KVM: MMU: Drop walk_shadow()
[safe/jmp/linux-2.6] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  *
11  * Authors:
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Avi Kivity   <avi@qumranet.com>
14  *
15  * This work is licensed under the terms of the GNU GPL, version 2.  See
16  * the COPYING file in the top-level directory.
17  *
18  */
19
20 #include "mmu.h"
21
22 #include <linux/kvm_host.h>
23 #include <linux/types.h>
24 #include <linux/string.h>
25 #include <linux/mm.h>
26 #include <linux/highmem.h>
27 #include <linux/module.h>
28 #include <linux/swap.h>
29 #include <linux/hugetlb.h>
30 #include <linux/compiler.h>
31
32 #include <asm/page.h>
33 #include <asm/cmpxchg.h>
34 #include <asm/io.h>
35 #include <asm/vmx.h>
36
37 /*
38  * When setting this variable to true it enables Two-Dimensional-Paging
39  * where the hardware walks 2 page tables:
40  * 1. the guest-virtual to guest-physical
41  * 2. while doing 1. it walks guest-physical to host-physical
42  * If the hardware supports that we don't need to do shadow paging.
43  */
44 bool tdp_enabled = false;
45
46 #undef MMU_DEBUG
47
48 #undef AUDIT
49
50 #ifdef AUDIT
51 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
52 #else
53 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
54 #endif
55
56 #ifdef MMU_DEBUG
57
58 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
59 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
60
61 #else
62
63 #define pgprintk(x...) do { } while (0)
64 #define rmap_printk(x...) do { } while (0)
65
66 #endif
67
68 #if defined(MMU_DEBUG) || defined(AUDIT)
69 static int dbg = 0;
70 module_param(dbg, bool, 0644);
71 #endif
72
73 static int oos_shadow = 1;
74 module_param(oos_shadow, bool, 0644);
75
76 #ifndef MMU_DEBUG
77 #define ASSERT(x) do { } while (0)
78 #else
79 #define ASSERT(x)                                                       \
80         if (!(x)) {                                                     \
81                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
82                        __FILE__, __LINE__, #x);                         \
83         }
84 #endif
85
86 #define PT_FIRST_AVAIL_BITS_SHIFT 9
87 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
88
89 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
90
91 #define PT64_LEVEL_BITS 9
92
93 #define PT64_LEVEL_SHIFT(level) \
94                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
95
96 #define PT64_LEVEL_MASK(level) \
97                 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
98
99 #define PT64_INDEX(address, level)\
100         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
101
102
103 #define PT32_LEVEL_BITS 10
104
105 #define PT32_LEVEL_SHIFT(level) \
106                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
107
108 #define PT32_LEVEL_MASK(level) \
109                 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
110
111 #define PT32_INDEX(address, level)\
112         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
113
114
115 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
116 #define PT64_DIR_BASE_ADDR_MASK \
117         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
118
119 #define PT32_BASE_ADDR_MASK PAGE_MASK
120 #define PT32_DIR_BASE_ADDR_MASK \
121         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
122
123 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
124                         | PT64_NX_MASK)
125
126 #define PFERR_PRESENT_MASK (1U << 0)
127 #define PFERR_WRITE_MASK (1U << 1)
128 #define PFERR_USER_MASK (1U << 2)
129 #define PFERR_FETCH_MASK (1U << 4)
130
131 #define PT_DIRECTORY_LEVEL 2
132 #define PT_PAGE_TABLE_LEVEL 1
133
134 #define RMAP_EXT 4
135
136 #define ACC_EXEC_MASK    1
137 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
138 #define ACC_USER_MASK    PT_USER_MASK
139 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
140
141 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
142
143 struct kvm_rmap_desc {
144         u64 *shadow_ptes[RMAP_EXT];
145         struct kvm_rmap_desc *more;
146 };
147
148 struct kvm_shadow_walk_iterator {
149         u64 addr;
150         hpa_t shadow_addr;
151         int level;
152         u64 *sptep;
153         unsigned index;
154 };
155
156 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
157         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
158              shadow_walk_okay(&(_walker));                      \
159              shadow_walk_next(&(_walker)))
160
161
162 struct kvm_unsync_walk {
163         int (*entry) (struct kvm_mmu_page *sp, struct kvm_unsync_walk *walk);
164 };
165
166 typedef int (*mmu_parent_walk_fn) (struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp);
167
168 static struct kmem_cache *pte_chain_cache;
169 static struct kmem_cache *rmap_desc_cache;
170 static struct kmem_cache *mmu_page_header_cache;
171
172 static u64 __read_mostly shadow_trap_nonpresent_pte;
173 static u64 __read_mostly shadow_notrap_nonpresent_pte;
174 static u64 __read_mostly shadow_base_present_pte;
175 static u64 __read_mostly shadow_nx_mask;
176 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
177 static u64 __read_mostly shadow_user_mask;
178 static u64 __read_mostly shadow_accessed_mask;
179 static u64 __read_mostly shadow_dirty_mask;
180 static u64 __read_mostly shadow_mt_mask;
181
182 void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
183 {
184         shadow_trap_nonpresent_pte = trap_pte;
185         shadow_notrap_nonpresent_pte = notrap_pte;
186 }
187 EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
188
189 void kvm_mmu_set_base_ptes(u64 base_pte)
190 {
191         shadow_base_present_pte = base_pte;
192 }
193 EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
194
195 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
196                 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 mt_mask)
197 {
198         shadow_user_mask = user_mask;
199         shadow_accessed_mask = accessed_mask;
200         shadow_dirty_mask = dirty_mask;
201         shadow_nx_mask = nx_mask;
202         shadow_x_mask = x_mask;
203         shadow_mt_mask = mt_mask;
204 }
205 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
206
207 static int is_write_protection(struct kvm_vcpu *vcpu)
208 {
209         return vcpu->arch.cr0 & X86_CR0_WP;
210 }
211
212 static int is_cpuid_PSE36(void)
213 {
214         return 1;
215 }
216
217 static int is_nx(struct kvm_vcpu *vcpu)
218 {
219         return vcpu->arch.shadow_efer & EFER_NX;
220 }
221
222 static int is_present_pte(unsigned long pte)
223 {
224         return pte & PT_PRESENT_MASK;
225 }
226
227 static int is_shadow_present_pte(u64 pte)
228 {
229         return pte != shadow_trap_nonpresent_pte
230                 && pte != shadow_notrap_nonpresent_pte;
231 }
232
233 static int is_large_pte(u64 pte)
234 {
235         return pte & PT_PAGE_SIZE_MASK;
236 }
237
238 static int is_writeble_pte(unsigned long pte)
239 {
240         return pte & PT_WRITABLE_MASK;
241 }
242
243 static int is_dirty_pte(unsigned long pte)
244 {
245         return pte & shadow_dirty_mask;
246 }
247
248 static int is_rmap_pte(u64 pte)
249 {
250         return is_shadow_present_pte(pte);
251 }
252
253 static pfn_t spte_to_pfn(u64 pte)
254 {
255         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
256 }
257
258 static gfn_t pse36_gfn_delta(u32 gpte)
259 {
260         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
261
262         return (gpte & PT32_DIR_PSE36_MASK) << shift;
263 }
264
265 static void set_shadow_pte(u64 *sptep, u64 spte)
266 {
267 #ifdef CONFIG_X86_64
268         set_64bit((unsigned long *)sptep, spte);
269 #else
270         set_64bit((unsigned long long *)sptep, spte);
271 #endif
272 }
273
274 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
275                                   struct kmem_cache *base_cache, int min)
276 {
277         void *obj;
278
279         if (cache->nobjs >= min)
280                 return 0;
281         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
282                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
283                 if (!obj)
284                         return -ENOMEM;
285                 cache->objects[cache->nobjs++] = obj;
286         }
287         return 0;
288 }
289
290 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
291 {
292         while (mc->nobjs)
293                 kfree(mc->objects[--mc->nobjs]);
294 }
295
296 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
297                                        int min)
298 {
299         struct page *page;
300
301         if (cache->nobjs >= min)
302                 return 0;
303         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
304                 page = alloc_page(GFP_KERNEL);
305                 if (!page)
306                         return -ENOMEM;
307                 set_page_private(page, 0);
308                 cache->objects[cache->nobjs++] = page_address(page);
309         }
310         return 0;
311 }
312
313 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
314 {
315         while (mc->nobjs)
316                 free_page((unsigned long)mc->objects[--mc->nobjs]);
317 }
318
319 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
320 {
321         int r;
322
323         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
324                                    pte_chain_cache, 4);
325         if (r)
326                 goto out;
327         r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
328                                    rmap_desc_cache, 4);
329         if (r)
330                 goto out;
331         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
332         if (r)
333                 goto out;
334         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
335                                    mmu_page_header_cache, 4);
336 out:
337         return r;
338 }
339
340 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
341 {
342         mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
343         mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
344         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
345         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
346 }
347
348 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
349                                     size_t size)
350 {
351         void *p;
352
353         BUG_ON(!mc->nobjs);
354         p = mc->objects[--mc->nobjs];
355         memset(p, 0, size);
356         return p;
357 }
358
359 static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
360 {
361         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
362                                       sizeof(struct kvm_pte_chain));
363 }
364
365 static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
366 {
367         kfree(pc);
368 }
369
370 static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
371 {
372         return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
373                                       sizeof(struct kvm_rmap_desc));
374 }
375
376 static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
377 {
378         kfree(rd);
379 }
380
381 /*
382  * Return the pointer to the largepage write count for a given
383  * gfn, handling slots that are not large page aligned.
384  */
385 static int *slot_largepage_idx(gfn_t gfn, struct kvm_memory_slot *slot)
386 {
387         unsigned long idx;
388
389         idx = (gfn / KVM_PAGES_PER_HPAGE) -
390               (slot->base_gfn / KVM_PAGES_PER_HPAGE);
391         return &slot->lpage_info[idx].write_count;
392 }
393
394 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
395 {
396         int *write_count;
397
398         gfn = unalias_gfn(kvm, gfn);
399         write_count = slot_largepage_idx(gfn,
400                                          gfn_to_memslot_unaliased(kvm, gfn));
401         *write_count += 1;
402 }
403
404 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
405 {
406         int *write_count;
407
408         gfn = unalias_gfn(kvm, gfn);
409         write_count = slot_largepage_idx(gfn,
410                                          gfn_to_memslot_unaliased(kvm, gfn));
411         *write_count -= 1;
412         WARN_ON(*write_count < 0);
413 }
414
415 static int has_wrprotected_page(struct kvm *kvm, gfn_t gfn)
416 {
417         struct kvm_memory_slot *slot;
418         int *largepage_idx;
419
420         gfn = unalias_gfn(kvm, gfn);
421         slot = gfn_to_memslot_unaliased(kvm, gfn);
422         if (slot) {
423                 largepage_idx = slot_largepage_idx(gfn, slot);
424                 return *largepage_idx;
425         }
426
427         return 1;
428 }
429
430 static int host_largepage_backed(struct kvm *kvm, gfn_t gfn)
431 {
432         struct vm_area_struct *vma;
433         unsigned long addr;
434         int ret = 0;
435
436         addr = gfn_to_hva(kvm, gfn);
437         if (kvm_is_error_hva(addr))
438                 return ret;
439
440         down_read(&current->mm->mmap_sem);
441         vma = find_vma(current->mm, addr);
442         if (vma && is_vm_hugetlb_page(vma))
443                 ret = 1;
444         up_read(&current->mm->mmap_sem);
445
446         return ret;
447 }
448
449 static int is_largepage_backed(struct kvm_vcpu *vcpu, gfn_t large_gfn)
450 {
451         struct kvm_memory_slot *slot;
452
453         if (has_wrprotected_page(vcpu->kvm, large_gfn))
454                 return 0;
455
456         if (!host_largepage_backed(vcpu->kvm, large_gfn))
457                 return 0;
458
459         slot = gfn_to_memslot(vcpu->kvm, large_gfn);
460         if (slot && slot->dirty_bitmap)
461                 return 0;
462
463         return 1;
464 }
465
466 /*
467  * Take gfn and return the reverse mapping to it.
468  * Note: gfn must be unaliased before this function get called
469  */
470
471 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int lpage)
472 {
473         struct kvm_memory_slot *slot;
474         unsigned long idx;
475
476         slot = gfn_to_memslot(kvm, gfn);
477         if (!lpage)
478                 return &slot->rmap[gfn - slot->base_gfn];
479
480         idx = (gfn / KVM_PAGES_PER_HPAGE) -
481               (slot->base_gfn / KVM_PAGES_PER_HPAGE);
482
483         return &slot->lpage_info[idx].rmap_pde;
484 }
485
486 /*
487  * Reverse mapping data structures:
488  *
489  * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
490  * that points to page_address(page).
