sparc64: Fix Niagara2 perf event handling.
[safe/jmp/linux-2.6] / arch / sparc / kernel / perf_event.c
1 /* Performance event support for sparc64.
2  *
3  * Copyright (C) 2009 David S. Miller <davem@davemloft.net>
4  *
5  * This code is based almost entirely upon the x86 perf event
6  * code, which is:
7  *
8  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
9  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
10  *  Copyright (C) 2009 Jaswinder Singh Rajput
11  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
12  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
13  */
14
15 #include <linux/perf_event.h>
16 #include <linux/kprobes.h>
17 #include <linux/kernel.h>
18 #include <linux/kdebug.h>
19 #include <linux/mutex.h>
20
21 #include <asm/cpudata.h>
22 #include <asm/atomic.h>
23 #include <asm/nmi.h>
24 #include <asm/pcr.h>
25
26 /* Sparc64 chips have two performance counters, 32-bits each, with
27  * overflow interrupts generated on transition from 0xffffffff to 0.
28  * The counters are accessed in one go using a 64-bit register.
29  *
30  * Both counters are controlled using a single control register.  The
31  * only way to stop all sampling is to clear all of the context (user,
32  * supervisor, hypervisor) sampling enable bits.  But these bits apply
33  * to both counters, thus the two counters can't be enabled/disabled
34  * individually.
35  *
36  * The control register has two event fields, one for each of the two
37  * counters.  It's thus nearly impossible to have one counter going
38  * while keeping the other one stopped.  Therefore it is possible to
39  * get overflow interrupts for counters not currently "in use" and
40  * that condition must be checked in the overflow interrupt handler.
41  *
42  * So we use a hack, in that we program inactive counters with the
43  * "sw_count0" and "sw_count1" events.  These count how many times
44  * the instruction "sethi %hi(0xfc000), %g0" is executed.  It's an
45  * unusual way to encode a NOP and therefore will not trigger in
46  * normal code.
47  */
48
49 #define MAX_HWEVENTS                    2
50 #define MAX_PERIOD                      ((1UL << 32) - 1)
51
52 #define PIC_UPPER_INDEX                 0
53 #define PIC_LOWER_INDEX                 1
54
55 struct cpu_hw_events {
56         struct perf_event       *events[MAX_HWEVENTS];
57         unsigned long           used_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
58         unsigned long           active_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
59         u64                     pcr;
60         int                     enabled;
61 };
62 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
63
64 struct perf_event_map {
65         u16     encoding;
66         u8      pic_mask;
67 #define PIC_NONE        0x00
68 #define PIC_UPPER       0x01
69 #define PIC_LOWER       0x02
70 };
71
72 static unsigned long perf_event_encode(const struct perf_event_map *pmap)
73 {
74         return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
75 }
76
77 static void perf_event_decode(unsigned long val, u16 *enc, u8 *msk)
78 {
79         *msk = val & 0xff;
80         *enc = val >> 16;
81 }
82
83 #define C(x) PERF_COUNT_HW_CACHE_##x
84
85 #define CACHE_OP_UNSUPPORTED    0xfffe
86 #define CACHE_OP_NONSENSE       0xffff
87
88 typedef struct perf_event_map cache_map_t
89                                 [PERF_COUNT_HW_CACHE_MAX]
90                                 [PERF_COUNT_HW_CACHE_OP_MAX]
91                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
92
93 struct sparc_pmu {
94         const struct perf_event_map     *(*event_map)(int);
95         const cache_map_t               *cache_map;
96         int                             max_events;
97         int                             upper_shift;
98         int                             lower_shift;
99         int                             event_mask;
100         int                             hv_bit;
101         int                             irq_bit;
102         int                             upper_nop;
103         int                             lower_nop;
104 };
105
106 static const struct perf_event_map ultra3_perfmon_event_map[] = {
107         [PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
108         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
109         [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
110         [PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
111 };
112
113 static const struct perf_event_map *ultra3_event_map(int event_id)
114 {
115         return &ultra3_perfmon_event_map[event_id];
116 }
117
118 static const cache_map_t ultra3_cache_map = {
119 [C(L1D)] = {
120         [C(OP_READ)] = {
121                 [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
122                 [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
123         },
124         [C(OP_WRITE)] = {
125                 [C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
126                 [C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
127         },
128         [C(OP_PREFETCH)] = {
129                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
130                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
131         },
132 },
133 [C(L1I)] = {
134         [C(OP_READ)] = {
135                 [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
136                 [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
137         },
138         [ C(OP_WRITE) ] = {
139                 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
140                 [ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
141         },
142         [ C(OP_PREFETCH) ] = {
143                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
144                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
145         },
146 },
147 [C(LL)] = {
148         [C(OP_READ)] = {
149                 [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
150                 [C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
151         },
152         [C(OP_WRITE)] = {
153                 [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
154                 [C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
155         },
156         [C(OP_PREFETCH)] = {
