports that we don't need to do shadow paging.
43  */
44 bool tdp_enabled = false;
45
46 #undef MMU_DEBUG
47
48 #undef AUDIT
49
50 #ifdef AUDIT
51 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
52 #else
53 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
54 #endif
55
56 #ifdef MMU_DEBUG
57
58 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
59 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
60
61 #else
62
63 #define pgprintk(x...) do { } while (0)
64 #define rmap_printk(x...) do { } while (0)
65
66 #endif
67
68 #if defined(MMU_DEBUG) || defined(AUDIT)
69 static int dbg = 0;
70 module_param(dbg, bool, 0644);
71 #endif
72
73 #ifndef MMU_DEBUG
74 #define ASSERT(x) do { } while (0)
75 #else
76 #define ASSERT(x)                                                       \
77         if (!(x)) {                                                     \
78                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
79                        __FILE__, __LINE__, #x);                         \
80         }
81 #endif
82
83 #define PT_FIRST_AVAIL_BITS_SHIFT 9
84 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
85
86 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
87
88 #define PT64_LEVEL_BITS 9
89
90 #define PT64_LEVEL_SHIFT(level) \
91                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
92
93 #define PT64_LEVEL_MASK(level) \
94                 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
95
96 #define PT64_INDEX(address, level)\
97         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
98
99
100 #define PT32_LEVEL_BITS 10
101
102 #define PT32_LEVEL_SHIFT(level) \
103                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
104
105 #define PT32_LEVEL_MASK(level) \
106                 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
107
108 #define PT32_INDEX(address, level)\
109         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
110
111
112 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
113 #define PT64_DIR_BASE_ADDR_MASK \
114         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
115
116 #define PT32_BASE_ADDR_MASK PAGE_MASK
117 #define PT32_DIR_BASE_ADDR_MASK \
118         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
119
120 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
121                         | PT64_NX_MASK)
122
123 #define PFERR_PRESENT_MASK (1U << 0)
124 #define PFERR_WRITE_MASK (1U << 1)
125 #define PFERR_USER_MASK (1U << 2)
126 #define PFERR_FETCH_MASK (1U << 4)
127
128 #define PT_DIRECTORY_LEVEL 2
129 #define PT_PAGE_TABLE_LEVEL 1
130
131 #define RMAP_EXT 4
132
133 #define ACC_EXEC_MASK    1
134 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
135 #define ACC_USER_MASK    PT_USER_MASK
136 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
137
138 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
139
140 struct kvm_rmap_desc {
141         u64 *shadow_ptes[RMAP_EXT];
142         struct kvm_rmap_desc *more;
143 };
144
145 static struct kmem_cache *pte_chain_cache;
146 static struct kmem_cache *rmap_desc_cache;
147 static struct kmem_cache *mmu_page_header_cache;
148
149 static u64 __read_mostly shadow_trap_nonpresent_pte;
150 static u64 __read_mostly shadow_notrap_nonpresent_pte;
151 static u64 __read_mostly shadow_base_present_pte;
152 static u64 __read_mostly shadow_nx_mask;
153 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
154 static u64 __read_mostly shadow_user_mask;
155 static u64 __read_mostly shadow_accessed_mask;
156 static u64 __read_mostly shadow_dirty_mask;
157
158 void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
159 {
160         shadow_trap_nonpresent_pte = trap_pte;
161         shadow_notrap_nonpresent_pte = notrap_pte;
162 }
163 EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
164
165 void kvm_mmu_set_base_ptes(u64 base_pte)
166 {
167         shadow_base_present_pte = base_pte;
168 }
169 EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
170
171 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
172                 u64 dirty_mask, u64 nx_mask, u64 x_mask)
173 {
174         shadow_user_mask = user_mask;
175         shadow_accessed_mask = accessed_mask;
176         shadow_dirty_mask = dirty_mask;
177         shadow_nx_mask = nx_mask;
178         shadow_x_mask = x_mask;
179 }
180 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
181
182 static int is_write_protection(struct kvm_vcpu *vcpu)
183 {
184         return vcpu->arch.cr0 & X86_CR0_WP;
185 }
186
187 static int is_cpuid_PSE36(void)
188 {
189         return 1;
190 }
191
192 static int is_nx(struct kvm_vcpu *vcpu)
193 {
194         return vcpu->arch.shadow_efer & EFER_NX;
195 }
196
197 static int is_present_pte(unsigned long pte)
198 {
199         return pte & PT_PRESENT_MASK;
200 }
201
202 static int is_shadow_present_pte(u64 pte)
203 {
204         return pte != shadow_trap_nonpresent_pte
205                 && pte != shadow_notrap_nonpresent_pte;
206 }
207
208 static int is_large_pte(u64 pte)
209 {
210         return pte & PT_PAGE_SIZE_MASK;
211 }
212
213 static int is_writeble_pte(unsigned long pte)
214 {
215         return pte & PT_WRITABLE_MASK;
216 }
217
218 static int is_dirty_pte(unsigned long pte)
219 {
220         return pte & shadow_dirty_mask;
221 }
222
223 static int is_rmap_pte(u64 pte)
224 {
225         return is_shadow_present_pte(pte);
226 }
227
228 static pfn_t spte_to_pfn(u64 pte)
229 {
230         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
231 }
232
233 static gfn_t pse36_gfn_delta(u32 gpte)
234 {
235         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
236
237         return (gpte & PT32_DIR_PSE36_MASK) << shift;
238 }
239
240 static void set_shadow_pte(u64 *sptep, u64 spte)
241 {
242 #ifdef CONFIG_X86_64
243         set_64bit((unsigned long *)sptep, spte);
244 #else
245         set_64bit((unsigned long long *)sptep, spte);
246 #endif
247 }
248
249 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
250                                   struct kmem_cache *base_cache, int min)
251 {
252         void *obj;
253
254         if (cache->nobjs >= min)
255                 return 0;
256         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
257                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
258                 if (!obj)
259                         return -ENOMEM;
260                 cache->objects[cache->nobjs++] = obj;
261         }
262         return 0;
263 }
264
265 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
266 {
267         while (mc->nobjs)
268                 kfree(mc->objects[--mc->nobjs]);
269 }
270
271 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
272                                        int min)
273 {
274         struct page *page;
275
276         if (cache->nobjs >= min)
277                 return 0;
278         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
279                 page = alloc_page(GFP_KERNEL);
280                 if (!page)
281                         return -ENOMEM;
282                 set_page_private(page, 0);
283                 cache->objects[cache->nobjs++] = page_address(page);
284         }
285         return 0;
286 }
287
288 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
289 {
290         while (mc->nobjs)
291                 free_page((unsigned long)mc->objects[--mc->nobjs]);
292 }
293
294 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
295 {
296         int r;
297
298         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
299                                    pte_chain_cache, 4);
300         if (r)
301                 goto out;
302         r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
303                                    rmap_desc_cache, 1);
304         if (r)
305                 goto out;
306         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
307         if (r)
308                 goto out;
309         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
310                                    mmu_page_header_cache, 4);
311 out:
312         return r;
313 }
314
315 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
316 {
317         mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
318         mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
319         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
320         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
321 }
322
323 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
324                                     size_t size)
325 {
326         void *p;
327
328         BUG_ON(!mc->nobjs);
329         p = mc->objects[--mc->nobjs];
330         memset(p, 0, size);
331         return p;
332 }
333
334 static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
335 {
336         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
337                                       sizeof(struct kvm_pte_chain));
338 }
339
340 static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
341 {
342         kfree(pc);
343 }
344
345 static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
346 {
347         return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
348                                       sizeof(struct kvm_rmap_desc));
349 }
350
351 static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
352 {
353         kfree(rd);
354 }
355
356 /*
357  * Return the pointer to the largepage write count for a given
358  * gfn, handling slots that are not large page aligned.
359  */
360 static int *slot_largepage_idx(gfn_t gfn, struct kvm_memory_slot *slot)
361 {
362         unsigned long idx;
363
364         idx = (gfn / KVM_PAGES_PER_HPAGE) -
365               (slot->base_gfn / KVM_PAGES_PER_HPAGE);
366         return &slot->lpage_info[idx].write_count;
367 }
368
369 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
370 {
371         int *write_count;
372
373         write_count = slot_largepage_idx(gfn, gfn_to_memslot(kvm, gfn));
374         *write_count += 1;
375 }
376
377 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
378 {
379         int *write_count;
380
381         write_count = slot_largepage_idx(gfn, gfn_to_memslot(kvm, gfn));
382         *write_count -= 1;
383         WARN_ON(*write_count < 0);
384 }
385
386 static int has_wrprotected_page(struct kvm *kvm, gfn_t gfn)
387 {
388         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
389         int *largepage_idx;
390
391         if (slot) {
392                 largepage_idx = slot_largepage_idx(gfn, slot);
393                 return *largepage_idx;
394         }
395
396         return 1;
397 }
398
399 static int host_largepage_backed(struct kvm *kvm, gfn_t gfn)
400 {
401         struct vm_area_struct *vma;
402         unsigned long addr;
403
404         addr = gfn_to_hva(kvm, gfn);
405         if (kvm_is_error_hva(addr))
406                 return 0;
407
408         vma = find_vma(current->mm, addr);
409         if (vma && is_vm_hugetlb_page(vma))
410                 return 1;
411
412         return 0;
413 }
414
415 static int is_largepage_backed(struct kvm_vcpu *vcpu, gfn_t large_gfn)
416 {
417         struct kvm_memory_slot *slot;
418
419         if (has_wrprotected_page(vcpu->kvm, large_gfn))
420                 return 0;
421
422         if (!host_largepage_backed(vcpu->kvm, large_gfn))
423                 return 0;
424
425         slot = gfn_to_memslot(vcpu->kvm, large_gfn);
426         if (slot && slot->dirty_bitmap)
427                 return 0;
428
429         return 1;
430 }
431
432 /*
433  * Take gfn and return the reverse mapping to it.
