27fa9eeed0240be7e1725db6f10caa144aeb0ce2
[safe/jmp/linux-2.6] / arch / x86 / kernel / cpu / perf_event.c
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/highmem.h>
26 #include <linux/cpu.h>
27 #include <linux/bitops.h>
28
29 #include <asm/apic.h>
30 #include <asm/stacktrace.h>
31 #include <asm/nmi.h>
32 #include <asm/compat.h>
33
34 #if 0
35 #undef wrmsrl
36 #define wrmsrl(msr, val)                                        \
37 do {                                                            \
38         trace_printk("wrmsrl(%lx, %lx)\n", (unsigned long)(msr),\
39                         (unsigned long)(val));                  \
40         native_write_msr((msr), (u32)((u64)(val)),              \
41                         (u32)((u64)(val) >> 32));               \
42 } while (0)
43 #endif
44
45 /*
46  * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
47  */
48 static unsigned long
49 copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
50 {
51         unsigned long offset, addr = (unsigned long)from;
52         int type = in_nmi() ? KM_NMI : KM_IRQ0;
53         unsigned long size, len = 0;
54         struct page *page;
55         void *map;
56         int ret;
57
58         do {
59                 ret = __get_user_pages_fast(addr, 1, 0, &page);
60                 if (!ret)
61                         break;
62
63                 offset = addr & (PAGE_SIZE - 1);
64                 size = min(PAGE_SIZE - offset, n - len);
65
66                 map = kmap_atomic(page, type);
67                 memcpy(to, map+offset, size);
68                 kunmap_atomic(map, type);
69                 put_page(page);
70
71                 len  += size;
72                 to   += size;
73                 addr += size;
74
75         } while (len < n);
76
77         return len;
78 }
79
80 struct event_constraint {
81         union {
82                 unsigned long   idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
83                 u64             idxmsk64;
84         };
85         u64     code;
86         u64     cmask;
87         int     weight;
88 };
89
90 struct amd_nb {
91         int nb_id;  /* NorthBridge id */
92         int refcnt; /* reference count */
93         struct perf_event *owners[X86_PMC_IDX_MAX];
94         struct event_constraint event_constraints[X86_PMC_IDX_MAX];
95 };
96
97 #define MAX_LBR_ENTRIES         16
98
99 struct cpu_hw_events {
100         /*
101          * Generic x86 PMC bits
102          */
103         struct perf_event       *events[X86_PMC_IDX_MAX]; /* in counter order */
104         unsigned long           active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
105         int                     enabled;
106
107         int                     n_events;
108         int                     n_added;
109         int                     assign[X86_PMC_IDX_MAX]; /* event to counter assignment */
110         u64                     tags[X86_PMC_IDX_MAX];
111         struct perf_event       *event_list[X86_PMC_IDX_MAX]; /* in enabled order */
112
113         /*
114          * Intel DebugStore bits
115          */
116         struct debug_store      *ds;
117         u64                     pebs_enabled;
118
119         /*
120          * Intel LBR bits
121          */
122         int                             lbr_users;
123         void                            *lbr_context;
124         struct perf_branch_stack        lbr_stack;
125         struct perf_branch_entry        lbr_entries[MAX_LBR_ENTRIES];
126
127         /*
128          * AMD specific bits
129          */
130         struct amd_nb           *amd_nb;
131 };
132
133 #define __EVENT_CONSTRAINT(c, n, m, w) {\
134         { .idxmsk64 = (n) },            \
135         .code = (c),                    \
136         .cmask = (m),                   \
137         .weight = (w),                  \
138 }
139
140 #define EVENT_CONSTRAINT(c, n, m)       \
141         __EVENT_CONSTRAINT(c, n, m, HWEIGHT(n))
142
143 /*
144  * Constraint on the Event code.
145  */
146 #define INTEL_EVENT_CONSTRAINT(c, n)    \
147         EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT)
148
149 /*
150  * Constraint on the Event code + UMask + fixed-mask
151  *
152  * filter mask to validate fixed counter events.
153  * the following filters disqualify for fixed counters:
154  *  - inv
155  *  - edge
156  *  - cnt-mask
157  *  The other filters are supported by fixed counters.
158  *  The any-thread option is supported starting with v3.
159  */
160 #define FIXED_EVENT_CONSTRAINT(c, n)    \
161         EVENT_CONSTRAINT(c, (1ULL << (32+n)), X86_RAW_EVENT_MASK)
162
163 /*
164  * Constraint on the Event code + UMask
165  */
166 #define PEBS_EVENT_CONSTRAINT(c, n)     \
167         EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK)
168
169 #define EVENT_CONSTRAINT_END            \
170         EVENT_CONSTRAINT(0, 0, 0)
171
172 #define for_each_event_constraint(e, c) \
173         for ((e) = (c); (e)->weight; (e)++)
174
175 union perf_capabilities {
176         struct {
177                 u64     lbr_format    : 6;
178                 u64     pebs_trap     : 1;
179                 u64     pebs_arch_reg : 1;
180                 u64     pebs_format   : 4;
181                 u64     smm_freeze    : 1;
182         };
183         u64     capabilities;
184 };
185
186 /*
187  * struct x86_pmu - generic x86 pmu
188  */
189 struct x86_pmu {
190         /*
191          * Generic x86 PMC bits
192          */
193         const char      *name;
194         int             version;
195         int             (*handle_irq)(struct pt_regs *);
196         void            (*disable_all)(void);
197         void            (*enable_all)(int added);
198         void            (*enable)(struct perf_event *);
199         void            (*disable)(struct perf_event *);
200         int             (*hw_config)(struct perf_event *event);
201         int             (*schedule_events)(struct cpu_hw_events *cpuc, int n, int *assign);
202         unsigned        eventsel;
203         unsigned        perfctr;
204         u64             (*event_map)(int);
205         int             max_events;
206         int             num_counters;
207         int             num_counters_fixed;
208         int             cntval_bits;
209         u64             cntval_mask;
210         int             apic;
211         u64             max_period;
212         struct event_constraint *
213                         (*get_event_constraints)(struct cpu_hw_events *cpuc,
214                                                  struct perf_event *event);
215
216         void            (*put_event_constraints)(struct cpu_hw_events *cpuc,
217                                                  struct perf_event *event);
218         struct event_constraint *event_constraints;
219         void            (*quirks)(void);
220
221         int             (*cpu_prepare)(int cpu);
222         void            (*cpu_starting)(int cpu);
223         void            (*cpu_dying)(int cpu);
224         void            (*cpu_dead)(int cpu);
225
226         /*
227          * Intel Arch Perfmon v2+
228          */
229         u64                     intel_ctrl;
230         union perf_capabilities intel_cap;
231
232         /*
233          * Intel DebugStore bits
234          */
235         int             bts, pebs;
236         int             pebs_record_size;
237         void            (*drain_pebs)(struct pt_regs *regs);
238         struct event_constraint *pebs_constraints;
239
240         /*
241          * Intel LBR
242          */
243         unsigned long   lbr_tos, lbr_from, lbr_to; /* MSR base regs       */
244         int             lbr_nr;                    /* hardware stack size */
245 };
246
247 static struct x86_pmu x86_pmu __read_mostly;
248
249 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
250         .enabled = 1,
251 };
252
253 static int x86_perf_event_set_period(struct perf_event *event);
254
255 /*
256  * Generalized hw caching related hw_event table, filled
257  * in on a per model basis. A value of 0 means
258  * 'not supported', -1 means 'hw_event makes no sense on
259  * this CPU', any other value means the raw hw_event
260  * ID.