157                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
158                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
159         },
160 },
161 [C(DTLB)] = {
162         [C(OP_READ)] = {
163                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
164                 [C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
165         },
166         [ C(OP_WRITE) ] = {
167                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
168                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
169         },
170         [ C(OP_PREFETCH) ] = {
171                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
172                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
173         },
174 },
175 [C(ITLB)] = {
176         [C(OP_READ)] = {
177                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
178                 [C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
179         },
180         [ C(OP_WRITE) ] = {
181                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
182                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
183         },
184         [ C(OP_PREFETCH) ] = {
185                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
186                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
187         },
188 },
189 [C(BPU)] = {
190         [C(OP_READ)] = {
191                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
192                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
193         },
194         [ C(OP_WRITE) ] = {
195                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
196                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
197         },
198         [ C(OP_PREFETCH) ] = {
199                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
200                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
201         },
202 },
203 };
204
205 static const struct sparc_pmu ultra3_pmu = {
206         .event_map      = ultra3_event_map,
207         .cache_map      = &ultra3_cache_map,
208         .max_events     = ARRAY_SIZE(ultra3_perfmon_event_map),
209         .upper_shift    = 11,
210         .lower_shift    = 4,
211         .event_mask     = 0x3f,
212         .upper_nop      = 0x1c,
213         .lower_nop      = 0x14,
214 };
215
216 /* Niagara1 is very limited.  The upper PIC is hard-locked to count
217  * only instructions, so it is free running which creates all kinds of
218  * problems.  Some hardware designs make one wonder if the creator
219  * even looked at how this stuff gets used by software.
220  */
221 static const struct perf_event_map niagara1_perfmon_event_map[] = {
222         [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
223         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
224         [PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
225         [PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
226 };
227
228 static const struct perf_event_map *niagara1_event_map(int event_id)
229 {
230         return &niagara1_perfmon_event_map[event_id];
231 }
232
233 static const cache_map_t niagara1_cache_map = {
234 [C(L1D)] = {
235         [C(OP_READ)] = {
236                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
237                 [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
238         },
239         [C(OP_WRITE)] = {
240                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
241                 [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
242         },
243         [C(OP_PREFETCH)] = {
244                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
245                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
246         },
247 },
248 [C(L1I)] = {
249         [C(OP_READ)] = {
250                 [C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
251                 [C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
252         },
253         [ C(OP_WRITE) ] = {
254                 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
255                 [ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
256         },
257         [ C(OP_PREFETCH) ] = {
258                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
259                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
260         },
261 },
262 [C(LL)] = {
263         [C(OP_READ)] = {
264                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
265                 [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
266         },
267         [C(OP_WRITE)] = {
268                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
269                 [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
270         },
271         [C(OP_PREFETCH)] = {
272                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
273                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
274         },
275 },
276 [C(DTLB)] = {
277         [C(OP_READ)] = {
278                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
279                 [C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
280         },
281         [ C(OP_WRITE) ] = {
282                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
283                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
284         },
285         [ C(OP_PREFETCH) ] = {
286                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
287                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
288         },
289 },
290 [C(ITLB)] = {
291         [C(OP_READ)] = {
292                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
293                 [C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
294         },
295         [ C(OP_WRITE) ] = {
296                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
297                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
298         },
299         [ C(OP_PREFETCH) ] = {
300                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
301                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
302         },
303 },
304 [C(BPU)] = {
305         [C(OP_READ)] = {