434  * Note: gfn must be unaliased before this function get called
435  */
436
437 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int lpage)
438 {
439         struct kvm_memory_slot *slot;
440         unsigned long idx;
441
442         slot = gfn_to_memslot(kvm, gfn);
443         if (!lpage)
444                 return &slot->rmap[gfn - slot->base_gfn];
445
446         idx = (gfn / KVM_PAGES_PER_HPAGE) -
447               (slot->base_gfn / KVM_PAGES_PER_HPAGE);
448
449         return &slot->lpage_info[idx].rmap_pde;
450 }
451
452 /*
453  * Reverse mapping data structures:
454  *
455  * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
456  * that points to page_address(page).
457  *
458  * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
459  * containing more mappings.
460  */
461 static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn, int lpage)
462 {
463         struct kvm_mmu_page *sp;
464         struct kvm_rmap_desc *desc;
465         unsigned long *rmapp;
466         int i;
467
468         if (!is_rmap_pte(*spte))
469                 return;
470         gfn = unalias_gfn(vcpu->kvm, gfn);
471         sp = page_header(__pa(spte));
472         sp->gfns[spte - sp->spt] = gfn;
473         rmapp = gfn_to_rmap(vcpu->kvm, gfn, lpage);
474         if (!*rmapp) {
475                 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
476                 *rmapp = (unsigned long)spte;
477         } else if (!(*rmapp & 1)) {
478                 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
479                 desc = mmu_alloc_rmap_desc(vcpu);
480                 desc->shadow_ptes[0] = (u64 *)*rmapp;
481                 desc->shadow_ptes[1] = spte;
482                 *rmapp = (unsigned long)desc | 1;
483         } else {
484                 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
485                 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
486                 while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
487                         desc = desc->more;
488                 if (desc->shadow_ptes[RMAP_EXT-1]) {
489                         desc->more = mmu_alloc_rmap_desc(vcpu);
490                         desc = desc->more;
491                 }
492                 for (i = 0; desc->shadow_ptes[i]; ++i)
493                         ;
494                 desc->shadow_ptes[i] = spte;
495         }
496 }
497
498 static void rmap_desc_remove_entry(unsigned long *rmapp,
499                                    struct kvm_rmap_desc *desc,
500                                    int i,
501                                    struct kvm_rmap_desc *prev_desc)
502 {
503         int j;
504
505         for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
506                 ;
507         desc->shadow_ptes[i] = desc->shadow_ptes[j];
508         desc->shadow_ptes[j] = NULL;
509         if (j != 0)
510                 return;
511         if (!prev_desc && !desc->more)
512                 *rmapp = (unsigned long)desc->shadow_ptes[0];
513         else
514                 if (prev_desc)
515                         prev_desc->more = desc->more;
516                 else
517                         *rmapp = (unsigned long)desc->more | 1;
518         mmu_free_rmap_desc(desc);
519 }
520
521 static void rmap_remove(struct kvm *kvm, u64 *spte)
522 {
523         struct kvm_rmap_desc *desc;
524         struct kvm_rmap_desc *prev_desc;
525         struct kvm_mmu_page *sp;
526         pfn_t pfn;
527         unsigned long *rmapp;
528         int i;
529
530         if (!is_rmap_pte(*spte))
531                 return;
532         sp = page_header(__pa(spte));
533         pfn = spte_to_pfn(*spte);
534         if (*spte & shadow_accessed_mask)
535                 kvm_set_pfn_accessed(pfn);
536         if (is_writeble_pte(*spte))
537                 kvm_release_pfn_dirty(pfn);
538         else
539                 kvm_release_pfn_clean(pfn);
540         rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], is_large_pte(*spte));
541         if (!*rmapp) {
542                 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
543                 BUG();
544         } else if (!(*rmapp & 1)) {
545                 rmap_printk("rmap_remove:  %p %llx 1->0\n", spte, *spte);
546                 if ((u64 *)*rmapp != spte) {
547                         printk(KERN_ERR "rmap_remove:  %p %llx 1->BUG\n",
548                                spte, *spte);
549                         BUG();
550                 }
551                 *rmapp = 0;
552         } else {
553                 rmap_printk("rmap_remove:  %p %llx many->many\n", spte, *spte);
554                 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
555                 prev_desc = NULL;
556                 while (desc) {
557                         for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
558                                 if (desc->shadow_ptes[i] == spte) {
559                                         rmap_desc_remove_entry(rmapp,
560                                                                desc, i,
561                                                                prev_desc);
562                                         return;
563                                 }
564                         prev_desc = desc;
565                         desc = desc->more;
566                 }
567                 BUG();
568         }
569 }
570
571 static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
572 {
573         struct kvm_rmap_desc *desc;
574         struct kvm_rmap_desc *prev_desc;
575         u64 *prev_spte;
576         int i;
577
578         if (!*rmapp)
579                 return NULL;
580         else if (!(*rmapp & 1)) {
581                 if (!spte)
582                         return (u64 *)*rmapp;
583                 return NULL;
584         }
585         desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
586         prev_desc = NULL;
587         prev_spte = NULL;
588         while (desc) {
589                 for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) {
590                         if (prev_spte == spte)
591                                 return desc->shadow_ptes[i];
592                         prev_spte = desc->shadow_ptes[i];
593                 }
594                 desc = desc->more;
595         }
596         return NULL;
597 }
598
599 static void rmap_write_protect(struct kvm *kvm, u64 gfn)
600 {
601         unsigned long *rmapp;
602         u64 *spte;
603         int write_protected = 0;
604
605         gfn = unalias_gfn(kvm, gfn);
606         rmapp = gfn_to_rmap(kvm, gfn, 0);
607
608         spte = rmap_next(kvm, rmapp, NULL);
609         while (spte) {
610                 BUG_ON(!spte);
611                 BUG_ON(!(*spte & PT_PRESENT_MASK));
612                 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
613                 if (is_writeble_pte(*spte)) {
614                         set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
615                         write_protected = 1;
616                 }
617                 spte = rmap_next(kvm, rmapp, spte);
618         }
619         if (write_protected) {
620                 pfn_t pfn;
621
622                 spte = rmap_next(kvm, rmapp, NULL);
623                 pfn = spte_to_pfn(*spte);
624                 kvm_set_pfn_dirty(pfn);
625         }
626
627         /* check for huge page mappings */
628         rmapp = gfn_to_rmap(kvm, gfn, 1);
629         spte = rmap_next(kvm, rmapp, NULL);
630         while (spte) {
631                 BUG_ON(!spte);
632                 BUG_ON(!(*spte & PT_PRESENT_MASK));
633                 BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
634                 pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
635                 if (is_writeble_pte(*spte)) {
636                         rmap_remove(kvm, spte);
637                         --kvm->stat.lpages;
638                         set_shadow_pte(spte, shadow_trap_nonpresent_pte);
639                         spte = NULL;
640                         write_protected = 1;
641                 }
642                 spte = rmap_next(kvm, rmapp, spte);
643         }
644
645         if (write_protected)
646                 kvm_flush_remote_tlbs(kvm);
647
648         account_shadowed(kvm, gfn);
649 }
650
651 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp)
652 {
653         u64 *spte;
654         int need_tlb_flush = 0;
655
656         while ((spte = rmap_next(kvm, rmapp, NULL))) {
657                 BUG_ON(!(*spte & PT_PRESENT_MASK));
658                 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
659                 rmap_remove(kvm, spte);
660                 set_shadow_pte(spte, shadow_trap_nonpresent_pte);
661                 need_tlb_flush = 1;
662         }
663         return need_tlb_flush;
664 }
665
666 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
667                           int (*handler)(struct kvm *kvm, unsigned long *rmapp))
668 {
669         int i;
670         int retval = 0;
671
672         /*
673          * If mmap_sem isn't taken, we can look the memslots with only
674          * the mmu_lock by skipping over the slots with userspace_addr == 0.