261  */
262
263 #define C(x) PERF_COUNT_HW_CACHE_##x
264
265 static u64 __read_mostly hw_cache_event_ids
266                                 [PERF_COUNT_HW_CACHE_MAX]
267                                 [PERF_COUNT_HW_CACHE_OP_MAX]
268                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
269
270 /*
271  * Propagate event elapsed time into the generic event.
272  * Can only be executed on the CPU where the event is active.
273  * Returns the delta events processed.
274  */
275 static u64
276 x86_perf_event_update(struct perf_event *event)
277 {
278         struct hw_perf_event *hwc = &event->hw;
279         int shift = 64 - x86_pmu.cntval_bits;
280         u64 prev_raw_count, new_raw_count;
281         int idx = hwc->idx;
282         s64 delta;
283
284         if (idx == X86_PMC_IDX_FIXED_BTS)
285                 return 0;
286
287         /*
288          * Careful: an NMI might modify the previous event value.
289          *
290          * Our tactic to handle this is to first atomically read and
291          * exchange a new raw count - then add that new-prev delta
292          * count to the generic event atomically:
293          */
294 again:
295         prev_raw_count = atomic64_read(&hwc->prev_count);
296         rdmsrl(hwc->event_base + idx, new_raw_count);
297
298         if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
299                                         new_raw_count) != prev_raw_count)
300                 goto again;
301
302         /*
303          * Now we have the new raw value and have updated the prev
304          * timestamp already. We can now calculate the elapsed delta
305          * (event-)time and add that to the generic event.
306          *
307          * Careful, not all hw sign-extends above the physical width
308          * of the count.
309          */
310         delta = (new_raw_count << shift) - (prev_raw_count << shift);
311         delta >>= shift;
312
313         atomic64_add(delta, &event->count);
314         atomic64_sub(delta, &hwc->period_left);
315
316         return new_raw_count;
317 }
318
319 static atomic_t active_events;
320 static DEFINE_MUTEX(pmc_reserve_mutex);
321
322 #ifdef CONFIG_X86_LOCAL_APIC
323
324 static bool reserve_pmc_hardware(void)
325 {
326         int i;
327
328         if (nmi_watchdog == NMI_LOCAL_APIC)
329                 disable_lapic_nmi_watchdog();
330
331         for (i = 0; i < x86_pmu.num_counters; i++) {
332                 if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
333                         goto perfctr_fail;
334         }
335
336         for (i = 0; i < x86_pmu.num_counters; i++) {
337                 if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
338                         goto eventsel_fail;
339         }
340
341         return true;
342
343 eventsel_fail:
344         for (i--; i >= 0; i--)
345                 release_evntsel_nmi(x86_pmu.eventsel + i);
346
347         i = x86_pmu.num_counters;
348
349 perfctr_fail:
350         for (i--; i >= 0; i--)
351                 release_perfctr_nmi(x86_pmu.perfctr + i);
352
353         if (nmi_watchdog == NMI_LOCAL_APIC)
354                 enable_lapic_nmi_watchdog();
355
356         return false;
357 }
358
359 static void release_pmc_hardware(void)
360 {
361         int i;
362
363         for (i = 0; i < x86_pmu.num_counters; i++) {
364                 release_perfctr_nmi(x86_pmu.perfctr + i);
365                 release_evntsel_nmi(x86_pmu.eventsel + i);
366         }
367
368         if (nmi_watchdog == NMI_LOCAL_APIC)
369                 enable_lapic_nmi_watchdog();
370 }
371
372 #else
373
374 static bool reserve_pmc_hardware(void) { return true; }
375 static void release_pmc_hardware(void) {}
376
377 #endif
378
379 static int reserve_ds_buffers(void);
380 static void release_ds_buffers(void);
381
382 static void hw_perf_event_destroy(struct perf_event *event)
383 {
384         if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
385                 release_pmc_hardware();
386                 release_ds_buffers();
387                 mutex_unlock(&pmc_reserve_mutex);
388         }
389 }
390
391 static inline int x86_pmu_initialized(void)
392 {
393         return x86_pmu.handle_irq != NULL;
394 }
395
396 static inline int
397 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event_attr *attr)
398 {
399         unsigned int cache_type, cache_op, cache_result;
400         u64 config, val;
401
402         config = attr->config;
403
404         cache_type = (config >>  0) & 0xff;
405         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
406                 return -EINVAL;
407
408         cache_op = (config >>  8) & 0xff;
409         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
410                 return -EINVAL;
411
412         cache_result = (config >> 16) & 0xff;
413         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
414                 return -EINVAL;
415
416         val = hw_cache_event_ids[cache_type][cache_op][cache_result];
417
418         if (val == 0)
419                 return -ENOENT;
420
421         if (val == -1)
422                 return -EINVAL;
423
424         hwc->config |= val;
425
426         return 0;
427 }
428
429 static int x86_setup_perfctr(struct perf_event *event)
430 {
431         struct perf_event_attr *attr = &event->attr;
432         struct hw_perf_event *hwc = &event->hw;
433         u64 config;
434
435         if (!hwc->sample_period) {
436                 hwc->sample_period = x86_pmu.max_period;
437                 hwc->last_period = hwc->sample_period;
438                 atomic64_set(&hwc->period_left, hwc->sample_period);
439         } else {
440                 /*
441                  * If we have a PMU initialized but no APIC
442                  * interrupts, we cannot sample hardware
443                  * events (user-space has to fall back and
444                  * sample via a hrtimer based software event):
445                  */
446                 if (!x86_pmu.apic)
447                         return -EOPNOTSUPP;
448         }
449
450         if (attr->type == PERF_TYPE_RAW)
451                 return 0;
452
453         if (attr->type == PERF_TYPE_HW_CACHE)
454                 return set_ext_hw_attr(hwc, attr);
455
456         if (attr->config >= x86_pmu.max_events)
457                 return -EINVAL;
458
459         /*
460          * The generic map:
461          */
462         config = x86_pmu.event_map(attr->config);
463
464         if (config == 0)
465                 return -ENOENT;
466
467         if (config == -1LL)
468                 return -EINVAL;
469
470         /*