306                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
307                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
308         },
309         [ C(OP_WRITE) ] = {
310                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
311                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
312         },
313         [ C(OP_PREFETCH) ] = {
314                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
315                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
316         },
317 },
318 };
319
320 static const struct sparc_pmu niagara1_pmu = {
321         .event_map      = niagara1_event_map,
322         .cache_map      = &niagara1_cache_map,
323         .max_events     = ARRAY_SIZE(niagara1_perfmon_event_map),
324         .upper_shift    = 0,
325         .lower_shift    = 4,
326         .event_mask     = 0x7,
327         .upper_nop      = 0x0,
328         .lower_nop      = 0x0,
329 };
330
331 static const struct perf_event_map niagara2_perfmon_event_map[] = {
332         [PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
333         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
334         [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
335         [PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
336         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
337         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
338 };
339
340 static const struct perf_event_map *niagara2_event_map(int event_id)
341 {
342         return &niagara2_perfmon_event_map[event_id];
343 }
344
345 static const cache_map_t niagara2_cache_map = {
346 [C(L1D)] = {
347         [C(OP_READ)] = {
348                 [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
349                 [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
350         },
351         [C(OP_WRITE)] = {
352                 [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
353                 [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
354         },
355         [C(OP_PREFETCH)] = {
356                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
357                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
358         },
359 },
360 [C(L1I)] = {
361         [C(OP_READ)] = {
362                 [C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
363                 [C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
364         },
365         [ C(OP_WRITE) ] = {
366                 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
367                 [ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
368         },
369         [ C(OP_PREFETCH) ] = {
370                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
371                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
372         },
373 },
374 [C(LL)] = {
375         [C(OP_READ)] = {
376                 [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
377                 [C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
378         },
379         [C(OP_WRITE)] = {
380                 [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
381                 [C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
382         },
383         [C(OP_PREFETCH)] = {
384                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
385                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
386         },
387 },
388 [C(DTLB)] = {
389         [C(OP_READ)] = {
390                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
391                 [C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
392         },
393         [ C(OP_WRITE) ] = {
394                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
395                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
396         },
397         [ C(OP_PREFETCH) ] = {
398                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
399                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
400         },
401 },
402 [C(ITLB)] = {
403         [C(OP_READ)] = {
404                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
405                 [C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
406         },
407         [ C(OP_WRITE) ] = {
408                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
409                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
410         },
411         [ C(OP_PREFETCH) ] = {
412                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
413                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
414         },
415 },
416 [C(BPU)] = {
417         [C(OP_READ)] = {
418                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
419                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
420         },
421         [ C(OP_WRITE) ] = {
422                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
423                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
424         },
425         [ C(OP_PREFETCH) ] = {
426                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
427                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
428         },
429 },
430 };
431
432 static const struct sparc_pmu niagara2_pmu = {
433         .event_map      = niagara2_event_map,
434         .cache_map      = &niagara2_cache_map,
435         .max_events     = ARRAY_SIZE(niagara2_perfmon_event_map),
436         .upper_shift    = 19,
437         .lower_shift    = 6,
438         .event_mask     = 0xfff,
439         .hv_bit         = 0x8,
440         .irq_bit        = 0x30,
441         .upper_nop      = 0x220,
442         .lower_nop      = 0x220,
443 };
444
445 static const struct sparc_pmu *sparc_pmu __read_mostly;
446
447 static u64 event_encoding(u64 event_id, int idx)
448 {
449         if (idx == PIC_UPPER_INDEX)
450                 event_id <<= sparc_pmu->upper_shift;
451         else
452                 event_id <<= sparc_pmu->lower_shift;
453         return event_id;
454 }
455
456 static u64 mask_for_index(int idx)
457 {
458         return event_encoding(sparc_pmu->event_mask, idx);
459 }
460
461 static u64 nop_for_index(int idx)
462 {
463         return event_encoding(idx == PIC_UPPER_INDEX ?
