KVM: unify part of generic timer handling
[safe/jmp/linux-2.6] / arch / x86 / kvm / i8254.c
1 /*
2  * 8253/8254 interval timer emulation
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  * Copyright (c) 2006 Intel Corporation
6  * Copyright (c) 2007 Keir Fraser, XenSource Inc
7  * Copyright (c) 2008 Intel Corporation
8  *
9  * Permission is hereby granted, free of charge, to any person obtaining a copy
10  * of this software and associated documentation files (the "Software"), to deal
11  * in the Software without restriction, including without limitation the rights
12  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13  * copies of the Software, and to permit persons to whom the Software is
14  * furnished to do so, subject to the following conditions:
15  *
16  * The above copyright notice and this permission notice shall be included in
17  * all copies or substantial portions of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25  * THE SOFTWARE.
26  *
27  * Authors:
28  *   Sheng Yang <sheng.yang@intel.com>
29  *   Based on QEMU and Xen.
30  */
31
32 #include <linux/kvm_host.h>
33
34 #include "irq.h"
35 #include "i8254.h"
36
37 #ifndef CONFIG_X86_64
38 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
39 #else
40 #define mod_64(x, y) ((x) % (y))
41 #endif
42
43 #define RW_STATE_LSB 1
44 #define RW_STATE_MSB 2
45 #define RW_STATE_WORD0 3
46 #define RW_STATE_WORD1 4
47
48 /* Compute with 96 bit intermediate result: (a*b)/c */
49 static u64 muldiv64(u64 a, u32 b, u32 c)
50 {
51         union {
52                 u64 ll;
53                 struct {
54                         u32 low, high;
55                 } l;
56         } u, res;
57         u64 rl, rh;
58
59         u.ll = a;
60         rl = (u64)u.l.low * (u64)b;
61         rh = (u64)u.l.high * (u64)b;
62         rh += (rl >> 32);
63         res.l.high = div64_u64(rh, c);
64         res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
65         return res.ll;
66 }
67
68 static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
69 {
70         struct kvm_kpit_channel_state *c =
71                 &kvm->arch.vpit->pit_state.channels[channel];
72
73         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
74
75         switch (c->mode) {
76         default:
77         case 0:
78         case 4:
79                 /* XXX: just disable/enable counting */
80                 break;
81         case 1:
82         case 2:
83         case 3:
84         case 5:
85                 /* Restart counting on rising edge. */
86                 if (c->gate < val)
87                         c->count_load_time = ktime_get();
88                 break;
89         }
90
91         c->gate = val;
92 }
93
94 static int pit_get_gate(struct kvm *kvm, int channel)
95 {
96         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
97
98         return kvm->arch.vpit->pit_state.channels[channel].gate;
99 }
100
101 static s64 __kpit_elapsed(struct kvm *kvm)
102 {
103         s64 elapsed;
104         ktime_t remaining;
105         struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
106
107         remaining = hrtimer_expires_remaining(&ps->pit_timer.timer);
108         if (ktime_to_ns(remaining) < 0)
109                 remaining = ktime_set(0, 0);
110
111         elapsed = ps->pit_timer.period;
112         if (ktime_to_ns(remaining) <= ps->pit_timer.period)
113                 elapsed = ps->pit_timer.period - ktime_to_ns(remaining);
114
115         return elapsed;
116 }
117
118 static s64 kpit_elapsed(struct kvm *kvm, struct kvm_kpit_channel_state *c,
119                         int channel)
120 {
121         if (channel == 0)
122                 return __kpit_elapsed(kvm);
123
124         return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
125 }
126
127 static int pit_get_count(struct kvm *kvm, int channel)
128 {
129         struct kvm_kpit_channel_state *c =
130                 &kvm->arch.vpit->pit_state.channels[channel];
131         s64 d, t;
132         int counter;
133
134         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
135
136         t = kpit_elapsed(kvm, c, channel);
137         d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
138
139         switch (c->mode) {
140         case 0:
141         case 1:
142         case 4:
143         case 5:
144                 counter = (c->count - d) & 0xffff;
145                 break;
146         case 3:
147                 /* XXX: may be incorrect for odd counts */
148                 counter = c->count - (mod_64((2 * d), c->count));
149                 break;
150         default:
151                 counter = c->count - mod_64(d, c->count);
152                 break;
153         }
154         return counter;
155 }
156
157 static int pit_get_out(struct kvm *kvm, int channel)
158 {
159         struct kvm_kpit_channel_state *c =
160                 &kvm->arch.vpit->pit_state.channels[channel];
161         s64 d, t;
162         int out;
163
