KVM: PIT: remove unused scheduled variable
[safe/jmp/linux-2.6] / arch / x86 / kvm / i8254.c
1 /*
2  * 8253/8254 interval timer emulation
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  * Copyright (c) 2006 Intel Corporation
6  * Copyright (c) 2007 Keir Fraser, XenSource Inc
7  * Copyright (c) 2008 Intel Corporation
8  *
9  * Permission is hereby granted, free of charge, to any person obtaining a copy
10  * of this software and associated documentation files (the "Software"), to deal
11  * in the Software without restriction, including without limitation the rights
12  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13  * copies of the Software, and to permit persons to whom the Software is
14  * furnished to do so, subject to the following conditions:
15  *
16  * The above copyright notice and this permission notice shall be included in
17  * all copies or substantial portions of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25  * THE SOFTWARE.
26  *
27  * Authors:
28  *   Sheng Yang <sheng.yang@intel.com>
29  *   Based on QEMU and Xen.
30  */
31
32 #include <linux/kvm_host.h>
33
34 #include "irq.h"
35 #include "i8254.h"
36
37 #ifndef CONFIG_X86_64
38 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
39 #else
40 #define mod_64(x, y) ((x) % (y))
41 #endif
42
43 #define RW_STATE_LSB 1
44 #define RW_STATE_MSB 2
45 #define RW_STATE_WORD0 3
46 #define RW_STATE_WORD1 4
47
48 /* Compute with 96 bit intermediate result: (a*b)/c */
49 static u64 muldiv64(u64 a, u32 b, u32 c)
50 {
51         union {
52                 u64 ll;
53                 struct {
54                         u32 low, high;
55                 } l;
56         } u, res;
57         u64 rl, rh;
58
59         u.ll = a;
60         rl = (u64)u.l.low * (u64)b;
61         rh = (u64)u.l.high * (u64)b;
62         rh += (rl >> 32);
63         res.l.high = div64_u64(rh, c);
64         res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
65         return res.ll;
66 }
67
68 static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
69 {
70         struct kvm_kpit_channel_state *c =
71                 &kvm->arch.vpit->pit_state.channels[channel];
72
73         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
74
75         switch (c->mode) {
76         default:
77         case 0:
78         case 4:
79                 /* XXX: just disable/enable counting */
80                 break;
81         case 1:
82         case 2:
83         case 3:
84         case 5:
85                 /* Restart counting on rising edge. */
86                 if (c->gate < val)
87                         c->count_load_time = ktime_get();
88                 break;
89         }
90
91         c->gate = val;
92 }
93
94 static int pit_get_gate(struct kvm *kvm, int channel)
95 {
96         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
97
98         return kvm->arch.vpit->pit_state.channels[channel].gate;
99 }
100
101 static int pit_get_count(struct kvm *kvm, int channel)
102 {
103         struct kvm_kpit_channel_state *c =
104                 &kvm->arch.vpit->pit_state.channels[channel];
105         s64 d, t;
106         int counter;
107
108         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
109
110         t = ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
111         d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
112
113         switch (c->mode) {
114         case 0:
115         case 1:
116         case 4:
117         case 5:
118                 counter = (c->count - d) & 0xffff;
119                 break;
120         case 3:
121                 /* XXX: may be incorrect for odd counts */
122                 counter = c->count - (mod_64((2 * d), c->count));
123                 break;
124         default:
125                 counter = c->count - mod_64(d, c->count);
126                 break;
127         }
128         return counter;
129 }
130
131 static int pit_get_out(struct kvm *kvm, int channel)
132 {
133         struct kvm_kpit_channel_state *c =
134                 &kvm->arch.vpit->pit_state.channels[channel];
135         s64 d, t;
136         int out;
137
138         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
139
140         t = ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
141         d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
142
143         switch (c->mode) {
144         default:
145         case 0:
146                 out = (d >= c->count);
147                 break;
148         case 1:
149                 out = (d < c->count);
150                 break;
151         case 2:
152                 out = ((mod_64(d, c->count) == 0) && (d != 0));
153                 break;
154         case 3:
155                 out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
156                 break;
157         case 4:
158         case 5:
159                 out = (d == c->count);