464                               sparc_pmu->upper_nop :
465                               sparc_pmu->lower_nop, idx);
466 }
467
468 static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
469 {
470         u64 val, mask = mask_for_index(idx);
471
472         val = cpuc->pcr;
473         val &= ~mask;
474         val |= hwc->config;
475         cpuc->pcr = val;
476
477         pcr_ops->write(cpuc->pcr);
478 }
479
480 static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
481 {
482         u64 mask = mask_for_index(idx);
483         u64 nop = nop_for_index(idx);
484         u64 val;
485
486         val = cpuc->pcr;
487         val &= ~mask;
488         val |= nop;
489         cpuc->pcr = val;
490
491         pcr_ops->write(cpuc->pcr);
492 }
493
494 void hw_perf_enable(void)
495 {
496         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
497         u64 val;
498         int i;
499
500         if (cpuc->enabled)
501                 return;
502
503         cpuc->enabled = 1;
504         barrier();
505
506         val = cpuc->pcr;
507
508         for (i = 0; i < MAX_HWEVENTS; i++) {
509                 struct perf_event *cp = cpuc->events[i];
510                 struct hw_perf_event *hwc;
511
512                 if (!cp)
513                         continue;
514                 hwc = &cp->hw;
515                 val |= hwc->config_base;
516         }
517
518         cpuc->pcr = val;
519
520         pcr_ops->write(cpuc->pcr);
521 }
522
523 void hw_perf_disable(void)
524 {
525         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
526         u64 val;
527
528         if (!cpuc->enabled)
529                 return;
530
531         cpuc->enabled = 0;
532
533         val = cpuc->pcr;
534         val &= ~(PCR_UTRACE | PCR_STRACE |
535                  sparc_pmu->hv_bit | sparc_pmu->irq_bit);
536         cpuc->pcr = val;
537
538         pcr_ops->write(cpuc->pcr);
539 }
540
541 static u32 read_pmc(int idx)
542 {
543         u64 val;
544
545         read_pic(val);
546         if (idx == PIC_UPPER_INDEX)
547                 val >>= 32;
548
549         return val & 0xffffffff;
550 }
551
552 static void write_pmc(int idx, u64 val)
553 {
554         u64 shift, mask, pic;
555
556         shift = 0;
557         if (idx == PIC_UPPER_INDEX)
558                 shift = 32;
559
560         mask = ((u64) 0xffffffff) << shift;
561         val <<= shift;
562
563         read_pic(pic);
564         pic &= ~mask;
565         pic |= val;
566         write_pic(pic);
567 }
568
569 static int sparc_perf_event_set_period(struct perf_event *event,
570                                        struct hw_perf_event *hwc, int idx)
571 {
572         s64 left = atomic64_read(&hwc->period_left);
573         s64 period = hwc->sample_period;
574         int ret = 0;
575
576         if (unlikely(left <= -period)) {
577                 left = period;
578                 atomic64_set(&hwc->period_left, left);
579                 hwc->last_period = period;
580                 ret = 1;
581         }
582
583         if (unlikely(left <= 0)) {
584                 left += period;
585                 atomic64_set(&hwc->period_left, left);
586                 hwc->last_period = period;
587                 ret = 1;
588         }
589         if (left > MAX_PERIOD)
590                 left = MAX_PERIOD;
591
592         atomic64_set(&hwc->prev_count, (u64)-left);
593
594         write_pmc(idx, (u64)(-left) & 0xffffffff);
595
596         perf_event_update_userpage(event);
597
598         return ret;
599 }
600
601 static int sparc_pmu_enable(struct perf_event *event)
602 {
603         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
604         struct hw_perf_event *hwc = &event->hw;
605         int idx = hwc->idx;
606
607         if (test_and_set_bit(idx, cpuc->used_mask))
608                 return -EAGAIN;
609
610         sparc_pmu_disable_event(cpuc, hwc, idx);
611
612         cpuc->events[idx] = event;
613         set_bit(idx, cpuc->active_mask);
614
615         sparc_perf_event_set_period(event, hwc, idx);
616         sparc_pmu_enable_event(cpuc, hwc, idx);
617         perf_event_update_userpage(event);
618         return 0;
619 }
620
621 static u64 sparc_perf_event_update(struct perf_event *event,
622                                    struct hw_perf_event *hwc, int idx)
623 {
624         int shift = 64 - 32;
625         u64 prev_raw_count, new_raw_count;
626         s64 delta;
627
628 again:
629         prev_raw_count = atomic64_read(&hwc->prev_count);
630         new_raw_count = read_pmc(idx);
631
632         if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
633                              new_raw_count) != prev_raw_count)
