include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[safe/jmp/linux-2.6] / arch / s390 / mm / vmem.c
1 /*
2  *  arch/s390/mm/vmem.c
3  *
4  *    Copyright IBM Corp. 2006
5  *    Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
6  */
7
8 #include <linux/bootmem.h>
9 #include <linux/pfn.h>
10 #include <linux/mm.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/hugetlb.h>
14 #include <linux/slab.h>
15 #include <asm/pgalloc.h>
16 #include <asm/pgtable.h>
17 #include <asm/setup.h>
18 #include <asm/tlbflush.h>
19 #include <asm/sections.h>
20
21 static DEFINE_MUTEX(vmem_mutex);
22
23 struct memory_segment {
24         struct list_head list;
25         unsigned long start;
26         unsigned long size;
27 };
28
29 static LIST_HEAD(mem_segs);
30
31 static void __ref *vmem_alloc_pages(unsigned int order)
32 {
33         if (slab_is_available())
34                 return (void *)__get_free_pages(GFP_KERNEL, order);
35         return alloc_bootmem_pages((1 << order) * PAGE_SIZE);
36 }
37
38 static inline pud_t *vmem_pud_alloc(void)
39 {
40         pud_t *pud = NULL;
41
42 #ifdef CONFIG_64BIT
43         pud = vmem_alloc_pages(2);
44         if (!pud)
45                 return NULL;
46         clear_table((unsigned long *) pud, _REGION3_ENTRY_EMPTY, PAGE_SIZE * 4);
47 #endif
48         return pud;
49 }
50
51 static inline pmd_t *vmem_pmd_alloc(void)
52 {
53         pmd_t *pmd = NULL;
54
55 #ifdef CONFIG_64BIT
56         pmd = vmem_alloc_pages(2);
57         if (!pmd)
58                 return NULL;
59         clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE * 4);
60 #endif
61         return pmd;
62 }
63
64 static pte_t __ref *vmem_pte_alloc(void)
65 {
66         pte_t *pte;
67
68         if (slab_is_available())
69                 pte = (pte_t *) page_table_alloc(&init_mm);
70         else
71                 pte = alloc_bootmem(PTRS_PER_PTE * sizeof(pte_t));
72         if (!pte)
73                 return NULL;
74         if (MACHINE_HAS_HPAGE)
75                 clear_table((unsigned long *) pte, _PAGE_TYPE_EMPTY | _PAGE_CO,
76                             PTRS_PER_PTE * sizeof(pte_t));
77         else
78                 clear_table((unsigned long *) pte, _PAGE_TYPE_EMPTY,
79                             PTRS_PER_PTE * sizeof(pte_t));
80         return pte;
81 }
82
83 /*
84  * Add a physical memory range to the 1:1 mapping.
85  */
86 static int vmem_add_mem(unsigned long start, unsigned long size, int ro)
87 {
88         unsigned long address;
89         pgd_t *pg_dir;
90         pud_t *pu_dir;
91         pmd_t *pm_dir;
92         pte_t *pt_dir;
93         pte_t  pte;
94         int ret = -ENOMEM;
95
96         for (address = start; address < start + size; address += PAGE_SIZE) {
97                 pg_dir = pgd_offset_k(address);
98                 if (pgd_none(*pg_dir)) {
99                         pu_dir = vmem_pud_alloc();
100                         if (!pu_dir)
101                                 goto out;
102                         pgd_populate_kernel(&init_mm, pg_dir, pu_dir);
103                 }
104
105                 pu_dir = pud_offset(pg_dir, address);
106                 if (pud_none(*pu_dir)) {
107                         pm_dir = vmem_pmd_alloc();
108                         if (!pm_dir)
109                                 goto out;
110                         pud_populate_kernel(&init_mm, pu_dir, pm_dir);
111                 }
112
113                 pte = mk_pte_phys(address, __pgprot(ro ? _PAGE_RO : 0));
114                 pm_dir = pmd_offset(pu_dir, address);
115
116 #ifdef __s390x__
117                 if (MACHINE_HAS_HPAGE && !(address & ~HPAGE_MASK) &&
118                     (address + HPAGE_SIZE <= start + size) &&
119                     (address >= HPAGE_SIZE)) {
120                         pte_val(pte) |= _SEGMENT_ENTRY_LARGE |
121                                         _SEGMENT_ENTRY_CO;
122                         pmd_val(*pm_dir) = pte_val(pte);
123                         address += HPAGE_SIZE - PAGE_SIZE;
124                         continue;
125                 }
126 #endif
127                 if (pmd_none(*pm_dir)) {
128                         pt_dir = vmem_pte_alloc();
129                         if (!pt_dir)
130                                 goto out;
131                         pmd_populate_kernel(&init_mm, pm_dir, pt_dir);
132                 }
133
134                 pt_dir = pte_offset_kernel(pm_dir, address);
135                 *pt_dir = pte;
136         }
137         ret = 0;
138 out:
139         flush_tlb_kernel_range(start, start + size);
140         return ret;
141 }
142
143 /*
144  * Remove a physical memory range from the 1:1 mapping.
