hw-breakpoints: Rewrite the hw-breakpoints layer on top of perf events
[safe/jmp/linux-2.6] / arch / x86 / kernel / process.c
1 #include <linux/errno.h>
2 #include <linux/kernel.h>
3 #include <linux/mm.h>
4 #include <linux/smp.h>
5 #include <linux/prctl.h>
6 #include <linux/slab.h>
7 #include <linux/sched.h>
8 #include <linux/module.h>
9 #include <linux/pm.h>
10 #include <linux/clockchips.h>
11 #include <linux/random.h>
12 #include <trace/events/power.h>
13 #include <linux/hw_breakpoint.h>
14 #include <asm/system.h>
15 #include <asm/apic.h>
16 #include <asm/syscalls.h>
17 #include <asm/idle.h>
18 #include <asm/uaccess.h>
19 #include <asm/i387.h>
20 #include <asm/ds.h>
21 #include <asm/debugreg.h>
22
23 unsigned long idle_halt;
24 EXPORT_SYMBOL(idle_halt);
25 unsigned long idle_nomwait;
26 EXPORT_SYMBOL(idle_nomwait);
27
28 struct kmem_cache *task_xstate_cachep;
29
30 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
31 {
32         *dst = *src;
33         if (src->thread.xstate) {
34                 dst->thread.xstate = kmem_cache_alloc(task_xstate_cachep,
35                                                       GFP_KERNEL);
36                 if (!dst->thread.xstate)
37                         return -ENOMEM;
38                 WARN_ON((unsigned long)dst->thread.xstate & 15);
39                 memcpy(dst->thread.xstate, src->thread.xstate, xstate_size);
40         }
41         return 0;
42 }
43
44 void free_thread_xstate(struct task_struct *tsk)
45 {
46         if (tsk->thread.xstate) {
47                 kmem_cache_free(task_xstate_cachep, tsk->thread.xstate);
48                 tsk->thread.xstate = NULL;
49         }
50
51         WARN(tsk->thread.ds_ctx, "leaking DS context\n");
52 }
53
54 void free_thread_info(struct thread_info *ti)
55 {
56         free_thread_xstate(ti->task);
57         free_pages((unsigned long)ti, get_order(THREAD_SIZE));
58 }
59
60 void arch_task_cache_init(void)
61 {
62         task_xstate_cachep =
63                 kmem_cache_create("task_xstate", xstate_size,
64                                   __alignof__(union thread_xstate),
65                                   SLAB_PANIC | SLAB_NOTRACK, NULL);
66 }
67
68 /*
69  * Free current thread data structures etc..
70  */
71 void exit_thread(void)
72 {
73         struct task_struct *me = current;
74         struct thread_struct *t = &me->thread;
75         unsigned long *bp = t->io_bitmap_ptr;
76
77         if (bp) {
78                 struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
79
80                 t->io_bitmap_ptr = NULL;
81                 clear_thread_flag(TIF_IO_BITMAP);
82                 /*
83                  * Careful, clear this in the TSS too:
84                  */
85                 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
86                 t->io_bitmap_max = 0;
87                 put_cpu();
88                 kfree(bp);
89         }
90 }
91
92 void flush_thread(void)
93 {
94         struct task_struct *tsk = current;
95
96 #ifdef CONFIG_X86_64
97         if (test_tsk_thread_flag(tsk, TIF_ABI_PENDING)) {
98                 clear_tsk_thread_flag(tsk, TIF_ABI_PENDING);
99                 if (test_tsk_thread_flag(tsk, TIF_IA32)) {
100                         clear_tsk_thread_flag(tsk, TIF_IA32);
101                 } else {
102                         set_tsk_thread_flag(tsk, TIF_IA32);
103                         current_thread_info()->status |= TS_COMPAT;
104                 }
105         }
106 #endif
107
108         flush_ptrace_hw_breakpoint(tsk);
109         memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
110         /*
111          * Forget coprocessor state..
112          */
113         tsk->fpu_counter = 0;
114         clear_fpu(tsk);
115         clear_used_math();
116 }
117
118 static void hard_disable_TSC(void)
119 {
120         write_cr4(read_cr4() | X86_CR4_TSD);
121 }
122
123 void disable_TSC(void)
124 {
125         preempt_disable();
126         if (!test_and_set_thread_flag(TIF_NOTSC))
127                 /*
128                  * Must flip the CPU state synchronously with
129                  * TIF_NOTSC in the current running context.
