KVM: cleanup io_device code
[safe/jmp/linux-2.6] / arch / x86 / kvm / i8254.c
1 /*
2  * 8253/8254 interval timer emulation
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  * Copyright (c) 2006 Intel Corporation
6  * Copyright (c) 2007 Keir Fraser, XenSource Inc
7  * Copyright (c) 2008 Intel Corporation
8  *
9  * Permission is hereby granted, free of charge, to any person obtaining a copy
10  * of this software and associated documentation files (the "Software"), to deal
11  * in the Software without restriction, including without limitation the rights
12  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13  * copies of the Software, and to permit persons to whom the Software is
14  * furnished to do so, subject to the following conditions:
15  *
16  * The above copyright notice and this permission notice shall be included in
17  * all copies or substantial portions of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25  * THE SOFTWARE.
26  *
27  * Authors:
28  *   Sheng Yang <sheng.yang@intel.com>
29  *   Based on QEMU and Xen.
30  */
31
32 #include <linux/kvm_host.h>
33
34 #include "irq.h"
35 #include "i8254.h"
36
37 #ifndef CONFIG_X86_64
38 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
39 #else
40 #define mod_64(x, y) ((x) % (y))
41 #endif
42
43 #define RW_STATE_LSB 1
44 #define RW_STATE_MSB 2
45 #define RW_STATE_WORD0 3
46 #define RW_STATE_WORD1 4
47
48 /* Compute with 96 bit intermediate result: (a*b)/c */
49 static u64 muldiv64(u64 a, u32 b, u32 c)
50 {
51         union {
52                 u64 ll;
53                 struct {
54                         u32 low, high;
55                 } l;
56         } u, res;
57         u64 rl, rh;
58
59         u.ll = a;
60         rl = (u64)u.l.low * (u64)b;
61         rh = (u64)u.l.high * (u64)b;
62         rh += (rl >> 32);
63         res.l.high = div64_u64(rh, c);
64         res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
65         return res.ll;
66 }
67
68 static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
69 {
70         struct kvm_kpit_channel_state *c =
71                 &kvm->arch.vpit->pit_state.channels[channel];
72
73         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
74
75         switch (c->mode) {
76         default:
77         case 0:
78         case 4:
79                 /* XXX: just disable/enable counting */
80                 break;
81         case 1:
82         case 2:
83         case 3:
84         case 5:
85                 /* Restart counting on rising edge. */
86                 if (c->gate < val)
87                         c->count_load_time = ktime_get();
88                 break;
89         }
90
91         c->gate = val;
92 }
93
94 static int pit_get_gate(struct kvm *kvm, int channel)
95 {
96         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
97
98         return kvm->arch.vpit->pit_state.channels[channel].gate;
99 }
100
101 static s64 __kpit_elapsed(struct kvm *kvm)
102 {
103         s64 elapsed;
104         ktime_t remaining;
105         struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
106
107         if (!ps->pit_timer.period)
108                 return 0;
109
110         /*
111          * The Counter does not stop when it reaches zero. In
112          * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
113          * the highest count, either FFFF hex for binary counting
114          * or 9999 for BCD counting, and continues counting.
115          * Modes 2 and 3 are periodic; the Counter reloads
116          * itself with the initial count and continues counting
117          * from there.
