sh: cleanup of do_address_error()
[safe/jmp/linux-2.6] / arch / sh / kernel / traps_32.c
1 /*
2  * 'traps.c' handles hardware traps and faults after we have saved some
3  * state in 'entry.S'.
4  *
5  *  SuperH version: Copyright (C) 1999 Niibe Yutaka
6  *                  Copyright (C) 2000 Philipp Rumpf
7  *                  Copyright (C) 2000 David Howells
8  *                  Copyright (C) 2002 - 2007 Paul Mundt
9  *
10  * This file is subject to the terms and conditions of the GNU General Public
11  * License.  See the file "COPYING" in the main directory of this archive
12  * for more details.
13  */
14 #include <linux/kernel.h>
15 #include <linux/ptrace.h>
16 #include <linux/hardirq.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
19 #include <linux/module.h>
20 #include <linux/kallsyms.h>
21 #include <linux/io.h>
22 #include <linux/bug.h>
23 #include <linux/debug_locks.h>
24 #include <linux/kdebug.h>
25 #include <linux/kexec.h>
26 #include <linux/limits.h>
27 #include <linux/proc_fs.h>
28 #include <asm/system.h>
29 #include <asm/uaccess.h>
30 #include <asm/fpu.h>
31 #include <asm/kprobes.h>
32
33 #ifdef CONFIG_CPU_SH2
34 # define TRAP_RESERVED_INST     4
35 # define TRAP_ILLEGAL_SLOT_INST 6
36 # define TRAP_ADDRESS_ERROR     9
37 # ifdef CONFIG_CPU_SH2A
38 #  define TRAP_UBC              12
39 #  define TRAP_FPU_ERROR        13
40 #  define TRAP_DIVZERO_ERROR    17
41 #  define TRAP_DIVOVF_ERROR     18
42 # endif
43 #else
44 #define TRAP_RESERVED_INST      12
45 #define TRAP_ILLEGAL_SLOT_INST  13
46 #endif
47
48 static unsigned long se_user;
49 static unsigned long se_sys;
50 static unsigned long se_skipped;
51 static unsigned long se_half;
52 static unsigned long se_word;
53 static unsigned long se_dword;
54 static unsigned long se_multi;
55 /* bitfield: 1: warn 2: fixup 4: signal -> combinations 2|4 && 1|2|4 are not
56    valid! */
57 static int se_usermode = 3;
58 /* 0: no warning 1: print a warning message */
59 static int se_kernmode_warn = 1;
60
61 #ifdef CONFIG_PROC_FS
62 static const char *se_usermode_action[] = {
63         "ignored",
64         "warn",
65         "fixup",
66         "fixup+warn",
67         "signal",
68         "signal+warn"
69 };
70
71 static int
72 proc_alignment_read(char *page, char **start, off_t off, int count, int *eof,
73                     void *data)
74 {
75         char *p = page;
76         int len;
77
78         p += sprintf(p, "User:\t\t%lu\n", se_user);
79         p += sprintf(p, "System:\t\t%lu\n", se_sys);
80         p += sprintf(p, "Skipped:\t%lu\n", se_skipped);
81         p += sprintf(p, "Half:\t\t%lu\n", se_half);
82         p += sprintf(p, "Word:\t\t%lu\n", se_word);
83         p += sprintf(p, "DWord:\t\t%lu\n", se_dword);
84         p += sprintf(p, "Multi:\t\t%lu\n", se_multi);
85         p += sprintf(p, "User faults:\t%i (%s)\n", se_usermode,
86                         se_usermode_action[se_usermode]);
87         p += sprintf(p, "Kernel faults:\t%i (fixup%s)\n", se_kernmode_warn,
88                         se_kernmode_warn ? "+warn" : "");
89
90         len = (p - page) - off;
91         if (len < 0)
92                 len = 0;
93
94         *eof = (len <= count) ? 1 : 0;
95         *start = page + off;
96
97         return len;
98 }
99
100 static int proc_alignment_write(struct file *file, const char __user *buffer,
101                                 unsigned long count, void *data)
102 {
103         char mode;
104
105         if (count > 0) {
106                 if (get_user(mode, buffer))
107                         return -EFAULT;
108                 if (mode >= '0' && mode <= '5')
109                         se_usermode = mode - '0';
110         }
111         return count;
112 }
113
114 static int proc_alignment_kern_write(struct file *file, const char __user *buffer,
115                                      unsigned long count, void *data)
116 {
117         char mode;
118
119         if (count > 0) {
120                 if (get_user(mode, buffer))
121                         return -EFAULT;
122                 if (mode >= '0' && mode <= '1')
123                         se_kernmode_warn = mode - '0';
124         }
125         return count;
126 }
127 #endif
128
129 static void dump_mem(const char *str, unsigned long bottom, unsigned long top)
130 {
131         unsigned long p;
132         int i;
133
134         printk("%s(0x%08lx to 0x%08lx)\n", str, bottom, top);
135
136         for (p = bottom & ~31; p < top; ) {
137                 printk("%04lx: ", p & 0xffff);
138
139                 for (i = 0; i < 8; i++, p += 4) {
140                         unsigned int val;
141