160                 break;
161         }
162
163         return out;
164 }
165
166 static void pit_latch_count(struct kvm *kvm, int channel)
167 {
168         struct kvm_kpit_channel_state *c =
169                 &kvm->arch.vpit->pit_state.channels[channel];
170
171         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
172
173         if (!c->count_latched) {
174                 c->latched_count = pit_get_count(kvm, channel);
175                 c->count_latched = c->rw_mode;
176         }
177 }
178
179 static void pit_latch_status(struct kvm *kvm, int channel)
180 {
181         struct kvm_kpit_channel_state *c =
182                 &kvm->arch.vpit->pit_state.channels[channel];
183
184         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
185
186         if (!c->status_latched) {
187                 /* TODO: Return NULL COUNT (bit 6). */
188                 c->status = ((pit_get_out(kvm, channel) << 7) |
189                                 (c->rw_mode << 4) |
190                                 (c->mode << 1) |
191                                 c->bcd);
192                 c->status_latched = 1;
193         }
194 }
195
196 static int __pit_timer_fn(struct kvm_kpit_state *ps)
197 {
198         struct kvm_vcpu *vcpu0 = ps->pit->kvm->vcpus[0];
199         struct kvm_kpit_timer *pt = &ps->pit_timer;
200
201         if (!atomic_inc_and_test(&pt->pending))
202                 set_bit(KVM_REQ_PENDING_TIMER, &vcpu0->requests);
203
204         if (!pt->reinject)
205                 atomic_set(&pt->pending, 1);
206
207         if (vcpu0 && waitqueue_active(&vcpu0->wq))
208                 wake_up_interruptible(&vcpu0->wq);
209
210         hrtimer_add_expires_ns(&pt->timer, pt->period);
211         if (pt->period)
212                 ps->channels[0].count_load_time = ktime_get();
213
214         return (pt->period == 0 ? 0 : 1);
215 }
216
217 int pit_has_pending_timer(struct kvm_vcpu *vcpu)
218 {
219         struct kvm_pit *pit = vcpu->kvm->arch.vpit;
220
221         if (pit && vcpu->vcpu_id == 0 && pit->pit_state.irq_ack)
222                 return atomic_read(&pit->pit_state.pit_timer.pending);
223         return 0;
224 }
225
226 static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
227 {
228         struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
229                                                  irq_ack_notifier);
230         spin_lock(&ps->inject_lock);
231         if (atomic_dec_return(&ps->pit_timer.pending) < 0)
232                 atomic_inc(&ps->pit_timer.pending);
233         ps->irq_ack = 1;
234         spin_unlock(&ps->inject_lock);
235 }
236
237 static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
238 {
239         struct kvm_kpit_state *ps;
240         int restart_timer = 0;
241
242         ps = container_of(data, struct kvm_kpit_state, pit_timer.timer);
243
244         restart_timer = __pit_timer_fn(ps);
245
246         if (restart_timer)
247                 return HRTIMER_RESTART;
248         else
249                 return HRTIMER_NORESTART;
250 }
251
252 void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
253 {
254         struct kvm_pit *pit = vcpu->kvm->arch.vpit;
255         struct hrtimer *timer;
256
257         if (vcpu->vcpu_id != 0 || !pit)
258                 return;
259
260         timer = &pit->pit_state.pit_timer.timer;
261         if (hrtimer_cancel(timer))
262                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
263 }
264
265 static void destroy_pit_timer(struct kvm_kpit_timer *pt)
266 {
267         pr_debug("pit: execute del timer!\n");
268         hrtimer_cancel(&pt->timer);
269 }
270
271 static void create_pit_timer(struct kvm_kpit_state *ps, u32 val, int is_period)
272 {
273         struct kvm_kpit_timer *pt = &ps->pit_timer;
274         s64 interval;
275
276         interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
277
278         pr_debug("pit: create pit timer, interval is %llu nsec\n", interval);
279
280         /* TODO The new value only affected after the retriggered */
281         hrtimer_cancel(&pt->timer);
282         pt->period = (is_period == 0) ? 0 : interval;
283         pt->timer.function = pit_timer_fn;
284         atomic_set(&pt->pending, 0);
285         ps->irq_ack = 1;
286
287         hrtimer_start(&pt->timer, ktime_add_ns(ktime_get(), interval),
288                       HRTIMER_MODE_ABS);
289 }
290
291 static void pit_load_count(struct kvm *kvm, int channel, u32 val)
292 {
293         struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
294
295         WARN_ON(!mutex_is_locked(&ps->lock));
296
297         pr_debug("pit: load_count val is %d, channel is %d\n", val, channel);
298
299         /*
300          * Though spec said the state of 8254 is undefined after power-up,
301          * seems some tricky OS like Windows XP depends on IRQ0 interrupt
302          * when booting up.