491  *
492  * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
493  * containing more mappings.
494  */
495 static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn, int lpage)
496 {
497         struct kvm_mmu_page *sp;
498         struct kvm_rmap_desc *desc;
499         unsigned long *rmapp;
500         int i;
501
502         if (!is_rmap_pte(*spte))
503                 return;
504         gfn = unalias_gfn(vcpu->kvm, gfn);
505         sp = page_header(__pa(spte));
506         sp->gfns[spte - sp->spt] = gfn;
507         rmapp = gfn_to_rmap(vcpu->kvm, gfn, lpage);
508         if (!*rmapp) {
509                 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
510                 *rmapp = (unsigned long)spte;
511         } else if (!(*rmapp & 1)) {
512                 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
513                 desc = mmu_alloc_rmap_desc(vcpu);
514                 desc->shadow_ptes[0] = (u64 *)*rmapp;
515                 desc->shadow_ptes[1] = spte;
516                 *rmapp = (unsigned long)desc | 1;
517         } else {
518                 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
519                 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
520                 while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
521                         desc = desc->more;
522                 if (desc->shadow_ptes[RMAP_EXT-1]) {
523                         desc->more = mmu_alloc_rmap_desc(vcpu);
524                         desc = desc->more;
525                 }
526                 for (i = 0; desc->shadow_ptes[i]; ++i)
527                         ;
528                 desc->shadow_ptes[i] = spte;
529         }
530 }
531
532 static void rmap_desc_remove_entry(unsigned long *rmapp,
533                                    struct kvm_rmap_desc *desc,
534                                    int i,
535                                    struct kvm_rmap_desc *prev_desc)
536 {
537         int j;
538
539         for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
540                 ;
541         desc->shadow_ptes[i] = desc->shadow_ptes[j];
542         desc->shadow_ptes[j] = NULL;
543         if (j != 0)
544                 return;
545         if (!prev_desc && !desc->more)
546                 *rmapp = (unsigned long)desc->shadow_ptes[0];
547         else
548                 if (prev_desc)
549                         prev_desc->more = desc->more;
550                 else
551                         *rmapp = (unsigned long)desc->more | 1;
552         mmu_free_rmap_desc(desc);
553 }
554
555 static void rmap_remove(struct kvm *kvm, u64 *spte)
556 {
557         struct kvm_rmap_desc *desc;
558         struct kvm_rmap_desc *prev_desc;
559         struct kvm_mmu_page *sp;
560         pfn_t pfn;
561         unsigned long *rmapp;
562         int i;
563
564         if (!is_rmap_pte(*spte))
565                 return;
566         sp = page_header(__pa(spte));
567         pfn = spte_to_pfn(*spte);
568         if (*spte & shadow_accessed_mask)
569                 kvm_set_pfn_accessed(pfn);
570         if (is_writeble_pte(*spte))
571                 kvm_release_pfn_dirty(pfn);
572         else
573                 kvm_release_pfn_clean(pfn);
574         rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], is_large_pte(*spte));
575         if (!*rmapp) {
576                 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
577                 BUG();
578         } else if (!(*rmapp & 1)) {
579                 rmap_printk("rmap_remove:  %p %llx 1->0\n", spte, *spte);
580                 if ((u64 *)*rmapp != spte) {
581                         printk(KERN_ERR "rmap_remove:  %p %llx 1->BUG\n",
582                                spte, *spte);
583                         BUG();
584                 }
585                 *rmapp = 0;
586         } else {
587                 rmap_printk("rmap_remove:  %p %llx many->many\n", spte, *spte);
588                 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
589                 prev_desc = NULL;
590                 while (desc) {
591                         for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
592                                 if (desc->shadow_ptes[i] == spte) {
593                                         rmap_desc_remove_entry(rmapp,
594                                                                desc, i,
595                                                                prev_desc);
596                                         return;
597                                 }
598                         prev_desc = desc;
599                         desc = desc->more;
600                 }
601                 BUG();
602         }
603 }
604
605 static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
606 {
607         struct kvm_rmap_desc *desc;
608         struct kvm_rmap_desc *prev_desc;
609         u64 *prev_spte;
610         int i;
611
612         if (!*rmapp)
613                 return NULL;
614         else if (!(*rmapp & 1)) {
615                 if (!spte)
616                         return (u64 *)*rmapp;
617                 return NULL;
618         }
619         desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
620         prev_desc = NULL;
621         prev_spte = NULL;
622         while (desc) {
623                 for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) {
624                         if (prev_spte == spte)
625                                 return desc->shadow_ptes[i];
626                         prev_spte = desc->shadow_ptes[i];
627                 }
628                 desc = desc->more;
629         }
630         return NULL;
631 }
632
633 static int rmap_write_protect(struct kvm *kvm, u64 gfn)
634 {
635         unsigned long *rmapp;
636         u64 *spte;
637         int write_protected = 0;
638
639         gfn = unalias_gfn(kvm, gfn);
640         rmapp = gfn_to_rmap(kvm, gfn, 0);
641
642         spte = rmap_next(kvm, rmapp, NULL);
643         while (spte) {
644                 BUG_ON(!spte);
645                 BUG_ON(!(*spte & PT_PRESENT_MASK));
646                 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
647                 if (is_writeble_pte(*spte)) {
648                         set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
649                         write_protected = 1;
650                 }
651                 spte = rmap_next(kvm, rmapp, spte);
652         }
653         if (write_protected) {
654                 pfn_t pfn;
655
656                 spte = rmap_next(kvm, rmapp, NULL);
657                 pfn = spte_to_pfn(*spte);
658                 kvm_set_pfn_dirty(pfn);
659         }
660
661         /* check for huge page mappings */
662         rmapp = gfn_to_rmap(kvm, gfn, 1);
663         spte = rmap_next(kvm, rmapp, NULL);
664         while (spte) {
665                 BUG_ON(!spte);
666                 BUG_ON(!(*spte & PT_PRESENT_MASK));
667                 BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
668                 pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
669                 if (is_writeble_pte(*spte)) {
670                         rmap_remove(kvm, spte);
671                         --kvm->stat.lpages;
672                         set_shadow_pte(spte, shadow_trap_nonpresent_pte);
673                         spte = NULL;
674                         write_protected = 1;
675                 }
676                 spte = rmap_next(kvm, rmapp, spte);
677         }
678
679         return write_protected;
680 }
681
682 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp)
683 {
684         u64 *spte;
685         int need_tlb_flush = 0;
686
687         while ((spte = rmap_next(kvm, rmapp, NULL))) {
688                 BUG_ON(!(*spte & PT_PRESENT_MASK));
689                 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
690                 rmap_remove(kvm, spte);
691                 set_shadow_pte(spte, shadow_trap_nonpresent_pte);
692                 need_tlb_flush = 1;
693         }
694         return need_tlb_flush;
695 }
696
697 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
698                           int (*handler)(struct kvm *kvm, unsigned long *rmapp))
699 {
700         int i;
701         int retval = 0;
702
703         /*
704          * If mmap_sem isn't taken, we can look the memslots with only
705          * the mmu_lock by skipping over the slots with userspace_addr == 0.
706          */
707         for (i = 0; i < kvm->nmemslots; i++) {
708                 struct kvm_memory_slot *memslot = &kvm->memslots[i];
709                 unsigned long start = memslot->userspace_addr;
710                 unsigned long end;
711
712                 /* mmu_lock protects userspace_addr */
713                 if (!start)
714                         continue;
715
716                 end = start + (memslot->npages << PAGE_SHIFT);
717                 if (hva >= start && hva < end) {
718                         gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
719                         retval |= handler(kvm, &memslot->rmap[gfn_offset]);
720                         retval |= handler(kvm,
721                                           &memslot->lpage_info[
722                                                   gfn_offset /
723                                                   KVM_PAGES_PER_HPAGE].rmap_pde);
724                 }
725         }
726
727         return retval;
728 }
729
730 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
731 {
732         return kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
733 }
734
735 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp)
736 {
737         u64 *spte;
738         int young = 0;
739
740         /* always return old for EPT */
741         if (!shadow_accessed_mask)
742                 return 0;
743
744         spte = rmap_next(kvm, rmapp, NULL);
745         while (spte) {
746                 int _young;
747                 u64 _spte = *spte;
748                 BUG_ON(!(_spte & PT_PRESENT_MASK));
749                 _young = _spte & PT_ACCESSED_MASK;
750                 if (_young) {
751                         young = 1;
752                         clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
753                 }
754                 spte = rmap_next(kvm, rmapp, spte);
755         }
756         return young;
757 }
758
759 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
760 {
761         return kvm_handle_hva(kvm, hva, kvm_age_rmapp);
762 }
763
764 #ifdef MMU_DEBUG
765 static int is_empty_shadow_page(u64 *spt)
766 {
767         u64 *pos;
768         u64 *end;
769
770         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
771                 if (is_shadow_present_pte(*pos)) {
772                         printk(KERN_ERR "%s: %p %llx\n", __func__,
773                                pos, *pos);
774                         return 0;
775                 }
776         return 1;
777 }
778 #endif
779
780 static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
781 {
782         ASSERT(is_empty_shadow_page(sp->spt));
783         list_del(&sp->link);
784         __free_page(virt_to_page(sp->spt));
785         __free_page(virt_to_page(sp->gfns));
786         kfree(sp);
787         ++kvm->arch.n_free_mmu_pages;
788 }
789
790 static unsigned kvm_page_table_hashfn(gfn_t gfn)
791 {
792         return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
793 }
794
795 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
796                                                u64 *parent_pte)
797 {
798         struct kvm_mmu_page *sp;
799
800         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
801         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
802         sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
803         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
804         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
805         INIT_LIST_HEAD(&sp->oos_link);
806         ASSERT(is_empty_shadow_page(sp->spt));
807         bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
808         sp->multimapped = 0;
809         sp->parent_pte = parent_pte;
810         --vcpu->kvm->arch.n_free_mmu_pages;
811         return sp;
812 }
813
814 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
815                                     struct kvm_mmu_page *sp, u64 *parent_pte)
816 {
817         struct kvm_pte_chain *pte_chain;
818         struct hlist_node *node;
819         int i;
820
821         if (!parent_pte)
822                 return;
823         if (!sp->multimapped) {
824                 u64 *old = sp->parent_pte;
825
826                 if (!old) {
827                         sp->parent_pte = parent_pte;
828                         return;
829                 }
830                 sp->multimapped = 1;
831                 pte_chain = mmu_alloc_pte_chain(vcpu);
832                 INIT_HLIST_HEAD(&sp->parent_ptes);
833                 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
834                 pte_chain->parent_ptes[0] = old;
835         }
836         hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
837                 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
838                         continue;
839                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
840                         if (!pte_chain->parent_ptes[i]) {
841                                 pte_chain->parent_ptes[i] = parent_pte;
842                                 return;
843                         }
844         }
845         pte_chain = mmu_alloc_pte_chain(vcpu);
846         BUG_ON(!pte_chain);
847         hlist_add_head(&pte_chain->link, &sp->parent_ptes);
848         pte_chain->parent_ptes[0] = parent_pte;
849 }
850
851 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
852                                        u64 *parent_pte)
853 {
854         struct kvm_pte_chain *pte_chain;
855         struct hlist_node *node;
856         int i;
857
858         if (!sp->multimapped) {
859                 BUG_ON(sp->parent_pte != parent_pte);
860                 sp->parent_pte = NULL;
861                 return;
862         }
863         hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
864                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
865                         if (!pte_chain->parent_ptes[i])
866                                 break;
867                         if (pte_chain->parent_ptes[i] != parent_pte)
868                                 continue;
869                         while (i + 1 < NR_PTE_CHAIN_ENTRIES
870                                 && pte_chain->parent_ptes[i + 1]) {
871                                 pte_chain->parent_ptes[i]
872                                         = pte_chain->parent_ptes[i + 1];
873                                 ++i;
874                         }
875                         pte_chain->parent_ptes[i] = NULL;
876                         if (i == 0) {
877                                 hlist_del(&pte_chain->link);
878                                 mmu_free_pte_chain(pte_chain);
879                                 if (hlist_empty(&sp->parent_ptes)) {
880                                         sp->multimapped = 0;
881                                         sp->parent_pte = NULL;