142                         if (p < bottom || p >= top)
143                                 printk("         ");
144                         else {
145                                 if (__get_user(val, (unsigned int __user *)p)) {
146                                         printk("\n");
147                                         return;
148                                 }
149                                 printk("%08x ", val);
150                         }
151                 }
152                 printk("\n");
153         }
154 }
155
156 static DEFINE_SPINLOCK(die_lock);
157
158 void die(const char * str, struct pt_regs * regs, long err)
159 {
160         static int die_counter;
161
162         oops_enter();
163
164         console_verbose();
165         spin_lock_irq(&die_lock);
166         bust_spinlocks(1);
167
168         printk("%s: %04lx [#%d]\n", str, err & 0xffff, ++die_counter);
169
170         print_modules();
171         show_regs(regs);
172
173         printk("Process: %s (pid: %d, stack limit = %p)\n", current->comm,
174                         task_pid_nr(current), task_stack_page(current) + 1);
175
176         if (!user_mode(regs) || in_interrupt())
177                 dump_mem("Stack: ", regs->regs[15], THREAD_SIZE +
178                          (unsigned long)task_stack_page(current));
179
180         notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV);
181
182         bust_spinlocks(0);
183         add_taint(TAINT_DIE);
184         spin_unlock_irq(&die_lock);
185
186         if (kexec_should_crash(current))
187                 crash_kexec(regs);
188
189         if (in_interrupt())
190                 panic("Fatal exception in interrupt");
191
192         if (panic_on_oops)
193                 panic("Fatal exception");
194
195         oops_exit();
196         do_exit(SIGSEGV);
197 }
198
199 static inline void die_if_kernel(const char *str, struct pt_regs *regs,
200                                  long err)
201 {
202         if (!user_mode(regs))
203                 die(str, regs, err);
204 }
205
206 /*
207  * try and fix up kernelspace address errors
208  * - userspace errors just cause EFAULT to be returned, resulting in SEGV
209  * - kernel/userspace interfaces cause a jump to an appropriate handler
210  * - other kernel errors are bad
211  */
212 static void die_if_no_fixup(const char * str, struct pt_regs * regs, long err)
213 {
214         if (!user_mode(regs)) {
215                 const struct exception_table_entry *fixup;
216                 fixup = search_exception_tables(regs->pc);
217                 if (fixup) {
218                         regs->pc = fixup->fixup;
219                         return;
220                 }
221
222                 die(str, regs, err);
223         }
224 }
225
226 static inline void sign_extend(unsigned int count, unsigned char *dst)
227 {
228 #ifdef __LITTLE_ENDIAN__
229         if ((count == 1) && dst[0] & 0x80) {
230                 dst[1] = 0xff;
231                 dst[2] = 0xff;
232                 dst[3] = 0xff;
233         }
234         if ((count == 2) && dst[1] & 0x80) {
235                 dst[2] = 0xff;
236                 dst[3] = 0xff;
237         }
238 #else
239         if ((count == 1) && dst[3] & 0x80) {
240                 dst[2] = 0xff;
241                 dst[1] = 0xff;
242                 dst[0] = 0xff;
243         }
244         if ((count == 2) && dst[2] & 0x80) {
245                 dst[1] = 0xff;
246                 dst[0] = 0xff;
247         }
248 #endif
249 }
250
251 static struct mem_access user_mem_access = {
252         copy_from_user,
253         copy_to_user,
254 };
255
256 /*
257  * handle an instruction that does an unaligned memory access by emulating the
258  * desired behaviour
259  * - note that PC _may not_ point to the faulting instruction
260  *   (if that instruction is in a branch delay slot)
261  * - return 0 if emulation okay, -EFAULT on existential error
262  */
263 static int handle_unaligned_ins(insn_size_t instruction, struct pt_regs *regs,
264                                 struct mem_access *ma)
265 {
266         int ret, index, count;
267         unsigned long *rm, *rn;
268         unsigned char *src, *dst;
269         unsigned char __user *srcu, *dstu;
270
271         index = (instruction>>8)&15;    /* 0x0F00 */
272         rn = &regs->regs[index];
273
274         index = (instruction>>4)&15;    /* 0x00F0 */
275         rm = &regs->regs[index];
276
277         count = 1<<(instruction&3);
278
279         switch (count) {
280         case 1: se_half  += 1; break;
281         case 2: se_word  += 1; break;
282         case 4: se_dword += 1; break;