303          * So here setting initialize rate for it, and not a specific number
304          */
305         if (val == 0)
306                 val = 0x10000;
307
308         ps->channels[channel].count_load_time = ktime_get();
309         ps->channels[channel].count = val;
310
311         if (channel != 0)
312                 return;
313
314         /* Two types of timer
315          * mode 1 is one shot, mode 2 is period, otherwise del timer */
316         switch (ps->channels[0].mode) {
317         case 1:
318         /* FIXME: enhance mode 4 precision */
319         case 4:
320                 create_pit_timer(ps, val, 0);
321                 break;
322         case 2:
323         case 3:
324                 create_pit_timer(ps, val, 1);
325                 break;
326         default:
327                 destroy_pit_timer(&ps->pit_timer);
328         }
329 }
330
331 void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val)
332 {
333         mutex_lock(&kvm->arch.vpit->pit_state.lock);
334         pit_load_count(kvm, channel, val);
335         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
336 }
337
338 static void pit_ioport_write(struct kvm_io_device *this,
339                              gpa_t addr, int len, const void *data)
340 {
341         struct kvm_pit *pit = (struct kvm_pit *)this->private;
342         struct kvm_kpit_state *pit_state = &pit->pit_state;
343         struct kvm *kvm = pit->kvm;
344         int channel, access;
345         struct kvm_kpit_channel_state *s;
346         u32 val = *(u32 *) data;
347
348         val  &= 0xff;
349         addr &= KVM_PIT_CHANNEL_MASK;
350
351         mutex_lock(&pit_state->lock);
352
353         if (val != 0)
354                 pr_debug("pit: write addr is 0x%x, len is %d, val is 0x%x\n",
355                           (unsigned int)addr, len, val);
356
357         if (addr == 3) {
358                 channel = val >> 6;
359                 if (channel == 3) {
360                         /* Read-Back Command. */
361                         for (channel = 0; channel < 3; channel++) {
362                                 s = &pit_state->channels[channel];
363                                 if (val & (2 << channel)) {
364                                         if (!(val & 0x20))
365                                                 pit_latch_count(kvm, channel);
366                                         if (!(val & 0x10))
367                                                 pit_latch_status(kvm, channel);
368                                 }
369                         }
370                 } else {
371                         /* Select Counter <channel>. */
372                         s = &pit_state->channels[channel];
373                         access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
374                         if (access == 0) {
375                                 pit_latch_count(kvm, channel);
376                         } else {
377                                 s->rw_mode = access;
378                                 s->read_state = access;
379                                 s->write_state = access;
380                                 s->mode = (val >> 1) & 7;
381                                 if (s->mode > 5)
382                                         s->mode -= 4;
383                                 s->bcd = val & 1;
384                         }
385                 }
386         } else {
387                 /* Write Count. */
388                 s = &pit_state->channels[addr];
389                 switch (s->write_state) {
390                 default:
391                 case RW_STATE_LSB:
392                         pit_load_count(kvm, addr, val);
393                         break;
394                 case RW_STATE_MSB:
395                         pit_load_count(kvm, addr, val << 8);
396                         break;
397                 case RW_STATE_WORD0:
398                         s->write_latch = val;
399                         s->write_state = RW_STATE_WORD1;
400                         break;
401                 case RW_STATE_WORD1:
402                         pit_load_count(kvm, addr, s->write_latch | (val << 8));
403                         s->write_state = RW_STATE_WORD0;
404                         break;
405                 }
406         }
407
408         mutex_unlock(&pit_state->lock);
409 }
410
411 static void pit_ioport_read(struct kvm_io_device *this,
412                             gpa_t addr, int len, void *data)
413 {
414         struct kvm_pit *pit = (struct kvm_pit *)this->private;
415         struct kvm_kpit_state *pit_state = &pit->pit_state;
416         struct kvm *kvm = pit->kvm;
417         int ret, count;
418         struct kvm_kpit_channel_state *s;