118          */
119         remaining = hrtimer_expires_remaining(&ps->pit_timer.timer);
120         elapsed = ps->pit_timer.period - ktime_to_ns(remaining);
121         elapsed = mod_64(elapsed, ps->pit_timer.period);
122
123         return elapsed;
124 }
125
126 static s64 kpit_elapsed(struct kvm *kvm, struct kvm_kpit_channel_state *c,
127                         int channel)
128 {
129         if (channel == 0)
130                 return __kpit_elapsed(kvm);
131
132         return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
133 }
134
135 static int pit_get_count(struct kvm *kvm, int channel)
136 {
137         struct kvm_kpit_channel_state *c =
138                 &kvm->arch.vpit->pit_state.channels[channel];
139         s64 d, t;
140         int counter;
141
142         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
143
144         t = kpit_elapsed(kvm, c, channel);
145         d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
146
147         switch (c->mode) {
148         case 0:
149         case 1:
150         case 4:
151         case 5:
152                 counter = (c->count - d) & 0xffff;
153                 break;
154         case 3:
155                 /* XXX: may be incorrect for odd counts */
156                 counter = c->count - (mod_64((2 * d), c->count));
157                 break;
158         default:
159                 counter = c->count - mod_64(d, c->count);
160                 break;
161         }
162         return counter;
163 }
164
165 static int pit_get_out(struct kvm *kvm, int channel)
166 {
167         struct kvm_kpit_channel_state *c =
168                 &kvm->arch.vpit->pit_state.channels[channel];
169         s64 d, t;
170         int out;
171
172         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
173
174         t = kpit_elapsed(kvm, c, channel);
175         d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
176
177         switch (c->mode) {
178         default:
179         case 0:
180                 out = (d >= c->count);
181                 break;
182         case 1:
183                 out = (d < c->count);
184                 break;
185         case 2:
186                 out = ((mod_64(d, c->count) == 0) && (d != 0));
187                 break;
188         case 3:
189                 out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
190                 break;
191         case 4:
192         case 5:
193                 out = (d == c->count);
194                 break;
195         }
196
197         return out;
198 }
199
200 static void pit_latch_count(struct kvm *kvm, int channel)
201 {
202         struct kvm_kpit_channel_state *c =
203                 &kvm->arch.vpit->pit_state.channels[channel];
204
205         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
206
207         if (!c->count_latched) {
208                 c->latched_count = pit_get_count(kvm, channel);
209                 c->count_latched = c->rw_mode;
210         }
211 }
212
213 static void pit_latch_status(struct kvm *kvm, int channel)
214 {
215         struct kvm_kpit_channel_state *c =
216                 &kvm->arch.vpit->pit_state.channels[channel];
217
218         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
219
220         if (!c->status_latched) {
221                 /* TODO: Return NULL COUNT (bit 6). */
222                 c->status = ((pit_get_out(kvm, channel) << 7) |
223                                 (c->rw_mode << 4) |
224                                 (c->mode << 1) |
225                                 c->bcd);
226                 c->status_latched = 1;
227         }
228 }
229
230 int pit_has_pending_timer(struct kvm_vcpu *vcpu)
231 {
232         struct kvm_pit *pit = vcpu->kvm->arch.vpit;
233
234         if (pit && vcpu->vcpu_id == 0 && pit->pit_state.irq_ack)
235                 return atomic_read(&pit->pit_state.pit_timer.pending);
236         return 0;
237 }
238
239 static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
240 {
241         struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
242                                                  irq_ack_notifier);
243         spin_lock(&ps->inject_lock);
244         if (atomic_dec_return(&ps->pit_timer.pending) < 0)
245                 atomic_inc(&ps->pit_timer.pending);
246         ps->irq_ack = 1;
247         spin_unlock(&ps->inject_lock);
248 }
249
250 void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
251 {
252         struct kvm_pit *pit = vcpu->kvm->arch.vpit;
253         struct hrtimer *timer;
254
255         if (vcpu->vcpu_id != 0 || !pit)
256                 return;
257
258         timer = &pit->pit_state.pit_timer.timer;
259         if (hrtimer_cancel(timer))
260                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
261 }
262
263 static void destroy_pit_timer(struct kvm_timer *pt)
264 {
265         pr_debug("pit: execute del timer!\n");
266         hrtimer_cancel(&pt->timer);
267 }
268
269 static bool kpit_is_periodic(struct kvm_timer *ktimer)
270 {
271         struct kvm_kpit_state *ps = container_of(ktimer, struct kvm_kpit_state,
272                                                  pit_timer);
273         return ps->is_periodic;
274 }
275
276 static struct kvm_timer_ops kpit_ops = {
277         .is_periodic = kpit_is_periodic,
278 };
279
280 static void create_pit_timer(struct kvm_kpit_state *ps, u32 val, int is_period)
281 {
282         struct kvm_timer *pt = &ps->pit_timer;
283         s64 interval;
284
285         interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
286
287         pr_debug("pit: create pit timer, interval is %llu nsec\n", interval);
288
289         /* TODO The new value only affected after the retriggered */
290         hrtimer_cancel(&pt->timer);
291         pt->period = interval;
292         ps->is_periodic = is_period;
293
294         pt->timer.function = kvm_timer_fn;
295         pt->t_ops = &kpit_ops;
296         pt->kvm = ps->pit->kvm;
297         pt->vcpu_id = 0;
298
299         atomic_set(&pt->pending, 0);
300         ps->irq_ack = 1;
301
302         hrtimer_start(&pt->timer, ktime_add_ns(ktime_get(), interval),
303                       HRTIMER_MODE_ABS);
304 }
305
306 static void pit_load_count(struct kvm *kvm, int channel, u32 val)
307 {
308         struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
309
310         WARN_ON(!mutex_is_locked(&ps->lock));
311
312         pr_debug("pit: load_count val is %d, channel is %d\n", val, channel);
313
314         /*
315          * The largest possible initial count is 0; this is equivalent
316          * to 216 for binary counting and 104 for BCD counting.