675          */
676         for (i = 0; i < kvm->nmemslots; i++) {
677                 struct kvm_memory_slot *memslot = &kvm->memslots[i];
678                 unsigned long start = memslot->userspace_addr;
679                 unsigned long end;
680
681                 /* mmu_lock protects userspace_addr */
682                 if (!start)
683                         continue;
684
685                 end = start + (memslot->npages << PAGE_SHIFT);
686                 if (hva >= start && hva < end) {
687                         gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
688                         retval |= handler(kvm, &memslot->rmap[gfn_offset]);
689                         retval |= handler(kvm,
690                                           &memslot->lpage_info[
691                                                   gfn_offset /
692                                                   KVM_PAGES_PER_HPAGE].rmap_pde);
693                 }
694         }
695
696         return retval;
697 }
698
699 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
700 {
701         return kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
702 }
703
704 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp)
705 {
706         u64 *spte;
707         int young = 0;
708
709         /* always return old for EPT */
710         if (!shadow_accessed_mask)
711                 return 0;
712
713         spte = rmap_next(kvm, rmapp, NULL);
714         while (spte) {
715                 int _young;
716                 u64 _spte = *spte;
717                 BUG_ON(!(_spte & PT_PRESENT_MASK));
718                 _young = _spte & PT_ACCESSED_MASK;
719                 if (_young) {
720                         young = 1;
721                         clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
722                 }
723                 spte = rmap_next(kvm, rmapp, spte);
724         }
725         return young;
726 }
727
728 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
729 {
730         return kvm_handle_hva(kvm, hva, kvm_age_rmapp);
731 }
732
733 #ifdef MMU_DEBUG
734 static int is_empty_shadow_page(u64 *spt)
735 {
736         u64 *pos;
737         u64 *end;
738
739         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
740                 if (is_shadow_present_pte(*pos)) {
741                         printk(KERN_ERR "%s: %p %llx\n", __func__,
742                                pos, *pos);
743                         return 0;
744                 }
745         return 1;
746 }
747 #endif
748
749 static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
750 {
751         ASSERT(is_empty_shadow_page(sp->spt));
752         list_del(&sp->link);
753         __free_page(virt_to_page(sp->spt));
754         __free_page(virt_to_page(sp->gfns));
755         kfree(sp);
756         ++kvm->arch.n_free_mmu_pages;
757 }
758
759 static unsigned kvm_page_table_hashfn(gfn_t gfn)
760 {
761         return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
762 }
763
764 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
765                                                u64 *parent_pte)
766 {
767         struct kvm_mmu_page *sp;
768
769         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
770         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
771         sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
772         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
773         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
774         ASSERT(is_empty_shadow_page(sp->spt));
775         sp->slot_bitmap = 0;
776         sp->multimapped = 0;
777         sp->parent_pte = parent_pte;
778         --vcpu->kvm->arch.n_free_mmu_pages;
779         return sp;
780 }
781
782 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
783                                     struct kvm_mmu_page *sp, u64 *parent_pte)
784 {
785         struct kvm_pte_chain *pte_chain;
786         struct hlist_node *node;
787         int i;
788
789         if (!parent_pte)
790                 return;
791         if (!sp->multimapped) {
792                 u64 *old = sp->parent_pte;
793
794                 if (!old) {
795                         sp->parent_pte = parent_pte;
796                         return;
797                 }
798                 sp->multimapped = 1;
799                 pte_chain = mmu_alloc_pte_chain(vcpu);
800                 INIT_HLIST_HEAD(&sp->parent_ptes);
801                 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
802                 pte_chain->parent_ptes[0] = old;
803         }
804         hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
805                 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
806                         continue;
807                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
808                         if (!pte_chain->parent_ptes[i]) {
809                                 pte_chain->parent_ptes[i] = parent_pte;
810                                 return;
811                         }
812         }
813         pte_chain = mmu_alloc_pte_chain(vcpu);
814         BUG_ON(!pte_chain);
815         hlist_add_head(&pte_chain->link, &sp->parent_ptes);
816         pte_chain->parent_ptes[0] = parent_pte;
817 }
818
819 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
820                                        u64 *parent_pte)
821 {
822         struct kvm_pte_chain *pte_chain;
823         struct hlist_node *node;
824         int i;
825
826         if (!sp->multimapped) {
827                 BUG_ON(sp->parent_pte != parent_pte);
828                 sp->parent_pte = NULL;
829                 return;
830         }
831         hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
832                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
833                         if (!pte_chain->parent_ptes[i])
834                                 break;
835                         if (pte_chain->parent_ptes[i] != parent_pte)
836                                 continue;
837                         while (i + 1 < NR_PTE_CHAIN_ENTRIES
838                                 && pte_chain->parent_ptes[i + 1]) {
839                                 pte_chain->parent_ptes[i]
840                                         = pte_chain->parent_ptes[i + 1];
841                                 ++i;
842                         }
843                         pte_chain->parent_ptes[i] = NULL;
844                         if (i == 0) {
845                                 hlist_del(&pte_chain->link);
846                                 mmu_free_pte_chain(pte_chain);
847                                 if (hlist_empty(&sp->parent_ptes)) {
848                                         sp->multimapped = 0;
849                                         sp->parent_pte = NULL;
850                                 }
851                         }
852                         return;
853                 }
854         BUG();
855 }
856
857 static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
858                                     struct kvm_mmu_page *sp)
859 {
860         int i;
861
862         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
863                 sp->spt[i] = shadow_trap_nonpresent_pte;
864 }
865
866 static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
867 {
868         unsigned index;
869         struct hlist_head *bucket;
870         struct kvm_mmu_page *sp;
871         struct hlist_node *node;
872
873         pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
874         index = kvm_page_table_hashfn(gfn);
875         bucket = &kvm->arch.mmu_page_hash[index];
876         hlist_for_each_entry(sp, node, bucket, hash_link)
877                 if (sp->gfn == gfn && !sp->role.metaphysical
878                     && !sp->role.invalid) {
879                         pgprintk("%s: found role %x\n",
880                                  __func__, sp->role.word);
881                         return sp;
882                 }
883         return NULL;
884 }
885
886 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
887                                              gfn_t gfn,
888                                              gva_t gaddr,
889                                              unsigned level,
890                                              int metaphysical,
891                                              unsigned access,
892                                              u64 *parent_pte)
893 {
894         union kvm_mmu_page_role role;
895         unsigned index;
896         unsigned quadrant;
897         struct hlist_head *bucket;
898         struct kvm_mmu_page *sp;
899         struct hlist_node *node;
900
901         role.word = 0;
902         role.glevels = vcpu->arch.mmu.root_level;
903         role.level = level;
904         role.metaphysical = metaphysical;
905         role.access = access;
906         if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
907                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
908                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
909                 role.quadrant = quadrant;
910         }
911         pgprintk("%s: looking gfn %lx role %x\n", __func__,
912                  gfn, role.word);
913         index = kvm_page_table_hashfn(gfn);
914         bucket = &vcpu->kvm->arch.mmu_page_hash[index];
915         hlist_for_each_entry(sp, node, bucket, hash_link)
916                 if (sp->gfn == gfn && sp->role.word == role.word) {
917                         mmu_page_add_parent_pte(vcpu, sp, parent_pte);
918                         pgprintk("%s: found\n", __func__);
919                         return sp;
920                 }
921         ++vcpu->kvm->stat.mmu_cache_miss;
922         sp = kvm_mmu_alloc_page(vcpu, parent_pte);
923         if (!sp)
924                 return sp;
925         pgprintk("%s: adding gfn %lx role %x\n", __func__, gfn, role.word);
926         sp->gfn = gfn;
927         sp->role = role;
928         hlist_add_head(&sp->hash_link, bucket);
929         if (!metaphysical)
930                 rmap_write_protect(vcpu->kvm, gfn);
931         if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
932                 vcpu->arch.mmu.prefetch_page(vcpu, sp);
933         else
934                 nonpaging_prefetch_page(vcpu, sp);
935         return sp;
936 }
937
938 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
939                                          struct kvm_mmu_page *sp)
940 {
941         unsigned i;
942         u64 *pt;
943         u64 ent;
944
945         pt = sp->spt;
946
947         if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
948                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
949                         if (is_shadow_present_pte(pt[i]))
950                                 rmap_remove(kvm, &pt[i]);
951                         pt[i] = shadow_trap_nonpresent_pte;
952                 }
953                 return;
954         }
955
956         for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
957                 ent = pt[i];
958
959                 if (is_shadow_present_pte(ent)) {
960                         if (!is_large_pte(ent)) {
961                                 ent &= PT64_BASE_ADDR_MASK;