164         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
165
166         t = kpit_elapsed(kvm, c, channel);
167         d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
168
169         switch (c->mode) {
170         default:
171         case 0:
172                 out = (d >= c->count);
173                 break;
174         case 1:
175                 out = (d < c->count);
176                 break;
177         case 2:
178                 out = ((mod_64(d, c->count) == 0) && (d != 0));
179                 break;
180         case 3:
181                 out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
182                 break;
183         case 4:
184         case 5:
185                 out = (d == c->count);
186                 break;
187         }
188
189         return out;
190 }
191
192 static void pit_latch_count(struct kvm *kvm, int channel)
193 {
194         struct kvm_kpit_channel_state *c =
195                 &kvm->arch.vpit->pit_state.channels[channel];
196
197         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
198
199         if (!c->count_latched) {
200                 c->latched_count = pit_get_count(kvm, channel);
201                 c->count_latched = c->rw_mode;
202         }
203 }
204
205 static void pit_latch_status(struct kvm *kvm, int channel)
206 {
207         struct kvm_kpit_channel_state *c =
208                 &kvm->arch.vpit->pit_state.channels[channel];
209
210         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
211
212         if (!c->status_latched) {
213                 /* TODO: Return NULL COUNT (bit 6). */
214                 c->status = ((pit_get_out(kvm, channel) << 7) |
215                                 (c->rw_mode << 4) |
216                                 (c->mode << 1) |
217                                 c->bcd);
218                 c->status_latched = 1;
219         }
220 }
221
222 int pit_has_pending_timer(struct kvm_vcpu *vcpu)
223 {
224         struct kvm_pit *pit = vcpu->kvm->arch.vpit;
225
226         if (pit && vcpu->vcpu_id == 0 && pit->pit_state.irq_ack)
227                 return atomic_read(&pit->pit_state.pit_timer.pending);
228         return 0;
229 }
230
231 static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
232 {
233         struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
234                                                  irq_ack_notifier);
235         spin_lock(&ps->inject_lock);
236         if (atomic_dec_return(&ps->pit_timer.pending) < 0)
237                 atomic_inc(&ps->pit_timer.pending);
238         ps->irq_ack = 1;
239         spin_unlock(&ps->inject_lock);
240 }
241
242 void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
243 {
244         struct kvm_pit *pit = vcpu->kvm->arch.vpit;
245         struct hrtimer *timer;
246
247         if (vcpu->vcpu_id != 0 || !pit)
248                 return;
249
250         timer = &pit->pit_state.pit_timer.timer;
251         if (hrtimer_cancel(timer))
252                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
253 }
254
255 static void destroy_pit_timer(struct kvm_timer *pt)
256 {
257         pr_debug("pit: execute del timer!\n");
258         hrtimer_cancel(&pt->timer);
259 }
260
261 static bool kpit_is_periodic(struct kvm_timer *ktimer)
262 {
263         struct kvm_kpit_state *ps = container_of(ktimer, struct kvm_kpit_state,
264                                                  pit_timer);
265         return ps->is_periodic;
266 }
267
268 struct kvm_timer_ops kpit_ops = {
269         .is_periodic = kpit_is_periodic,
270 };
271
272 static void create_pit_timer(struct kvm_kpit_state *ps, u32 val, int is_period)
273 {
274         struct kvm_timer *pt = &ps->pit_timer;
275         s64 interval;
276
277         interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
278
279         pr_debug("pit: create pit timer, interval is %llu nsec\n", interval);
280
281         /* TODO The new value only affected after the retriggered */
282         hrtimer_cancel(&pt->timer);
283         pt->period = (is_period == 0) ? 0 : interval;
284         ps->is_periodic = is_period;
285
286         pt->timer.function = kvm_timer_fn;
287         pt->t_ops = &kpit_ops;
288         pt->kvm = ps->pit->kvm;
289         pt->vcpu_id = 0;
290
291         atomic_set(&pt->pending, 0);
292         ps->irq_ack = 1;
293
294         hrtimer_start(&pt->timer, ktime_add_ns(ktime_get(), interval),
295                       HRTIMER_MODE_ABS);
296 }
297
298 static void pit_load_count(struct kvm *kvm, int channel, u32 val)
299 {
300         struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
301
302         WARN_ON(!mutex_is_locked(&ps->lock));
303
304         pr_debug("pit: load_count val is %d, channel is %d\n", val, channel);
305
306         /*
307          * Though spec said the state of 8254 is undefined after power-up,
308          * seems some tricky OS like Windows XP depends on IRQ0 interrupt
309          * when booting up.