283         case 8: se_multi += 1; break; /* ??? */
284         }
285
286         ret = -EFAULT;
287         switch (instruction>>12) {
288         case 0: /* mov.[bwl] to/from memory via r0+rn */
289                 if (instruction & 8) {
290                         /* from memory */
291                         srcu = (unsigned char __user *)*rm;
292                         srcu += regs->regs[0];
293                         dst = (unsigned char *)rn;
294                         *(unsigned long *)dst = 0;
295
296 #if !defined(__LITTLE_ENDIAN__)
297                         dst += 4-count;
298 #endif
299                         if (ma->from(dst, srcu, count))
300                                 goto fetch_fault;
301
302                         sign_extend(count, dst);
303                 } else {
304                         /* to memory */
305                         src = (unsigned char *)rm;
306 #if !defined(__LITTLE_ENDIAN__)
307                         src += 4-count;
308 #endif
309                         dstu = (unsigned char __user *)*rn;
310                         dstu += regs->regs[0];
311
312                         if (ma->to(dstu, src, count))
313                                 goto fetch_fault;
314                 }
315                 ret = 0;
316                 break;
317
318         case 1: /* mov.l Rm,@(disp,Rn) */
319                 src = (unsigned char*) rm;
320                 dstu = (unsigned char __user *)*rn;
321                 dstu += (instruction&0x000F)<<2;
322
323                 if (ma->to(dstu, src, 4))
324                         goto fetch_fault;
325                 ret = 0;
326                 break;
327
328         case 2: /* mov.[bwl] to memory, possibly with pre-decrement */
329                 if (instruction & 4)
330                         *rn -= count;
331                 src = (unsigned char*) rm;
332                 dstu = (unsigned char __user *)*rn;
333 #if !defined(__LITTLE_ENDIAN__)
334                 src += 4-count;
335 #endif
336                 if (ma->to(dstu, src, count))
337                         goto fetch_fault;
338                 ret = 0;
339                 break;
340
341         case 5: /* mov.l @(disp,Rm),Rn */
342                 srcu = (unsigned char __user *)*rm;
343                 srcu += (instruction & 0x000F) << 2;
344                 dst = (unsigned char *)rn;
345                 *(unsigned long *)dst = 0;
346
347                 if (ma->from(dst, srcu, 4))
348                         goto fetch_fault;
349                 ret = 0;
350                 break;
351
352         case 6: /* mov.[bwl] from memory, possibly with post-increment */
353                 srcu = (unsigned char __user *)*rm;
354                 if (instruction & 4)
355                         *rm += count;
356                 dst = (unsigned char*) rn;
357                 *(unsigned long*)dst = 0;
358
359 #if !defined(__LITTLE_ENDIAN__)
360                 dst += 4-count;
361 #endif
362                 if (ma->from(dst, srcu, count))
363                         goto fetch_fault;
364                 sign_extend(count, dst);
365                 ret = 0;
366                 break;
367
368         case 8:
369                 switch ((instruction&0xFF00)>>8) {
370                 case 0x81: /* mov.w R0,@(disp,Rn) */
371                         src = (unsigned char *) &regs->regs[0];
372 #if !defined(__LITTLE_ENDIAN__)
373                         src += 2;
374 #endif
375                         dstu = (unsigned char __user *)*rm; /* called Rn in the spec */
376                         dstu += (instruction & 0x000F) << 1;
377
378                         if (ma->to(dstu, src, 2))
379                                 goto fetch_fault;
380                         ret = 0;
381                         break;
382
383                 case 0x85: /* mov.w @(disp,Rm),R0 */
384                         srcu = (unsigned char __user *)*rm;
385                         srcu += (instruction & 0x000F) << 1;
386                         dst = (unsigned char *) &regs->regs[0];
387                         *(unsigned long *)dst = 0;
388
389 #if !defined(__LITTLE_ENDIAN__)
390                         dst += 2;
391 #endif
392                         if (ma->from(dst, srcu, 2))
393                                 goto fetch_fault;
394                         sign_extend(2, dst);
395                         ret = 0;
396                         break;
397                 }
398                 break;
399         }
400         return ret;
401
402  fetch_fault:
403         /* Argh. Address not only misaligned but also non-existent.