962                                 mmu_page_remove_parent_pte(page_header(ent),
963                                                            &pt[i]);
964                         } else {
965                                 --kvm->stat.lpages;
966                                 rmap_remove(kvm, &pt[i]);
967                         }
968                 }
969                 pt[i] = shadow_trap_nonpresent_pte;
970         }
971 }
972
973 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
974 {
975         mmu_page_remove_parent_pte(sp, parent_pte);
976 }
977
978 static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
979 {
980         int i;
981
982         for (i = 0; i < KVM_MAX_VCPUS; ++i)
983                 if (kvm->vcpus[i])
984                         kvm->vcpus[i]->arch.last_pte_updated = NULL;
985 }
986
987 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
988 {
989         u64 *parent_pte;
990
991         while (sp->multimapped || sp->parent_pte) {
992                 if (!sp->multimapped)
993                         parent_pte = sp->parent_pte;
994                 else {
995                         struct kvm_pte_chain *chain;
996
997                         chain = container_of(sp->parent_ptes.first,
998                                              struct kvm_pte_chain, link);
999                         parent_pte = chain->parent_ptes[0];
1000                 }
1001                 BUG_ON(!parent_pte);
1002                 kvm_mmu_put_page(sp, parent_pte);
1003                 set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
1004         }
1005 }
1006
1007 static void kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1008 {
1009         ++kvm->stat.mmu_shadow_zapped;
1010         kvm_mmu_page_unlink_children(kvm, sp);
1011         kvm_mmu_unlink_parents(kvm, sp);
1012         kvm_flush_remote_tlbs(kvm);
1013         if (!sp->role.invalid && !sp->role.metaphysical)
1014                 unaccount_shadowed(kvm, sp->gfn);
1015         if (!sp->root_count) {
1016                 hlist_del(&sp->hash_link);
1017                 kvm_mmu_free_page(kvm, sp);
1018         } else {
1019                 sp->role.invalid = 1;
1020                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
1021                 kvm_reload_remote_mmus(kvm);
1022         }
1023         kvm_mmu_reset_last_pte_updated(kvm);
1024 }
1025
1026 /*
1027  * Changing the number of mmu pages allocated to the vm
1028  * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
1029  */
1030 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
1031 {
1032         /*
1033          * If we set the number of mmu pages to be smaller be than the
1034          * number of actived pages , we must to free some mmu pages before we
1035          * change the value
1036          */
1037
1038         if ((kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages) >
1039             kvm_nr_mmu_pages) {
1040                 int n_used_mmu_pages = kvm->arch.n_alloc_mmu_pages
1041                                        - kvm->arch.n_free_mmu_pages;
1042
1043                 while (n_used_mmu_pages > kvm_nr_mmu_pages) {
1044                         struct kvm_mmu_page *page;
1045
1046                         page = container_of(kvm->arch.active_mmu_pages.prev,
1047                                             struct kvm_mmu_page, link);
1048                         kvm_mmu_zap_page(kvm, page);
1049                         n_used_mmu_pages--;
1050                 }
1051                 kvm->arch.n_free_mmu_pages = 0;
1052         }
1053         else
1054                 kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
1055                                          - kvm->arch.n_alloc_mmu_pages;
1056
1057         kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
1058 }
1059
1060 static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
1061 {
1062         unsigned index;
1063         struct hlist_head *bucket;
1064         struct kvm_mmu_page *sp;
1065         struct hlist_node *node, *n;
1066         int r;
1067
1068         pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
1069         r = 0;
1070         index = kvm_page_table_hashfn(gfn);
1071         bucket = &kvm->arch.mmu_page_hash[index];
1072         hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
1073                 if (sp->gfn == gfn && !sp->role.metaphysical) {
1074                         pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
1075                                  sp->role.word);
1076                         kvm_mmu_zap_page(kvm, sp);
1077                         r = 1;
1078                 }
1079         return r;
1080 }
1081
1082 static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
1083 {
1084         struct kvm_mmu_page *sp;
1085
1086         while ((sp = kvm_mmu_lookup_page(kvm, gfn)) != NULL) {
1087                 pgprintk("%s: zap %lx %x\n", __func__, gfn, sp->role.word);
1088                 kvm_mmu_zap_page(kvm, sp);
1089         }
1090 }
1091
1092 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
1093 {
1094         int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
1095         struct kvm_mmu_page *sp = page_header(__pa(pte));
1096
1097         __set_bit(slot, &sp->slot_bitmap);
1098 }
1099
1100 struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
1101 {
1102         struct page *page;
1103
1104         gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
1105
1106         if (gpa == UNMAPPED_GVA)
1107                 return NULL;
1108
1109         down_read(&current->mm->mmap_sem);
1110         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1111         up_read(&current->mm->mmap_sem);
1112
1113         return page;
1114 }
1115
1116 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
1117                          unsigned pt_access, unsigned pte_access,
1118                          int user_fault, int write_fault, int dirty,
1119                          int *ptwrite, int largepage, gfn_t gfn,
1120                          pfn_t pfn, bool speculative)
1121 {
1122         u64 spte;
1123         int was_rmapped = 0;
1124         int was_writeble = is_writeble_pte(*shadow_pte);
1125
1126         pgprintk("%s: spte %llx access %x write_fault %d"
1127                  " user_fault %d gfn %lx\n",
1128                  __func__, *shadow_pte, pt_access,
1129                  write_fault, user_fault, gfn);
1130
1131         if (is_rmap_pte(*shadow_pte)) {
1132                 /*
1133                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
1134                  * the parent of the now unreachable PTE.
1135                  */
1136                 if (largepage && !is_large_pte(*shadow_pte)) {
1137                         struct kvm_mmu_page *child;
1138                         u64 pte = *shadow_pte;
1139
1140                         child = page_header(pte & PT64_BASE_ADDR_MASK);
1141                         mmu_page_remove_parent_pte(child, shadow_pte);
1142                 } else if (pfn != spte_to_pfn(*shadow_pte)) {
1143                         pgprintk("hfn old %lx new %lx\n",
1144                                  spte_to_pfn(*shadow_pte), pfn);
1145                         rmap_remove(vcpu->kvm, shadow_pte);
1146                 } else {
1147                         if (largepage)
1148                                 was_rmapped = is_large_pte(*shadow_pte);
1149                         else
1150                                 was_rmapped = 1;
1151                 }
1152         }
1153
1154         /*
1155          * We don't set the accessed bit, since we sometimes want to see
1156          * whether the guest actually used the pte (in order to detect
1157          * demand paging).
1158          */
1159         spte = shadow_base_present_pte | shadow_dirty_mask;
1160         if (!speculative)
1161                 pte_access |= PT_ACCESSED_MASK;
1162         if (!dirty)
1163                 pte_access &= ~ACC_WRITE_MASK;
1164         if (pte_access & ACC_EXEC_MASK)
1165                 spte |= shadow_x_mask;
1166         else
1167                 spte |= shadow_nx_mask;
1168         if (pte_access & ACC_USER_MASK)
1169                 spte |= shadow_user_mask;
1170         if (largepage)
1171                 spte |= PT_PAGE_SIZE_MASK;
1172
1173         spte |= (u64)pfn << PAGE_SHIFT;
1174
1175         if ((pte_access & ACC_WRITE_MASK)
1176             || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
1177                 struct kvm_mmu_page *shadow;
1178
1179                 spte |= PT_WRITABLE_MASK;
1180
1181                 shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
1182                 if (shadow ||
1183                    (largepage && has_wrprotected_page(vcpu->kvm, gfn))) {
1184                         pgprintk("%s: found shadow page for %lx, marking ro\n",
1185                                  __func__, gfn);
1186                         pte_access &= ~ACC_WRITE_MASK;
1187                         if (is_writeble_pte(spte)) {
1188                                 spte &= ~PT_WRITABLE_MASK;
1189                                 kvm_x86_ops->tlb_flush(vcpu);
1190                         }
1191                         if (write_fault)
1192                                 *ptwrite = 1;
1193                 }
1194         }
1195
1196         if (pte_access & ACC_WRITE_MASK)
1197                 mark_page_dirty(vcpu->kvm, gfn);
1198
1199         pgprintk("%s: setting spte %llx\n", __func__, spte);
1200         pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
1201                  (spte&PT_PAGE_SIZE_MASK)? "2MB" : "4kB",
1202                  (spte&PT_WRITABLE_MASK)?"RW":"R", gfn, spte, shadow_pte);
1203         set_shadow_pte(shadow_pte, spte);
1204         if (!was_rmapped && (spte & PT_PAGE_SIZE_MASK)
1205             && (spte & PT_PRESENT_MASK))
1206                 ++vcpu->kvm->stat.lpages;
1207
1208         page_header_update_slot(vcpu->kvm, shadow_pte, gfn);
1209         if (!was_rmapped) {
1210                 rmap_add(vcpu, shadow_pte, gfn, largepage);
1211                 if (!is_rmap_pte(*shadow_pte))
1212                         kvm_release_pfn_clean(pfn);
1213         } else {
1214                 if (was_writeble)
1215                         kvm_release_pfn_dirty(pfn);
1216                 else
1217                         kvm_release_pfn_clean(pfn);
1218         }
1219         if (speculative) {
1220                 vcpu->arch.last_pte_updated = shadow_pte;
1221                 vcpu->arch.last_pte_gfn = gfn;
1222         }
1223 }
1224
1225 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
1226 {
1227 }
1228
1229 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
1230                         int largepage, gfn_t gfn, pfn_t pfn)
1231 {
1232         hpa_t table_addr = vcpu->arch.mmu.root_hpa;
1233         int pt_write = 0;
1234         int level = vcpu->arch.mmu.shadow_root_level;
1235
1236         for (; ; level--) {
1237                 u32 index = PT64_INDEX(v, level);
1238                 u64 *table;
1239
1240                 ASSERT(VALID_PAGE(table_addr));
1241                 table = __va(table_addr);
1242
1243                 if (level == 1 || (largepage && level == 2)) {
1244                         mmu_set_spte(vcpu, &table[index], ACC_ALL, ACC_ALL,