317          */
318         if (val == 0)
319                 val = 0x10000;
320
321         ps->channels[channel].count = val;
322
323         if (channel != 0) {
324                 ps->channels[channel].count_load_time = ktime_get();
325                 return;
326         }
327
328         /* Two types of timer
329          * mode 1 is one shot, mode 2 is period, otherwise del timer */
330         switch (ps->channels[0].mode) {
331         case 0:
332         case 1:
333         /* FIXME: enhance mode 4 precision */
334         case 4:
335                 create_pit_timer(ps, val, 0);
336                 break;
337         case 2:
338         case 3:
339                 create_pit_timer(ps, val, 1);
340                 break;
341         default:
342                 destroy_pit_timer(&ps->pit_timer);
343         }
344 }
345
346 void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val)
347 {
348         mutex_lock(&kvm->arch.vpit->pit_state.lock);
349         pit_load_count(kvm, channel, val);
350         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
351 }
352
353 static inline struct kvm_pit *dev_to_pit(struct kvm_io_device *dev)
354 {
355         return container_of(dev, struct kvm_pit, dev);
356 }
357
358 static inline struct kvm_pit *speaker_to_pit(struct kvm_io_device *dev)
359 {
360         return container_of(dev, struct kvm_pit, speaker_dev);
361 }
362
363 static void pit_ioport_write(struct kvm_io_device *this,
364                              gpa_t addr, int len, const void *data)
365 {
366         struct kvm_pit *pit = dev_to_pit(this);
367         struct kvm_kpit_state *pit_state = &pit->pit_state;
368         struct kvm *kvm = pit->kvm;
369         int channel, access;
370         struct kvm_kpit_channel_state *s;
371         u32 val = *(u32 *) data;
372
373         val  &= 0xff;
374         addr &= KVM_PIT_CHANNEL_MASK;
375
376         mutex_lock(&pit_state->lock);
377
378         if (val != 0)
379                 pr_debug("pit: write addr is 0x%x, len is %d, val is 0x%x\n",
380                           (unsigned int)addr, len, val);
381
382         if (addr == 3) {
383                 channel = val >> 6;
384                 if (channel == 3) {
385                         /* Read-Back Command. */
386                         for (channel = 0; channel < 3; channel++) {
387                                 s = &pit_state->channels[channel];
388                                 if (val & (2 << channel)) {
389                                         if (!(val & 0x20))
390                                                 pit_latch_count(kvm, channel);
391                                         if (!(val & 0x10))
392                                                 pit_latch_status(kvm, channel);
393                                 }
394                         }
395                 } else {
396                         /* Select Counter <channel>. */
397                         s = &pit_state->channels[channel];
398                         access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
399                         if (access == 0) {
400                                 pit_latch_count(kvm, channel);
401                         } else {
402                                 s->rw_mode = access;
403                                 s->read_state = access;
404                                 s->write_state = access;
405                                 s->mode = (val >> 1) & 7;
406                                 if (s->mode > 5)
407                                         s->mode -= 4;
408                                 s->bcd = val & 1;
409                         }
410                 }
411         } else {
412                 /* Write Count. */
413                 s = &pit_state->channels[addr];
414                 switch (s->write_state) {
415                 default:
416                 case RW_STATE_LSB:
417                         pit_load_count(kvm, addr, val);
418                         break;
419                 case RW_STATE_MSB:
420                         pit_load_count(kvm, addr, val << 8);
421                         break;
422                 case RW_STATE_WORD0:
423                         s->write_latch = val;
424                         s->write_state = RW_STATE_WORD1;
425                         break;
426                 case RW_STATE_WORD1:
427                         pit_load_count(kvm, addr, s->write_latch | (val << 8));
428                         s->write_state = RW_STATE_WORD0;
429                         break;
430                 }
431         }
432
433         mutex_unlock(&pit_state->lock);
434 }
435
436 static void pit_ioport_read(struct kvm_io_device *this,
437                             gpa_t addr, int len, void *data)
438 {
439         struct kvm_pit *pit = dev_to_pit(this);
440         struct kvm_kpit_state *pit_state = &pit->pit_state;