130                  */
131                 hard_disable_TSC();
132         preempt_enable();
133 }
134
135 static void hard_enable_TSC(void)
136 {
137         write_cr4(read_cr4() & ~X86_CR4_TSD);
138 }
139
140 static void enable_TSC(void)
141 {
142         preempt_disable();
143         if (test_and_clear_thread_flag(TIF_NOTSC))
144                 /*
145                  * Must flip the CPU state synchronously with
146                  * TIF_NOTSC in the current running context.
147                  */
148                 hard_enable_TSC();
149         preempt_enable();
150 }
151
152 int get_tsc_mode(unsigned long adr)
153 {
154         unsigned int val;
155
156         if (test_thread_flag(TIF_NOTSC))
157                 val = PR_TSC_SIGSEGV;
158         else
159                 val = PR_TSC_ENABLE;
160
161         return put_user(val, (unsigned int __user *)adr);
162 }
163
164 int set_tsc_mode(unsigned int val)
165 {
166         if (val == PR_TSC_SIGSEGV)
167                 disable_TSC();
168         else if (val == PR_TSC_ENABLE)
169                 enable_TSC();
170         else
171                 return -EINVAL;
172
173         return 0;
174 }
175
176 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
177                       struct tss_struct *tss)
178 {
179         struct thread_struct *prev, *next;
180
181         prev = &prev_p->thread;
182         next = &next_p->thread;
183
184         if (test_tsk_thread_flag(next_p, TIF_DS_AREA_MSR) ||
185             test_tsk_thread_flag(prev_p, TIF_DS_AREA_MSR))
186                 ds_switch_to(prev_p, next_p);
187         else if (next->debugctlmsr != prev->debugctlmsr)
188                 update_debugctlmsr(next->debugctlmsr);
189
190         if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
191             test_tsk_thread_flag(next_p, TIF_NOTSC)) {
192                 /* prev and next are different */
193                 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
194                         hard_disable_TSC();
195                 else
196                         hard_enable_TSC();
197         }
198
199         if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
200                 /*
201                  * Copy the relevant range of the IO bitmap.
202                  * Normally this is 128 bytes or less:
203                  */
204                 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
205                        max(prev->io_bitmap_max, next->io_bitmap_max));
206         } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
207                 /*
208                  * Clear any possible leftover bits:
209                  */
210                 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
211         }
212 }
213
214 int sys_fork(struct pt_regs *regs)
215 {
216         return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
217 }
218
219 /*
220  * This is trivial, and on the face of it looks like it
221  * could equally well be done in user mode.
222  *
223  * Not so, for quite unobvious reasons - register pressure.
224  * In user mode vfork() cannot have a stack frame, and if
225  * done by calling the "clone()" system call directly, you
226  * do not have enough call-clobbered registers to hold all
227  * the information you need.
228  */
229 int sys_vfork(struct pt_regs *regs)
230 {
231         return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
232                        NULL, NULL);
233 }
234
235
236 /*
237  * Idle related variables and functions
238  */
239 unsigned long boot_option_idle_override = 0;
240 EXPORT_SYMBOL(boot_option_idle_override);
241
242 /*
243  * Powermanagement idle function, if any..
244  */
245 void (*pm_idle)(void);
246 EXPORT_SYMBOL(pm_idle);
247
248 #ifdef CONFIG_X86_32
249 /*
250  * This halt magic was a workaround for ancient floppy DMA
251  * wreckage. It should be safe to remove.
252  */
253 static int hlt_counter;
254 void disable_hlt(void)
255 {
256         hlt_counter++;
257 }
258 EXPORT_SYMBOL(disable_hlt);
259
260 void enable_hlt(void)
261 {
262         hlt_counter--;
263 }
264 EXPORT_SYMBOL(enable_hlt);
265
266 static inline int hlt_use_halt(void)
267 {
268         return (!hlt_counter && boot_cpu_data.hlt_works_ok);
269 }
270 #else
271 static inline int hlt_use_halt(void)
272 {
273         return 1;
274 }
275 #endif
276
277 /*
278  * We use this if we don't have any better
279  * idle routine..