882                                 }
883                         }
884                         return;
885                 }
886         BUG();
887 }
888
889
890 static void mmu_parent_walk(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
891                             mmu_parent_walk_fn fn)
892 {
893         struct kvm_pte_chain *pte_chain;
894         struct hlist_node *node;
895         struct kvm_mmu_page *parent_sp;
896         int i;
897
898         if (!sp->multimapped && sp->parent_pte) {
899                 parent_sp = page_header(__pa(sp->parent_pte));
900                 fn(vcpu, parent_sp);
901                 mmu_parent_walk(vcpu, parent_sp, fn);
902                 return;
903         }
904         hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
905                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
906                         if (!pte_chain->parent_ptes[i])
907                                 break;
908                         parent_sp = page_header(__pa(pte_chain->parent_ptes[i]));
909                         fn(vcpu, parent_sp);
910                         mmu_parent_walk(vcpu, parent_sp, fn);
911                 }
912 }
913
914 static void kvm_mmu_update_unsync_bitmap(u64 *spte)
915 {
916         unsigned int index;
917         struct kvm_mmu_page *sp = page_header(__pa(spte));
918
919         index = spte - sp->spt;
920         if (!__test_and_set_bit(index, sp->unsync_child_bitmap))
921                 sp->unsync_children++;
922         WARN_ON(!sp->unsync_children);
923 }
924
925 static void kvm_mmu_update_parents_unsync(struct kvm_mmu_page *sp)
926 {
927         struct kvm_pte_chain *pte_chain;
928         struct hlist_node *node;
929         int i;
930
931         if (!sp->parent_pte)
932                 return;
933
934         if (!sp->multimapped) {
935                 kvm_mmu_update_unsync_bitmap(sp->parent_pte);
936                 return;
937         }
938
939         hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
940                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
941                         if (!pte_chain->parent_ptes[i])
942                                 break;
943                         kvm_mmu_update_unsync_bitmap(pte_chain->parent_ptes[i]);
944                 }
945 }
946
947 static int unsync_walk_fn(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
948 {
949         kvm_mmu_update_parents_unsync(sp);
950         return 1;
951 }
952
953 static void kvm_mmu_mark_parents_unsync(struct kvm_vcpu *vcpu,
954                                         struct kvm_mmu_page *sp)
955 {
956         mmu_parent_walk(vcpu, sp, unsync_walk_fn);
957         kvm_mmu_update_parents_unsync(sp);
958 }
959
960 static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
961                                     struct kvm_mmu_page *sp)
962 {
963         int i;
964
965         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
966                 sp->spt[i] = shadow_trap_nonpresent_pte;
967 }
968
969 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
970                                struct kvm_mmu_page *sp)
971 {
972         return 1;
973 }
974
975 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
976 {
977 }
978
979 #define KVM_PAGE_ARRAY_NR 16
980
981 struct kvm_mmu_pages {
982         struct mmu_page_and_offset {
983                 struct kvm_mmu_page *sp;
984                 unsigned int idx;
985         } page[KVM_PAGE_ARRAY_NR];
986         unsigned int nr;
987 };
988
989 #define for_each_unsync_children(bitmap, idx)           \
990         for (idx = find_first_bit(bitmap, 512);         \
991              idx < 512;                                 \
992              idx = find_next_bit(bitmap, 512, idx+1))
993
994 int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
995                    int idx)
996 {
997         int i;
998
999         if (sp->unsync)
1000                 for (i=0; i < pvec->nr; i++)
1001                         if (pvec->page[i].sp == sp)
1002                                 return 0;
1003
1004         pvec->page[pvec->nr].sp = sp;
1005         pvec->page[pvec->nr].idx = idx;
1006         pvec->nr++;
1007         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1008 }
1009
1010 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1011                            struct kvm_mmu_pages *pvec)
1012 {
1013         int i, ret, nr_unsync_leaf = 0;
1014
1015         for_each_unsync_children(sp->unsync_child_bitmap, i) {
1016                 u64 ent = sp->spt[i];
1017
1018                 if (is_shadow_present_pte(ent) && !is_large_pte(ent)) {
1019                         struct kvm_mmu_page *child;
1020                         child = page_header(ent & PT64_BASE_ADDR_MASK);
1021
1022                         if (child->unsync_children) {
1023                                 if (mmu_pages_add(pvec, child, i))
1024                                         return -ENOSPC;
1025
1026                                 ret = __mmu_unsync_walk(child, pvec);
1027                                 if (!ret)
1028                                         __clear_bit(i, sp->unsync_child_bitmap);
1029                                 else if (ret > 0)
1030                                         nr_unsync_leaf += ret;
1031                                 else
1032                                         return ret;
1033                         }
1034
1035                         if (child->unsync) {
1036                                 nr_unsync_leaf++;
1037                                 if (mmu_pages_add(pvec, child, i))
1038                                         return -ENOSPC;
1039                         }
1040                 }
1041         }
1042
1043         if (find_first_bit(sp->unsync_child_bitmap, 512) == 512)
1044                 sp->unsync_children = 0;
1045
1046         return nr_unsync_leaf;
1047 }
1048
1049 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1050                            struct kvm_mmu_pages *pvec)
1051 {
1052         if (!sp->unsync_children)
1053                 return 0;
1054
1055         mmu_pages_add(pvec, sp, 0);
1056         return __mmu_unsync_walk(sp, pvec);
1057 }
1058
1059 static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
1060 {
1061         unsigned index;
1062         struct hlist_head *bucket;
1063         struct kvm_mmu_page *sp;
1064         struct hlist_node *node;
1065
1066         pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
1067         index = kvm_page_table_hashfn(gfn);
1068         bucket = &kvm->arch.mmu_page_hash[index];
1069         hlist_for_each_entry(sp, node, bucket, hash_link)
1070                 if (sp->gfn == gfn && !sp->role.metaphysical
1071                     && !sp->role.invalid) {
1072                         pgprintk("%s: found role %x\n",
1073                                  __func__, sp->role.word);
1074                         return sp;
1075                 }
1076         return NULL;
1077 }
1078
1079 static void kvm_unlink_unsync_global(struct kvm *kvm, struct kvm_mmu_page *sp)
1080 {
1081         list_del(&sp->oos_link);
1082         --kvm->stat.mmu_unsync_global;
1083 }
1084
1085 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1086 {
1087         WARN_ON(!sp->unsync);
1088         sp->unsync = 0;
1089         if (sp->global)
1090                 kvm_unlink_unsync_global(kvm, sp);
1091         --kvm->stat.mmu_unsync;
1092 }
1093
1094 static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp);
1095
1096 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1097 {
1098         if (sp->role.glevels != vcpu->arch.mmu.root_level) {
1099                 kvm_mmu_zap_page(vcpu->kvm, sp);
1100                 return 1;
1101         }
1102
1103         if (rmap_write_protect(vcpu->kvm, sp->gfn))
1104                 kvm_flush_remote_tlbs(vcpu->kvm);
1105         kvm_unlink_unsync_page(vcpu->kvm, sp);
1106         if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1107                 kvm_mmu_zap_page(vcpu->kvm, sp);
1108                 return 1;
1109         }
1110
1111         kvm_mmu_flush_tlb(vcpu);
1112         return 0;
1113 }
1114
1115 struct mmu_page_path {
1116         struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1117         unsigned int idx[PT64_ROOT_LEVEL-1];
1118 };
1119
1120 #define for_each_sp(pvec, sp, parents, i)                       \
1121                 for (i = mmu_pages_next(&pvec, &parents, -1),   \
1122                         sp = pvec.page[i].sp;                   \
1123                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1124                         i = mmu_pages_next(&pvec, &parents, i))
1125
1126 int mmu_pages_next(struct kvm_mmu_pages *pvec, struct mmu_page_path *parents,
1127                    int i)
1128 {
1129         int n;
1130
1131         for (n = i+1; n < pvec->nr; n++) {
1132                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1133
1134                 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1135                         parents->idx[0] = pvec->page[n].idx;
1136                         return n;
1137                 }
1138
1139                 parents->parent[sp->role.level-2] = sp;
1140                 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1141         }
1142
1143         return n;
1144 }
1145
1146 void mmu_pages_clear_parents(struct mmu_page_path *parents)
1147 {
1148         struct kvm_mmu_page *sp;
1149         unsigned int level = 0;
1150
1151         do {
1152                 unsigned int idx = parents->idx[level];
1153
1154                 sp = parents->parent[level];
1155                 if (!sp)
1156                         return;
1157
1158                 --sp->unsync_children;
1159                 WARN_ON((int)sp->unsync_children < 0);
1160                 __clear_bit(idx, sp->unsync_child_bitmap);
1161                 level++;
1162         } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1163 }
1164
1165 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1166                                struct mmu_page_path *parents,
1167                                struct kvm_mmu_pages *pvec)
1168 {
1169         parents->parent[parent->role.level-1] = NULL;
1170         pvec->nr = 0;
1171 }
1172
1173 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1174                               struct kvm_mmu_page *parent)
1175 {
1176         int i;
1177         struct kvm_mmu_page *sp;
1178         struct mmu_page_path parents;
1179         struct kvm_mmu_pages pages;
1180
1181         kvm_mmu_pages_init(parent, &parents, &pages);
1182         while (mmu_unsync_walk(parent, &pages)) {
1183                 int protected = 0;
1184
1185                 for_each_sp(pages, sp, parents, i)
1186                         protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1187
1188                 if (protected)
1189                         kvm_flush_remote_tlbs(vcpu->kvm);
1190
1191                 for_each_sp(pages, sp, parents, i) {
1192                         kvm_sync_page(vcpu, sp);
1193                         mmu_pages_clear_parents(&parents);
1194                 }
1195                 cond_resched_lock(&vcpu->kvm->mmu_lock);
1196                 kvm_mmu_pages_init(parent, &parents, &pages);
1197         }
1198 }
1199
1200 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1201                                              gfn_t gfn,
1202                                              gva_t gaddr,
1203                                              unsigned level,
1204                                              int metaphysical,
1205                                              unsigned access,
1206                                              u64 *parent_pte)
1207 {
1208         union kvm_mmu_page_role role;
1209         unsigned index;
1210         unsigned quadrant;
1211         struct hlist_head *bucket;
1212         struct kvm_mmu_page *sp;
1213         struct hlist_node *node, *tmp;
1214
1215         role = vcpu->arch.mmu.base_role;
1216         role.level = level;
1217         role.metaphysical = metaphysical;
1218         role.access = access;
1219         if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1220                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1221                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1222                 role.quadrant = quadrant;
1223         }
1224         pgprintk("%s: looking gfn %lx role %x\n", __func__,
1225                  gfn, role.word);
1226         index = kvm_page_table_hashfn(gfn);
1227         bucket = &vcpu->kvm->arch.mmu_page_hash[index];
1228         hlist_for_each_entry_safe(sp, node, tmp, bucket, hash_link)
1229                 if (sp->gfn == gfn) {
1230                         if (sp->unsync)
1231                                 if (kvm_sync_page(vcpu, sp))
1232                                         continue;
1233
1234                         if (sp->role.word != role.word)
1235                                 continue;
1236
1237                         mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1238                         if (sp->unsync_children) {
1239                                 set_bit(KVM_REQ_MMU_SYNC, &vcpu->requests);
1240                                 kvm_mmu_mark_parents_unsync(vcpu, sp);
1241                         }
1242                         pgprintk("%s: found\n", __func__);
1243                         return sp;
1244                 }
1245         ++vcpu->kvm->stat.mmu_cache_miss;
1246         sp = kvm_mmu_alloc_page(vcpu, parent_pte);
1247         if (!sp)
1248                 return sp;
1249         pgprintk("%s: adding gfn %lx role %x\n", __func__, gfn, role.word);
1250         sp->gfn = gfn;
1251         sp->role = role;
1252         sp->global = role.cr4_pge;
1253         hlist_add_head(&sp->hash_link, bucket);
1254         if (!metaphysical) {
1255                 if (rmap_write_protect(vcpu->kvm, gfn))
1256                         kvm_flush_remote_tlbs(vcpu->kvm);
1257                 account_shadowed(vcpu->kvm, gfn);
1258         }
1259         if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
1260                 vcpu->arch.mmu.prefetch_page(vcpu, sp);
1261         else
1262                 nonpaging_prefetch_page(vcpu, sp);
1263         return sp;
1264 }
1265
1266 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1267                              struct kvm_vcpu *vcpu, u64 addr)
1268 {
1269         iterator->addr = addr;
1270         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1271         iterator->level = vcpu->arch.mmu.shadow_root_level;
1272         if (iterator->level == PT32E_ROOT_LEVEL) {
1273                 iterator->shadow_addr
1274                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1275                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1276                 --iterator->level;
1277                 if (!iterator->shadow_addr)
1278                         iterator->level = 0;
1279         }
1280 }
1281
1282 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1283 {
1284         if (iterator->level < PT_PAGE_TABLE_LEVEL)
1285                 return false;