419
420         addr &= KVM_PIT_CHANNEL_MASK;
421         s = &pit_state->channels[addr];
422
423         mutex_lock(&pit_state->lock);
424
425         if (s->status_latched) {
426                 s->status_latched = 0;
427                 ret = s->status;
428         } else if (s->count_latched) {
429                 switch (s->count_latched) {
430                 default:
431                 case RW_STATE_LSB:
432                         ret = s->latched_count & 0xff;
433                         s->count_latched = 0;
434                         break;
435                 case RW_STATE_MSB:
436                         ret = s->latched_count >> 8;
437                         s->count_latched = 0;
438                         break;
439                 case RW_STATE_WORD0:
440                         ret = s->latched_count & 0xff;
441                         s->count_latched = RW_STATE_MSB;
442                         break;
443                 }
444         } else {
445                 switch (s->read_state) {
446                 default:
447                 case RW_STATE_LSB:
448                         count = pit_get_count(kvm, addr);
449                         ret = count & 0xff;
450                         break;
451                 case RW_STATE_MSB:
452                         count = pit_get_count(kvm, addr);
453                         ret = (count >> 8) & 0xff;
454                         break;
455                 case RW_STATE_WORD0:
456                         count = pit_get_count(kvm, addr);
457                         ret = count & 0xff;
458                         s->read_state = RW_STATE_WORD1;
459                         break;
460                 case RW_STATE_WORD1:
461                         count = pit_get_count(kvm, addr);
462                         ret = (count >> 8) & 0xff;
463                         s->read_state = RW_STATE_WORD0;
464                         break;
465                 }
466         }
467
468         if (len > sizeof(ret))
469                 len = sizeof(ret);
470         memcpy(data, (char *)&ret, len);
471
472         mutex_unlock(&pit_state->lock);
473 }
474
475 static int pit_in_range(struct kvm_io_device *this, gpa_t addr,
476                         int len, int is_write)
477 {
478         return ((addr >= KVM_PIT_BASE_ADDRESS) &&
479                 (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
480 }
481
482 static void speaker_ioport_write(struct kvm_io_device *this,
483                                  gpa_t addr, int len, const void *data)
484 {
485         struct kvm_pit *pit = (struct kvm_pit *)this->private;
486         struct kvm_kpit_state *pit_state = &pit->pit_state;
487         struct kvm *kvm = pit->kvm;
488         u32 val = *(u32 *) data;
489
490         mutex_lock(&pit_state->lock);
491         pit_state->speaker_data_on = (val >> 1) & 1;
492         pit_set_gate(kvm, 2, val & 1);
493         mutex_unlock(&pit_state->lock);
494 }
495
496 static void speaker_ioport_read(struct kvm_io_device *this,
497                                 gpa_t addr, int len, void *data)
498 {
499         struct kvm_pit *pit = (struct kvm_pit *)this->private;
500         struct kvm_kpit_state *pit_state = &pit->pit_state;
501         struct kvm *kvm = pit->kvm;
502         unsigned int refresh_clock;
503         int ret;
504
505         /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
506         refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
507
508         mutex_lock(&pit_state->lock);
509         ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
510                 (pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
511         if (len > sizeof(ret))
512                 len = sizeof(ret);
513         memcpy(data, (char *)&ret, len);
514         mutex_unlock(&pit_state->lock);
515 }
516
517 static int speaker_in_range(struct kvm_io_device *this, gpa_t addr,
518                             int len, int is_write)
519 {
520         return (addr == KVM_SPEAKER_BASE_ADDRESS);
521 }
522
523 void kvm_pit_reset(struct kvm_pit *pit)
524 {
525         int i;
526         struct kvm_kpit_channel_state *c;
527
528         mutex_lock(&pit->pit_state.lock);
529         for (i = 0; i < 3; i++) {
530                 c = &pit->pit_state.channels[i];
531                 c->mode = 0xff;
532                 c->gate = (i != 2);
533                 pit_load_count(pit->kvm, i, 0);
534         }
535         mutex_unlock(&pit->pit_state.lock);
536
537         atomic_set(&pit->pit_state.pit_timer.pending, 0);
538         pit->pit_state.irq_ack = 1;
539 }
540
541 static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
542 {
543         struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