471          * Branch tracing:
472          */
473         if ((attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) &&
474             (hwc->sample_period == 1)) {
475                 /* BTS is not supported by this architecture. */
476                 if (!x86_pmu.bts)
477                         return -EOPNOTSUPP;
478
479                 /* BTS is currently only allowed for user-mode. */
480                 if (!attr->exclude_kernel)
481                         return -EOPNOTSUPP;
482         }
483
484         hwc->config |= config;
485
486         return 0;
487 }
488
489 static int x86_pmu_hw_config(struct perf_event *event)
490 {
491         if (event->attr.precise_ip) {
492                 int precise = 0;
493
494                 /* Support for constant skid */
495                 if (x86_pmu.pebs)
496                         precise++;
497
498                 /* Support for IP fixup */
499                 if (x86_pmu.lbr_nr)
500                         precise++;
501
502                 if (event->attr.precise_ip > precise)
503                         return -EOPNOTSUPP;
504         }
505
506         /*
507          * Generate PMC IRQs:
508          * (keep 'enabled' bit clear for now)
509          */
510         event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
511
512         /*
513          * Count user and OS events unless requested not to
514          */
515         if (!event->attr.exclude_user)
516                 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
517         if (!event->attr.exclude_kernel)
518                 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
519
520         if (event->attr.type == PERF_TYPE_RAW)
521                 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
522
523         return x86_setup_perfctr(event);
524 }
525
526 /*
527  * Setup the hardware configuration for a given attr_type
528  */
529 static int __hw_perf_event_init(struct perf_event *event)
530 {
531         int err;
532
533         if (!x86_pmu_initialized())
534                 return -ENODEV;
535
536         err = 0;
537         if (!atomic_inc_not_zero(&active_events)) {
538                 mutex_lock(&pmc_reserve_mutex);
539                 if (atomic_read(&active_events) == 0) {
540                         if (!reserve_pmc_hardware())
541                                 err = -EBUSY;
542                         else {
543                                 err = reserve_ds_buffers();
544                                 if (err)
545                                         release_pmc_hardware();
546                         }
547                 }
548                 if (!err)
549                         atomic_inc(&active_events);
550                 mutex_unlock(&pmc_reserve_mutex);
551         }
552         if (err)
553                 return err;
554
555         event->destroy = hw_perf_event_destroy;
556
557         event->hw.idx = -1;
558         event->hw.last_cpu = -1;
559         event->hw.last_tag = ~0ULL;
560
561         return x86_pmu.hw_config(event);
562 }
563
564 static void x86_pmu_disable_all(void)
565 {
566         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
567         int idx;
568
569         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
570                 u64 val;
571
572                 if (!test_bit(idx, cpuc->active_mask))
573                         continue;
574                 rdmsrl(x86_pmu.eventsel + idx, val);
575                 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
576                         continue;
577                 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
578                 wrmsrl(x86_pmu.eventsel + idx, val);
579         }
580 }
581
582 void hw_perf_disable(void)
583 {
584         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
585
586         if (!x86_pmu_initialized())
587                 return;
588
589         if (!cpuc->enabled)
590                 return;
591
592         cpuc->n_added = 0;
593         cpuc->enabled = 0;
594         barrier();
595
596         x86_pmu.disable_all();
597 }
598
599 static void x86_pmu_enable_all(int added)
600 {
601         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
602         int idx;
603
604         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
605                 struct perf_event *event = cpuc->events[idx];
606                 u64 val;
607
608                 if (!test_bit(idx, cpuc->active_mask))
609                         continue;
610
611                 val = event->hw.config;
612                 val |= ARCH_PERFMON_EVENTSEL_ENABLE;
613                 wrmsrl(x86_pmu.eventsel + idx, val);
614         }
615 }
616
617 static const struct pmu pmu;
618
619 static inline int is_x86_event(struct perf_event *event)
620 {
621         return event->pmu == &pmu;
622 }
623
624 static int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
625 {
626         struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
627         unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
628         int i, j, w, wmax, num = 0;
629         struct hw_perf_event *hwc;
630
631         bitmap_zero(used_mask, X86_PMC_IDX_MAX);
632
633         for (i = 0; i < n; i++) {
634                 c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
635                 constraints[i] = c;
636         }
637
638         /*
639          * fastpath, try to reuse previous register
640          */
641         for (i = 0; i < n; i++) {
642                 hwc = &cpuc->event_list[i]->hw;
643                 c = constraints[i];
644
645                 /* never assigned */
646                 if (hwc->idx == -1)
647                         break;
648
649                 /* constraint still honored */
650                 if (!test_bit(hwc->idx, c->idxmsk))
651                         break;
652
653                 /* not already used */
654                 if (test_bit(hwc->idx, used_mask))
655                         break;
656
657                 __set_bit(hwc->idx, used_mask);
658                 if (assign)
659                         assign[i] = hwc->idx;
660         }
661         if (i == n)
662                 goto done;
663
664         /*
665          * begin slow path
666          */
667
668         bitmap_zero(used_mask, X86_PMC_IDX_MAX);
669
670         /*
671          * weight = number of possible counters
672          *
673          * 1    = most constrained, only works on one counter
674          * wmax = least constrained, works on any counter
675          *
676          * assign events to counters starting with most
677          * constrained events.