1286         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1287         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1288         return true;
1289 }
1290
1291 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1292 {
1293         iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
1294         --iterator->level;
1295 }
1296
1297 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
1298                                          struct kvm_mmu_page *sp)
1299 {
1300         unsigned i;
1301         u64 *pt;
1302         u64 ent;
1303
1304         pt = sp->spt;
1305
1306         if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1307                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1308                         if (is_shadow_present_pte(pt[i]))
1309                                 rmap_remove(kvm, &pt[i]);
1310                         pt[i] = shadow_trap_nonpresent_pte;
1311                 }
1312                 return;
1313         }
1314
1315         for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1316                 ent = pt[i];
1317
1318                 if (is_shadow_present_pte(ent)) {
1319                         if (!is_large_pte(ent)) {
1320                                 ent &= PT64_BASE_ADDR_MASK;
1321                                 mmu_page_remove_parent_pte(page_header(ent),
1322                                                            &pt[i]);
1323                         } else {
1324                                 --kvm->stat.lpages;
1325                                 rmap_remove(kvm, &pt[i]);
1326                         }
1327                 }
1328                 pt[i] = shadow_trap_nonpresent_pte;
1329         }
1330 }
1331
1332 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
1333 {
1334         mmu_page_remove_parent_pte(sp, parent_pte);
1335 }
1336
1337 static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
1338 {
1339         int i;
1340
1341         for (i = 0; i < KVM_MAX_VCPUS; ++i)
1342                 if (kvm->vcpus[i])
1343                         kvm->vcpus[i]->arch.last_pte_updated = NULL;
1344 }
1345
1346 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
1347 {
1348         u64 *parent_pte;
1349
1350         while (sp->multimapped || sp->parent_pte) {
1351                 if (!sp->multimapped)
1352                         parent_pte = sp->parent_pte;
1353                 else {
1354                         struct kvm_pte_chain *chain;
1355
1356                         chain = container_of(sp->parent_ptes.first,
1357                                              struct kvm_pte_chain, link);
1358                         parent_pte = chain->parent_ptes[0];
1359                 }
1360                 BUG_ON(!parent_pte);
1361                 kvm_mmu_put_page(sp, parent_pte);
1362                 set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
1363         }
1364 }
1365
1366 static int mmu_zap_unsync_children(struct kvm *kvm,
1367                                    struct kvm_mmu_page *parent)
1368 {
1369         int i, zapped = 0;
1370         struct mmu_page_path parents;
1371         struct kvm_mmu_pages pages;
1372
1373         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
1374                 return 0;
1375
1376         kvm_mmu_pages_init(parent, &parents, &pages);
1377         while (mmu_unsync_walk(parent, &pages)) {
1378                 struct kvm_mmu_page *sp;
1379
1380                 for_each_sp(pages, sp, parents, i) {
1381                         kvm_mmu_zap_page(kvm, sp);
1382                         mmu_pages_clear_parents(&parents);
1383                 }
1384                 zapped += pages.nr;
1385                 kvm_mmu_pages_init(parent, &parents, &pages);
1386         }
1387
1388         return zapped;
1389 }
1390
1391 static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1392 {
1393         int ret;
1394         ++kvm->stat.mmu_shadow_zapped;
1395         ret = mmu_zap_unsync_children(kvm, sp);
1396         kvm_mmu_page_unlink_children(kvm, sp);
1397         kvm_mmu_unlink_parents(kvm, sp);
1398         kvm_flush_remote_tlbs(kvm);
1399         if (!sp->role.invalid && !sp->role.metaphysical)
1400                 unaccount_shadowed(kvm, sp->gfn);
1401         if (sp->unsync)
1402                 kvm_unlink_unsync_page(kvm, sp);
1403         if (!sp->root_count) {
1404                 hlist_del(&sp->hash_link);
1405                 kvm_mmu_free_page(kvm, sp);
1406         } else {
1407                 sp->role.invalid = 1;
1408                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
1409                 kvm_reload_remote_mmus(kvm);
1410         }
1411         kvm_mmu_reset_last_pte_updated(kvm);
1412         return ret;
1413 }
1414
1415 /*
1416  * Changing the number of mmu pages allocated to the vm
1417  * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
1418  */
1419 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
1420 {
1421         /*
1422          * If we set the number of mmu pages to be smaller be than the
1423          * number of actived pages , we must to free some mmu pages before we
1424          * change the value
1425          */
1426
1427         if ((kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages) >
1428             kvm_nr_mmu_pages) {
1429                 int n_used_mmu_pages = kvm->arch.n_alloc_mmu_pages
1430                                        - kvm->arch.n_free_mmu_pages;
1431
1432                 while (n_used_mmu_pages > kvm_nr_mmu_pages) {
1433                         struct kvm_mmu_page *page;
1434
1435                         page = container_of(kvm->arch.active_mmu_pages.prev,
1436                                             struct kvm_mmu_page, link);
1437                         kvm_mmu_zap_page(kvm, page);
1438                         n_used_mmu_pages--;
1439                 }
1440                 kvm->arch.n_free_mmu_pages = 0;
1441         }
1442         else
1443                 kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
1444                                          - kvm->arch.n_alloc_mmu_pages;
1445
1446         kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
1447 }
1448
1449 static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
1450 {
1451         unsigned index;
1452         struct hlist_head *bucket;
1453         struct kvm_mmu_page *sp;
1454         struct hlist_node *node, *n;
1455         int r;
1456
1457         pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
1458         r = 0;
1459         index = kvm_page_table_hashfn(gfn);
1460         bucket = &kvm->arch.mmu_page_hash[index];
1461         hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
1462                 if (sp->gfn == gfn && !sp->role.metaphysical) {
1463                         pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
1464                                  sp->role.word);
1465                         r = 1;
1466                         if (kvm_mmu_zap_page(kvm, sp))
1467                                 n = bucket->first;
1468                 }
1469         return r;
1470 }
1471
1472 static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
1473 {
1474         struct kvm_mmu_page *sp;
1475
1476         while ((sp = kvm_mmu_lookup_page(kvm, gfn)) != NULL) {
1477                 pgprintk("%s: zap %lx %x\n", __func__, gfn, sp->role.word);
1478                 kvm_mmu_zap_page(kvm, sp);
1479         }
1480 }
1481
1482 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
1483 {
1484         int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
1485         struct kvm_mmu_page *sp = page_header(__pa(pte));
1486
1487         __set_bit(slot, sp->slot_bitmap);
1488 }
1489
1490 static void mmu_convert_notrap(struct kvm_mmu_page *sp)
1491 {
1492         int i;
1493         u64 *pt = sp->spt;
1494
1495         if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
1496                 return;
1497
1498         for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1499                 if (pt[i] == shadow_notrap_nonpresent_pte)
1500                         set_shadow_pte(&pt[i], shadow_trap_nonpresent_pte);
1501         }
1502 }
1503
1504 struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
1505 {
1506         struct page *page;
1507
1508         gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
1509
1510         if (gpa == UNMAPPED_GVA)
1511                 return NULL;
1512
1513         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1514
1515         return page;
1516 }
1517
1518 /*
1519  * The function is based on mtrr_type_lookup() in
1520  * arch/x86/kernel/cpu/mtrr/generic.c
1521  */
1522 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
1523                          u64 start, u64 end)
1524 {
1525         int i;
1526         u64 base, mask;
1527         u8 prev_match, curr_match;
1528         int num_var_ranges = KVM_NR_VAR_MTRR;
1529
1530         if (!mtrr_state->enabled)
1531                 return 0xFF;
1532
1533         /* Make end inclusive end, instead of exclusive */
1534         end--;
1535
1536         /* Look in fixed ranges. Just return the type as per start */
1537         if (mtrr_state->have_fixed && (start < 0x100000)) {
1538                 int idx;
1539
1540                 if (start < 0x80000) {
1541                         idx = 0;
1542                         idx += (start >> 16);
1543                         return mtrr_state->fixed_ranges[idx];
1544                 } else if (start < 0xC0000) {
1545                         idx = 1 * 8;
1546                         idx += ((start - 0x80000) >> 14);
1547                         return mtrr_state->fixed_ranges[idx];
1548                 } else if (start < 0x1000000) {
1549                         idx = 3 * 8;
1550                         idx += ((start - 0xC0000) >> 12);
1551                         return mtrr_state->fixed_ranges[idx];
1552                 }
1553         }
1554
1555         /*
1556          * Look in variable ranges
1557          * Look of multiple ranges matching this address and pick type
1558          * as per MTRR precedence
1559          */
1560         if (!(mtrr_state->enabled & 2))
1561                 return mtrr_state->def_type;
1562
1563         prev_match = 0xFF;
1564         for (i = 0; i < num_var_ranges; ++i) {
1565                 unsigned short start_state, end_state;
1566
1567                 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
1568                         continue;
1569
1570                 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
1571                        (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
1572                 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
1573                        (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
1574
1575                 start_state = ((start & mask) == (base & mask));
1576                 end_state = ((end & mask) == (base & mask));
1577                 if (start_state != end_state)
1578                         return 0xFE;
1579
1580                 if ((start & mask) != (base & mask))
1581                         continue;
1582
1583                 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
1584                 if (prev_match == 0xFF) {
1585                         prev_match = curr_match;
1586                         continue;
1587                 }
1588
1589                 if (prev_match == MTRR_TYPE_UNCACHABLE ||
1590                     curr_match == MTRR_TYPE_UNCACHABLE)
1591                         return MTRR_TYPE_UNCACHABLE;
1592
1593                 if ((prev_match == MTRR_TYPE_WRBACK &&
1594                      curr_match == MTRR_TYPE_WRTHROUGH) ||
1595                     (prev_match == MTRR_TYPE_WRTHROUGH &&
1596                      curr_match == MTRR_TYPE_WRBACK)) {
1597                         prev_match = MTRR_TYPE_WRTHROUGH;
1598                         curr_match = MTRR_TYPE_WRTHROUGH;
1599                 }
1600
1601                 if (prev_match != curr_match)
1602                         return MTRR_TYPE_UNCACHABLE;
1603         }
1604
1605         if (prev_match != 0xFF)
1606                 return prev_match;
1607
1608         return mtrr_state->def_type;
1609 }
1610
1611 static u8 get_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
1612 {
1613         u8 mtrr;
1614
1615         mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
1616                              (gfn << PAGE_SHIFT) + PAGE_SIZE);
1617         if (mtrr == 0xfe || mtrr == 0xff)
1618                 mtrr = MTRR_TYPE_WRBACK;
1619         return mtrr;
1620 }
1621
1622 static int kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1623 {
1624         unsigned index;
1625         struct hlist_head *bucket;
1626         struct kvm_mmu_page *s;
1627         struct hlist_node *node, *n;
1628
1629         index = kvm_page_table_hashfn(sp->gfn);
1630         bucket = &vcpu->kvm->arch.mmu_page_hash[index];
1631         /* don't unsync if pagetable is shadowed with multiple roles */
1632         hlist_for_each_entry_safe(s, node, n, bucket, hash_link) {
1633                 if (s->gfn != sp->gfn || s->role.metaphysical)
1634                         continue;
1635                 if (s->role.word != sp->role.word)
1636                         return 1;
1637         }
1638         ++vcpu->kvm->stat.mmu_unsync;
1639         sp->unsync = 1;
1640
1641         if (sp->global) {
1642                 list_add(&sp->oos_link, &vcpu->kvm->arch.oos_global_pages);
1643                 ++vcpu->kvm->stat.mmu_unsync_global;
1644         } else
1645                 kvm_mmu_mark_parents_unsync(vcpu, sp);
1646
1647         mmu_convert_notrap(sp);
1648         return 0;
1649 }
1650
1651 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
1652                                   bool can_unsync)
1653 {
1654         struct kvm_mmu_page *shadow;
1655
1656         shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
1657         if (shadow) {
1658                 if (shadow->role.level != PT_PAGE_TABLE_LEVEL)
1659                         return 1;
1660                 if (shadow->unsync)
1661                         return 0;
1662                 if (can_unsync && oos_shadow)
1663                         return kvm_unsync_page(vcpu, shadow);
1664                 return 1;
1665         }
1666         return 0;
1667 }
1668
1669 static int set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
1670                     unsigned pte_access, int user_fault,
1671                     int write_fault, int dirty, int largepage,
1672                     int global, gfn_t gfn, pfn_t pfn, bool speculative,
1673                     bool can_unsync)
1674 {
1675         u64 spte;
1676         int ret = 0;
1677         u64 mt_mask = shadow_mt_mask;
1678         struct kvm_mmu_page *sp = page_header(__pa(shadow_pte));
1679
1680         if (!global && sp->global) {
1681                 sp->global = 0;
1682                 if (sp->unsync) {
1683                         kvm_unlink_unsync_global(vcpu->kvm, sp);
1684                         kvm_mmu_mark_parents_unsync(vcpu, sp);
1685                 }
1686         }
1687
1688         /*
1689          * We don't set the accessed bit, since we sometimes want to see
1690          * whether the guest actually used the pte (in order to detect
1691          * demand paging).