1245                                      0, write, 1, &pt_write, largepage,
1246                                      gfn, pfn, false);
1247                         return pt_write;
1248                 }
1249
1250                 if (table[index] == shadow_trap_nonpresent_pte) {
1251                         struct kvm_mmu_page *new_table;
1252                         gfn_t pseudo_gfn;
1253
1254                         pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
1255                                 >> PAGE_SHIFT;
1256                         new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
1257                                                      v, level - 1,
1258                                                      1, ACC_ALL, &table[index]);
1259                         if (!new_table) {
1260                                 pgprintk("nonpaging_map: ENOMEM\n");
1261                                 kvm_release_pfn_clean(pfn);
1262                                 return -ENOMEM;
1263                         }
1264
1265                         set_shadow_pte(&table[index],
1266                                        __pa(new_table->spt)
1267                                        | PT_PRESENT_MASK | PT_WRITABLE_MASK
1268                                        | shadow_user_mask | shadow_x_mask);
1269                 }
1270                 table_addr = table[index] & PT64_BASE_ADDR_MASK;
1271         }
1272 }
1273
1274 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
1275 {
1276         int r;
1277         int largepage = 0;
1278         pfn_t pfn;
1279         unsigned long mmu_seq;
1280
1281         down_read(&current->mm->mmap_sem);
1282         if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
1283                 gfn &= ~(KVM_PAGES_PER_HPAGE-1);
1284                 largepage = 1;
1285         }
1286
1287         mmu_seq = vcpu->kvm->mmu_notifier_seq;
1288         /* implicit mb(), we'll read before PT lock is unlocked */
1289         pfn = gfn_to_pfn(vcpu->kvm, gfn);
1290         up_read(&current->mm->mmap_sem);
1291
1292         /* mmio */
1293         if (is_error_pfn(pfn)) {
1294                 kvm_release_pfn_clean(pfn);
1295                 return 1;
1296         }
1297
1298         spin_lock(&vcpu->kvm->mmu_lock);
1299         if (mmu_notifier_retry(vcpu, mmu_seq))
1300                 goto out_unlock;
1301         kvm_mmu_free_some_pages(vcpu);
1302         r = __direct_map(vcpu, v, write, largepage, gfn, pfn);
1303         spin_unlock(&vcpu->kvm->mmu_lock);
1304
1305
1306         return r;
1307
1308 out_unlock:
1309         spin_unlock(&vcpu->kvm->mmu_lock);
1310         kvm_release_pfn_clean(pfn);
1311         return 0;
1312 }
1313
1314
1315 static void mmu_free_roots(struct kvm_vcpu *vcpu)
1316 {
1317         int i;
1318         struct kvm_mmu_page *sp;
1319
1320         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
1321                 return;
1322         spin_lock(&vcpu->kvm->mmu_lock);
1323         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
1324                 hpa_t root = vcpu->arch.mmu.root_hpa;
1325
1326                 sp = page_header(root);
1327                 --sp->root_count;
1328                 if (!sp->root_count && sp->role.invalid)
1329                         kvm_mmu_zap_page(vcpu->kvm, sp);
1330                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1331                 spin_unlock(&vcpu->kvm->mmu_lock);
1332                 return;
1333         }
1334         for (i = 0; i < 4; ++i) {
1335                 hpa_t root = vcpu->arch.mmu.pae_root[i];
1336
1337                 if (root) {
1338                         root &= PT64_BASE_ADDR_MASK;
1339                         sp = page_header(root);
1340                         --sp->root_count;
1341                         if (!sp->root_count && sp->role.invalid)
1342                                 kvm_mmu_zap_page(vcpu->kvm, sp);
1343                 }
1344                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
1345         }
1346         spin_unlock(&vcpu->kvm->mmu_lock);
1347         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1348 }
1349
1350 static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
1351 {
1352         int i;
1353         gfn_t root_gfn;
1354         struct kvm_mmu_page *sp;
1355         int metaphysical = 0;
1356
1357         root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
1358
1359         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
1360                 hpa_t root = vcpu->arch.mmu.root_hpa;
1361
1362                 ASSERT(!VALID_PAGE(root));
1363                 if (tdp_enabled)
1364                         metaphysical = 1;
1365                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
1366                                       PT64_ROOT_LEVEL, metaphysical,
1367                                       ACC_ALL, NULL);
1368                 root = __pa(sp->spt);
1369                 ++sp->root_count;
1370                 vcpu->arch.mmu.root_hpa = root;
1371                 return;
1372         }
1373         metaphysical = !is_paging(vcpu);
1374         if (tdp_enabled)
1375                 metaphysical = 1;
1376         for (i = 0; i < 4; ++i) {
1377                 hpa_t root = vcpu->arch.mmu.pae_root[i];
1378
1379                 ASSERT(!VALID_PAGE(root));
1380                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
1381                         if (!is_present_pte(vcpu->arch.pdptrs[i])) {
1382                                 vcpu->arch.mmu.pae_root[i] = 0;
1383                                 continue;
1384                         }
1385                         root_gfn = vcpu->arch.pdptrs[i] >> PAGE_SHIFT;
1386                 } else if (vcpu->arch.mmu.root_level == 0)
1387                         root_gfn = 0;
1388                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
1389                                       PT32_ROOT_LEVEL, metaphysical,
1390                                       ACC_ALL, NULL);
1391                 root = __pa(sp->spt);
1392                 ++sp->root_count;
1393                 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
1394         }
1395         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
1396 }
1397
1398 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
1399 {
1400         return vaddr;
1401 }
1402
1403 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
1404                                 u32 error_code)
1405 {
1406         gfn_t gfn;
1407         int r;
1408
1409         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
1410         r = mmu_topup_memory_caches(vcpu);
1411         if (r)
1412                 return r;
1413
1414         ASSERT(vcpu);
1415         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
1416
1417         gfn = gva >> PAGE_SHIFT;
1418
1419         return nonpaging_map(vcpu, gva & PAGE_MASK,
1420                              error_code & PFERR_WRITE_MASK, gfn);
1421 }
1422
1423 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
1424                                 u32 error_code)
1425 {
1426         pfn_t pfn;
1427         int r;
1428         int largepage = 0;
1429         gfn_t gfn = gpa >> PAGE_SHIFT;
1430         unsigned long mmu_seq;
1431
1432         ASSERT(vcpu);
1433         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
1434
1435         r = mmu_topup_memory_caches(vcpu);
1436         if (r)
1437                 return r;
1438
1439         down_read(&current->mm->mmap_sem);
1440         if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
1441                 gfn &= ~(KVM_PAGES_PER_HPAGE-1);
1442                 largepage = 1;
1443         }
1444         mmu_seq = vcpu->kvm->mmu_notifier_seq;
1445         /* implicit mb(), we'll read before PT lock is unlocked */
1446         pfn = gfn_to_pfn(vcpu->kvm, gfn);
1447         up_read(&current->mm->mmap_sem);
1448         if (is_error_pfn(pfn)) {
1449                 kvm_release_pfn_clean(pfn);
1450                 return 1;
1451         }
1452         spin_lock(&vcpu->kvm->mmu_lock);
1453         if (mmu_notifier_retry(vcpu, mmu_seq))
1454                 goto out_unlock;
1455         kvm_mmu_free_some_pages(vcpu);
1456         r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
1457                          largepage, gfn, pfn);
1458         spin_unlock(&vcpu->kvm->mmu_lock);
1459
1460         return r;
1461
1462 out_unlock:
1463         spin_unlock(&vcpu->kvm->mmu_lock);
1464         kvm_release_pfn_clean(pfn);
1465         return 0;
1466 }
1467
1468 static void nonpaging_free(struct kvm_vcpu *vcpu)
1469 {
1470         mmu_free_roots(vcpu);
1471 }
1472
1473 static int nonpaging_init_context(struct kvm_vcpu *vcpu)
1474 {
1475         struct kvm_mmu *context = &vcpu->arch.mmu;
1476
1477         context->new_cr3 = nonpaging_new_cr3;
1478         context->page_fault = nonpaging_page_fault;
1479         context->gva_to_gpa = nonpaging_gva_to_gpa;
1480         context->free = nonpaging_free;
1481         context->prefetch_page = nonpaging_prefetch_page;
1482         context->root_level = 0;
1483         context->shadow_root_level = PT32E_ROOT_LEVEL;
1484         context->root_hpa = INVALID_PAGE;
1485         return 0;
1486 }
1487
1488 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
1489 {
1490         ++vcpu->stat.tlb_flush;
1491         kvm_x86_ops->tlb_flush(vcpu);
1492 }
1493
1494 static void paging_new_cr3(struct kvm_vcpu *vcpu)
1495 {
1496         pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
1497         mmu_free_roots(vcpu);
1498 }
1499
1500 static void inject_page_fault(struct kvm_vcpu *vcpu,
1501                               u64 addr,
1502                               u32 err_code)
1503 {
1504         kvm_inject_page_fault(vcpu, addr, err_code);
1505 }
1506
1507 static void paging_free(struct kvm_vcpu *vcpu)
1508 {
1509         nonpaging_free(vcpu);
1510 }
1511
1512 #define PTTYPE 64
1513 #include "paging_tmpl.h"
1514 #undef PTTYPE
1515
1516 #define PTTYPE 32
1517 #include "paging_tmpl.h"
1518 #undef PTTYPE
1519
1520 static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
1521 {
1522         struct kvm_mmu *context = &vcpu->arch.mmu;
1523
1524         ASSERT(is_pae(vcpu));
1525         context->new_cr3 = paging_new_cr3;
1526         context->page_fault = paging64_page_fault;
1527         context->gva_to_gpa = paging64_gva_to_gpa;
1528         context->prefetch_page = paging64_prefetch_page;
1529         context->free = paging_free;
1530         context->root_level = level;
1531         context->shadow_root_level = level;
1532         context->root_hpa = INVALID_PAGE;
1533         return 0;
1534 }
1535
1536 static int paging64_init_context(struct kvm_vcpu *vcpu)
1537 {
1538         return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
1539 }
1540
1541 static int paging32_init_context(struct kvm_vcpu *vcpu)
1542 {
1543         struct kvm_mmu *context = &vcpu->arch.mmu;
1544
1545         context->new_cr3 = paging_new_cr3;
1546         context->page_fault = paging32_page_fault;
1547         context->gva_to_gpa = paging32_gva_to_gpa;
1548         context->free = paging_free;
1549         context->prefetch_page = paging32_prefetch_page;
1550         context->root_level = PT32_ROOT_LEVEL;