145  * Currently only invalidates page table entries.
146  */
147 static void vmem_remove_range(unsigned long start, unsigned long size)
148 {
149         unsigned long address;
150         pgd_t *pg_dir;
151         pud_t *pu_dir;
152         pmd_t *pm_dir;
153         pte_t *pt_dir;
154         pte_t  pte;
155
156         pte_val(pte) = _PAGE_TYPE_EMPTY;
157         for (address = start; address < start + size; address += PAGE_SIZE) {
158                 pg_dir = pgd_offset_k(address);
159                 pu_dir = pud_offset(pg_dir, address);
160                 if (pud_none(*pu_dir))
161                         continue;
162                 pm_dir = pmd_offset(pu_dir, address);
163                 if (pmd_none(*pm_dir))
164                         continue;
165
166                 if (pmd_huge(*pm_dir)) {
167                         pmd_clear_kernel(pm_dir);
168                         address += HPAGE_SIZE - PAGE_SIZE;
169                         continue;
170                 }
171
172                 pt_dir = pte_offset_kernel(pm_dir, address);
173                 *pt_dir = pte;
174         }
175         flush_tlb_kernel_range(start, start + size);
176 }
177
178 /*
179  * Add a backed mem_map array to the virtual mem_map array.
180  */
181 int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
182 {
183         unsigned long address, start_addr, end_addr;
184         pgd_t *pg_dir;
185         pud_t *pu_dir;
186         pmd_t *pm_dir;
187         pte_t *pt_dir;
188         pte_t  pte;
189         int ret = -ENOMEM;
190
191         start_addr = (unsigned long) start;
192         end_addr = (unsigned long) (start + nr);
193
194         for (address = start_addr; address < end_addr; address += PAGE_SIZE) {
195                 pg_dir = pgd_offset_k(address);
196                 if (pgd_none(*pg_dir)) {
197                         pu_dir = vmem_pud_alloc();
198                         if (!pu_dir)
199                                 goto out;
200                         pgd_populate_kernel(&init_mm, pg_dir, pu_dir);
201                 }
202
203                 pu_dir = pud_offset(pg_dir, address);
204                 if (pud_none(*pu_dir)) {
205                         pm_dir = vmem_pmd_alloc();
206                         if (!pm_dir)
207                                 goto out;
208                         pud_populate_kernel(&init_mm, pu_dir, pm_dir);
209                 }
210
211                 pm_dir = pmd_offset(pu_dir, address);
212                 if (pmd_none(*pm_dir)) {
213                         pt_dir = vmem_pte_alloc();
214                         if (!pt_dir)
215                                 goto out;
216                         pmd_populate_kernel(&init_mm, pm_dir, pt_dir);
217                 }
218
219                 pt_dir = pte_offset_kernel(pm_dir, address);
220                 if (pte_none(*pt_dir)) {
221                         unsigned long new_page;
222
223                         new_page =__pa(vmem_alloc_pages(0));
224                         if (!new_page)
225                                 goto out;
226                         pte = pfn_pte(new_page >> PAGE_SHIFT, PAGE_KERNEL);
227                         *pt_dir = pte;
228                 }
229         }
230         memset(start, 0, nr * sizeof(struct page));
231         ret = 0;
232 out:
233         flush_tlb_kernel_range(start_addr, end_addr);
234         return ret;
235 }
236
237 /*
238  * Add memory segment to the segment list if it doesn't overlap with
239  * an already present segment.