678          */
679         wmax = x86_pmu.num_counters;
680
681         /*
682          * when fixed event counters are present,
683          * wmax is incremented by 1 to account
684          * for one more choice
685          */
686         if (x86_pmu.num_counters_fixed)
687                 wmax++;
688
689         for (w = 1, num = n; num && w <= wmax; w++) {
690                 /* for each event */
691                 for (i = 0; num && i < n; i++) {
692                         c = constraints[i];
693                         hwc = &cpuc->event_list[i]->hw;
694
695                         if (c->weight != w)
696                                 continue;
697
698                         for_each_set_bit(j, c->idxmsk, X86_PMC_IDX_MAX) {
699                                 if (!test_bit(j, used_mask))
700                                         break;
701                         }
702
703                         if (j == X86_PMC_IDX_MAX)
704                                 break;
705
706                         __set_bit(j, used_mask);
707
708                         if (assign)
709                                 assign[i] = j;
710                         num--;
711                 }
712         }
713 done:
714         /*
715          * scheduling failed or is just a simulation,
716          * free resources if necessary
717          */
718         if (!assign || num) {
719                 for (i = 0; i < n; i++) {
720                         if (x86_pmu.put_event_constraints)
721                                 x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
722                 }
723         }
724         return num ? -ENOSPC : 0;
725 }
726
727 /*
728  * dogrp: true if must collect siblings events (group)
729  * returns total number of events and error code
730  */
731 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
732 {
733         struct perf_event *event;
734         int n, max_count;
735
736         max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
737
738         /* current number of events already accepted */
739         n = cpuc->n_events;
740
741         if (is_x86_event(leader)) {
742                 if (n >= max_count)
743                         return -ENOSPC;
744                 cpuc->event_list[n] = leader;
745                 n++;
746         }
747         if (!dogrp)
748                 return n;
749
750         list_for_each_entry(event, &leader->sibling_list, group_entry) {
751                 if (!is_x86_event(event) ||
752                     event->state <= PERF_EVENT_STATE_OFF)
753                         continue;
754
755                 if (n >= max_count)
756                         return -ENOSPC;
757
758                 cpuc->event_list[n] = event;
759                 n++;
760         }
761         return n;
762 }
763
764 static inline void x86_assign_hw_event(struct perf_event *event,
765                                 struct cpu_hw_events *cpuc, int i)
766 {
767         struct hw_perf_event *hwc = &event->hw;
768
769         hwc->idx = cpuc->assign[i];
770         hwc->last_cpu = smp_processor_id();
771         hwc->last_tag = ++cpuc->tags[i];
772
773         if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
774                 hwc->config_base = 0;
775                 hwc->event_base = 0;
776         } else if (hwc->idx >= X86_PMC_IDX_FIXED) {
777                 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
778                 /*
779                  * We set it so that event_base + idx in wrmsr/rdmsr maps to
780                  * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
781                  */
782                 hwc->event_base =
783                         MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
784         } else {
785                 hwc->config_base = x86_pmu.eventsel;
786                 hwc->event_base  = x86_pmu.perfctr;
787         }
788 }
789
790 static inline int match_prev_assignment(struct hw_perf_event *hwc,
791                                         struct cpu_hw_events *cpuc,
792                                         int i)
793 {
794         return hwc->idx == cpuc->assign[i] &&
795                 hwc->last_cpu == smp_processor_id() &&
796                 hwc->last_tag == cpuc->tags[i];
797 }
798
799 static int x86_pmu_start(struct perf_event *event);
800 static void x86_pmu_stop(struct perf_event *event);
801
802 void hw_perf_enable(void)
803 {
804         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
805         struct perf_event *event;
806         struct hw_perf_event *hwc;
807         int i, added = cpuc->n_added;
808
809         if (!x86_pmu_initialized())
810                 return;
811
812         if (cpuc->enabled)
813                 return;
814
815         if (cpuc->n_added) {
816                 int n_running = cpuc->n_events - cpuc->n_added;
817                 /*
818                  * apply assignment obtained either from
819                  * hw_perf_group_sched_in() or x86_pmu_enable()
820                  *
821                  * step1: save events moving to new counters
822                  * step2: reprogram moved events into new counters
823                  */
824                 for (i = 0; i < n_running; i++) {
825                         event = cpuc->event_list[i];
826                         hwc = &event->hw;
827
828                         /*
829                          * we can avoid reprogramming counter if:
830                          * - assigned same counter as last time
831                          * - running on same CPU as last time
832                          * - no other event has used the counter since
833                          */
834                         if (hwc->idx == -1 ||
835                             match_prev_assignment(hwc, cpuc, i))
836                                 continue;
837
838                         x86_pmu_stop(event);
839                 }
840
841                 for (i = 0; i < cpuc->n_events; i++) {
842                         event = cpuc->event_list[i];
843                         hwc = &event->hw;
844
845                         if (!match_prev_assignment(hwc, cpuc, i))
846                                 x86_assign_hw_event(event, cpuc, i);
847                         else if (i < n_running)
848                                 continue;
849
850                         x86_pmu_start(event);
851                 }
852                 cpuc->n_added = 0;
853                 perf_events_lapic_init();
854         }
855
856         cpuc->enabled = 1;
857         barrier();
858
859         x86_pmu.enable_all(added);
860 }
861
862 static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc,
863                                           u64 enable_mask)
864 {
865         wrmsrl(hwc->config_base + hwc->idx, hwc->config | enable_mask);
866 }
867
868 static inline void x86_pmu_disable_event(struct perf_event *event)
869 {
870         struct hw_perf_event *hwc = &event->hw;
871
872         wrmsrl(hwc->config_base + hwc->idx, hwc->config);
873 }
874
875 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
876
877 /*
878  * Set the next IRQ period, based on the hwc->period_left value.