441         struct kvm *kvm = pit->kvm;
442         int ret, count;
443         struct kvm_kpit_channel_state *s;
444
445         addr &= KVM_PIT_CHANNEL_MASK;
446         s = &pit_state->channels[addr];
447
448         mutex_lock(&pit_state->lock);
449
450         if (s->status_latched) {
451                 s->status_latched = 0;
452                 ret = s->status;
453         } else if (s->count_latched) {
454                 switch (s->count_latched) {
455                 default:
456                 case RW_STATE_LSB:
457                         ret = s->latched_count & 0xff;
458                         s->count_latched = 0;
459                         break;
460                 case RW_STATE_MSB:
461                         ret = s->latched_count >> 8;
462                         s->count_latched = 0;
463                         break;
464                 case RW_STATE_WORD0:
465                         ret = s->latched_count & 0xff;
466                         s->count_latched = RW_STATE_MSB;
467                         break;
468                 }
469         } else {
470                 switch (s->read_state) {
471                 default:
472                 case RW_STATE_LSB:
473                         count = pit_get_count(kvm, addr);
474                         ret = count & 0xff;
475                         break;
476                 case RW_STATE_MSB:
477                         count = pit_get_count(kvm, addr);
478                         ret = (count >> 8) & 0xff;
479                         break;
480                 case RW_STATE_WORD0:
481                         count = pit_get_count(kvm, addr);
482                         ret = count & 0xff;
483                         s->read_state = RW_STATE_WORD1;
484                         break;
485                 case RW_STATE_WORD1:
486                         count = pit_get_count(kvm, addr);
487                         ret = (count >> 8) & 0xff;
488                         s->read_state = RW_STATE_WORD0;
489                         break;
490                 }
491         }
492
493         if (len > sizeof(ret))
494                 len = sizeof(ret);
495         memcpy(data, (char *)&ret, len);
496
497         mutex_unlock(&pit_state->lock);
498 }
499
500 static int pit_in_range(struct kvm_io_device *this, gpa_t addr,
501                         int len, int is_write)
502 {
503         return ((addr >= KVM_PIT_BASE_ADDRESS) &&
504                 (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
505 }
506
507 static void speaker_ioport_write(struct kvm_io_device *this,
508                                  gpa_t addr, int len, const void *data)
509 {
510         struct kvm_pit *pit = speaker_to_pit(this);
511         struct kvm_kpit_state *pit_state = &pit->pit_state;
512         struct kvm *kvm = pit->kvm;
513         u32 val = *(u32 *) data;
514
515         mutex_lock(&pit_state->lock);
516         pit_state->speaker_data_on = (val >> 1) & 1;
517         pit_set_gate(kvm, 2, val & 1);
518         mutex_unlock(&pit_state->lock);
519 }
520
521 static void speaker_ioport_read(struct kvm_io_device *this,
522                                 gpa_t addr, int len, void *data)
523 {
524         struct kvm_pit *pit = speaker_to_pit(this);
525         struct kvm_kpit_state *pit_state = &pit->pit_state;
526         struct kvm *kvm = pit->kvm;
527         unsigned int refresh_clock;
528         int ret;
529
530         /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
531         refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
532
533         mutex_lock(&pit_state->lock);
534         ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
535                 (pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
536         if (len > sizeof(ret))
537                 len = sizeof(ret);
538         memcpy(data, (char *)&ret, len);
539         mutex_unlock(&pit_state->lock);
540 }
541
542 static int speaker_in_range(struct kvm_io_device *this, gpa_t addr,
543                             int len, int is_write)
544 {
545         return (addr == KVM_SPEAKER_BASE_ADDRESS);
546 }
547
548 void kvm_pit_reset(struct kvm_pit *pit)
549 {
550         int i;
551         struct kvm_kpit_channel_state *c;
552
553         mutex_lock(&pit->pit_state.lock);
554         for (i = 0; i < 3; i++) {
555                 c = &pit->pit_state.channels[i];
556                 c->mode = 0xff;
557                 c->gate = (i != 2);
558                 pit_load_count(pit->kvm, i, 0);
559         }
560         mutex_unlock(&pit->pit_state.lock);
561
562         atomic_set(&pit->pit_state.pit_timer.pending, 0);
563         pit->pit_state.irq_ack = 1;
564 }
565
566 static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
567 {
568         struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
569
570         if (!mask) {
571                 atomic_set(&pit->pit_state.pit_timer.pending, 0);