404          * Raise an EFAULT and see if it's trapped
405          */
406         die_if_no_fixup("Fault in unaligned fixup", regs, 0);
407         return -EFAULT;
408 }
409
410 /*
411  * emulate the instruction in the delay slot
412  * - fetches the instruction from PC+2
413  */
414 static inline int handle_delayslot(struct pt_regs *regs,
415                                    insn_size_t old_instruction,
416                                    struct mem_access *ma)
417 {
418         insn_size_t instruction;
419         void __user *addr = (void __user *)(regs->pc +
420                 instruction_size(old_instruction));
421
422         if (copy_from_user(&instruction, addr, sizeof(instruction))) {
423                 /* the instruction-fetch faulted */
424                 if (user_mode(regs))
425                         return -EFAULT;
426
427                 /* kernel */
428                 die("delay-slot-insn faulting in handle_unaligned_delayslot",
429                     regs, 0);
430         }
431
432         return handle_unaligned_ins(instruction, regs, ma);
433 }
434
435 /*
436  * handle an instruction that does an unaligned memory access
437  * - have to be careful of branch delay-slot instructions that fault
438  *  SH3:
439  *   - if the branch would be taken PC points to the branch
440  *   - if the branch would not be taken, PC points to delay-slot
441  *  SH4:
442  *   - PC always points to delayed branch
443  * - return 0 if handled, -EFAULT if failed (may not return if in kernel)
444  */
445
446 /* Macros to determine offset from current PC for branch instructions */
447 /* Explicit type coercion is used to force sign extension where needed */
448 #define SH_PC_8BIT_OFFSET(instr) ((((signed char)(instr))*2) + 4)
449 #define SH_PC_12BIT_OFFSET(instr) ((((signed short)(instr<<4))>>3) + 4)
450
451 int handle_unaligned_access(insn_size_t instruction, struct pt_regs *regs,
452                             struct mem_access *ma)
453 {
454         u_int rm;
455         int ret, index;
456
457         index = (instruction>>8)&15;    /* 0x0F00 */
458         rm = regs->regs[index];
459
460         /* shout about fixups */
461         if (printk_ratelimit())
462                 printk(KERN_NOTICE "Fixing up unaligned %s access "
463                        "in \"%s\" pid=%d pc=0x%p ins=0x%04hx\n",
464                        user_mode(regs) ? "userspace" : "kernel",
465                        current->comm, task_pid_nr(current),
466                        (void *)regs->pc, instruction);
467
468         ret = -EFAULT;
469         switch (instruction&0xF000) {
470         case 0x0000:
471                 if (instruction==0x000B) {
472                         /* rts */
473                         ret = handle_delayslot(regs, instruction, ma);
474                         if (ret==0)
475                                 regs->pc = regs->pr;
476                 }
477                 else if ((instruction&0x00FF)==0x0023) {
478                         /* braf @Rm */
479                         ret = handle_delayslot(regs, instruction, ma);
480                         if (ret==0)
481                                 regs->pc += rm + 4;
482                 }
483                 else if ((instruction&0x00FF)==0x0003) {
484                         /* bsrf @Rm */
485                         ret = handle_delayslot(regs, instruction, ma);
486                         if (ret==0) {
487                                 regs->pr = regs->pc + 4;
488                                 regs->pc += rm + 4;
489                         }
490                 }
491                 else {
492                         /* mov.[bwl] to/from memory via r0+rn */
493                         goto simple;
494                 }
495                 break;
496
497         case 0x1000: /* mov.l Rm,@(disp,Rn) */
498                 goto simple;
499
500         case 0x2000: /* mov.[bwl] to memory, possibly with pre-decrement */
501                 goto simple;
502
503         case 0x4000:
504                 if ((instruction&0x00FF)==0x002B) {
505                         /* jmp @Rm */
506                         ret = handle_delayslot(regs, instruction, ma);
507                         if (ret==0)
508                                 regs->pc = rm;
509                 }
510                 else if ((instruction&0x00FF)==0x000B) {
511                         /* jsr @Rm */
512                         ret = handle_delayslot(regs, instruction, ma);
513                         if (ret==0) {
514                                 regs->pr = regs->pc + 4;
515                                 regs->pc = rm;
516                         }
517                 }