879  * To be called with the event disabled in hw:
880  */
881 static int
882 x86_perf_event_set_period(struct perf_event *event)
883 {
884         struct hw_perf_event *hwc = &event->hw;
885         s64 left = atomic64_read(&hwc->period_left);
886         s64 period = hwc->sample_period;
887         int ret = 0, idx = hwc->idx;
888
889         if (idx == X86_PMC_IDX_FIXED_BTS)
890                 return 0;
891
892         /*
893          * If we are way outside a reasonable range then just skip forward:
894          */
895         if (unlikely(left <= -period)) {
896                 left = period;
897                 atomic64_set(&hwc->period_left, left);
898                 hwc->last_period = period;
899                 ret = 1;
900         }
901
902         if (unlikely(left <= 0)) {
903                 left += period;
904                 atomic64_set(&hwc->period_left, left);
905                 hwc->last_period = period;
906                 ret = 1;
907         }
908         /*
909          * Quirk: certain CPUs dont like it if just 1 hw_event is left:
910          */
911         if (unlikely(left < 2))
912                 left = 2;
913
914         if (left > x86_pmu.max_period)
915                 left = x86_pmu.max_period;
916
917         per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
918
919         /*
920          * The hw event starts counting from this event offset,
921          * mark it to be able to extra future deltas:
922          */
923         atomic64_set(&hwc->prev_count, (u64)-left);
924
925         wrmsrl(hwc->event_base + idx,
926                         (u64)(-left) & x86_pmu.cntval_mask);
927
928         perf_event_update_userpage(event);
929
930         return ret;
931 }
932
933 static void x86_pmu_enable_event(struct perf_event *event)
934 {
935         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
936         if (cpuc->enabled)
937                 __x86_pmu_enable_event(&event->hw,
938                                        ARCH_PERFMON_EVENTSEL_ENABLE);
939 }
940
941 /*
942  * activate a single event
943  *
944  * The event is added to the group of enabled events
945  * but only if it can be scehduled with existing events.
946  *
947  * Called with PMU disabled. If successful and return value 1,
948  * then guaranteed to call perf_enable() and hw_perf_enable()
949  */
950 static int x86_pmu_enable(struct perf_event *event)
951 {
952         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
953         struct hw_perf_event *hwc;
954         int assign[X86_PMC_IDX_MAX];
955         int n, n0, ret;
956
957         hwc = &event->hw;
958
959         n0 = cpuc->n_events;
960         n = collect_events(cpuc, event, false);
961         if (n < 0)
962                 return n;
963
964         ret = x86_pmu.schedule_events(cpuc, n, assign);
965         if (ret)
966                 return ret;
967         /*
968          * copy new assignment, now we know it is possible
969          * will be used by hw_perf_enable()
970          */
971         memcpy(cpuc->assign, assign, n*sizeof(int));
972
973         cpuc->n_events = n;
974         cpuc->n_added += n - n0;
975
976         return 0;
977 }
978
979 static int x86_pmu_start(struct perf_event *event)
980 {
981         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
982         int idx = event->hw.idx;
983
984         if (idx == -1)
985                 return -EAGAIN;
986
987         x86_perf_event_set_period(event);
988         cpuc->events[idx] = event;
989         __set_bit(idx, cpuc->active_mask);
990         x86_pmu.enable(event);
991         perf_event_update_userpage(event);
992
993         return 0;
994 }
995
996 static void x86_pmu_unthrottle(struct perf_event *event)
997 {
998         int ret = x86_pmu_start(event);
999         WARN_ON_ONCE(ret);
1000 }
1001
1002 void perf_event_print_debug(void)
1003 {
1004         u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1005         u64 pebs;
1006         struct cpu_hw_events *cpuc;
1007         unsigned long flags;
1008         int cpu, idx;
1009
1010         if (!x86_pmu.num_counters)
1011                 return;
1012
1013         local_irq_save(flags);
1014
1015         cpu = smp_processor_id();
1016         cpuc = &per_cpu(cpu_hw_events, cpu);
1017
1018         if (x86_pmu.version >= 2) {
1019                 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1020                 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1021                 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1022                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1023                 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1024
1025                 pr_info("\n");
1026                 pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1027                 pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1028                 pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1029                 pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1030                 pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1031         }
1032         pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1033
1034         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1035                 rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
1036                 rdmsrl(x86_pmu.perfctr  + idx, pmc_count);
1037
1038                 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1039
1040                 pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1041                         cpu, idx, pmc_ctrl);
1042                 pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1043                         cpu, idx, pmc_count);
1044                 pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1045                         cpu, idx, prev_left);
1046         }
1047         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1048                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1049
1050                 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1051                         cpu, idx, pmc_count);
1052         }
1053         local_irq_restore(flags);
1054 }
1055
1056 static void x86_pmu_stop(struct perf_event *event)
1057 {
1058         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1059         struct hw_perf_event *hwc = &event->hw;
1060         int idx = hwc->idx;
1061
1062         if (!__test_and_clear_bit(idx, cpuc->active_mask))
1063                 return;
1064
1065         x86_pmu.disable(event);
1066
1067         /*
1068          * Drain the remaining delta count out of a event
1069          * that we are disabling:
1070          */
1071         x86_perf_event_update(event);
1072
1073         cpuc->events[idx] = NULL;
1074 }
1075
1076 static void x86_pmu_disable(struct perf_event *event)
1077 {
1078         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1079         int i;
1080
1081         x86_pmu_stop(event);
1082
1083         for (i = 0; i < cpuc->n_events; i++) {
1084                 if (event == cpuc->event_list[i]) {
1085
1086                         if (x86_pmu.put_event_constraints)
1087                                 x86_pmu.put_event_constraints(cpuc, event);
1088
1089                         while (++i < cpuc->n_events)
1090                                 cpuc->event_list[i-1] = cpuc->event_list[i];
1091
1092                         --cpuc->n_events;
1093                         break;
1094                 }
1095         }
1096         perf_event_update_userpage(event);
1097 }
1098
1099 static int x86_pmu_handle_irq(struct pt_regs *regs)
1100 {
1101         struct perf_sample_data data;
1102         struct cpu_hw_events *cpuc;
1103         struct perf_event *event;
1104         struct hw_perf_event *hwc;
1105         int idx, handled = 0;
1106         u64 val;
1107
1108         perf_sample_data_init(&data, 0);
1109
1110         cpuc = &__get_cpu_var(cpu_hw_events);
1111
1112         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1113                 if (!test_bit(idx, cpuc->active_mask))
1114                         continue;
1115
1116                 event = cpuc->events[idx];
1117                 hwc = &event->hw;
1118
1119                 val = x86_perf_event_update(event);
1120                 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1121                         continue;
1122
1123                 /*
1124                  * event overflow
1125                  */
1126                 handled         = 1;
1127                 data.period     = event->hw.last_period;
1128
1129                 if (!x86_perf_event_set_period(event))
1130                         continue;
1131
1132                 if (perf_event_overflow(event, 1, &data, regs))
1133                         x86_pmu_stop(event);
1134         }
1135
1136         if (handled)
1137                 inc_irq_stat(apic_perf_irqs);
1138
1139         return handled;
1140 }
1141
1142 void smp_perf_pending_interrupt(struct pt_regs *regs)
1143 {
1144         irq_enter();
1145         ack_APIC_irq();
1146         inc_irq_stat(apic_pending_irqs);
1147         perf_event_do_pending();
1148         irq_exit();
1149 }
1150
1151 void set_perf_event_pending(void)
1152 {
1153 #ifdef CONFIG_X86_LOCAL_APIC
1154         if (!x86_pmu.apic || !x86_pmu_initialized())
1155                 return;
1156
1157         apic->send_IPI_self(LOCAL_PENDING_VECTOR);
1158 #endif
1159 }
1160
1161 void perf_events_lapic_init(void)
1162 {
1163         if (!x86_pmu.apic || !x86_pmu_initialized())
1164                 return;
1165
1166         /*
1167          * Always use NMI for PMU
1168          */
1169         apic_write(APIC_LVTPC, APIC_DM_NMI);
1170 }
1171
1172 static int __kprobes
1173 perf_event_nmi_handler(struct notifier_block *self,
1174                          unsigned long cmd, void *__args)
1175 {
1176         struct die_args *args = __args;
1177         struct pt_regs *regs;
1178
1179         if (!atomic_read(&active_events))
1180                 return NOTIFY_DONE;
1181
1182         switch (cmd) {
1183         case DIE_NMI:
1184         case DIE_NMI_IPI:
1185                 break;
1186
1187         default:
1188                 return NOTIFY_DONE;
1189         }
1190
1191         regs = args->regs;
1192
1193         apic_write(APIC_LVTPC, APIC_DM_NMI);
1194         /*
1195          * Can't rely on the handled return value to say it was our NMI, two
1196          * events could trigger 'simultaneously' raising two back-to-back NMIs.