634                 goto again;
635
636         delta = (new_raw_count << shift) - (prev_raw_count << shift);
637         delta >>= shift;
638
639         atomic64_add(delta, &event->count);
640         atomic64_sub(delta, &hwc->period_left);
641
642         return new_raw_count;
643 }
644
645 static void sparc_pmu_disable(struct perf_event *event)
646 {
647         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
648         struct hw_perf_event *hwc = &event->hw;
649         int idx = hwc->idx;
650
651         clear_bit(idx, cpuc->active_mask);
652         sparc_pmu_disable_event(cpuc, hwc, idx);
653
654         barrier();
655
656         sparc_perf_event_update(event, hwc, idx);
657         cpuc->events[idx] = NULL;
658         clear_bit(idx, cpuc->used_mask);
659
660         perf_event_update_userpage(event);
661 }
662
663 static void sparc_pmu_read(struct perf_event *event)
664 {
665         struct hw_perf_event *hwc = &event->hw;
666
667         sparc_perf_event_update(event, hwc, hwc->idx);
668 }
669
670 static void sparc_pmu_unthrottle(struct perf_event *event)
671 {
672         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
673         struct hw_perf_event *hwc = &event->hw;
674
675         sparc_pmu_enable_event(cpuc, hwc, hwc->idx);
676 }
677
678 static atomic_t active_events = ATOMIC_INIT(0);
679 static DEFINE_MUTEX(pmc_grab_mutex);
680
681 static void perf_stop_nmi_watchdog(void *unused)
682 {
683         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
684
685         stop_nmi_watchdog(NULL);
686         cpuc->pcr = pcr_ops->read();
687 }
688
689 void perf_event_grab_pmc(void)
690 {
691         if (atomic_inc_not_zero(&active_events))
692                 return;
693
694         mutex_lock(&pmc_grab_mutex);
695         if (atomic_read(&active_events) == 0) {
696                 if (atomic_read(&nmi_active) > 0) {
697                         on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
698                         BUG_ON(atomic_read(&nmi_active) != 0);
699                 }
700                 atomic_inc(&active_events);
701         }
702         mutex_unlock(&pmc_grab_mutex);
703 }
704
705 void perf_event_release_pmc(void)
706 {
707         if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
708                 if (atomic_read(&nmi_active) == 0)
709                         on_each_cpu(start_nmi_watchdog, NULL, 1);
710                 mutex_unlock(&pmc_grab_mutex);
711         }
712 }
713
714 static const struct perf_event_map *sparc_map_cache_event(u64 config)
715 {
716         unsigned int cache_type, cache_op, cache_result;
717         const struct perf_event_map *pmap;
718
719         if (!sparc_pmu->cache_map)
720                 return ERR_PTR(-ENOENT);
721
722         cache_type = (config >>  0) & 0xff;
723         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
724                 return ERR_PTR(-EINVAL);
725
726         cache_op = (config >>  8) & 0xff;
727         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
728                 return ERR_PTR(-EINVAL);
729
730         cache_result = (config >> 16) & 0xff;
731         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
732                 return ERR_PTR(-EINVAL);
733
734         pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
735
736         if (pmap->encoding == CACHE_OP_UNSUPPORTED)
737                 return ERR_PTR(-ENOENT);
738
739         if (pmap->encoding == CACHE_OP_NONSENSE)
740                 return ERR_PTR(-EINVAL);
741
742         return pmap;
743 }
744
745 static void hw_perf_event_destroy(struct perf_event *event)
746 {
747         perf_event_release_pmc();
748 }
749
750 /* Make sure all events can be scheduled into the hardware at
751  * the same time.  This is simplified by the fact that we only
752  * need to support 2 simultaneous HW events.
753  */
754 static int sparc_check_constraints(unsigned long *events, int n_ev)
755 {
756         if (n_ev <= perf_max_events) {
757                 u8 msk1, msk2;
758                 u16 dummy;
759
760                 if (n_ev == 1)
761                         return 0;
762                 BUG_ON(n_ev != 2);
763                 perf_event_decode(events[0], &dummy, &msk1);
764                 perf_event_decode(events[1], &dummy, &msk2);
765
766                 /* If both events can go on any counter, OK.  */
767                 if (msk1 == (PIC_UPPER | PIC_LOWER) &&
768                     msk2 == (PIC_UPPER | PIC_LOWER))
769                         return 0;
770
771                 /* If one event is limited to a specific counter,
772                  * and the other can go on both, OK.