518                 else {
519                         /* mov.[bwl] to/from memory via r0+rn */
520                         goto simple;
521                 }
522                 break;
523
524         case 0x5000: /* mov.l @(disp,Rm),Rn */
525                 goto simple;
526
527         case 0x6000: /* mov.[bwl] from memory, possibly with post-increment */
528                 goto simple;
529
530         case 0x8000: /* bf lab, bf/s lab, bt lab, bt/s lab */
531                 switch (instruction&0x0F00) {
532                 case 0x0100: /* mov.w R0,@(disp,Rm) */
533                         goto simple;
534                 case 0x0500: /* mov.w @(disp,Rm),R0 */
535                         goto simple;
536                 case 0x0B00: /* bf   lab - no delayslot*/
537                         break;
538                 case 0x0F00: /* bf/s lab */
539                         ret = handle_delayslot(regs, instruction, ma);
540                         if (ret==0) {
541 #if defined(CONFIG_CPU_SH4) || defined(CONFIG_SH7705_CACHE_32KB)
542                                 if ((regs->sr & 0x00000001) != 0)
543                                         regs->pc += 4; /* next after slot */
544                                 else
545 #endif
546                                         regs->pc += SH_PC_8BIT_OFFSET(instruction);
547                         }
548                         break;
549                 case 0x0900: /* bt   lab - no delayslot */
550                         break;
551                 case 0x0D00: /* bt/s lab */
552                         ret = handle_delayslot(regs, instruction, ma);
553                         if (ret==0) {
554 #if defined(CONFIG_CPU_SH4) || defined(CONFIG_SH7705_CACHE_32KB)
555                                 if ((regs->sr & 0x00000001) == 0)
556                                         regs->pc += 4; /* next after slot */
557                                 else
558 #endif
559                                         regs->pc += SH_PC_8BIT_OFFSET(instruction);
560                         }
561                         break;
562                 }
563                 break;
564
565         case 0xA000: /* bra label */
566                 ret = handle_delayslot(regs, instruction, ma);
567                 if (ret==0)
568                         regs->pc += SH_PC_12BIT_OFFSET(instruction);
569                 break;
570
571         case 0xB000: /* bsr label */
572                 ret = handle_delayslot(regs, instruction, ma);
573                 if (ret==0) {
574                         regs->pr = regs->pc + 4;
575                         regs->pc += SH_PC_12BIT_OFFSET(instruction);
576                 }
577                 break;
578         }
579         return ret;
580
581         /* handle non-delay-slot instruction */
582  simple:
583         ret = handle_unaligned_ins(instruction, regs, ma);
584         if (ret==0)
585                 regs->pc += instruction_size(instruction);
586         return ret;
587 }
588
589 /*
590  * Handle various address error exceptions:
591  *  - instruction address error:
592  *       misaligned PC
593  *       PC >= 0x80000000 in user mode
594  *  - data address error (read and write)
595  *       misaligned data access
596  *       access to >= 0x80000000 is user mode
597  * Unfortuntaly we can't distinguish between instruction address error
598  * and data address errors caused by read accesses.
599  */
600 asmlinkage void do_address_error(struct pt_regs *regs,
601                                  unsigned long writeaccess,
602                                  unsigned long address)
603 {
604         unsigned long error_code = 0;
605         mm_segment_t oldfs;
606         siginfo_t info;
607         insn_size_t instruction;
608         int tmp;
609
610         /* Intentional ifdef */
611 #ifdef CONFIG_CPU_HAS_SR_RB
612         error_code = lookup_exception_vector();
613 #endif
614
615         oldfs = get_fs();
616
617         if (user_mode(regs)) {
618                 int si_code = BUS_ADRERR;
619
620                 local_irq_enable();
621
622                 se_user += 1;
623
624 #ifndef CONFIG_CPU_SH2A
625                 set_fs(USER_DS);
626                 if (copy_from_user(&instruction, (u16 *)(regs->pc & ~1), 2)) {
627                         set_fs(oldfs);
628                         goto uspace_segv;
629                 }
630                 set_fs(oldfs);
631
632                 /* shout about userspace fixups */
633                 if (se_usermode & 1)
634                         printk(KERN_NOTICE "Unaligned userspace access "
635                                "in \"%s\" pid=%d pc=0x%p ins=0x%04hx\n",
636                                current->comm, current->pid, (void *)regs->pc,