1197          *
1198          * If the first NMI handles both, the latter will be empty and daze
1199          * the CPU.
1200          */
1201         x86_pmu.handle_irq(regs);
1202
1203         return NOTIFY_STOP;
1204 }
1205
1206 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1207         .notifier_call          = perf_event_nmi_handler,
1208         .next                   = NULL,
1209         .priority               = 1
1210 };
1211
1212 static struct event_constraint unconstrained;
1213 static struct event_constraint emptyconstraint;
1214
1215 static struct event_constraint *
1216 x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1217 {
1218         struct event_constraint *c;
1219
1220         if (x86_pmu.event_constraints) {
1221                 for_each_event_constraint(c, x86_pmu.event_constraints) {
1222                         if ((event->hw.config & c->cmask) == c->code)
1223                                 return c;
1224                 }
1225         }
1226
1227         return &unconstrained;
1228 }
1229
1230 static int x86_event_sched_in(struct perf_event *event,
1231                           struct perf_cpu_context *cpuctx)
1232 {
1233         int ret = 0;
1234
1235         event->state = PERF_EVENT_STATE_ACTIVE;
1236         event->oncpu = smp_processor_id();
1237         event->tstamp_running += event->ctx->time - event->tstamp_stopped;
1238
1239         if (!is_x86_event(event))
1240                 ret = event->pmu->enable(event);
1241
1242         if (!ret && !is_software_event(event))
1243                 cpuctx->active_oncpu++;
1244
1245         if (!ret && event->attr.exclusive)
1246                 cpuctx->exclusive = 1;
1247
1248         return ret;
1249 }
1250
1251 static void x86_event_sched_out(struct perf_event *event,
1252                             struct perf_cpu_context *cpuctx)
1253 {
1254         event->state = PERF_EVENT_STATE_INACTIVE;
1255         event->oncpu = -1;
1256
1257         if (!is_x86_event(event))
1258                 event->pmu->disable(event);
1259
1260         event->tstamp_running -= event->ctx->time - event->tstamp_stopped;
1261
1262         if (!is_software_event(event))
1263                 cpuctx->active_oncpu--;
1264
1265         if (event->attr.exclusive || !cpuctx->active_oncpu)
1266                 cpuctx->exclusive = 0;
1267 }
1268
1269 /*
1270  * Called to enable a whole group of events.
1271  * Returns 1 if the group was enabled, or -EAGAIN if it could not be.
1272  * Assumes the caller has disabled interrupts and has
1273  * frozen the PMU with hw_perf_save_disable.
1274  *
1275  * called with PMU disabled. If successful and return value 1,
1276  * then guaranteed to call perf_enable() and hw_perf_enable()
1277  */
1278 int hw_perf_group_sched_in(struct perf_event *leader,
1279                struct perf_cpu_context *cpuctx,
1280                struct perf_event_context *ctx)
1281 {
1282         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1283         struct perf_event *sub;
1284         int assign[X86_PMC_IDX_MAX];
1285         int n0, n1, ret;
1286
1287         if (!x86_pmu_initialized())
1288                 return 0;
1289
1290         /* n0 = total number of events */
1291         n0 = collect_events(cpuc, leader, true);
1292         if (n0 < 0)
1293                 return n0;
1294
1295         ret = x86_pmu.schedule_events(cpuc, n0, assign);
1296         if (ret)
1297                 return ret;
1298
1299         ret = x86_event_sched_in(leader, cpuctx);
1300         if (ret)
1301                 return ret;
1302
1303         n1 = 1;
1304         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1305                 if (sub->state > PERF_EVENT_STATE_OFF) {
1306                         ret = x86_event_sched_in(sub, cpuctx);
1307                         if (ret)
1308                                 goto undo;
1309                         ++n1;
1310                 }
1311         }
1312         /*
1313          * copy new assignment, now we know it is possible
1314          * will be used by hw_perf_enable()
1315          */
1316         memcpy(cpuc->assign, assign, n0*sizeof(int));
1317
1318         cpuc->n_events  = n0;
1319         cpuc->n_added  += n1;
1320         ctx->nr_active += n1;
1321
1322         /*
1323          * 1 means successful and events are active
1324          * This is not quite true because we defer
1325          * actual activation until hw_perf_enable() but
1326          * this way we* ensure caller won't try to enable
1327          * individual events
1328          */
1329         return 1;
1330 undo:
1331         x86_event_sched_out(leader, cpuctx);
1332         n0  = 1;
1333         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1334                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
1335                         x86_event_sched_out(sub, cpuctx);
1336                         if (++n0 == n1)
1337                                 break;
1338                 }
1339         }
1340         return ret;
1341 }
1342
1343 #include "perf_event_amd.c"
1344 #include "perf_event_p6.c"
1345 #include "perf_event_p4.c"
1346 #include "perf_event_intel_lbr.c"
1347 #include "perf_event_intel_ds.c"
1348 #include "perf_event_intel.c"
1349
1350 static int __cpuinit
1351 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1352 {
1353         unsigned int cpu = (long)hcpu;
1354         int ret = NOTIFY_OK;
1355
1356         switch (action & ~CPU_TASKS_FROZEN) {
1357         case CPU_UP_PREPARE:
1358                 if (x86_pmu.cpu_prepare)