572                 pit->pit_state.irq_ack = 1;
573         }
574 }
575
576 static const struct kvm_io_device_ops pit_dev_ops = {
577         .read     = pit_ioport_read,
578         .write    = pit_ioport_write,
579         .in_range = pit_in_range,
580 };
581
582 static const struct kvm_io_device_ops speaker_dev_ops = {
583         .read     = speaker_ioport_read,
584         .write    = speaker_ioport_write,
585         .in_range = speaker_in_range,
586 };
587
588 struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags)
589 {
590         struct kvm_pit *pit;
591         struct kvm_kpit_state *pit_state;
592
593         pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
594         if (!pit)
595                 return NULL;
596
597         pit->irq_source_id = kvm_request_irq_source_id(kvm);
598         if (pit->irq_source_id < 0) {
599                 kfree(pit);
600                 return NULL;
601         }
602
603         mutex_init(&pit->pit_state.lock);
604         mutex_lock(&pit->pit_state.lock);
605         spin_lock_init(&pit->pit_state.inject_lock);
606
607         /* Initialize PIO device */
608         kvm_iodevice_init(&pit->dev, &pit_dev_ops);
609         kvm_io_bus_register_dev(&kvm->pio_bus, &pit->dev);
610
611         if (flags & KVM_PIT_SPEAKER_DUMMY) {
612                 kvm_iodevice_init(&pit->speaker_dev, &speaker_dev_ops);
613                 kvm_io_bus_register_dev(&kvm->pio_bus, &pit->speaker_dev);
614         }
615
616         kvm->arch.vpit = pit;
617         pit->kvm = kvm;
618
619         pit_state = &pit->pit_state;
620         pit_state->pit = pit;
621         hrtimer_init(&pit_state->pit_timer.timer,
622                      CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
623         pit_state->irq_ack_notifier.gsi = 0;
624         pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
625         kvm_register_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
626         pit_state->pit_timer.reinject = true;
627         mutex_unlock(&pit->pit_state.lock);
628
629         kvm_pit_reset(pit);
630
631         pit->mask_notifier.func = pit_mask_notifer;
632         kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
633
634         return pit;
635 }
636
637 void kvm_free_pit(struct kvm *kvm)
638 {
639         struct hrtimer *timer;
640
641         if (kvm->arch.vpit) {
642                 kvm_unregister_irq_mask_notifier(kvm, 0,
643                                                &kvm->arch.vpit->mask_notifier);
644                 mutex_lock(&kvm->arch.vpit->pit_state.lock);
645                 timer = &kvm->arch.vpit->pit_state.pit_timer.timer;
646                 hrtimer_cancel(timer);
647                 kvm_free_irq_source_id(kvm, kvm->arch.vpit->irq_source_id);
648                 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
649                 kfree(kvm->arch.vpit);
650         }
651 }
652
653 static void __inject_pit_timer_intr(struct kvm *kvm)
654 {
655         struct kvm_vcpu *vcpu;
656         int i;
657
658         mutex_lock(&kvm->lock);
659         kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1);
660         kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0);
661         mutex_unlock(&kvm->lock);
662
663         /*
664          * Provides NMI watchdog support via Virtual Wire mode.
665          * The route is: PIT -> PIC -> LVT0 in NMI mode.
666          *
667          * Note: Our Virtual Wire implementation is simplified, only
668          * propagating PIT interrupts to all VCPUs when they have set
669          * LVT0 to NMI delivery. Other PIC interrupts are just sent to
670          * VCPU0, and only if its LVT0 is in EXTINT mode.
671          */
672         if (kvm->arch.vapics_in_nmi_mode > 0)
673                 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
674                         vcpu = kvm->vcpus[i];
675                         if (vcpu)
676                                 kvm_apic_nmi_wd_deliver(vcpu);
677                 }
678 }
679
680 void kvm_inject_pit_timer_irqs(struct kvm_vcpu *vcpu)
681 {
682         struct kvm_pit *pit = vcpu->kvm->arch.vpit;
683         struct kvm *kvm = vcpu->kvm;
684         struct kvm_kpit_state *ps;
685
686         if (vcpu && pit) {
687                 int inject = 0;
688                 ps = &pit->pit_state;
689
690                 /* Try to inject pending interrupts when
691                  * last one has been acked.
692                  */
693                 spin_lock(&ps->inject_lock);
694                 if (atomic_read(&ps->pit_timer.pending) && ps->irq_ack) {
695                         ps->irq_ack = 0;
696                         inject = 1;
697                 }
698                 spin_unlock(&ps->inject_lock);
699                 if (inject)
700                         __inject_pit_timer_intr(kvm);
701         }
702 }