637                                instruction);
638 #endif
639
640                 if (se_usermode & 2)
641                         goto fixup;
642
643                 if (se_usermode & 4)
644                         goto uspace_segv;
645                 else {
646                         /* ignore */
647                         regs->pc += instruction_size(instruction);
648                         return;
649                 }
650
651 fixup:
652                 /* bad PC is not something we can fix */
653                 if (regs->pc & 1) {
654                         si_code = BUS_ADRALN;
655                         goto uspace_segv;
656                 }
657
658                 set_fs(USER_DS);
659                 tmp = handle_unaligned_access(instruction, regs,
660                                               &user_mem_access);
661                 set_fs(oldfs);
662
663                 if (tmp==0)
664                         return; /* sorted */
665 uspace_segv:
666                 printk(KERN_NOTICE "Sending SIGBUS to \"%s\" due to unaligned "
667                        "access (PC %lx PR %lx)\n", current->comm, regs->pc,
668                        regs->pr);
669
670                 info.si_signo = SIGBUS;
671                 info.si_errno = 0;
672                 info.si_code = si_code;
673                 info.si_addr = (void __user *)address;
674                 force_sig_info(SIGBUS, &info, current);
675         } else {
676                 se_sys += 1;
677
678                 if (se_kernmode_warn)
679                         printk(KERN_NOTICE "Unaligned kernel access "
680                                "on behalf of \"%s\" pid=%d pc=0x%p ins=0x%04hx\n",
681                                current->comm, current->pid, (void *)regs->pc,
682                                instruction);
683
684                 if (regs->pc & 1)
685                         die("unaligned program counter", regs, error_code);
686
687                 set_fs(KERNEL_DS);
688                 if (copy_from_user(&instruction, (void __user *)(regs->pc),
689                                    sizeof(instruction))) {
690                         /* Argh. Fault on the instruction itself.
691                            This should never happen non-SMP
692                         */
693                         set_fs(oldfs);
694                         die("insn faulting in do_address_error", regs, 0);
695                 }
696
697                 handle_unaligned_access(instruction, regs, &user_mem_access);
698                 set_fs(oldfs);
699         }
700 }
701
702 #ifdef CONFIG_SH_DSP
703 /*
704  *      SH-DSP support gerg@snapgear.com.
705  */
706 int is_dsp_inst(struct pt_regs *regs)
707 {
708         unsigned short inst = 0;
709
710         /*
711          * Safe guard if DSP mode is already enabled or we're lacking
712          * the DSP altogether.
713          */
714         if (!(current_cpu_data.flags & CPU_HAS_DSP) || (regs->sr & SR_DSP))
715                 return 0;
716
717         get_user(inst, ((unsigned short *) regs->pc));
718
719         inst &= 0xf000;
720
721         /* Check for any type of DSP or support instruction */
722         if ((inst == 0xf000) || (inst == 0x4000))
723                 return 1;
724
725         return 0;
726 }
727 #else
728 #define is_dsp_inst(regs)       (0)
729 #endif /* CONFIG_SH_DSP */
730
731 #ifdef CONFIG_CPU_SH2A
732 asmlinkage void do_divide_error(unsigned long r4, unsigned long r5,
733                                 unsigned long r6, unsigned long r7,
734                                 struct pt_regs __regs)
735 {
736         siginfo_t info;
737
738         switch (r4) {
739         case TRAP_DIVZERO_ERROR:
740                 info.si_code = FPE_INTDIV;
741                 break;
742         case TRAP_DIVOVF_ERROR:
743                 info.si_code = FPE_INTOVF;
744                 break;
745         }
746
747         force_sig_info(SIGFPE, &info, current);
748 }
749 #endif
750
751 asmlinkage void do_reserved_inst(unsigned long r4, unsigned long r5,
752                                 unsigned long r6, unsigned long r7,
753                                 struct pt_regs __regs)
754 {
755         struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
756         unsigned long error_code;
757         struct task_struct *tsk = current;
758
759 #ifdef CONFIG_SH_FPU_EMU
760         unsigned short inst = 0;
761         int err;
762
763         get_user(inst, (unsigned short*)regs->pc);
764
765         err = do_fpu_inst(inst, regs);
766         if (!err) {
767                 regs->pc += instruction_size(inst);
768                 return;
769         }