280  */
281 void default_idle(void)
282 {
283         if (hlt_use_halt()) {
284                 trace_power_start(POWER_CSTATE, 1);
285                 current_thread_info()->status &= ~TS_POLLING;
286                 /*
287                  * TS_POLLING-cleared state must be visible before we
288                  * test NEED_RESCHED:
289                  */
290                 smp_mb();
291
292                 if (!need_resched())
293                         safe_halt();    /* enables interrupts racelessly */
294                 else
295                         local_irq_enable();
296                 current_thread_info()->status |= TS_POLLING;
297         } else {
298                 local_irq_enable();
299                 /* loop is done by the caller */
300                 cpu_relax();
301         }
302 }
303 #ifdef CONFIG_APM_MODULE
304 EXPORT_SYMBOL(default_idle);
305 #endif
306
307 void stop_this_cpu(void *dummy)
308 {
309         local_irq_disable();
310         /*
311          * Remove this CPU:
312          */
313         set_cpu_online(smp_processor_id(), false);
314         disable_local_APIC();
315
316         for (;;) {
317                 if (hlt_works(smp_processor_id()))
318                         halt();
319         }
320 }
321
322 static void do_nothing(void *unused)
323 {
324 }
325
326 /*
327  * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
328  * pm_idle and update to new pm_idle value. Required while changing pm_idle
329  * handler on SMP systems.
330  *
331  * Caller must have changed pm_idle to the new value before the call. Old
332  * pm_idle value will not be used by any CPU after the return of this function.
333  */
334 void cpu_idle_wait(void)
335 {
336         smp_mb();
337         /* kick all the CPUs so that they exit out of pm_idle */
338         smp_call_function(do_nothing, NULL, 1);
339 }
340 EXPORT_SYMBOL_GPL(cpu_idle_wait);
341
342 /*
343  * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
344  * which can obviate IPI to trigger checking of need_resched.
345  * We execute MONITOR against need_resched and enter optimized wait state
346  * through MWAIT. Whenever someone changes need_resched, we would be woken
347  * up from MWAIT (without an IPI).
348  *
349  * New with Core Duo processors, MWAIT can take some hints based on CPU
350  * capability.
351  */
352 void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
353 {
354         trace_power_start(POWER_CSTATE, (ax>>4)+1);
355         if (!need_resched()) {
356                 if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
357                         clflush((void *)&current_thread_info()->flags);
358
359                 __monitor((void *)&current_thread_info()->flags, 0, 0);
360                 smp_mb();
361                 if (!need_resched())
362                         __mwait(ax, cx);
363         }
364 }
365
366 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
367 static void mwait_idle(void)
368 {
369         if (!need_resched()) {
370                 trace_power_start(POWER_CSTATE, 1);
371                 if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
372                         clflush((void *)&current_thread_info()->flags);
373
374                 __monitor((void *)&current_thread_info()->flags, 0, 0);
375                 smp_mb();
376                 if (!need_resched())
377                         __sti_mwait(0, 0);
378                 else
379                         local_irq_enable();
380         } else
381                 local_irq_enable();
382 }
383
384 /*
385  * On SMP it's slightly faster (but much more power-consuming!)
386  * to poll the ->work.need_resched flag instead of waiting for the
387  * cross-CPU IPI to arrive. Use this option with caution.
388  */
389 static void poll_idle(void)
390 {
391         trace_power_start(POWER_CSTATE, 0);
392         local_irq_enable();
393         while (!need_resched())
394                 cpu_relax();
395         trace_power_end(0);
396 }
397
398 /*
399  * mwait selection logic:
400  *
401  * It depends on the CPU. For AMD CPUs that support MWAIT this is
402  * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
403  * then depend on a clock divisor and current Pstate of the core. If
404  * all cores of a processor are in halt state (C1) the processor can
405  * enter the C1E (C1 enhanced) state. If mwait is used this will never
406  * happen.
407  *
408  * idle=mwait overrides this decision and forces the usage of mwait.