1551         context->shadow_root_level = PT32E_ROOT_LEVEL;
1552         context->root_hpa = INVALID_PAGE;
1553         return 0;
1554 }
1555
1556 static int paging32E_init_context(struct kvm_vcpu *vcpu)
1557 {
1558         return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
1559 }
1560
1561 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
1562 {
1563         struct kvm_mmu *context = &vcpu->arch.mmu;
1564
1565         context->new_cr3 = nonpaging_new_cr3;
1566         context->page_fault = tdp_page_fault;
1567         context->free = nonpaging_free;
1568         context->prefetch_page = nonpaging_prefetch_page;
1569         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
1570         context->root_hpa = INVALID_PAGE;
1571
1572         if (!is_paging(vcpu)) {
1573                 context->gva_to_gpa = nonpaging_gva_to_gpa;
1574                 context->root_level = 0;
1575         } else if (is_long_mode(vcpu)) {
1576                 context->gva_to_gpa = paging64_gva_to_gpa;
1577                 context->root_level = PT64_ROOT_LEVEL;
1578         } else if (is_pae(vcpu)) {
1579                 context->gva_to_gpa = paging64_gva_to_gpa;
1580                 context->root_level = PT32E_ROOT_LEVEL;
1581         } else {
1582                 context->gva_to_gpa = paging32_gva_to_gpa;
1583                 context->root_level = PT32_ROOT_LEVEL;
1584         }
1585
1586         return 0;
1587 }
1588
1589 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
1590 {
1591         ASSERT(vcpu);
1592         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
1593
1594         if (!is_paging(vcpu))
1595                 return nonpaging_init_context(vcpu);
1596         else if (is_long_mode(vcpu))
1597                 return paging64_init_context(vcpu);
1598         else if (is_pae(vcpu))
1599                 return paging32E_init_context(vcpu);
1600         else
1601                 return paging32_init_context(vcpu);
1602 }
1603
1604 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
1605 {
1606         vcpu->arch.update_pte.pfn = bad_pfn;
1607
1608         if (tdp_enabled)
1609                 return init_kvm_tdp_mmu(vcpu);
1610         else
1611                 return init_kvm_softmmu(vcpu);
1612 }
1613
1614 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
1615 {
1616         ASSERT(vcpu);
1617         if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
1618                 vcpu->arch.mmu.free(vcpu);
1619                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1620         }
1621 }
1622
1623 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
1624 {
1625         destroy_kvm_mmu(vcpu);
1626         return init_kvm_mmu(vcpu);
1627 }
1628 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
1629
1630 int kvm_mmu_load(struct kvm_vcpu *vcpu)
1631 {
1632         int r;
1633
1634         r = mmu_topup_memory_caches(vcpu);
1635         if (r)
1636                 goto out;
1637         spin_lock(&vcpu->kvm->mmu_lock);
1638         kvm_mmu_free_some_pages(vcpu);
1639         mmu_alloc_roots(vcpu);
1640         spin_unlock(&vcpu->kvm->mmu_lock);
1641         kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
1642         kvm_mmu_flush_tlb(vcpu);
1643 out:
1644         return r;
1645 }
1646 EXPORT_SYMBOL_GPL(kvm_mmu_load);
1647
1648 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
1649 {
1650         mmu_free_roots(vcpu);
1651 }
1652
1653 static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
1654                                   struct kvm_mmu_page *sp,
1655                                   u64 *spte)
1656 {
1657         u64 pte;
1658         struct kvm_mmu_page *child;
1659
1660         pte = *spte;
1661         if (is_shadow_present_pte(pte)) {
1662                 if (sp->role.level == PT_PAGE_TABLE_LEVEL ||
1663                     is_large_pte(pte))
1664                         rmap_remove(vcpu->kvm, spte);
1665                 else {
1666                         child = page_header(pte & PT64_BASE_ADDR_MASK);
1667                         mmu_page_remove_parent_pte(child, spte);
1668                 }
1669         }
1670         set_shadow_pte(spte, shadow_trap_nonpresent_pte);
1671         if (is_large_pte(pte))
1672                 --vcpu->kvm->stat.lpages;
1673 }
1674
1675 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
1676                                   struct kvm_mmu_page *sp,
1677                                   u64 *spte,
1678                                   const void *new)
1679 {
1680         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
1681                 if (!vcpu->arch.update_pte.largepage ||
1682                     sp->role.glevels == PT32_ROOT_LEVEL) {
1683                         ++vcpu->kvm->stat.mmu_pde_zapped;
1684                         return;
1685                 }
1686         }
1687
1688         ++vcpu->kvm->stat.mmu_pte_updated;
1689         if (sp->role.glevels == PT32_ROOT_LEVEL)
1690                 paging32_update_pte(vcpu, sp, spte, new);
1691         else
1692                 paging64_update_pte(vcpu, sp, spte, new);
1693 }
1694
1695 static bool need_remote_flush(u64 old, u64 new)
1696 {
1697         if (!is_shadow_present_pte(old))
1698                 return false;
1699         if (!is_shadow_present_pte(new))
1700                 return true;
1701         if ((old ^ new) & PT64_BASE_ADDR_MASK)
1702                 return true;
1703         old ^= PT64_NX_MASK;
1704         new ^= PT64_NX_MASK;
1705         return (old & ~new & PT64_PERM_MASK) != 0;
1706 }
1707
1708 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
1709 {
1710         if (need_remote_flush(old, new))
1711                 kvm_flush_remote_tlbs(vcpu->kvm);
1712         else
1713                 kvm_mmu_flush_tlb(vcpu);
1714 }
1715
1716 static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
1717 {
1718         u64 *spte = vcpu->arch.last_pte_updated;
1719
1720         return !!(spte && (*spte & shadow_accessed_mask));
1721 }
1722
1723 static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
1724                                           const u8 *new, int bytes)
1725 {
1726         gfn_t gfn;
1727         int r;
1728         u64 gpte = 0;
1729         pfn_t pfn;
1730
1731         vcpu->arch.update_pte.largepage = 0;
1732
1733         if (bytes != 4 && bytes != 8)
1734                 return;
1735
1736         /*
1737          * Assume that the pte write on a page table of the same type
1738          * as the current vcpu paging mode.  This is nearly always true
1739          * (might be false while changing modes).  Note it is verified later
1740          * by update_pte().
1741          */
1742         if (is_pae(vcpu)) {
1743                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
1744                 if ((bytes == 4) && (gpa % 4 == 0)) {
1745                         r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
1746                         if (r)
1747                                 return;
1748                         memcpy((void *)&gpte + (gpa % 8), new, 4);
1749                 } else if ((bytes == 8) && (gpa % 8 == 0)) {
1750                         memcpy((void *)&gpte, new, 8);
1751                 }
1752         } else {
1753                 if ((bytes == 4) && (gpa % 4 == 0))
1754                         memcpy((void *)&gpte, new, 4);
1755         }
1756         if (!is_present_pte(gpte))
1757                 return;
1758         gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
1759
1760         down_read(&current->mm->mmap_sem);
1761         if (is_large_pte(gpte) && is_largepage_backed(vcpu, gfn)) {
1762                 gfn &= ~(KVM_PAGES_PER_HPAGE-1);
1763                 vcpu->arch.update_pte.largepage = 1;
1764         }
1765         vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
1766         /* implicit mb(), we'll read before PT lock is unlocked */
1767         pfn = gfn_to_pfn(vcpu->kvm, gfn);
1768         up_read(&current->mm->mmap_sem);
1769
1770         if (is_error_pfn(pfn)) {
1771                 kvm_release_pfn_clean(pfn);
1772                 return;
1773         }
1774         vcpu->arch.update_pte.gfn = gfn;
1775         vcpu->arch.update_pte.pfn = pfn;
1776 }
1777
1778 static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1779 {
1780         u64 *spte = vcpu->arch.last_pte_updated;
1781
1782         if (spte
1783             && vcpu->arch.last_pte_gfn == gfn
1784             && shadow_accessed_mask
1785             && !(*spte & shadow_accessed_mask)
1786             && is_shadow_present_pte(*spte))
1787                 set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
1788 }
1789
1790 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
1791                        const u8 *new, int bytes)
1792 {
1793         gfn_t gfn = gpa >> PAGE_SHIFT;
1794         struct kvm_mmu_page *sp;
1795         struct hlist_node *node, *n;
1796         struct hlist_head *bucket;
1797         unsigned index;
1798         u64 entry, gentry;
1799         u64 *spte;
1800         unsigned offset = offset_in_page(gpa);
1801         unsigned pte_size;
1802         unsigned page_offset;
1803         unsigned misaligned;
1804         unsigned quadrant;
1805         int level;
1806         int flooded = 0;
1807         int npte;
1808         int r;
1809
1810         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
1811         mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
1812         spin_lock(&vcpu->kvm->mmu_lock);
1813         kvm_mmu_access_page(vcpu, gfn);
1814         kvm_mmu_free_some_pages(vcpu);
1815         ++vcpu->kvm->stat.mmu_pte_write;
1816         kvm_mmu_audit(vcpu, "pre pte write");
1817         if (gfn == vcpu->arch.last_pt_write_gfn
1818             && !last_updated_pte_accessed(vcpu)) {
1819                 ++vcpu->arch.last_pt_write_count;
1820                 if (vcpu->arch.last_pt_write_count >= 3)
1821                         flooded = 1;
1822         } else {
1823                 vcpu->arch.last_pt_write_gfn = gfn;
1824                 vcpu->arch.last_pt_write_count = 1;
1825                 vcpu->arch.last_pte_updated = NULL;
1826         }
1827         index = kvm_page_table_hashfn(gfn);
1828         bucket = &vcpu->kvm->arch.mmu_page_hash[index];
1829         hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
1830                 if (sp->gfn != gfn || sp->role.metaphysical || sp->role.invalid)
1831                         continue;
1832                 pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
1833                 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
1834                 misaligned |= bytes < 4;
1835                 if (misaligned || flooded) {
1836                         /*
1837                          * Misaligned accesses are too much trouble to fix
1838                          * up; also, they usually indicate a page is not used
1839                          * as a page table.
1840                          *
1841                          * If we're seeing too many writes to a page,
1842                          * it may no longer be a page table, or we may be
1843                          * forking, in which case it is better to unmap the
1844                          * page.