770         /* not a FPU inst. */
771 #endif
772
773 #ifdef CONFIG_SH_DSP
774         /* Check if it's a DSP instruction */
775         if (is_dsp_inst(regs)) {
776                 /* Enable DSP mode, and restart instruction. */
777                 regs->sr |= SR_DSP;
778                 /* Save DSP mode */
779                 tsk->thread.dsp_status.status |= SR_DSP;
780                 return;
781         }
782 #endif
783
784         error_code = lookup_exception_vector();
785
786         local_irq_enable();
787         force_sig(SIGILL, tsk);
788         die_if_no_fixup("reserved instruction", regs, error_code);
789 }
790
791 #ifdef CONFIG_SH_FPU_EMU
792 static int emulate_branch(unsigned short inst, struct pt_regs *regs)
793 {
794         /*
795          * bfs: 8fxx: PC+=d*2+4;
796          * bts: 8dxx: PC+=d*2+4;
797          * bra: axxx: PC+=D*2+4;
798          * bsr: bxxx: PC+=D*2+4  after PR=PC+4;
799          * braf:0x23: PC+=Rn*2+4;
800          * bsrf:0x03: PC+=Rn*2+4 after PR=PC+4;
801          * jmp: 4x2b: PC=Rn;
802          * jsr: 4x0b: PC=Rn      after PR=PC+4;
803          * rts: 000b: PC=PR;
804          */
805         if (((inst & 0xf000) == 0xb000)  ||     /* bsr */
806             ((inst & 0xf0ff) == 0x0003)  ||     /* bsrf */
807             ((inst & 0xf0ff) == 0x400b))        /* jsr */
808                 regs->pr = regs->pc + 4;
809
810         if ((inst & 0xfd00) == 0x8d00) {        /* bfs, bts */
811                 regs->pc += SH_PC_8BIT_OFFSET(inst);
812                 return 0;
813         }
814
815         if ((inst & 0xe000) == 0xa000) {        /* bra, bsr */
816                 regs->pc += SH_PC_12BIT_OFFSET(inst);
817                 return 0;
818         }
819
820         if ((inst & 0xf0df) == 0x0003) {        /* braf, bsrf */
821                 regs->pc += regs->regs[(inst & 0x0f00) >> 8] + 4;
822                 return 0;
823         }
824
825         if ((inst & 0xf0df) == 0x400b) {        /* jmp, jsr */
826                 regs->pc = regs->regs[(inst & 0x0f00) >> 8];
827                 return 0;
828         }
829
830         if ((inst & 0xffff) == 0x000b) {        /* rts */
831                 regs->pc = regs->pr;
832                 return 0;
833         }
834
835         return 1;
836 }
837 #endif
838
839 asmlinkage void do_illegal_slot_inst(unsigned long r4, unsigned long r5,
840                                 unsigned long r6, unsigned long r7,
841                                 struct pt_regs __regs)
842 {
843         struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
844         unsigned long inst;
845         struct task_struct *tsk = current;
846
847         if (kprobe_handle_illslot(regs->pc) == 0)
848                 return;
849
850 #ifdef CONFIG_SH_FPU_EMU
851         get_user(inst, (unsigned short *)regs->pc + 1);
852         if (!do_fpu_inst(inst, regs)) {
853                 get_user(inst, (unsigned short *)regs->pc);
854                 if (!emulate_branch(inst, regs))
855                         return;
856                 /* fault in branch.*/
857         }
858         /* not a FPU inst. */
859 #endif
860
861         inst = lookup_exception_vector();
862
863         local_irq_enable();
864         force_sig(SIGILL, tsk);
865         die_if_no_fixup("illegal slot instruction", regs, inst);
866 }
867
868 asmlinkage void do_exception_error(unsigned long r4, unsigned long r5,
869                                    unsigned long r6, unsigned long r7,
870                                    struct pt_regs __regs)
871 {
872         struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
873         long ex;
874
875         ex = lookup_exception_vector();
876         die_if_kernel("exception", regs, ex);
877 }
878
879 #if defined(CONFIG_SH_STANDARD_BIOS)
880 void *gdb_vbr_vector;
881
882 static inline void __init gdb_vbr_init(void)
883 {
884         register unsigned long vbr;
885
886         /*
887          * Read the old value of the VBR register to initialise
888          * the vector through which debug and BIOS traps are
889          * delegated by the Linux trap handler.
890          */
891         asm volatile("stc vbr, %0" : "=r" (vbr));
892
893         gdb_vbr_vector = (void *)(vbr + 0x100);
894         printk("Setting GDB trap vector to 0x%08lx\n",
895                (unsigned long)gdb_vbr_vector);
896 }
897 #endif
898
899 void __cpuinit per_cpu_trap_init(void)
900 {
901         extern void *vbr_base;
902
903 #ifdef CONFIG_SH_STANDARD_BIOS
904         if (raw_smp_processor_id() == 0)
905                 gdb_vbr_init();
906 #endif
907
908         /* NOTE: The VBR value should be at P1
909            (or P2, virtural "fixed" address space).