1359                         ret = x86_pmu.cpu_prepare(cpu);
1360                 break;
1361
1362         case CPU_STARTING:
1363                 if (x86_pmu.cpu_starting)
1364                         x86_pmu.cpu_starting(cpu);
1365                 break;
1366
1367         case CPU_DYING:
1368                 if (x86_pmu.cpu_dying)
1369                         x86_pmu.cpu_dying(cpu);
1370                 break;
1371
1372         case CPU_UP_CANCELED:
1373         case CPU_DEAD:
1374                 if (x86_pmu.cpu_dead)
1375                         x86_pmu.cpu_dead(cpu);
1376                 break;
1377
1378         default:
1379                 break;
1380         }
1381
1382         return ret;
1383 }
1384
1385 static void __init pmu_check_apic(void)
1386 {
1387         if (cpu_has_apic)
1388                 return;
1389
1390         x86_pmu.apic = 0;
1391         pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1392         pr_info("no hardware sampling interrupt available.\n");
1393 }
1394
1395 void __init init_hw_perf_events(void)
1396 {
1397         struct event_constraint *c;
1398         int err;
1399
1400         pr_info("Performance Events: ");
1401
1402         switch (boot_cpu_data.x86_vendor) {
1403         case X86_VENDOR_INTEL:
1404                 err = intel_pmu_init();
1405                 break;
1406         case X86_VENDOR_AMD:
1407                 err = amd_pmu_init();
1408                 break;
1409         default:
1410                 return;
1411         }
1412         if (err != 0) {
1413                 pr_cont("no PMU driver, software events only.\n");
1414                 return;
1415         }
1416
1417         pmu_check_apic();
1418
1419         pr_cont("%s PMU driver.\n", x86_pmu.name);
1420
1421         if (x86_pmu.quirks)
1422                 x86_pmu.quirks();
1423
1424         if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
1425                 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
1426                      x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
1427                 x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
1428         }
1429         x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1430         perf_max_events = x86_pmu.num_counters;
1431
1432         if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
1433                 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
1434                      x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
1435                 x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
1436         }
1437
1438         x86_pmu.intel_ctrl |=
1439                 ((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
1440
1441         perf_events_lapic_init();
1442         register_die_notifier(&perf_event_nmi_notifier);
1443
1444         unconstrained = (struct event_constraint)
1445                 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1446                                    0, x86_pmu.num_counters);
1447
1448         if (x86_pmu.event_constraints) {
1449                 for_each_event_constraint(c, x86_pmu.event_constraints) {
1450                         if (c->cmask != X86_RAW_EVENT_MASK)
1451                                 continue;
1452
1453                         c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
1454                         c->weight += x86_pmu.num_counters;
1455                 }
1456         }
1457
1458         pr_info("... version:                %d\n",     x86_pmu.version);
1459         pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
1460         pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
1461         pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1462         pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1463         pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1464         pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1465
1466         perf_cpu_notifier(x86_pmu_notifier);
1467 }
1468
1469 static inline void x86_pmu_read(struct perf_event *event)
1470 {
1471         x86_perf_event_update(event);
1472 }
1473
1474 static const struct pmu pmu = {
1475         .enable         = x86_pmu_enable,
1476         .disable        = x86_pmu_disable,
1477         .start          = x86_pmu_start,
1478         .stop           = x86_pmu_stop,
1479         .read           = x86_pmu_read,
1480         .unthrottle     = x86_pmu_unthrottle,
1481 };
1482
1483 /*
1484  * validate that we can schedule this event
1485  */
1486 static int validate_event(struct perf_event *event)
1487 {
1488         struct cpu_hw_events *fake_cpuc;
1489         struct event_constraint *c;
1490         int ret = 0;
1491
1492         fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1493         if (!fake_cpuc)
1494                 return -ENOMEM;
1495
1496         c = x86_pmu.get_event_constraints(fake_cpuc, event);
1497
1498         if (!c || !c->weight)
1499                 ret = -ENOSPC;
1500
1501         if (x86_pmu.put_event_constraints)
1502                 x86_pmu.put_event_constraints(fake_cpuc, event);
1503
1504         kfree(fake_cpuc);
1505
1506         return ret;
1507 }
1508
1509 /*
1510  * validate a single event group
1511  *
1512  * validation include:
1513  *      - check events are compatible which each other
1514  *      - events do not compete for the same counter
1515  *      - number of events <= number of counters
1516  *
1517  * validation ensures the group can be loaded onto the
1518  * PMU if it was the only group available.