1692          */
1693         spte = shadow_base_present_pte | shadow_dirty_mask;
1694         if (!speculative)
1695                 spte |= shadow_accessed_mask;
1696         if (!dirty)
1697                 pte_access &= ~ACC_WRITE_MASK;
1698         if (pte_access & ACC_EXEC_MASK)
1699                 spte |= shadow_x_mask;
1700         else
1701                 spte |= shadow_nx_mask;
1702         if (pte_access & ACC_USER_MASK)
1703                 spte |= shadow_user_mask;
1704         if (largepage)
1705                 spte |= PT_PAGE_SIZE_MASK;
1706         if (mt_mask) {
1707                 if (!kvm_is_mmio_pfn(pfn)) {
1708                         mt_mask = get_memory_type(vcpu, gfn) <<
1709                                 kvm_x86_ops->get_mt_mask_shift();
1710                         mt_mask |= VMX_EPT_IGMT_BIT;
1711                 } else
1712                         mt_mask = MTRR_TYPE_UNCACHABLE <<
1713                                 kvm_x86_ops->get_mt_mask_shift();
1714                 spte |= mt_mask;
1715         }
1716
1717         spte |= (u64)pfn << PAGE_SHIFT;
1718
1719         if ((pte_access & ACC_WRITE_MASK)
1720             || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
1721
1722                 if (largepage && has_wrprotected_page(vcpu->kvm, gfn)) {
1723                         ret = 1;
1724                         spte = shadow_trap_nonpresent_pte;
1725                         goto set_pte;
1726                 }
1727
1728                 spte |= PT_WRITABLE_MASK;
1729
1730                 /*
1731                  * Optimization: for pte sync, if spte was writable the hash
1732                  * lookup is unnecessary (and expensive). Write protection
1733                  * is responsibility of mmu_get_page / kvm_sync_page.
1734                  * Same reasoning can be applied to dirty page accounting.
1735                  */
1736                 if (!can_unsync && is_writeble_pte(*shadow_pte))
1737                         goto set_pte;
1738
1739                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
1740                         pgprintk("%s: found shadow page for %lx, marking ro\n",
1741                                  __func__, gfn);
1742                         ret = 1;
1743                         pte_access &= ~ACC_WRITE_MASK;
1744                         if (is_writeble_pte(spte))
1745                                 spte &= ~PT_WRITABLE_MASK;
1746                 }
1747         }
1748
1749         if (pte_access & ACC_WRITE_MASK)
1750                 mark_page_dirty(vcpu->kvm, gfn);
1751
1752 set_pte:
1753         set_shadow_pte(shadow_pte, spte);
1754         return ret;
1755 }
1756
1757 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
1758                          unsigned pt_access, unsigned pte_access,
1759                          int user_fault, int write_fault, int dirty,
1760                          int *ptwrite, int largepage, int global,
1761                          gfn_t gfn, pfn_t pfn, bool speculative)
1762 {
1763         int was_rmapped = 0;
1764         int was_writeble = is_writeble_pte(*shadow_pte);
1765
1766         pgprintk("%s: spte %llx access %x write_fault %d"
1767                  " user_fault %d gfn %lx\n",
1768                  __func__, *shadow_pte, pt_access,
1769                  write_fault, user_fault, gfn);
1770
1771         if (is_rmap_pte(*shadow_pte)) {
1772                 /*
1773                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
1774                  * the parent of the now unreachable PTE.
1775                  */
1776                 if (largepage && !is_large_pte(*shadow_pte)) {
1777                         struct kvm_mmu_page *child;
1778                         u64 pte = *shadow_pte;
1779
1780                         child = page_header(pte & PT64_BASE_ADDR_MASK);
1781                         mmu_page_remove_parent_pte(child, shadow_pte);
1782                 } else if (pfn != spte_to_pfn(*shadow_pte)) {
1783                         pgprintk("hfn old %lx new %lx\n",
1784                                  spte_to_pfn(*shadow_pte), pfn);
1785                         rmap_remove(vcpu->kvm, shadow_pte);
1786                 } else {
1787                         if (largepage)
1788                                 was_rmapped = is_large_pte(*shadow_pte);
1789                         else
1790                                 was_rmapped = 1;
1791                 }
1792         }
1793         if (set_spte(vcpu, shadow_pte, pte_access, user_fault, write_fault,
1794                       dirty, largepage, global, gfn, pfn, speculative, true)) {
1795                 if (write_fault)
1796                         *ptwrite = 1;
1797                 kvm_x86_ops->tlb_flush(vcpu);
1798         }
1799
1800         pgprintk("%s: setting spte %llx\n", __func__, *shadow_pte);
1801         pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
1802                  is_large_pte(*shadow_pte)? "2MB" : "4kB",
1803                  is_present_pte(*shadow_pte)?"RW":"R", gfn,
1804                  *shadow_pte, shadow_pte);
1805         if (!was_rmapped && is_large_pte(*shadow_pte))
1806                 ++vcpu->kvm->stat.lpages;
1807
1808         page_header_update_slot(vcpu->kvm, shadow_pte, gfn);
1809         if (!was_rmapped) {
1810                 rmap_add(vcpu, shadow_pte, gfn, largepage);
1811                 if (!is_rmap_pte(*shadow_pte))
1812                         kvm_release_pfn_clean(pfn);
1813         } else {
1814                 if (was_writeble)
1815                         kvm_release_pfn_dirty(pfn);
1816                 else
1817                         kvm_release_pfn_clean(pfn);
1818         }
1819         if (speculative) {
1820                 vcpu->arch.last_pte_updated = shadow_pte;
1821                 vcpu->arch.last_pte_gfn = gfn;
1822         }
1823 }
1824
1825 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
1826 {
1827 }
1828
1829 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
1830                         int largepage, gfn_t gfn, pfn_t pfn)
1831 {
1832         struct kvm_shadow_walk_iterator iterator;
1833         struct kvm_mmu_page *sp;
1834         int pt_write = 0;
1835         gfn_t pseudo_gfn;
1836
1837         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
1838                 if (iterator.level == PT_PAGE_TABLE_LEVEL
1839                     || (largepage && iterator.level == PT_DIRECTORY_LEVEL)) {
1840                         mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, ACC_ALL,
1841                                      0, write, 1, &pt_write,
1842                                      largepage, 0, gfn, pfn, false);
1843                         ++vcpu->stat.pf_fixed;
1844                         break;
1845                 }
1846
1847                 if (*iterator.sptep == shadow_trap_nonpresent_pte) {
1848                         pseudo_gfn = (iterator.addr & PT64_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT;
1849                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
1850                                               iterator.level - 1,
1851                                               1, ACC_ALL, iterator.sptep);
1852                         if (!sp) {
1853                                 pgprintk("nonpaging_map: ENOMEM\n");
1854                                 kvm_release_pfn_clean(pfn);
1855                                 return -ENOMEM;
1856                         }
1857
1858                         set_shadow_pte(iterator.sptep,
1859                                        __pa(sp->spt)
1860                                        | PT_PRESENT_MASK | PT_WRITABLE_MASK
1861                                        | shadow_user_mask | shadow_x_mask);
1862                 }
1863         }
1864         return pt_write;
1865 }
1866
1867 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
1868 {
1869         int r;
1870         int largepage = 0;
1871         pfn_t pfn;
1872         unsigned long mmu_seq;
1873
1874         if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
1875                 gfn &= ~(KVM_PAGES_PER_HPAGE-1);
1876                 largepage = 1;
1877         }
1878
1879         mmu_seq = vcpu->kvm->mmu_notifier_seq;
1880         smp_rmb();
1881         pfn = gfn_to_pfn(vcpu->kvm, gfn);
1882
1883         /* mmio */
1884         if (is_error_pfn(pfn)) {
1885                 kvm_release_pfn_clean(pfn);
1886                 return 1;
1887         }
1888
1889         spin_lock(&vcpu->kvm->mmu_lock);
1890         if (mmu_notifier_retry(vcpu, mmu_seq))
1891                 goto out_unlock;
1892         kvm_mmu_free_some_pages(vcpu);
1893         r = __direct_map(vcpu, v, write, largepage, gfn, pfn);
1894         spin_unlock(&vcpu->kvm->mmu_lock);
1895
1896
1897         return r;
1898
1899 out_unlock:
1900         spin_unlock(&vcpu->kvm->mmu_lock);
1901         kvm_release_pfn_clean(pfn);
1902         return 0;
1903 }
1904
1905
1906 static void mmu_free_roots(struct kvm_vcpu *vcpu)
1907 {
1908         int i;
1909         struct kvm_mmu_page *sp;
1910
1911         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
1912                 return;
1913         spin_lock(&vcpu->kvm->mmu_lock);
1914         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
1915                 hpa_t root = vcpu->arch.mmu.root_hpa;
1916
1917                 sp = page_header(root);
1918                 --sp->root_count;
1919                 if (!sp->root_count && sp->role.invalid)
1920                         kvm_mmu_zap_page(vcpu->kvm, sp);
1921                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1922                 spin_unlock(&vcpu->kvm->mmu_lock);
1923                 return;
1924         }
1925         for (i = 0; i < 4; ++i) {
1926                 hpa_t root = vcpu->arch.mmu.pae_root[i];
1927
1928                 if (root) {
1929                         root &= PT64_BASE_ADDR_MASK;
1930                         sp = page_header(root);
1931                         --sp->root_count;
1932                         if (!sp->root_count && sp->role.invalid)
1933                                 kvm_mmu_zap_page(vcpu->kvm, sp);
1934                 }
1935                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
1936         }
1937         spin_unlock(&vcpu->kvm->mmu_lock);
1938         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1939 }
1940
1941 static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
1942 {
1943         int i;
1944         gfn_t root_gfn;
1945         struct kvm_mmu_page *sp;
1946         int metaphysical = 0;
1947
1948         root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
1949
1950         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
1951                 hpa_t root = vcpu->arch.mmu.root_hpa;
1952
1953                 ASSERT(!VALID_PAGE(root));
1954                 if (tdp_enabled)
1955                         metaphysical = 1;
1956                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
1957                                       PT64_ROOT_LEVEL, metaphysical,
1958                                       ACC_ALL, NULL);
1959                 root = __pa(sp->spt);
1960                 ++sp->root_count;
1961                 vcpu->arch.mmu.root_hpa = root;
1962                 return;
1963         }
1964         metaphysical = !is_paging(vcpu);
1965         if (tdp_enabled)
1966                 metaphysical = 1;
1967         for (i = 0; i < 4; ++i) {
1968                 hpa_t root = vcpu->arch.mmu.pae_root[i];
1969
1970                 ASSERT(!VALID_PAGE(root));
1971                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
1972                         if (!is_present_pte(vcpu->arch.pdptrs[i])) {
1973                                 vcpu->arch.mmu.pae_root[i] = 0;
1974                                 continue;
1975                         }
1976                         root_gfn = vcpu->arch.pdptrs[i] >> PAGE_SHIFT;
1977                 } else if (vcpu->arch.mmu.root_level == 0)
1978                         root_gfn = 0;
1979                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
1980                                       PT32_ROOT_LEVEL, metaphysical,
1981                                       ACC_ALL, NULL);
1982                 root = __pa(sp->spt);
1983                 ++sp->root_count;
1984                 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
1985         }
1986         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
1987 }
1988
1989 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
1990 {
1991         int i;
1992         struct kvm_mmu_page *sp;
1993
1994         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
1995                 return;
1996         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
1997                 hpa_t root = vcpu->arch.mmu.root_hpa;
1998                 sp = page_header(root);
1999                 mmu_sync_children(vcpu, sp);
2000                 return;
2001         }
2002         for (i = 0; i < 4; ++i) {