773                  */
774                 if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
775                     msk2 == (PIC_UPPER | PIC_LOWER))
776                         return 0;
777                 if ((msk2 == PIC_UPPER || msk2 == PIC_LOWER) &&
778                     msk1 == (PIC_UPPER | PIC_LOWER))
779                         return 0;
780
781                 /* If the events are fixed to different counters, OK.  */
782                 if ((msk1 == PIC_UPPER && msk2 == PIC_LOWER) ||
783                     (msk1 == PIC_LOWER && msk2 == PIC_UPPER))
784                         return 0;
785
786                 /* Otherwise, there is a conflict.  */
787         }
788
789         return -1;
790 }
791
792 static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
793 {
794         int eu = 0, ek = 0, eh = 0;
795         struct perf_event *event;
796         int i, n, first;
797
798         n = n_prev + n_new;
799         if (n <= 1)
800                 return 0;
801
802         first = 1;
803         for (i = 0; i < n; i++) {
804                 event = evts[i];
805                 if (first) {
806                         eu = event->attr.exclude_user;
807                         ek = event->attr.exclude_kernel;
808                         eh = event->attr.exclude_hv;
809                         first = 0;
810                 } else if (event->attr.exclude_user != eu ||
811                            event->attr.exclude_kernel != ek ||
812                            event->attr.exclude_hv != eh) {
813                         return -EAGAIN;
814                 }
815         }
816
817         return 0;
818 }
819
820 static int collect_events(struct perf_event *group, int max_count,
821                           struct perf_event *evts[], unsigned long *events)
822 {
823         struct perf_event *event;
824         int n = 0;
825
826         if (!is_software_event(group)) {
827                 if (n >= max_count)
828                         return -1;
829                 evts[n] = group;
830                 events[n++] = group->hw.event_base;
831         }
832         list_for_each_entry(event, &group->sibling_list, group_entry) {
833                 if (!is_software_event(event) &&
834                     event->state != PERF_EVENT_STATE_OFF) {
835                         if (n >= max_count)
836                                 return -1;
837                         evts[n] = event;
838                         events[n++] = event->hw.event_base;
839                 }
840         }
841         return n;
842 }
843
844 static int __hw_perf_event_init(struct perf_event *event)
845 {
846         struct perf_event_attr *attr = &event->attr;
847         struct perf_event *evts[MAX_HWEVENTS];
848         struct hw_perf_event *hwc = &event->hw;
849         unsigned long events[MAX_HWEVENTS];
850         const struct perf_event_map *pmap;
851         u64 enc;
852         int n;
853
854         if (atomic_read(&nmi_active) < 0)
855                 return -ENODEV;
856
857         if (attr->type == PERF_TYPE_HARDWARE) {
858                 if (attr->config >= sparc_pmu->max_events)
859                         return -EINVAL;
860                 pmap = sparc_pmu->event_map(attr->config);
861         } else if (attr->type == PERF_TYPE_HW_CACHE) {
862                 pmap = sparc_map_cache_event(attr->config);
863                 if (IS_ERR(pmap))
864                         return PTR_ERR(pmap);
865         } else
866                 return -EOPNOTSUPP;
867
868         /* We save the enable bits in the config_base.  So to
869          * turn off sampling just write 'config', and to enable
870          * things write 'config | config_base'.
871          */
872         hwc->config_base = sparc_pmu->irq_bit;
873         if (!attr->exclude_user)
874                 hwc->config_base |= PCR_UTRACE;
875         if (!attr->exclude_kernel)
876                 hwc->config_base |= PCR_STRACE;
877         if (!attr->exclude_hv)
878                 hwc->config_base |= sparc_pmu->hv_bit;
879
880         hwc->event_base = perf_event_encode(pmap);
881
882         enc = pmap->encoding;
883
884         n = 0;
885         if (event->group_leader != event) {
886                 n = collect_events(event->group_leader,
887                                    perf_max_events - 1,
888                                    evts, events);
889                 if (n < 0)
890                         return -EINVAL;
891         }
892         events[n] = hwc->event_base;
893         evts[n] = event;
894
895         if (check_excludes(evts, n, 1))
896                 return -EINVAL;
897
898         if (sparc_check_constraints(events, n + 1))
899                 return -EINVAL;
900
901         /* Try to do all error checking before this point, as unwinding
902          * state after grabbing the PMC is difficult.