1845                          */
1846                         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
1847                                  gpa, bytes, sp->role.word);
1848                         kvm_mmu_zap_page(vcpu->kvm, sp);
1849                         ++vcpu->kvm->stat.mmu_flooded;
1850                         continue;
1851                 }
1852                 page_offset = offset;
1853                 level = sp->role.level;
1854                 npte = 1;
1855                 if (sp->role.glevels == PT32_ROOT_LEVEL) {
1856                         page_offset <<= 1;      /* 32->64 */
1857                         /*
1858                          * A 32-bit pde maps 4MB while the shadow pdes map
1859                          * only 2MB.  So we need to double the offset again
1860                          * and zap two pdes instead of one.
1861                          */
1862                         if (level == PT32_ROOT_LEVEL) {
1863                                 page_offset &= ~7; /* kill rounding error */
1864                                 page_offset <<= 1;
1865                                 npte = 2;
1866                         }
1867                         quadrant = page_offset >> PAGE_SHIFT;
1868                         page_offset &= ~PAGE_MASK;
1869                         if (quadrant != sp->role.quadrant)
1870                                 continue;
1871                 }
1872                 spte = &sp->spt[page_offset / sizeof(*spte)];
1873                 if ((gpa & (pte_size - 1)) || (bytes < pte_size)) {
1874                         gentry = 0;
1875                         r = kvm_read_guest_atomic(vcpu->kvm,
1876                                                   gpa & ~(u64)(pte_size - 1),
1877                                                   &gentry, pte_size);
1878                         new = (const void *)&gentry;
1879                         if (r < 0)
1880                                 new = NULL;
1881                 }
1882                 while (npte--) {
1883                         entry = *spte;
1884                         mmu_pte_write_zap_pte(vcpu, sp, spte);
1885                         if (new)
1886                                 mmu_pte_write_new_pte(vcpu, sp, spte, new);
1887                         mmu_pte_write_flush_tlb(vcpu, entry, *spte);
1888                         ++spte;
1889                 }
1890         }
1891         kvm_mmu_audit(vcpu, "post pte write");
1892         spin_unlock(&vcpu->kvm->mmu_lock);
1893         if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
1894                 kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
1895                 vcpu->arch.update_pte.pfn = bad_pfn;
1896         }
1897 }
1898
1899 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
1900 {
1901         gpa_t gpa;
1902         int r;
1903
1904         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
1905
1906         spin_lock(&vcpu->kvm->mmu_lock);
1907         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1908         spin_unlock(&vcpu->kvm->mmu_lock);
1909         return r;
1910 }
1911 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
1912
1913 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
1914 {
1915         while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES) {
1916                 struct kvm_mmu_page *sp;
1917
1918                 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
1919                                   struct kvm_mmu_page, link);
1920                 kvm_mmu_zap_page(vcpu->kvm, sp);
1921                 ++vcpu->kvm->stat.mmu_recycled;
1922         }
1923 }
1924
1925 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
1926 {
1927         int r;
1928         enum emulation_result er;
1929
1930         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
1931         if (r < 0)
1932                 goto out;
1933
1934         if (!r) {
1935                 r = 1;
1936                 goto out;
1937         }
1938
1939         r = mmu_topup_memory_caches(vcpu);
1940         if (r)
1941                 goto out;
1942
1943         er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
1944
1945         switch (er) {
1946         case EMULATE_DONE:
1947                 return 1;
1948         case EMULATE_DO_MMIO:
1949                 ++vcpu->stat.mmio_exits;
1950                 return 0;
1951         case EMULATE_FAIL:
1952                 kvm_report_emulation_failure(vcpu, "pagetable");
1953                 return 1;
1954         default:
1955                 BUG();
1956         }
1957 out:
1958         return r;
1959 }
1960 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
1961
1962 void kvm_enable_tdp(void)
1963 {
1964         tdp_enabled = true;
1965 }
1966 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
1967
1968 void kvm_disable_tdp(void)
1969 {
1970         tdp_enabled = false;
1971 }
1972 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
1973
1974 static void free_mmu_pages(struct kvm_vcpu *vcpu)
1975 {
1976         struct kvm_mmu_page *sp;
1977
1978         while (!list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
1979                 sp = container_of(vcpu->kvm->arch.active_mmu_pages.next,
1980                                   struct kvm_mmu_page, link);
1981                 kvm_mmu_zap_page(vcpu->kvm, sp);
1982                 cond_resched();
1983         }
1984         free_page((unsigned long)vcpu->arch.mmu.pae_root);
1985 }
1986
1987 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
1988 {
1989         struct page *page;
1990         int i;
1991
1992         ASSERT(vcpu);
1993
1994         if (vcpu->kvm->arch.n_requested_mmu_pages)
1995                 vcpu->kvm->arch.n_free_mmu_pages =
1996                                         vcpu->kvm->arch.n_requested_mmu_pages;
1997         else
1998                 vcpu->kvm->arch.n_free_mmu_pages =
1999                                         vcpu->kvm->arch.n_alloc_mmu_pages;
2000         /*
2001          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
2002          * Therefore we need to allocate shadow page tables in the first
2003          * 4GB of memory, which happens to fit the DMA32 zone.
2004          */
2005         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
2006         if (!page)
2007                 goto error_1;
2008         vcpu->arch.mmu.pae_root = page_address(page);
2009         for (i = 0; i < 4; ++i)
2010                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2011
2012         return 0;
2013
2014 error_1:
2015         free_mmu_pages(vcpu);
2016         return -ENOMEM;
2017 }
2018
2019 int kvm_mmu_create(struct kvm_vcpu *vcpu)
2020 {
2021         ASSERT(vcpu);
2022         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2023
2024         return alloc_mmu_pages(vcpu);
2025 }
2026
2027 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
2028 {
2029         ASSERT(vcpu);
2030         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2031
2032         return init_kvm_mmu(vcpu);
2033 }
2034
2035 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
2036 {
2037         ASSERT(vcpu);
2038
2039         destroy_kvm_mmu(vcpu);
2040         free_mmu_pages(vcpu);
2041         mmu_free_memory_caches(vcpu);
2042 }
2043
2044 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
2045 {
2046         struct kvm_mmu_page *sp;
2047
2048         list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
2049                 int i;
2050                 u64 *pt;
2051
2052                 if (!test_bit(slot, &sp->slot_bitmap))
2053                         continue;
2054
2055                 pt = sp->spt;
2056                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2057                         /* avoid RMW */
2058                         if (pt[i] & PT_WRITABLE_MASK)
2059                                 pt[i] &= ~PT_WRITABLE_MASK;
2060         }
2061 }
2062
2063 void kvm_mmu_zap_all(struct kvm *kvm)
2064 {
2065         struct kvm_mmu_page *sp, *node;
2066
2067         spin_lock(&kvm->mmu_lock);
2068         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
2069                 kvm_mmu_zap_page(kvm, sp);
2070         spin_unlock(&kvm->mmu_lock);
2071
2072         kvm_flush_remote_tlbs(kvm);
2073 }
2074
2075 static void kvm_mmu_remove_one_alloc_mmu_page(struct kvm *kvm)
2076 {
2077         struct kvm_mmu_page *page;
2078
2079         page = container_of(kvm->arch.active_mmu_pages.prev,
2080                             struct kvm_mmu_page, link);
2081         kvm_mmu_zap_page(kvm, page);
2082 }
2083
2084 static int mmu_shrink(int nr_to_scan, gfp_t gfp_mask)
2085 {
2086         struct kvm *kvm;
2087         struct kvm *kvm_freed = NULL;
2088         int cache_count = 0;
2089
2090         spin_lock(&kvm_lock);
2091
2092         list_for_each_entry(kvm, &vm_list, vm_list) {
2093                 int npages;
2094
2095                 if (!down_read_trylock(&kvm->slots_lock))
2096                         continue;
2097                 spin_lock(&kvm->mmu_lock);
2098                 npages = kvm->arch.n_alloc_mmu_pages -
2099                          kvm->arch.n_free_mmu_pages;
2100                 cache_count += npages;
2101                 if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
2102                         kvm_mmu_remove_one_alloc_mmu_page(kvm);
2103                         cache_count--;
2104                         kvm_freed = kvm;
2105                 }
2106                 nr_to_scan--;
2107
2108                 spin_unlock(&kvm->mmu_lock);
2109                 up_read(&kvm->slots_lock);
2110         }
2111         if (kvm_freed)
2112                 list_move_tail(&kvm_freed->vm_list, &vm_list);
2113
2114         spin_unlock(&kvm_lock);
2115
2116         return cache_count;
2117 }
2118
2119 static struct shrinker mmu_shrinker = {
2120         .shrink = mmu_shrink,
2121         .seeks = DEFAULT_SEEKS * 10,
2122 };
2123
2124 static void mmu_destroy_caches(void)
2125 {
2126         if (pte_chain_cache)
2127                 kmem_cache_destroy(pte_chain_cache);
2128         if (rmap_desc_cache)
2129                 kmem_cache_destroy(rmap_desc_cache);
2130         if (mmu_page_header_cache)
2131                 kmem_cache_destroy(mmu_page_header_cache);
2132 }
2133
2134 void kvm_mmu_module_exit(void)
2135 {
2136         mmu_destroy_caches();
2137         unregister_shrinker(&mmu_shrinker);
2138 }
2139
2140 int kvm_mmu_module_init(void)
2141 {
2142         pte_chain_cache = kmem_cache_create("kvm_pte_chain",
2143                                             sizeof(struct kvm_pte_chain),
2144                                             0, 0, NULL);
2145         if (!pte_chain_cache)
2146                 goto nomem;
2147         rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
2148                                             sizeof(struct kvm_rmap_desc),
2149                                             0, 0, NULL);
2150         if (!rmap_desc_cache)
2151                 goto nomem;
2152
2153         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
2154                                                   sizeof(struct kvm_mmu_page),
2155                                                   0, 0, NULL);
2156         if (!mmu_page_header_cache)
2157                 goto nomem;
2158
2159         register_shrinker(&mmu_shrinker);
2160
2161         return 0;
2162
2163 nomem:
2164         mmu_destroy_caches();
2165         return -ENOMEM;
2166 }
2167
2168 /*
2169  * Caculate mmu pages needed for kvm.