2003                 hpa_t root = vcpu->arch.mmu.pae_root[i];
2004
2005                 if (root) {
2006                         root &= PT64_BASE_ADDR_MASK;
2007                         sp = page_header(root);
2008                         mmu_sync_children(vcpu, sp);
2009                 }
2010         }
2011 }
2012
2013 static void mmu_sync_global(struct kvm_vcpu *vcpu)
2014 {
2015         struct kvm *kvm = vcpu->kvm;
2016         struct kvm_mmu_page *sp, *n;
2017
2018         list_for_each_entry_safe(sp, n, &kvm->arch.oos_global_pages, oos_link)
2019                 kvm_sync_page(vcpu, sp);
2020 }
2021
2022 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2023 {
2024         spin_lock(&vcpu->kvm->mmu_lock);
2025         mmu_sync_roots(vcpu);
2026         spin_unlock(&vcpu->kvm->mmu_lock);
2027 }
2028
2029 void kvm_mmu_sync_global(struct kvm_vcpu *vcpu)
2030 {
2031         spin_lock(&vcpu->kvm->mmu_lock);
2032         mmu_sync_global(vcpu);
2033         spin_unlock(&vcpu->kvm->mmu_lock);
2034 }
2035
2036 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
2037 {
2038         return vaddr;
2039 }
2040
2041 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
2042                                 u32 error_code)
2043 {
2044         gfn_t gfn;
2045         int r;
2046
2047         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
2048         r = mmu_topup_memory_caches(vcpu);
2049         if (r)
2050                 return r;
2051
2052         ASSERT(vcpu);
2053         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2054
2055         gfn = gva >> PAGE_SHIFT;
2056
2057         return nonpaging_map(vcpu, gva & PAGE_MASK,
2058                              error_code & PFERR_WRITE_MASK, gfn);
2059 }
2060
2061 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
2062                                 u32 error_code)
2063 {
2064         pfn_t pfn;
2065         int r;
2066         int largepage = 0;
2067         gfn_t gfn = gpa >> PAGE_SHIFT;
2068         unsigned long mmu_seq;
2069
2070         ASSERT(vcpu);
2071         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2072
2073         r = mmu_topup_memory_caches(vcpu);
2074         if (r)
2075                 return r;
2076
2077         if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
2078                 gfn &= ~(KVM_PAGES_PER_HPAGE-1);
2079                 largepage = 1;
2080         }
2081         mmu_seq = vcpu->kvm->mmu_notifier_seq;
2082         smp_rmb();
2083         pfn = gfn_to_pfn(vcpu->kvm, gfn);
2084         if (is_error_pfn(pfn)) {
2085                 kvm_release_pfn_clean(pfn);
2086                 return 1;
2087         }
2088         spin_lock(&vcpu->kvm->mmu_lock);
2089         if (mmu_notifier_retry(vcpu, mmu_seq))
2090                 goto out_unlock;
2091         kvm_mmu_free_some_pages(vcpu);
2092         r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
2093                          largepage, gfn, pfn);
2094         spin_unlock(&vcpu->kvm->mmu_lock);
2095
2096         return r;
2097
2098 out_unlock:
2099         spin_unlock(&vcpu->kvm->mmu_lock);
2100         kvm_release_pfn_clean(pfn);
2101         return 0;
2102 }
2103
2104 static void nonpaging_free(struct kvm_vcpu *vcpu)
2105 {
2106         mmu_free_roots(vcpu);
2107 }
2108
2109 static int nonpaging_init_context(struct kvm_vcpu *vcpu)
2110 {
2111         struct kvm_mmu *context = &vcpu->arch.mmu;
2112
2113         context->new_cr3 = nonpaging_new_cr3;
2114         context->page_fault = nonpaging_page_fault;
2115         context->gva_to_gpa = nonpaging_gva_to_gpa;
2116         context->free = nonpaging_free;
2117         context->prefetch_page = nonpaging_prefetch_page;
2118         context->sync_page = nonpaging_sync_page;
2119         context->invlpg = nonpaging_invlpg;
2120         context->root_level = 0;
2121         context->shadow_root_level = PT32E_ROOT_LEVEL;
2122         context->root_hpa = INVALID_PAGE;
2123         return 0;
2124 }
2125
2126 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
2127 {
2128         ++vcpu->stat.tlb_flush;
2129         kvm_x86_ops->tlb_flush(vcpu);
2130 }
2131
2132 static void paging_new_cr3(struct kvm_vcpu *vcpu)
2133 {
2134         pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
2135         mmu_free_roots(vcpu);
2136 }
2137
2138 static void inject_page_fault(struct kvm_vcpu *vcpu,
2139                               u64 addr,
2140                               u32 err_code)
2141 {
2142         kvm_inject_page_fault(vcpu, addr, err_code);
2143 }
2144
2145 static void paging_free(struct kvm_vcpu *vcpu)
2146 {
2147         nonpaging_free(vcpu);
2148 }
2149
2150 #define PTTYPE 64
2151 #include "paging_tmpl.h"
2152 #undef PTTYPE
2153
2154 #define PTTYPE 32
2155 #include "paging_tmpl.h"
2156 #undef PTTYPE
2157
2158 static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
2159 {
2160         struct kvm_mmu *context = &vcpu->arch.mmu;
2161
2162         ASSERT(is_pae(vcpu));
2163         context->new_cr3 = paging_new_cr3;
2164         context->page_fault = paging64_page_fault;
2165         context->gva_to_gpa = paging64_gva_to_gpa;
2166         context->prefetch_page = paging64_prefetch_page;
2167         context->sync_page = paging64_sync_page;
2168         context->invlpg = paging64_invlpg;
2169         context->free = paging_free;
2170         context->root_level = level;
2171         context->shadow_root_level = level;
2172         context->root_hpa = INVALID_PAGE;
2173         return 0;
2174 }
2175
2176 static int paging64_init_context(struct kvm_vcpu *vcpu)
2177 {
2178         return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
2179 }
2180
2181 static int paging32_init_context(struct kvm_vcpu *vcpu)
2182 {
2183         struct kvm_mmu *context = &vcpu->arch.mmu;
2184
2185         context->new_cr3 = paging_new_cr3;
2186         context->page_fault = paging32_page_fault;
2187         context->gva_to_gpa = paging32_gva_to_gpa;
2188         context->free = paging_free;
2189         context->prefetch_page = paging32_prefetch_page;
2190         context->sync_page = paging32_sync_page;
2191         context->invlpg = paging32_invlpg;
2192         context->root_level = PT32_ROOT_LEVEL;
2193         context->shadow_root_level = PT32E_ROOT_LEVEL;
2194         context->root_hpa = INVALID_PAGE;
2195         return 0;
2196 }
2197
2198 static int paging32E_init_context(struct kvm_vcpu *vcpu)
2199 {
2200         return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
2201 }
2202
2203 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
2204 {
2205         struct kvm_mmu *context = &vcpu->arch.mmu;
2206
2207         context->new_cr3 = nonpaging_new_cr3;
2208         context->page_fault = tdp_page_fault;
2209         context->free = nonpaging_free;
2210         context->prefetch_page = nonpaging_prefetch_page;
2211         context->sync_page = nonpaging_sync_page;
2212         context->invlpg = nonpaging_invlpg;
2213         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
2214         context->root_hpa = INVALID_PAGE;
2215
2216         if (!is_paging(vcpu)) {
2217                 context->gva_to_gpa = nonpaging_gva_to_gpa;
2218                 context->root_level = 0;
2219         } else if (is_long_mode(vcpu)) {
2220                 context->gva_to_gpa = paging64_gva_to_gpa;
2221                 context->root_level = PT64_ROOT_LEVEL;
2222         } else if (is_pae(vcpu)) {
2223                 context->gva_to_gpa = paging64_gva_to_gpa;
2224                 context->root_level = PT32E_ROOT_LEVEL;
2225         } else {
2226                 context->gva_to_gpa = paging32_gva_to_gpa;
2227                 context->root_level = PT32_ROOT_LEVEL;
2228         }
2229
2230         return 0;
2231 }
2232
2233 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
2234 {
2235         int r;
2236
2237         ASSERT(vcpu);
2238         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2239
2240         if (!is_paging(vcpu))
2241                 r = nonpaging_init_context(vcpu);
2242         else if (is_long_mode(vcpu))
2243                 r = paging64_init_context(vcpu);
2244         else if (is_pae(vcpu))
2245                 r = paging32E_init_context(vcpu);
2246         else
2247                 r = paging32_init_context(vcpu);
2248
2249         vcpu->arch.mmu.base_role.glevels = vcpu->arch.mmu.root_level;
2250
2251         return r;
2252 }
2253
2254 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
2255 {
2256         vcpu->arch.update_pte.pfn = bad_pfn;
2257
2258         if (tdp_enabled)
2259                 return init_kvm_tdp_mmu(vcpu);
2260         else
2261                 return init_kvm_softmmu(vcpu);
2262 }
2263
2264 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
2265 {
2266         ASSERT(vcpu);
2267         if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
2268                 vcpu->arch.mmu.free(vcpu);
2269                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2270         }
2271 }
2272
2273 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
2274 {
2275         destroy_kvm_mmu(vcpu);
2276         return init_kvm_mmu(vcpu);
2277 }
2278 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
2279
2280 int kvm_mmu_load(struct kvm_vcpu *vcpu)
2281 {
2282         int r;
2283
2284         r = mmu_topup_memory_caches(vcpu);
2285         if (r)
2286                 goto out;
2287         spin_lock(&vcpu->kvm->mmu_lock);
2288         kvm_mmu_free_some_pages(vcpu);
2289         mmu_alloc_roots(vcpu);
2290         mmu_sync_roots(vcpu);
2291         spin_unlock(&vcpu->kvm->mmu_lock);
2292         kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
2293         kvm_mmu_flush_tlb(vcpu);
2294 out:
2295         return r;
2296 }
2297 EXPORT_SYMBOL_GPL(kvm_mmu_load);
2298
2299 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
2300 {
2301         mmu_free_roots(vcpu);
2302 }
2303
2304 static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
2305                                   struct kvm_mmu_page *sp,
2306                                   u64 *spte)
2307 {
2308         u64 pte;
2309         struct kvm_mmu_page *child;
2310
2311         pte = *spte;
2312         if (is_shadow_present_pte(pte)) {
2313                 if (sp->role.level == PT_PAGE_TABLE_LEVEL ||
2314                     is_large_pte(pte))
2315                         rmap_remove(vcpu->kvm, spte);
2316                 else {
2317                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2318                         mmu_page_remove_parent_pte(child, spte);
2319                 }
2320         }
2321         set_shadow_pte(spte, shadow_trap_nonpresent_pte);
2322         if (is_large_pte(pte))
2323                 --vcpu->kvm->stat.lpages;
2324 }
2325
2326 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
2327                                   struct kvm_mmu_page *sp,
2328                                   u64 *spte,
2329                                   const void *new)
2330 {
2331         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
2332                 if (!vcpu->arch.update_pte.largepage ||
2333                     sp->role.glevels == PT32_ROOT_LEVEL) {
2334                         ++vcpu->kvm->stat.mmu_pde_zapped;
2335                         return;
2336                 }
2337         }
2338
2339         ++vcpu->kvm->stat.mmu_pte_updated;
2340         if (sp->role.glevels == PT32_ROOT_LEVEL)
2341                 paging32_update_pte(vcpu, sp, spte, new);
2342         else
2343                 paging64_update_pte(vcpu, sp, spte, new);
2344 }
2345
2346 static bool need_remote_flush(u64 old, u64 new)
2347 {
2348         if (!is_shadow_present_pte(old))
2349                 return false;
2350         if (!is_shadow_present_pte(new))
2351                 return true;
2352         if ((old ^ new) & PT64_BASE_ADDR_MASK)
2353                 return true;
2354         old ^= PT64_NX_MASK;
2355         new ^= PT64_NX_MASK;
2356         return (old & ~new & PT64_PERM_MASK) != 0;
2357 }
2358
2359 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
2360 {
2361         if (need_remote_flush(old, new))
2362                 kvm_flush_remote_tlbs(vcpu->kvm);
2363         else
2364                 kvm_mmu_flush_tlb(vcpu);
2365 }
2366
2367 static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
2368 {
2369         u64 *spte = vcpu->arch.last_pte_updated;
2370
2371         return !!(spte && (*spte & shadow_accessed_mask));
2372 }
2373
2374 static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
2375                                           const u8 *new, int bytes)
2376 {
2377         gfn_t gfn;
2378         int r;
2379         u64 gpte = 0;
2380         pfn_t pfn;
2381
2382         vcpu->arch.update_pte.largepage = 0;
2383
2384         if (bytes != 4 && bytes != 8)
2385                 return;
2386
2387         /*
2388          * Assume that the pte write on a page table of the same type
2389          * as the current vcpu paging mode.  This is nearly always true
2390          * (might be false while changing modes).  Note it is verified later
2391          * by update_pte().