310          * So here setting initialize rate for it, and not a specific number
311          */
312         if (val == 0)
313                 val = 0x10000;
314
315         ps->channels[channel].count = val;
316
317         if (channel != 0) {
318                 ps->channels[channel].count_load_time = ktime_get();
319                 return;
320         }
321
322         /* Two types of timer
323          * mode 1 is one shot, mode 2 is period, otherwise del timer */
324         switch (ps->channels[0].mode) {
325         case 1:
326         /* FIXME: enhance mode 4 precision */
327         case 4:
328                 create_pit_timer(ps, val, 0);
329                 break;
330         case 2:
331         case 3:
332                 create_pit_timer(ps, val, 1);
333                 break;
334         default:
335                 destroy_pit_timer(&ps->pit_timer);
336         }
337 }
338
339 void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val)
340 {
341         mutex_lock(&kvm->arch.vpit->pit_state.lock);
342         pit_load_count(kvm, channel, val);
343         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
344 }
345
346 static void pit_ioport_write(struct kvm_io_device *this,
347                              gpa_t addr, int len, const void *data)
348 {
349         struct kvm_pit *pit = (struct kvm_pit *)this->private;
350         struct kvm_kpit_state *pit_state = &pit->pit_state;
351         struct kvm *kvm = pit->kvm;
352         int channel, access;
353         struct kvm_kpit_channel_state *s;
354         u32 val = *(u32 *) data;
355
356         val  &= 0xff;
357         addr &= KVM_PIT_CHANNEL_MASK;
358
359         mutex_lock(&pit_state->lock);
360
361         if (val != 0)
362                 pr_debug("pit: write addr is 0x%x, len is %d, val is 0x%x\n",
363                           (unsigned int)addr, len, val);
364
365         if (addr == 3) {
366                 channel = val >> 6;
367                 if (channel == 3) {
368                         /* Read-Back Command. */
369                         for (channel = 0; channel < 3; channel++) {
370                                 s = &pit_state->channels[channel];
371                                 if (val & (2 << channel)) {
372                                         if (!(val & 0x20))
373                                                 pit_latch_count(kvm, channel);
374                                         if (!(val & 0x10))
375                                                 pit_latch_status(kvm, channel);
376                                 }
377                         }
378                 } else {
379                         /* Select Counter <channel>. */
380                         s = &pit_state->channels[channel];
381                         access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
382                         if (access == 0) {
383                                 pit_latch_count(kvm, channel);
384                         } else {
385                                 s->rw_mode = access;
386                                 s->read_state = access;
387                                 s->write_state = access;
388                                 s->mode = (val >> 1) & 7;
389                                 if (s->mode > 5)
390                                         s->mode -= 4;
391                                 s->bcd = val & 1;
392                         }
393                 }
394         } else {
395                 /* Write Count. */
396                 s = &pit_state->channels[addr];
397                 switch (s->write_state) {
398                 default:
399                 case RW_STATE_LSB:
400                         pit_load_count(kvm, addr, val);
401                         break;
402                 case RW_STATE_MSB:
403                         pit_load_count(kvm, addr, val << 8);
404                         break;
405                 case RW_STATE_WORD0:
406                         s->write_latch = val;
407                         s->write_state = RW_STATE_WORD1;
408                         break;
409                 case RW_STATE_WORD1:
410                         pit_load_count(kvm, addr, s->write_latch | (val << 8));
411                         s->write_state = RW_STATE_WORD0;
412                         break;
413                 }
414         }
415
416         mutex_unlock(&pit_state->lock);
417 }
418
419 static void pit_ioport_read(struct kvm_io_device *this,
420                             gpa_t addr, int len, void *data)
421 {
422         struct kvm_pit *pit = (struct kvm_pit *)this->private;
423         struct kvm_kpit_state *pit_state = &pit->pit_state;
424         struct kvm *kvm = pit->kvm;
425         int ret, count;