910            It's definitely should not in physical address.  */
911
912         asm volatile("ldc       %0, vbr"
913                      : /* no output */
914                      : "r" (&vbr_base)
915                      : "memory");
916 }
917
918 void *set_exception_table_vec(unsigned int vec, void *handler)
919 {
920         extern void *exception_handling_table[];
921         void *old_handler;
922
923         old_handler = exception_handling_table[vec];
924         exception_handling_table[vec] = handler;
925         return old_handler;
926 }
927
928 void __init trap_init(void)
929 {
930         set_exception_table_vec(TRAP_RESERVED_INST, do_reserved_inst);
931         set_exception_table_vec(TRAP_ILLEGAL_SLOT_INST, do_illegal_slot_inst);
932
933 #if defined(CONFIG_CPU_SH4) && !defined(CONFIG_SH_FPU) || \
934     defined(CONFIG_SH_FPU_EMU)
935         /*
936          * For SH-4 lacking an FPU, treat floating point instructions as
937          * reserved. They'll be handled in the math-emu case, or faulted on
938          * otherwise.
939          */
940         set_exception_table_evt(0x800, do_reserved_inst);
941         set_exception_table_evt(0x820, do_illegal_slot_inst);
942 #elif defined(CONFIG_SH_FPU)
943 #ifdef CONFIG_CPU_SUBTYPE_SHX3
944         set_exception_table_evt(0xd80, fpu_state_restore_trap_handler);
945         set_exception_table_evt(0xda0, fpu_state_restore_trap_handler);
946 #else
947         set_exception_table_evt(0x800, fpu_state_restore_trap_handler);
948         set_exception_table_evt(0x820, fpu_state_restore_trap_handler);
949 #endif
950 #endif
951
952 #ifdef CONFIG_CPU_SH2
953         set_exception_table_vec(TRAP_ADDRESS_ERROR, address_error_trap_handler);
954 #endif
955 #ifdef CONFIG_CPU_SH2A
956         set_exception_table_vec(TRAP_DIVZERO_ERROR, do_divide_error);
957         set_exception_table_vec(TRAP_DIVOVF_ERROR, do_divide_error);
958 #ifdef CONFIG_SH_FPU
959         set_exception_table_vec(TRAP_FPU_ERROR, fpu_error_trap_handler);
960 #endif
961 #endif
962
963 #ifdef TRAP_UBC
964         set_exception_table_vec(TRAP_UBC, break_point_trap);
965 #endif
966
967         /* Setup VBR for boot cpu */
968         per_cpu_trap_init();
969 }
970
971 void show_stack(struct task_struct *tsk, unsigned long *sp)
972 {
973         unsigned long stack;
974
975         if (!tsk)
976                 tsk = current;
977         if (tsk == current)
978                 sp = (unsigned long *)current_stack_pointer;
979         else
980                 sp = (unsigned long *)tsk->thread.sp;
981
982         stack = (unsigned long)sp;
983         dump_mem("Stack: ", stack, THREAD_SIZE +
984                  (unsigned long)task_stack_page(tsk));
985         show_trace(tsk, sp, NULL);
986 }
987
988 void dump_stack(void)
989 {
990         show_stack(NULL, NULL);
991 }
992 EXPORT_SYMBOL(dump_stack);
993
994 #ifdef CONFIG_PROC_FS
995 /*
996  * This needs to be done after sysctl_init, otherwise sys/ will be
997  * overwritten.  Actually, this shouldn't be in sys/ at all since
998  * it isn't a sysctl, and it doesn't contain sysctl information.
999  * We now locate it in /proc/cpu/alignment instead.
1000  */
1001 static int __init alignment_init(void)
1002 {
1003         struct proc_dir_entry *dir, *res;
1004
1005         dir = proc_mkdir("cpu", NULL);
1006         if (!dir)
1007                 return -ENOMEM;
1008
1009         res = create_proc_entry("alignment", S_IWUSR | S_IRUGO, dir);
1010         if (!res)
1011                 return -ENOMEM;
1012
1013         res->read_proc = proc_alignment_read;
1014         res->write_proc = proc_alignment_write;
1015
1016         res = create_proc_entry("kernel_alignment", S_IWUSR | S_IRUGO, dir);
1017         if (!res)
1018                 return -ENOMEM;
1019
1020         res->read_proc = proc_alignment_read;
1021         res->write_proc = proc_alignment_kern_write;
1022
1023         return 0;
1024 }
1025
1026 fs_initcall(alignment_init);
1027 #endif