2392          */
2393         if (is_pae(vcpu)) {
2394                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
2395                 if ((bytes == 4) && (gpa % 4 == 0)) {
2396                         r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
2397                         if (r)
2398                                 return;
2399                         memcpy((void *)&gpte + (gpa % 8), new, 4);
2400                 } else if ((bytes == 8) && (gpa % 8 == 0)) {
2401                         memcpy((void *)&gpte, new, 8);
2402                 }
2403         } else {
2404                 if ((bytes == 4) && (gpa % 4 == 0))
2405                         memcpy((void *)&gpte, new, 4);
2406         }
2407         if (!is_present_pte(gpte))
2408                 return;
2409         gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
2410
2411         if (is_large_pte(gpte) && is_largepage_backed(vcpu, gfn)) {
2412                 gfn &= ~(KVM_PAGES_PER_HPAGE-1);
2413                 vcpu->arch.update_pte.largepage = 1;
2414         }
2415         vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
2416         smp_rmb();
2417         pfn = gfn_to_pfn(vcpu->kvm, gfn);
2418
2419         if (is_error_pfn(pfn)) {
2420                 kvm_release_pfn_clean(pfn);
2421                 return;
2422         }
2423         vcpu->arch.update_pte.gfn = gfn;
2424         vcpu->arch.update_pte.pfn = pfn;
2425 }
2426
2427 static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2428 {
2429         u64 *spte = vcpu->arch.last_pte_updated;
2430
2431         if (spte
2432             && vcpu->arch.last_pte_gfn == gfn
2433             && shadow_accessed_mask
2434             && !(*spte & shadow_accessed_mask)
2435             && is_shadow_present_pte(*spte))
2436                 set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
2437 }
2438
2439 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
2440                        const u8 *new, int bytes,
2441                        bool guest_initiated)
2442 {
2443         gfn_t gfn = gpa >> PAGE_SHIFT;
2444         struct kvm_mmu_page *sp;
2445         struct hlist_node *node, *n;
2446         struct hlist_head *bucket;
2447         unsigned index;
2448         u64 entry, gentry;
2449         u64 *spte;
2450         unsigned offset = offset_in_page(gpa);
2451         unsigned pte_size;
2452         unsigned page_offset;
2453         unsigned misaligned;
2454         unsigned quadrant;
2455         int level;
2456         int flooded = 0;
2457         int npte;
2458         int r;
2459
2460         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
2461         mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
2462         spin_lock(&vcpu->kvm->mmu_lock);
2463         kvm_mmu_access_page(vcpu, gfn);
2464         kvm_mmu_free_some_pages(vcpu);
2465         ++vcpu->kvm->stat.mmu_pte_write;
2466         kvm_mmu_audit(vcpu, "pre pte write");
2467         if (guest_initiated) {
2468                 if (gfn == vcpu->arch.last_pt_write_gfn
2469                     && !last_updated_pte_accessed(vcpu)) {
2470                         ++vcpu->arch.last_pt_write_count;
2471                         if (vcpu->arch.last_pt_write_count >= 3)
2472                                 flooded = 1;
2473                 } else {
2474                         vcpu->arch.last_pt_write_gfn = gfn;
2475                         vcpu->arch.last_pt_write_count = 1;
2476                         vcpu->arch.last_pte_updated = NULL;
2477                 }
2478         }
2479         index = kvm_page_table_hashfn(gfn);
2480         bucket = &vcpu->kvm->arch.mmu_page_hash[index];
2481         hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
2482                 if (sp->gfn != gfn || sp->role.metaphysical || sp->role.invalid)
2483                         continue;
2484                 pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
2485                 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
2486                 misaligned |= bytes < 4;
2487                 if (misaligned || flooded) {
2488                         /*
2489                          * Misaligned accesses are too much trouble to fix
2490                          * up; also, they usually indicate a page is not used
2491                          * as a page table.
2492                          *
2493                          * If we're seeing too many writes to a page,
2494                          * it may no longer be a page table, or we may be
2495                          * forking, in which case it is better to unmap the
2496                          * page.
2497                          */
2498                         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
2499                                  gpa, bytes, sp->role.word);
2500                         if (kvm_mmu_zap_page(vcpu->kvm, sp))
2501                                 n = bucket->first;
2502                         ++vcpu->kvm->stat.mmu_flooded;
2503                         continue;
2504                 }
2505                 page_offset = offset;
2506                 level = sp->role.level;
2507                 npte = 1;
2508                 if (sp->role.glevels == PT32_ROOT_LEVEL) {
2509                         page_offset <<= 1;      /* 32->64 */
2510                         /*
2511                          * A 32-bit pde maps 4MB while the shadow pdes map
2512                          * only 2MB.  So we need to double the offset again
2513                          * and zap two pdes instead of one.
2514                          */
2515                         if (level == PT32_ROOT_LEVEL) {
2516                                 page_offset &= ~7; /* kill rounding error */
2517                                 page_offset <<= 1;
2518                                 npte = 2;
2519                         }
2520                         quadrant = page_offset >> PAGE_SHIFT;
2521                         page_offset &= ~PAGE_MASK;
2522                         if (quadrant != sp->role.quadrant)
2523                                 continue;
2524                 }
2525                 spte = &sp->spt[page_offset / sizeof(*spte)];
2526                 if ((gpa & (pte_size - 1)) || (bytes < pte_size)) {
2527                         gentry = 0;
2528                         r = kvm_read_guest_atomic(vcpu->kvm,
2529                                                   gpa & ~(u64)(pte_size - 1),
2530                                                   &gentry, pte_size);
2531                         new = (const void *)&gentry;
2532                         if (r < 0)
2533                                 new = NULL;
2534                 }
2535                 while (npte--) {
2536                         entry = *spte;
2537                         mmu_pte_write_zap_pte(vcpu, sp, spte);
2538                         if (new)
2539                                 mmu_pte_write_new_pte(vcpu, sp, spte, new);
2540                         mmu_pte_write_flush_tlb(vcpu, entry, *spte);
2541                         ++spte;
2542                 }
2543         }
2544         kvm_mmu_audit(vcpu, "post pte write");
2545         spin_unlock(&vcpu->kvm->mmu_lock);
2546         if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
2547                 kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
2548                 vcpu->arch.update_pte.pfn = bad_pfn;
2549         }
2550 }
2551
2552 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
2553 {
2554         gpa_t gpa;
2555         int r;
2556
2557         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
2558
2559         spin_lock(&vcpu->kvm->mmu_lock);
2560         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2561         spin_unlock(&vcpu->kvm->mmu_lock);
2562         return r;
2563 }
2564 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
2565
2566 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
2567 {
2568         while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES) {
2569                 struct kvm_mmu_page *sp;
2570
2571                 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
2572                                   struct kvm_mmu_page, link);
2573                 kvm_mmu_zap_page(vcpu->kvm, sp);
2574                 ++vcpu->kvm->stat.mmu_recycled;
2575         }
2576 }
2577
2578 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
2579 {
2580         int r;
2581         enum emulation_result er;
2582
2583         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
2584         if (r < 0)
2585                 goto out;
2586
2587         if (!r) {
2588                 r = 1;
2589                 goto out;
2590         }
2591
2592         r = mmu_topup_memory_caches(vcpu);
2593         if (r)
2594                 goto out;
2595
2596         er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
2597
2598         switch (er) {
2599         case EMULATE_DONE:
2600                 return 1;
2601         case EMULATE_DO_MMIO:
2602                 ++vcpu->stat.mmio_exits;
2603                 return 0;
2604         case EMULATE_FAIL:
2605                 kvm_report_emulation_failure(vcpu, "pagetable");
2606                 return 1;
2607         default:
2608                 BUG();
2609         }
2610 out:
2611         return r;
2612 }
2613 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
2614
2615 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
2616 {
2617         vcpu->arch.mmu.invlpg(vcpu, gva);
2618         kvm_mmu_flush_tlb(vcpu);
2619         ++vcpu->stat.invlpg;
2620 }
2621 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
2622
2623 void kvm_enable_tdp(void)
2624 {
2625         tdp_enabled = true;
2626 }
2627 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
2628
2629 void kvm_disable_tdp(void)
2630 {
2631         tdp_enabled = false;
2632 }
2633 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
2634
2635 static void free_mmu_pages(struct kvm_vcpu *vcpu)
2636 {
2637         struct kvm_mmu_page *sp;
2638
2639         while (!list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
2640                 sp = container_of(vcpu->kvm->arch.active_mmu_pages.next,
2641                                   struct kvm_mmu_page, link);
2642                 kvm_mmu_zap_page(vcpu->kvm, sp);
2643                 cond_resched();
2644         }
2645         free_page((unsigned long)vcpu->arch.mmu.pae_root);
2646 }
2647
2648 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
2649 {
2650         struct page *page;
2651         int i;
2652
2653         ASSERT(vcpu);
2654
2655         if (vcpu->kvm->arch.n_requested_mmu_pages)
2656                 vcpu->kvm->arch.n_free_mmu_pages =
2657                                         vcpu->kvm->arch.n_requested_mmu_pages;
2658         else
2659                 vcpu->kvm->arch.n_free_mmu_pages =
2660                                         vcpu->kvm->arch.n_alloc_mmu_pages;
2661         /*
2662          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
2663          * Therefore we need to allocate shadow page tables in the first
2664          * 4GB of memory, which happens to fit the DMA32 zone.