426         struct kvm_kpit_channel_state *s;
427
428         addr &= KVM_PIT_CHANNEL_MASK;
429         s = &pit_state->channels[addr];
430
431         mutex_lock(&pit_state->lock);
432
433         if (s->status_latched) {
434                 s->status_latched = 0;
435                 ret = s->status;
436         } else if (s->count_latched) {
437                 switch (s->count_latched) {
438                 default:
439                 case RW_STATE_LSB:
440                         ret = s->latched_count & 0xff;
441                         s->count_latched = 0;
442                         break;
443                 case RW_STATE_MSB:
444                         ret = s->latched_count >> 8;
445                         s->count_latched = 0;
446                         break;
447                 case RW_STATE_WORD0:
448                         ret = s->latched_count & 0xff;
449                         s->count_latched = RW_STATE_MSB;
450                         break;
451                 }
452         } else {
453                 switch (s->read_state) {
454                 default:
455                 case RW_STATE_LSB:
456                         count = pit_get_count(kvm, addr);
457                         ret = count & 0xff;
458                         break;
459                 case RW_STATE_MSB:
460                         count = pit_get_count(kvm, addr);
461                         ret = (count >> 8) & 0xff;
462                         break;
463                 case RW_STATE_WORD0:
464                         count = pit_get_count(kvm, addr);
465                         ret = count & 0xff;
466                         s->read_state = RW_STATE_WORD1;
467                         break;
468                 case RW_STATE_WORD1:
469                         count = pit_get_count(kvm, addr);
470                         ret = (count >> 8) & 0xff;
471                         s->read_state = RW_STATE_WORD0;
472                         break;
473                 }
474         }
475
476         if (len > sizeof(ret))
477                 len = sizeof(ret);
478         memcpy(data, (char *)&ret, len);
479
480         mutex_unlock(&pit_state->lock);
481 }
482
483 static int pit_in_range(struct kvm_io_device *this, gpa_t addr,
484                         int len, int is_write)
485 {
486         return ((addr >= KVM_PIT_BASE_ADDRESS) &&
487                 (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
488 }
489
490 static void speaker_ioport_write(struct kvm_io_device *this,
491                                  gpa_t addr, int len, const void *data)
492 {
493         struct kvm_pit *pit = (struct kvm_pit *)this->private;
494         struct kvm_kpit_state *pit_state = &pit->pit_state;
495         struct kvm *kvm = pit->kvm;
496         u32 val = *(u32 *) data;
497
498         mutex_lock(&pit_state->lock);
499         pit_state->speaker_data_on = (val >> 1) & 1;
500         pit_set_gate(kvm, 2, val & 1);
501         mutex_unlock(&pit_state->lock);
502 }
503
504 static void speaker_ioport_read(struct kvm_io_device *this,
505                                 gpa_t addr, int len, void *data)
506 {
507         struct kvm_pit *pit = (struct kvm_pit *)this->private;
508         struct kvm_kpit_state *pit_state = &pit->pit_state;
509         struct kvm *kvm = pit->kvm;
510         unsigned int refresh_clock;
511         int ret;
512
513         /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
514         refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
515
516         mutex_lock(&pit_state->lock);
517         ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
518                 (pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
519         if (len > sizeof(ret))
520                 len = sizeof(ret);
521         memcpy(data, (char *)&ret, len);
522         mutex_unlock(&pit_state->lock);
523 }
524
525 static int speaker_in_range(struct kvm_io_device *this, gpa_t addr,
526                             int len, int is_write)
527 {
528         return (addr == KVM_SPEAKER_BASE_ADDRESS);
529 }
530
531 void kvm_pit_reset(struct kvm_pit *pit)
532 {
533         int i;
534         struct kvm_kpit_channel_state *c;
535
536         mutex_lock(&pit->pit_state.lock);
537         for (i = 0; i < 3; i++) {
538                 c = &pit->pit_state.channels[i];
539                 c->mode = 0xff;
540                 c->gate = (i != 2);
541                 pit_load_count(pit->kvm, i, 0);
542         }
543         mutex_unlock(&pit->pit_state.lock);
544
545         atomic_set(&pit->pit_state.pit_timer.pending, 0);
546         pit->pit_state.irq_ack = 1;
547 }
548
549 static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
550 {
551         struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