2170  */
2171 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
2172 {
2173         int i;
2174         unsigned int nr_mmu_pages;
2175         unsigned int  nr_pages = 0;
2176
2177         for (i = 0; i < kvm->nmemslots; i++)
2178                 nr_pages += kvm->memslots[i].npages;
2179
2180         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
2181         nr_mmu_pages = max(nr_mmu_pages,
2182                         (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
2183
2184         return nr_mmu_pages;
2185 }
2186
2187 static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
2188                                 unsigned len)
2189 {
2190         if (len > buffer->len)
2191                 return NULL;
2192         return buffer->ptr;
2193 }
2194
2195 static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
2196                                 unsigned len)
2197 {
2198         void *ret;
2199
2200         ret = pv_mmu_peek_buffer(buffer, len);
2201         if (!ret)
2202                 return ret;
2203         buffer->ptr += len;
2204         buffer->len -= len;
2205         buffer->processed += len;
2206         return ret;
2207 }
2208
2209 static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
2210                              gpa_t addr, gpa_t value)
2211 {
2212         int bytes = 8;
2213         int r;
2214
2215         if (!is_long_mode(vcpu) && !is_pae(vcpu))
2216                 bytes = 4;
2217
2218         r = mmu_topup_memory_caches(vcpu);
2219         if (r)
2220                 return r;
2221
2222         if (!emulator_write_phys(vcpu, addr, &value, bytes))
2223                 return -EFAULT;
2224
2225         return 1;
2226 }
2227
2228 static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
2229 {
2230         kvm_x86_ops->tlb_flush(vcpu);
2231         return 1;
2232 }
2233
2234 static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
2235 {
2236         spin_lock(&vcpu->kvm->mmu_lock);
2237         mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
2238         spin_unlock(&vcpu->kvm->mmu_lock);
2239         return 1;
2240 }
2241
2242 static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
2243                              struct kvm_pv_mmu_op_buffer *buffer)
2244 {
2245         struct kvm_mmu_op_header *header;
2246
2247         header = pv_mmu_peek_buffer(buffer, sizeof *header);
2248         if (!header)
2249                 return 0;
2250         switch (header->op) {
2251         case KVM_MMU_OP_WRITE_PTE: {
2252                 struct kvm_mmu_op_write_pte *wpte;
2253
2254                 wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
2255                 if (!wpte)
2256                         return 0;
2257                 return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
2258                                         wpte->pte_val);
2259         }
2260         case KVM_MMU_OP_FLUSH_TLB: {
2261                 struct kvm_mmu_op_flush_tlb *ftlb;
2262
2263                 ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
2264                 if (!ftlb)
2265                         return 0;
2266                 return kvm_pv_mmu_flush_tlb(vcpu);
2267         }
2268         case KVM_MMU_OP_RELEASE_PT: {
2269                 struct kvm_mmu_op_release_pt *rpt;
2270
2271                 rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
2272                 if (!rpt)
2273                         return 0;
2274                 return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
2275         }
2276         default: return 0;
2277         }
2278 }
2279
2280 int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
2281                   gpa_t addr, unsigned long *ret)
2282 {
2283         int r;
2284         struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
2285
2286         buffer->ptr = buffer->buf;
2287         buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
2288         buffer->processed = 0;
2289
2290         r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
2291         if (r)
2292                 goto out;
2293
2294         while (buffer->len) {
2295                 r = kvm_pv_mmu_op_one(vcpu, buffer);
2296                 if (r < 0)
2297                         goto out;
2298                 if (r == 0)
2299                         break;
2300         }
2301
2302         r = 1;
2303 out:
2304         *ret = buffer->processed;
2305         return r;
2306 }
2307
2308 #ifdef AUDIT
2309
2310 static const char *audit_msg;
2311
2312 static gva_t canonicalize(gva_t gva)
2313 {
2314 #ifdef CONFIG_X86_64
2315         gva = (long long)(gva << 16) >> 16;
2316 #endif
2317         return gva;
2318 }
2319
2320 static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
2321                                 gva_t va, int level)
2322 {
2323         u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
2324         int i;
2325         gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
2326
2327         for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
2328                 u64 ent = pt[i];
2329
2330                 if (ent == shadow_trap_nonpresent_pte)
2331                         continue;
2332
2333                 va = canonicalize(va);
2334                 if (level > 1) {
2335                         if (ent == shadow_notrap_nonpresent_pte)
2336                                 printk(KERN_ERR "audit: (%s) nontrapping pte"
2337                                        " in nonleaf level: levels %d gva %lx"
2338                                        " level %d pte %llx\n", audit_msg,
2339                                        vcpu->arch.mmu.root_level, va, level, ent);
2340
2341                         audit_mappings_page(vcpu, ent, va, level - 1);
2342                 } else {
2343                         gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
2344                         hpa_t hpa = (hpa_t)gpa_to_pfn(vcpu, gpa) << PAGE_SHIFT;
2345
2346                         if (is_shadow_present_pte(ent)
2347                             && (ent & PT64_BASE_ADDR_MASK) != hpa)
2348                                 printk(KERN_ERR "xx audit error: (%s) levels %d"
2349                                        " gva %lx gpa %llx hpa %llx ent %llx %d\n",
2350                                        audit_msg, vcpu->arch.mmu.root_level,
2351                                        va, gpa, hpa, ent,
2352                                        is_shadow_present_pte(ent));
2353                         else if (ent == shadow_notrap_nonpresent_pte
2354                                  && !is_error_hpa(hpa))
2355                                 printk(KERN_ERR "audit: (%s) notrap shadow,"
2356                                        " valid guest gva %lx\n", audit_msg, va);
2357                         kvm_release_pfn_clean(pfn);
2358
2359                 }
2360         }
2361 }
2362
2363 static void audit_mappings(struct kvm_vcpu *vcpu)
2364 {
2365         unsigned i;
2366
2367         if (vcpu->arch.mmu.root_level == 4)
2368                 audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
2369         else
2370                 for (i = 0; i < 4; ++i)
2371                         if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
2372                                 audit_mappings_page(vcpu,
2373                                                     vcpu->arch.mmu.pae_root[i],
2374                                                     i << 30,
2375                                                     2);
2376 }
2377
2378 static int count_rmaps(struct kvm_vcpu *vcpu)
2379 {
2380         int nmaps = 0;
2381         int i, j, k;
2382
2383         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
2384                 struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
2385                 struct kvm_rmap_desc *d;
2386
2387                 for (j = 0; j < m->npages; ++j) {
2388                         unsigned long *rmapp = &m->rmap[j];
2389
2390                         if (!*rmapp)
2391                                 continue;
2392                         if (!(*rmapp & 1)) {
2393                                 ++nmaps;
2394                                 continue;
2395                         }
2396                         d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
2397                         while (d) {
2398                                 for (k = 0; k < RMAP_EXT; ++k)
2399                                         if (d->shadow_ptes[k])
2400                                                 ++nmaps;
2401                                         else
2402                                                 break;
2403                                 d = d->more;
2404                         }
2405                 }
2406         }
2407         return nmaps;
2408 }
2409
2410 static int count_writable_mappings(struct kvm_vcpu *vcpu)
2411 {
2412         int nmaps = 0;
2413         struct kvm_mmu_page *sp;
2414         int i;
2415
2416         list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
2417                 u64 *pt = sp->spt;
2418
2419                 if (sp->role.level != PT_PAGE_TABLE_LEVEL)
2420                         continue;
2421
2422                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
2423                         u64 ent = pt[i];
2424
2425                         if (!(ent & PT_PRESENT_MASK))
2426                                 continue;
2427                         if (!(ent & PT_WRITABLE_MASK))
2428                                 continue;
2429                         ++nmaps;
2430                 }
2431         }
2432         return nmaps;
2433 }
2434
2435 static void audit_rmap(struct kvm_vcpu *vcpu)
2436 {
2437         int n_rmap = count_rmaps(vcpu);
2438         int n_actual = count_writable_mappings(vcpu);
2439
2440         if (n_rmap != n_actual)
2441                 printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
2442                        __func__, audit_msg, n_rmap, n_actual);
2443 }
2444
2445 static void audit_write_protection(struct kvm_vcpu *vcpu)
2446 {
2447         struct kvm_mmu_page *sp;
2448         struct kvm_memory_slot *slot;
2449         unsigned long *rmapp;
2450         gfn_t gfn;
2451
2452         list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
2453                 if (sp->role.metaphysical)
2454                         continue;
2455
2456                 slot = gfn_to_memslot(vcpu->kvm, sp->gfn);
2457                 gfn = unalias_gfn(vcpu->kvm, sp->gfn);
2458                 rmapp = &slot->rmap[gfn - slot->base_gfn];
2459                 if (*rmapp)
2460                         printk(KERN_ERR "%s: (%s) shadow page has writable"
2461                                " mappings: gfn %lx role %x\n",
2462                                __func__, audit_msg, sp->gfn,
2463                                sp->role.word);
2464         }
2465 }
2466
2467 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
2468 {
2469         int olddbg = dbg;
2470
2471         dbg = 0;
2472         audit_msg = msg;
2473         audit_rmap(vcpu);
2474         audit_write_protection(vcpu);
2475         audit_mappings(vcpu);
2476         dbg = olddbg;
2477 }
2478
2479 #endif