409  */
410 static int __cpuinitdata force_mwait;
411
412 #define MWAIT_INFO                      0x05
413 #define MWAIT_ECX_EXTENDED_INFO         0x01
414 #define MWAIT_EDX_C1                    0xf0
415
416 static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c)
417 {
418         u32 eax, ebx, ecx, edx;
419
420         if (force_mwait)
421                 return 1;
422
423         if (c->cpuid_level < MWAIT_INFO)
424                 return 0;
425
426         cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
427         /* Check, whether EDX has extended info about MWAIT */
428         if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
429                 return 1;
430
431         /*
432          * edx enumeratios MONITOR/MWAIT extensions. Check, whether
433          * C1  supports MWAIT
434          */
435         return (edx & MWAIT_EDX_C1);
436 }
437
438 /*
439  * Check for AMD CPUs, which have potentially C1E support
440  */
441 static int __cpuinit check_c1e_idle(const struct cpuinfo_x86 *c)
442 {
443         if (c->x86_vendor != X86_VENDOR_AMD)
444                 return 0;
445
446         if (c->x86 < 0x0F)
447                 return 0;
448
449         /* Family 0x0f models < rev F do not have C1E */
450         if (c->x86 == 0x0f && c->x86_model < 0x40)
451                 return 0;
452
453         return 1;
454 }
455
456 static cpumask_var_t c1e_mask;
457 static int c1e_detected;
458
459 void c1e_remove_cpu(int cpu)
460 {
461         if (c1e_mask != NULL)
462                 cpumask_clear_cpu(cpu, c1e_mask);
463 }
464
465 /*
466  * C1E aware idle routine. We check for C1E active in the interrupt
467  * pending message MSR. If we detect C1E, then we handle it the same
468  * way as C3 power states (local apic timer and TSC stop)
469  */
470 static void c1e_idle(void)
471 {
472         if (need_resched())
473                 return;
474
475         if (!c1e_detected) {
476                 u32 lo, hi;
477
478                 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
479                 if (lo & K8_INTP_C1E_ACTIVE_MASK) {
480                         c1e_detected = 1;
481                         if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
482                                 mark_tsc_unstable("TSC halt in AMD C1E");
483                         printk(KERN_INFO "System has AMD C1E enabled\n");
484                         set_cpu_cap(&boot_cpu_data, X86_FEATURE_AMDC1E);
485                 }
486         }
487
488         if (c1e_detected) {
489                 int cpu = smp_processor_id();
490
491                 if (!cpumask_test_cpu(cpu, c1e_mask)) {
492                         cpumask_set_cpu(cpu, c1e_mask);
493                         /*
494                          * Force broadcast so ACPI can not interfere.
495                          */
496                         clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
497                                            &cpu);
498                         printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
499                                cpu);
500                 }
501                 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
502
503                 default_idle();
504
505                 /*
506                  * The switch back from broadcast mode needs to be
507                  * called with interrupts disabled.
508                  */
509                  local_irq_disable();
510                  clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
511                  local_irq_enable();
512         } else
513                 default_idle();
514 }
515
516 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
517 {
518 #ifdef CONFIG_SMP
519         if (pm_idle == poll_idle && smp_num_siblings > 1) {
520                 printk(KERN_WARNING "WARNING: polling idle and HT enabled,"
521                         " performance may degrade.\n");
522         }
523 #endif
524         if (pm_idle)
525                 return;
526
527         if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
528                 /*
529                  * One CPU supports mwait => All CPUs supports mwait
530                  */
531                 printk(KERN_INFO "using mwait in idle threads.\n");
532                 pm_idle = mwait_idle;
533         } else if (check_c1e_idle(c)) {
534                 printk(KERN_INFO "using C1E aware idle routine\n");
535                 pm_idle = c1e_idle;
536         } else
537                 pm_idle = default_idle;
538 }
539
540 void __init init_c1e_mask(void)
541 {
542         /* If we're using c1e_idle, we need to allocate c1e_mask. */
543         if (pm_idle == c1e_idle)
544                 zalloc_cpumask_var(&c1e_mask, GFP_KERNEL);
545 }
546
547 static int __init idle_setup(char *str)
548 {
549         if (!str)
550                 return -EINVAL;
551
552         if (!strcmp(str, "poll")) {
553                 printk("using polling idle threads.\n");
554                 pm_idle = poll_idle;
555         } else if (!strcmp(str, "mwait"))
556                 force_mwait = 1;
557         else if (!strcmp(str, "halt")) {
558                 /*
559                  * When the boot option of idle=halt is added, halt is
560                  * forced to be used for CPU idle. In such case CPU C2/C3
561                  * won't be used again.
562                  * To continue to load the CPU idle driver, don't touch
563                  * the boot_option_idle_override.
564                  */
565                 pm_idle = default_idle;
566                 idle_halt = 1;
567                 return 0;
568         } else if (!strcmp(str, "nomwait")) {
569                 /*
570                  * If the boot option of "idle=nomwait" is added,
571                  * it means that mwait will be disabled for CPU C2/C3
572                  * states. In such case it won't touch the variable
573                  * of boot_option_idle_override.
574                  */
575                 idle_nomwait = 1;
576                 return 0;
577         } else
578                 return -1;
579
580         boot_option_idle_override = 1;
581         return 0;
582 }
583 early_param("idle", idle_setup);
584
585 unsigned long arch_align_stack(unsigned long sp)
586 {
587         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
588                 sp -= get_random_int() % 8192;
589         return sp & ~0xf;
590 }
591
592 unsigned long arch_randomize_brk(struct mm_struct *mm)
593 {
594         unsigned long range_end = mm->brk + 0x02000000;
595         return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
596 }
597