903          */
904         perf_event_grab_pmc();
905         event->destroy = hw_perf_event_destroy;
906
907         if (!hwc->sample_period) {
908                 hwc->sample_period = MAX_PERIOD;
909                 hwc->last_period = hwc->sample_period;
910                 atomic64_set(&hwc->period_left, hwc->sample_period);
911         }
912
913         if (pmap->pic_mask & PIC_UPPER) {
914                 hwc->idx = PIC_UPPER_INDEX;
915                 enc <<= sparc_pmu->upper_shift;
916         } else {
917                 hwc->idx = PIC_LOWER_INDEX;
918                 enc <<= sparc_pmu->lower_shift;
919         }
920
921         hwc->config |= enc;
922         return 0;
923 }
924
925 static const struct pmu pmu = {
926         .enable         = sparc_pmu_enable,
927         .disable        = sparc_pmu_disable,
928         .read           = sparc_pmu_read,
929         .unthrottle     = sparc_pmu_unthrottle,
930 };
931
932 const struct pmu *hw_perf_event_init(struct perf_event *event)
933 {
934         int err = __hw_perf_event_init(event);
935
936         if (err)
937                 return ERR_PTR(err);
938         return &pmu;
939 }
940
941 void perf_event_print_debug(void)
942 {
943         unsigned long flags;
944         u64 pcr, pic;
945         int cpu;
946
947         if (!sparc_pmu)
948                 return;
949
950         local_irq_save(flags);
951
952         cpu = smp_processor_id();
953
954         pcr = pcr_ops->read();
955         read_pic(pic);
956
957         pr_info("\n");
958         pr_info("CPU#%d: PCR[%016llx] PIC[%016llx]\n",
959                 cpu, pcr, pic);
960
961         local_irq_restore(flags);
962 }
963
964 static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
965                                             unsigned long cmd, void *__args)
966 {
967         struct die_args *args = __args;
968         struct perf_sample_data data;
969         struct cpu_hw_events *cpuc;
970         struct pt_regs *regs;
971         int idx;
972
973         if (!atomic_read(&active_events))
974                 return NOTIFY_DONE;
975
976         switch (cmd) {
977         case DIE_NMI:
978                 break;
979
980         default:
981                 return NOTIFY_DONE;
982         }
983
984         regs = args->regs;
985
986         data.addr = 0;
987
988         cpuc = &__get_cpu_var(cpu_hw_events);
989
990         /* If the PMU has the TOE IRQ enable bits, we need to do a
991          * dummy write to the %pcr to clear the overflow bits and thus
992          * the interrupt.
993          *
994          * Do this before we peek at the counters to determine
995          * overflow so we don't lose any events.
996          */
997         if (sparc_pmu->irq_bit)
998                 pcr_ops->write(cpuc->pcr);
999
1000         for (idx = 0; idx < MAX_HWEVENTS; idx++) {
1001                 struct perf_event *event = cpuc->events[idx];
1002                 struct hw_perf_event *hwc;
1003                 u64 val;
1004
1005                 if (!test_bit(idx, cpuc->active_mask))
1006                         continue;
1007                 hwc = &event->hw;
1008                 val = sparc_perf_event_update(event, hwc, idx);
1009                 if (val & (1ULL << 31))
1010                         continue;
1011
1012                 data.period = event->hw.last_period;
1013                 if (!sparc_perf_event_set_period(event, hwc, idx))
1014                         continue;
1015
1016                 if (perf_event_overflow(event, 1, &data, regs))
1017                         sparc_pmu_disable_event(cpuc, hwc, idx);
1018         }
1019
1020         return NOTIFY_STOP;
1021 }
1022
1023 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1024         .notifier_call          = perf_event_nmi_handler,
1025 };
1026
1027 static bool __init supported_pmu(void)
1028 {
1029         if (!strcmp(sparc_pmu_type, "ultra3") ||
1030             !strcmp(sparc_pmu_type, "ultra3+") ||
1031             !strcmp(sparc_pmu_type, "ultra3i") ||
1032             !strcmp(sparc_pmu_type, "ultra4+")) {
1033                 sparc_pmu = &ultra3_pmu;
1034                 return true;
1035         }
1036         if (!strcmp(sparc_pmu_type, "niagara")) {
1037                 sparc_pmu = &niagara1_pmu;
1038                 return true;
1039         }
1040         if (!strcmp(sparc_pmu_type, "niagara2")) {
1041                 sparc_pmu = &niagara2_pmu;
1042                 return true;
1043         }
1044         return false;
1045 }
1046
1047 void __init init_hw_perf_events(void)
1048 {
1049         pr_info("Performance events: ");
1050
1051         if (!supported_pmu()) {
1052                 pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1053                 return;
1054         }
1055
1056         pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
1057
1058         /* All sparc64 PMUs currently have 2 events.  But this simple
1059          * driver only supports one active event at a time.
1060          */
1061         perf_max_events = 1;
1062
1063         register_die_notifier(&perf_event_nmi_notifier);
1064 }