2665          */
2666         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
2667         if (!page)
2668                 goto error_1;
2669         vcpu->arch.mmu.pae_root = page_address(page);
2670         for (i = 0; i < 4; ++i)
2671                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2672
2673         return 0;
2674
2675 error_1:
2676         free_mmu_pages(vcpu);
2677         return -ENOMEM;
2678 }
2679
2680 int kvm_mmu_create(struct kvm_vcpu *vcpu)
2681 {
2682         ASSERT(vcpu);
2683         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2684
2685         return alloc_mmu_pages(vcpu);
2686 }
2687
2688 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
2689 {
2690         ASSERT(vcpu);
2691         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2692
2693         return init_kvm_mmu(vcpu);
2694 }
2695
2696 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
2697 {
2698         ASSERT(vcpu);
2699
2700         destroy_kvm_mmu(vcpu);
2701         free_mmu_pages(vcpu);
2702         mmu_free_memory_caches(vcpu);
2703 }
2704
2705 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
2706 {
2707         struct kvm_mmu_page *sp;
2708
2709         spin_lock(&kvm->mmu_lock);
2710         list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
2711                 int i;
2712                 u64 *pt;
2713
2714                 if (!test_bit(slot, sp->slot_bitmap))
2715                         continue;
2716
2717                 pt = sp->spt;
2718                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2719                         /* avoid RMW */
2720                         if (pt[i] & PT_WRITABLE_MASK)
2721                                 pt[i] &= ~PT_WRITABLE_MASK;
2722         }
2723         kvm_flush_remote_tlbs(kvm);
2724         spin_unlock(&kvm->mmu_lock);
2725 }
2726
2727 void kvm_mmu_zap_all(struct kvm *kvm)
2728 {
2729         struct kvm_mmu_page *sp, *node;
2730
2731         spin_lock(&kvm->mmu_lock);
2732         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
2733                 if (kvm_mmu_zap_page(kvm, sp))
2734                         node = container_of(kvm->arch.active_mmu_pages.next,
2735                                             struct kvm_mmu_page, link);
2736         spin_unlock(&kvm->mmu_lock);
2737
2738         kvm_flush_remote_tlbs(kvm);
2739 }
2740
2741 static void kvm_mmu_remove_one_alloc_mmu_page(struct kvm *kvm)
2742 {
2743         struct kvm_mmu_page *page;
2744
2745         page = container_of(kvm->arch.active_mmu_pages.prev,
2746                             struct kvm_mmu_page, link);
2747         kvm_mmu_zap_page(kvm, page);
2748 }
2749
2750 static int mmu_shrink(int nr_to_scan, gfp_t gfp_mask)
2751 {
2752         struct kvm *kvm;
2753         struct kvm *kvm_freed = NULL;
2754         int cache_count = 0;
2755
2756         spin_lock(&kvm_lock);
2757
2758         list_for_each_entry(kvm, &vm_list, vm_list) {
2759                 int npages;
2760
2761                 if (!down_read_trylock(&kvm->slots_lock))
2762                         continue;
2763                 spin_lock(&kvm->mmu_lock);
2764                 npages = kvm->arch.n_alloc_mmu_pages -
2765                          kvm->arch.n_free_mmu_pages;
2766                 cache_count += npages;
2767                 if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
2768                         kvm_mmu_remove_one_alloc_mmu_page(kvm);
2769                         cache_count--;
2770                         kvm_freed = kvm;
2771                 }
2772                 nr_to_scan--;
2773
2774                 spin_unlock(&kvm->mmu_lock);
2775                 up_read(&kvm->slots_lock);
2776         }
2777         if (kvm_freed)
2778                 list_move_tail(&kvm_freed->vm_list, &vm_list);
2779
2780         spin_unlock(&kvm_lock);
2781
2782         return cache_count;
2783 }
2784
2785 static struct shrinker mmu_shrinker = {
2786         .shrink = mmu_shrink,
2787         .seeks = DEFAULT_SEEKS * 10,
2788 };
2789
2790 static void mmu_destroy_caches(void)
2791 {
2792         if (pte_chain_cache)
2793                 kmem_cache_destroy(pte_chain_cache);
2794         if (rmap_desc_cache)
2795                 kmem_cache_destroy(rmap_desc_cache);
2796         if (mmu_page_header_cache)
2797                 kmem_cache_destroy(mmu_page_header_cache);
2798 }
2799
2800 void kvm_mmu_module_exit(void)
2801 {
2802         mmu_destroy_caches();
2803         unregister_shrinker(&mmu_shrinker);
2804 }
2805
2806 int kvm_mmu_module_init(void)
2807 {
2808         pte_chain_cache = kmem_cache_create("kvm_pte_chain",
2809                                             sizeof(struct kvm_pte_chain),
2810                                             0, 0, NULL);
2811         if (!pte_chain_cache)
2812                 goto nomem;
2813         rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
2814                                             sizeof(struct kvm_rmap_desc),
2815                                             0, 0, NULL);
2816         if (!rmap_desc_cache)
2817                 goto nomem;
2818
2819         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
2820                                                   sizeof(struct kvm_mmu_page),
2821                                                   0, 0, NULL);
2822         if (!mmu_page_header_cache)
2823                 goto nomem;
2824
2825         register_shrinker(&mmu_shrinker);
2826
2827         return 0;
2828
2829 nomem:
2830         mmu_destroy_caches();
2831         return -ENOMEM;
2832 }
2833
2834 /*
2835  * Caculate mmu pages needed for kvm.
2836  */
2837 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
2838 {
2839         int i;
2840         unsigned int nr_mmu_pages;
2841         unsigned int  nr_pages = 0;
2842
2843         for (i = 0; i < kvm->nmemslots; i++)
2844                 nr_pages += kvm->memslots[i].npages;
2845
2846         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
2847         nr_mmu_pages = max(nr_mmu_pages,
2848                         (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
2849
2850         return nr_mmu_pages;
2851 }
2852
2853 static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
2854                                 unsigned len)
2855 {
2856         if (len > buffer->len)
2857                 return NULL;
2858         return buffer->ptr;
2859 }
2860
2861 static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
2862                                 unsigned len)
2863 {
2864         void *ret;
2865
2866         ret = pv_mmu_peek_buffer(buffer, len);
2867         if (!ret)
2868                 return ret;
2869         buffer->ptr += len;
2870         buffer->len -= len;
2871         buffer->processed += len;
2872         return ret;
2873 }
2874
2875 static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
2876                              gpa_t addr, gpa_t value)
2877 {
2878         int bytes = 8;
2879         int r;
2880
2881         if (!is_long_mode(vcpu) && !is_pae(vcpu))
2882                 bytes = 4;
2883
2884         r = mmu_topup_memory_caches(vcpu);
2885         if (r)
2886                 return r;
2887
2888         if (!emulator_write_phys(vcpu, addr, &value, bytes))
2889                 return -EFAULT;
2890
2891         return 1;
2892 }
2893
2894 static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
2895 {
2896         kvm_x86_ops->tlb_flush(vcpu);
2897         set_bit(KVM_REQ_MMU_SYNC, &vcpu->requests);
2898         return 1;
2899 }
2900
2901 static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
2902 {
2903         spin_lock(&vcpu->kvm->mmu_lock);
2904         mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
2905         spin_unlock(&vcpu->kvm->mmu_lock);
2906         return 1;
2907 }
2908
2909 static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
2910                              struct kvm_pv_mmu_op_buffer *buffer)
2911 {
2912         struct kvm_mmu_op_header *header;
2913
2914         header = pv_mmu_peek_buffer(buffer, sizeof *header);
2915         if (!header)
2916                 return 0;
2917         switch (header->op) {
2918         case KVM_MMU_OP_WRITE_PTE: {
2919                 struct kvm_mmu_op_write_pte *wpte;
2920
2921                 wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
2922                 if (!wpte)
2923                         return 0;
2924                 return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
2925                                         wpte->pte_val);
2926         }
2927         case KVM_MMU_OP_FLUSH_TLB: {
2928                 struct kvm_mmu_op_flush_tlb *ftlb;
2929
2930                 ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
2931                 if (!ftlb)
2932                         return 0;
2933                 return kvm_pv_mmu_flush_tlb(vcpu);
2934         }
2935         case KVM_MMU_OP_RELEASE_PT: {
2936                 struct kvm_mmu_op_release_pt *rpt;
2937
2938                 rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
2939                 if (!rpt)
2940                         return 0;
2941                 return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
2942         }
2943         default: return 0;
2944         }
2945 }
2946
2947 int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
2948                   gpa_t addr, unsigned long *ret)
2949 {
2950         int r;
2951         struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
2952
2953         buffer->ptr = buffer->buf;
2954         buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
2955         buffer->processed = 0;
2956
2957         r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
2958         if (r)
2959                 goto out;
2960
2961         while (buffer->len) {
2962                 r = kvm_pv_mmu_op_one(vcpu, buffer);
2963                 if (r < 0)
2964                         goto out;
2965                 if (r == 0)
2966                         break;
2967         }
2968
2969         r = 1;
2970 out:
2971         *ret = buffer->processed;
2972         return r;
2973 }
2974
2975 #ifdef AUDIT
2976
2977 static const char *audit_msg;
2978
2979 static gva_t canonicalize(gva_t gva)
2980 {
2981 #ifdef CONFIG_X86_64
2982         gva = (long long)(gva << 16) >> 16;
2983 #endif
2984         return gva;
2985 }
2986
2987 static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
2988                                 gva_t va, int level)
2989 {
2990         u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
2991         int i;
2992         gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
2993
2994         for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
2995                 u64 ent = pt[i];
2996
2997                 if (ent == shadow_trap_nonpresent_pte)
2998                         continue;
2999
3000                 va = canonicalize(va);
3001                 if (level > 1) {
3002                         if (ent == shadow_notrap_nonpresent_pte)
3003                                 printk(KERN_ERR "audit: (%s) nontrapping pte"
3004                                        " in nonleaf level: levels %d gva %lx"
3005                                        " level %d pte %llx\n", audit_msg,
3006                                        vcpu->arch.mmu.root_level, va, level, ent);
3007
3008                         audit_mappings_page(vcpu, ent, va, level - 1);
3009                 } else {
3010                         gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
3011                         hpa_t hpa = (hpa_t)gpa_to_pfn(vcpu, gpa) << PAGE_SHIFT;
3012
3013                         if (is_shadow_present_pte(ent)
3014                             && (ent & PT64_BASE_ADDR_MASK) != hpa)
3015                                 printk(KERN_ERR "xx audit error: (%s) levels %d"
3016                                        " gva %lx gpa %llx hpa %llx ent %llx %d\n",
3017                                        audit_msg, vcpu->arch.mmu.root_level,
3018                                        va, gpa, hpa, ent,
3019                                        is_shadow_present_pte(ent));
3020                         else if (ent == shadow_notrap_nonpresent_pte
3021                                  && !is_error_hpa(hpa))
3022                                 printk(KERN_ERR "audit: (%s) notrap shadow,"
3023                                        " valid guest gva %lx\n", audit_msg, va);
3024                         kvm_release_pfn_clean(pfn);
3025
3026                 }
3027         }
3028 }
3029
3030 static void audit_mappings(struct kvm_vcpu *vcpu)
3031 {
3032         unsigned i;
3033
3034         if (vcpu->arch.mmu.root_level == 4)
3035                 audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
3036         else
3037                 for (i = 0; i < 4; ++i)
3038                         if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
3039                                 audit_mappings_page(vcpu,
3040                                                     vcpu->arch.mmu.pae_root[i],
3041                                                     i << 30,
3042                                                     2);
3043 }
3044
3045 static int count_rmaps(struct kvm_vcpu *vcpu)
3046 {
3047         int nmaps = 0;
3048         int i, j, k;
3049
3050         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
3051                 struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
3052                 struct kvm_rmap_desc *d;
3053
3054                 for (j = 0; j < m->npages; ++j) {
3055                         unsigned long *rmapp = &m->rmap[j];
3056
3057                         if (!*rmapp)
3058                                 continue;
3059                         if (!(*rmapp & 1)) {
3060                                 ++nmaps;
3061                                 continue;
3062                         }
3063                         d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
3064                         while (d) {
3065                                 for (k = 0; k < RMAP_EXT; ++k)
3066                                         if (d->shadow_ptes[k])
3067                                                 ++nmaps;
3068                                         else
3069                                                 break;
3070                                 d = d->more;
3071                         }
3072                 }
3073         }
3074         return nmaps;
3075 }
3076
3077 static int count_writable_mappings(struct kvm_vcpu *vcpu)
3078 {
3079         int nmaps = 0;
3080         struct kvm_mmu_page *sp;
3081         int i;
3082
3083         list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
3084                 u64 *pt = sp->spt;
3085
3086                 if (sp->role.level != PT_PAGE_TABLE_LEVEL)
3087                         continue;
3088
3089                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
3090                         u64 ent = pt[i];
3091
3092                         if (!(ent & PT_PRESENT_MASK))
3093                                 continue;
3094                         if (!(ent & PT_WRITABLE_MASK))
3095                                 continue;
3096                         ++nmaps;
3097                 }
3098         }
3099         return nmaps;
3100 }
3101
3102 static void audit_rmap(struct kvm_vcpu *vcpu)
3103 {
3104         int n_rmap = count_rmaps(vcpu);
3105         int n_actual = count_writable_mappings(vcpu);
3106
3107         if (n_rmap != n_actual)
3108                 printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
3109                        __func__, audit_msg, n_rmap, n_actual);
3110 }
3111
3112 static void audit_write_protection(struct kvm_vcpu *vcpu)
3113 {
3114         struct kvm_mmu_page *sp;
3115         struct kvm_memory_slot *slot;
3116         unsigned long *rmapp;
3117         gfn_t gfn;
3118
3119         list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
3120                 if (sp->role.metaphysical)
3121                         continue;
3122
3123                 gfn = unalias_gfn(vcpu->kvm, sp->gfn);
3124                 slot = gfn_to_memslot_unaliased(vcpu->kvm, sp->gfn);
3125                 rmapp = &slot->rmap[gfn - slot->base_gfn];
3126                 if (*rmapp)
3127                         printk(KERN_ERR "%s: (%s) shadow page has writable"
3128                                " mappings: gfn %lx role %x\n",
3129                                __func__, audit_msg, sp->gfn,
3130                                sp->role.word);
3131         }
3132 }
3133
3134 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
3135 {
3136         int olddbg = dbg;
3137
3138         dbg = 0;
3139         audit_msg = msg;
3140         audit_rmap(vcpu);
3141         audit_write_protection(vcpu);
3142         audit_mappings(vcpu);
3143         dbg = olddbg;
3144 }
3145
3146 #endif