552
553         if (!mask) {
554                 atomic_set(&pit->pit_state.pit_timer.pending, 0);
555                 pit->pit_state.irq_ack = 1;
556         }
557 }
558
559 struct kvm_pit *kvm_create_pit(struct kvm *kvm)
560 {
561         struct kvm_pit *pit;
562         struct kvm_kpit_state *pit_state;
563
564         pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
565         if (!pit)
566                 return NULL;
567
568         pit->irq_source_id = kvm_request_irq_source_id(kvm);
569         if (pit->irq_source_id < 0) {
570                 kfree(pit);
571                 return NULL;
572         }
573
574         mutex_init(&pit->pit_state.lock);
575         mutex_lock(&pit->pit_state.lock);
576         spin_lock_init(&pit->pit_state.inject_lock);
577
578         /* Initialize PIO device */
579         pit->dev.read = pit_ioport_read;
580         pit->dev.write = pit_ioport_write;
581         pit->dev.in_range = pit_in_range;
582         pit->dev.private = pit;
583         kvm_io_bus_register_dev(&kvm->pio_bus, &pit->dev);
584
585         pit->speaker_dev.read = speaker_ioport_read;
586         pit->speaker_dev.write = speaker_ioport_write;
587         pit->speaker_dev.in_range = speaker_in_range;
588         pit->speaker_dev.private = pit;
589         kvm_io_bus_register_dev(&kvm->pio_bus, &pit->speaker_dev);
590
591         kvm->arch.vpit = pit;
592         pit->kvm = kvm;
593
594         pit_state = &pit->pit_state;
595         pit_state->pit = pit;
596         hrtimer_init(&pit_state->pit_timer.timer,
597                      CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
598         pit_state->irq_ack_notifier.gsi = 0;
599         pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
600         kvm_register_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
601         pit_state->pit_timer.reinject = true;
602         mutex_unlock(&pit->pit_state.lock);
603
604         kvm_pit_reset(pit);
605
606         pit->mask_notifier.func = pit_mask_notifer;
607         kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
608
609         return pit;
610 }
611
612 void kvm_free_pit(struct kvm *kvm)
613 {
614         struct hrtimer *timer;
615
616         if (kvm->arch.vpit) {
617                 kvm_unregister_irq_mask_notifier(kvm, 0,
618                                                &kvm->arch.vpit->mask_notifier);
619                 mutex_lock(&kvm->arch.vpit->pit_state.lock);
620                 timer = &kvm->arch.vpit->pit_state.pit_timer.timer;
621                 hrtimer_cancel(timer);
622                 kvm_free_irq_source_id(kvm, kvm->arch.vpit->irq_source_id);
623                 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
624                 kfree(kvm->arch.vpit);
625         }
626 }
627
628 static void __inject_pit_timer_intr(struct kvm *kvm)
629 {
630         struct kvm_vcpu *vcpu;
631         int i;
632
633         mutex_lock(&kvm->lock);
634         kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1);
635         kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0);
636         mutex_unlock(&kvm->lock);
637
638         /*
639          * Provides NMI watchdog support via Virtual Wire mode.
640          * The route is: PIT -> PIC -> LVT0 in NMI mode.
641          *
642          * Note: Our Virtual Wire implementation is simplified, only
643          * propagating PIT interrupts to all VCPUs when they have set
644          * LVT0 to NMI delivery. Other PIC interrupts are just sent to
645          * VCPU0, and only if its LVT0 is in EXTINT mode.
646          */
647         if (kvm->arch.vapics_in_nmi_mode > 0)
648                 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
649                         vcpu = kvm->vcpus[i];
650                         if (vcpu)
651                                 kvm_apic_nmi_wd_deliver(vcpu);
652                 }
653 }
654
655 void kvm_inject_pit_timer_irqs(struct kvm_vcpu *vcpu)
656 {
657         struct kvm_pit *pit = vcpu->kvm->arch.vpit;
658         struct kvm *kvm = vcpu->kvm;
659         struct kvm_kpit_state *ps;
660
661         if (vcpu && pit) {
662                 int inject = 0;
663                 ps = &pit->pit_state;
664
665                 /* Try to inject pending interrupts when
666                  * last one has been acked.
667                  */
668                 spin_lock(&ps->inject_lock);
669                 if (atomic_read(&ps->pit_timer.pending) && ps->irq_ack) {
670                         ps->irq_ack = 0;
671                         inject = 1;
672                 }
673                 spin_unlock(&ps->inject_lock);
674                 if (inject)
675                         __inject_pit_timer_intr(kvm);
676         }
677 }