1519  */
1520 static int validate_group(struct perf_event *event)
1521 {
1522         struct perf_event *leader = event->group_leader;
1523         struct cpu_hw_events *fake_cpuc;
1524         int ret, n;
1525
1526         ret = -ENOMEM;
1527         fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1528         if (!fake_cpuc)
1529                 goto out;
1530
1531         /*
1532          * the event is not yet connected with its
1533          * siblings therefore we must first collect
1534          * existing siblings, then add the new event
1535          * before we can simulate the scheduling
1536          */
1537         ret = -ENOSPC;
1538         n = collect_events(fake_cpuc, leader, true);
1539         if (n < 0)
1540                 goto out_free;
1541
1542         fake_cpuc->n_events = n;
1543         n = collect_events(fake_cpuc, event, false);
1544         if (n < 0)
1545                 goto out_free;
1546
1547         fake_cpuc->n_events = n;
1548
1549         ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1550
1551 out_free:
1552         kfree(fake_cpuc);
1553 out:
1554         return ret;
1555 }
1556
1557 const struct pmu *hw_perf_event_init(struct perf_event *event)
1558 {
1559         const struct pmu *tmp;
1560         int err;
1561
1562         err = __hw_perf_event_init(event);
1563         if (!err) {
1564                 /*
1565                  * we temporarily connect event to its pmu
1566                  * such that validate_group() can classify
1567                  * it as an x86 event using is_x86_event()
1568                  */
1569                 tmp = event->pmu;
1570                 event->pmu = &pmu;
1571
1572                 if (event->group_leader != event)
1573                         err = validate_group(event);
1574                 else
1575                         err = validate_event(event);
1576
1577                 event->pmu = tmp;
1578         }
1579         if (err) {
1580                 if (event->destroy)
1581                         event->destroy(event);
1582                 return ERR_PTR(err);
1583         }
1584
1585         return &pmu;
1586 }
1587
1588 /*
1589  * callchain support
1590  */
1591
1592 static inline
1593 void callchain_store(struct perf_callchain_entry *entry, u64 ip)
1594 {
1595         if (entry->nr < PERF_MAX_STACK_DEPTH)
1596                 entry->ip[entry->nr++] = ip;
1597 }
1598
1599 static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_irq_entry);
1600 static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_nmi_entry);
1601
1602
1603 static void
1604 backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
1605 {
1606         /* Ignore warnings */
1607 }
1608
1609 static void backtrace_warning(void *data, char *msg)
1610 {
1611         /* Ignore warnings */
1612 }
1613
1614 static int backtrace_stack(void *data, char *name)
1615 {
1616         return 0;
1617 }
1618
1619 static void backtrace_address(void *data, unsigned long addr, int reliable)
1620 {
1621         struct perf_callchain_entry *entry = data;
1622
1623         callchain_store(entry, addr);
1624 }
1625
1626 static const struct stacktrace_ops backtrace_ops = {
1627         .warning                = backtrace_warning,
1628         .warning_symbol         = backtrace_warning_symbol,
1629         .stack                  = backtrace_stack,
1630         .address                = backtrace_address,
1631         .walk_stack             = print_context_stack_bp,
1632 };
1633
1634 #include "../dumpstack.h"
1635
1636 static void
1637 perf_callchain_kernel(struct pt_regs *regs, struct perf_callchain_entry *entry)
1638 {
1639         callchain_store(entry, PERF_CONTEXT_KERNEL);
1640         callchain_store(entry, regs->ip);
1641
1642         dump_trace(NULL, regs, NULL, regs->bp, &backtrace_ops, entry);
1643 }
1644
1645 #ifdef CONFIG_COMPAT
1646 static inline int
1647 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1648 {
1649         /* 32-bit process in 64-bit kernel. */
1650         struct stack_frame_ia32 frame;
1651         const void __user *fp;
1652
1653         if (!test_thread_flag(TIF_IA32))
1654                 return 0;
1655
1656         fp = compat_ptr(regs->bp);
1657         while (entry->nr < PERF_MAX_STACK_DEPTH) {
1658                 unsigned long bytes;
1659                 frame.next_frame     = 0;
1660                 frame.return_address = 0;
1661
1662                 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1663                 if (bytes != sizeof(frame))
1664                         break;
1665
1666                 if (fp < compat_ptr(regs->sp))
1667                         break;
1668
1669                 callchain_store(entry, frame.return_address);
1670                 fp = compat_ptr(frame.next_frame);
1671         }
1672         return 1;
1673 }
1674 #else
1675 static inline int
1676 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1677 {
1678     return 0;
1679 }
1680 #endif
1681
1682 static void
1683 perf_callchain_user(struct pt_regs *regs, struct perf_callchain_entry *entry)
1684 {
1685         struct stack_frame frame;
1686         const void __user *fp;
1687
1688         if (!user_mode(regs))
1689                 regs = task_pt_regs(current);
1690
1691         fp = (void __user *)regs->bp;
1692
1693         callchain_store(entry, PERF_CONTEXT_USER);
1694         callchain_store(entry, regs->ip);
1695
1696         if (perf_callchain_user32(regs, entry))
1697                 return;
1698
1699         while (entry->nr < PERF_MAX_STACK_DEPTH) {
1700                 unsigned long bytes;
1701                 frame.next_frame             = NULL;
1702                 frame.return_address = 0;
1703
1704                 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1705                 if (bytes != sizeof(frame))
1706                         break;
1707
1708                 if ((unsigned long)fp < regs->sp)
1709                         break;
1710
1711                 callchain_store(entry, frame.return_address);
1712                 fp = frame.next_frame;
1713         }
1714 }
1715
1716 static void
1717 perf_do_callchain(struct pt_regs *regs, struct perf_callchain_entry *entry)
1718 {
1719         int is_user;
1720
1721         if (!regs)
1722                 return;
1723
1724         is_user = user_mode(regs);
1725
1726         if (is_user && current->state != TASK_RUNNING)
1727                 return;
1728
1729         if (!is_user)
1730                 perf_callchain_kernel(regs, entry);
1731
1732         if (current->mm)
1733                 perf_callchain_user(regs, entry);
1734 }
1735
1736 struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1737 {
1738         struct perf_callchain_entry *entry;
1739
1740         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1741                 /* TODO: We don't support guest os callchain now */
1742                 return NULL;
1743         }
1744
1745         if (in_nmi())
1746                 entry = &__get_cpu_var(pmc_nmi_entry);
1747         else
1748                 entry = &__get_cpu_var(pmc_irq_entry);
1749
1750         entry->nr = 0;
1751
1752         perf_do_callchain(regs, entry);
1753
1754         return entry;
1755 }
1756
1757 void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
1758 {
1759         regs->ip = ip;
1760         /*
1761          * perf_arch_fetch_caller_regs adds another call, we need to increment
1762          * the skip level
1763          */
1764         regs->bp = rewind_frame_pointer(skip + 1);
1765         regs->cs = __KERNEL_CS;
1766         local_save_flags(regs->flags);
1767 }
1768
1769 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1770 {
1771         unsigned long ip;
1772
1773         if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
1774                 ip = perf_guest_cbs->get_guest_ip();
1775         else
1776                 ip = instruction_pointer(regs);
1777
1778         return ip;
1779 }
1780
1781 unsigned long perf_misc_flags(struct pt_regs *regs)
1782 {
1783         int misc = 0;
1784
1785         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1786                 if (perf_guest_cbs->is_user_mode())
1787                         misc |= PERF_RECORD_MISC_GUEST_USER;
1788                 else
1789                         misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1790         } else {
1791                 if (user_mode(regs))
1792                         misc |= PERF_RECORD_MISC_USER;
1793                 else
1794                         misc |= PERF_RECORD_MISC_KERNEL;
1795         }
1796
1797         if (regs->flags & PERF_EFLAGS_EXACT)
1798                 misc |= PERF_RECORD_MISC_EXACT_IP;
1799
1800         return misc;
1801 }