544
545         if (!mask) {
546                 atomic_set(&pit->pit_state.pit_timer.pending, 0);
547                 pit->pit_state.irq_ack = 1;
548         }
549 }
550
551 struct kvm_pit *kvm_create_pit(struct kvm *kvm)
552 {
553         struct kvm_pit *pit;
554         struct kvm_kpit_state *pit_state;
555
556         pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
557         if (!pit)
558                 return NULL;
559
560         pit->irq_source_id = kvm_request_irq_source_id(kvm);
561         if (pit->irq_source_id < 0) {
562                 kfree(pit);
563                 return NULL;
564         }
565
566         mutex_init(&pit->pit_state.lock);
567         mutex_lock(&pit->pit_state.lock);
568         spin_lock_init(&pit->pit_state.inject_lock);
569
570         /* Initialize PIO device */
571         pit->dev.read = pit_ioport_read;
572         pit->dev.write = pit_ioport_write;
573         pit->dev.in_range = pit_in_range;
574         pit->dev.private = pit;
575         kvm_io_bus_register_dev(&kvm->pio_bus, &pit->dev);
576
577         pit->speaker_dev.read = speaker_ioport_read;
578         pit->speaker_dev.write = speaker_ioport_write;
579         pit->speaker_dev.in_range = speaker_in_range;
580         pit->speaker_dev.private = pit;
581         kvm_io_bus_register_dev(&kvm->pio_bus, &pit->speaker_dev);
582
583         kvm->arch.vpit = pit;
584         pit->kvm = kvm;
585
586         pit_state = &pit->pit_state;
587         pit_state->pit = pit;
588         hrtimer_init(&pit_state->pit_timer.timer,
589                      CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
590         pit_state->irq_ack_notifier.gsi = 0;
591         pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
592         kvm_register_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
593         pit_state->pit_timer.reinject = true;
594         mutex_unlock(&pit->pit_state.lock);
595
596         kvm_pit_reset(pit);
597
598         pit->mask_notifier.func = pit_mask_notifer;
599         kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
600
601         return pit;
602 }
603
604 void kvm_free_pit(struct kvm *kvm)
605 {
606         struct hrtimer *timer;
607
608         if (kvm->arch.vpit) {
609                 kvm_unregister_irq_mask_notifier(kvm, 0,
610                                                &kvm->arch.vpit->mask_notifier);
611                 mutex_lock(&kvm->arch.vpit->pit_state.lock);
612                 timer = &kvm->arch.vpit->pit_state.pit_timer.timer;
613                 hrtimer_cancel(timer);
614                 kvm_free_irq_source_id(kvm, kvm->arch.vpit->irq_source_id);
615                 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
616                 kfree(kvm->arch.vpit);
617         }
618 }
619
620 static void __inject_pit_timer_intr(struct kvm *kvm)
621 {
622         struct kvm_vcpu *vcpu;
623         int i;
624
625         mutex_lock(&kvm->lock);
626         kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1);
627         kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0);
628         mutex_unlock(&kvm->lock);
629
630         /*
631          * Provides NMI watchdog support via Virtual Wire mode.
632          * The route is: PIT -> PIC -> LVT0 in NMI mode.
633          *
634          * Note: Our Virtual Wire implementation is simplified, only
635          * propagating PIT interrupts to all VCPUs when they have set
636          * LVT0 to NMI delivery. Other PIC interrupts are just sent to
637          * VCPU0, and only if its LVT0 is in EXTINT mode.
638          */
639         if (kvm->arch.vapics_in_nmi_mode > 0)
640                 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
641                         vcpu = kvm->vcpus[i];
642                         if (vcpu)
643                                 kvm_apic_nmi_wd_deliver(vcpu);
644                 }
645 }
646
647 void kvm_inject_pit_timer_irqs(struct kvm_vcpu *vcpu)
648 {
649         struct kvm_pit *pit = vcpu->kvm->arch.vpit;
650         struct kvm *kvm = vcpu->kvm;
651         struct kvm_kpit_state *ps;
652
653         if (vcpu && pit) {
654                 int inject = 0;
655                 ps = &pit->pit_state;
656
657                 /* Try to inject pending interrupts when
658                  * last one has been acked.
659                  */
660                 spin_lock(&ps->inject_lock);
661                 if (atomic_read(&ps->pit_timer.pending) && ps->irq_ack) {
662                         ps->irq_ack = 0;
663                         inject = 1;
664                 }
665                 spin_unlock(&ps->inject_lock);
666                 if (inject)
667                         __inject_pit_timer_intr(kvm);
668         }
669 }