240  */
241 static int insert_memory_segment(struct memory_segment *seg)
242 {
243         struct memory_segment *tmp;
244
245         if (seg->start + seg->size > VMEM_MAX_PHYS ||
246             seg->start + seg->size < seg->start)
247                 return -ERANGE;
248
249         list_for_each_entry(tmp, &mem_segs, list) {
250                 if (seg->start >= tmp->start + tmp->size)
251                         continue;
252                 if (seg->start + seg->size <= tmp->start)
253                         continue;
254                 return -ENOSPC;
255         }
256         list_add(&seg->list, &mem_segs);
257         return 0;
258 }
259
260 /*
261  * Remove memory segment from the segment list.
262  */
263 static void remove_memory_segment(struct memory_segment *seg)
264 {
265         list_del(&seg->list);
266 }
267
268 static void __remove_shared_memory(struct memory_segment *seg)
269 {
270         remove_memory_segment(seg);
271         vmem_remove_range(seg->start, seg->size);
272 }
273
274 int vmem_remove_mapping(unsigned long start, unsigned long size)
275 {
276         struct memory_segment *seg;
277         int ret;
278
279         mutex_lock(&vmem_mutex);
280
281         ret = -ENOENT;
282         list_for_each_entry(seg, &mem_segs, list) {
283                 if (seg->start == start && seg->size == size)
284                         break;
285         }
286
287         if (seg->start != start || seg->size != size)
288                 goto out;
289
290         ret = 0;
291         __remove_shared_memory(seg);
292         kfree(seg);
293 out:
294         mutex_unlock(&vmem_mutex);
295         return ret;
296 }
297
298 int vmem_add_mapping(unsigned long start, unsigned long size)
299 {
300         struct memory_segment *seg;
301         int ret;
302
303         mutex_lock(&vmem_mutex);
304         ret = -ENOMEM;
305         seg = kzalloc(sizeof(*seg), GFP_KERNEL);
306         if (!seg)
307                 goto out;
308         seg->start = start;
309         seg->size = size;
310
311         ret = insert_memory_segment(seg);
312         if (ret)
313                 goto out_free;
314
315         ret = vmem_add_mem(start, size, 0);
316         if (ret)
317                 goto out_remove;
318         goto out;
319
320 out_remove:
321         __remove_shared_memory(seg);
322 out_free:
323         kfree(seg);
324 out:
325         mutex_unlock(&vmem_mutex);
326         return ret;
327 }
328
329 /*
330  * map whole physical memory to virtual memory (identity mapping)
331  * we reserve enough space in the vmalloc area for vmemmap to hotplug
332  * additional memory segments.
333  */
334 void __init vmem_map_init(void)
335 {
336         unsigned long ro_start, ro_end;
337         unsigned long start, end;
338         int i;
339
340         spin_lock_init(&init_mm.context.list_lock);
341         INIT_LIST_HEAD(&init_mm.context.crst_list);
342         INIT_LIST_HEAD(&init_mm.context.pgtable_list);
343         init_mm.context.noexec = 0;
344         ro_start = ((unsigned long)&_stext) & PAGE_MASK;
345         ro_end = PFN_ALIGN((unsigned long)&_eshared);
346         for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
347                 start = memory_chunk[i].addr;
348                 end = memory_chunk[i].addr + memory_chunk[i].size;
349                 if (start >= ro_end || end <= ro_start)
350                         vmem_add_mem(start, end - start, 0);
351                 else if (start >= ro_start && end <= ro_end)
352                         vmem_add_mem(start, end - start, 1);
353                 else if (start >= ro_start) {
354                         vmem_add_mem(start, ro_end - start, 1);
355                         vmem_add_mem(ro_end, end - ro_end, 0);
356                 } else if (end < ro_end) {
357                         vmem_add_mem(start, ro_start - start, 0);
358                         vmem_add_mem(ro_start, end - ro_start, 1);
359                 } else {
360                         vmem_add_mem(start, ro_start - start, 0);
361                         vmem_add_mem(ro_start, ro_end - ro_start, 1);
362                         vmem_add_mem(ro_end, end - ro_end, 0);
363                 }
364         }
365 }
366
367 /*
368  * Convert memory chunk array to a memory segment list so there is a single
369  * list that contains both r/w memory and shared memory segments.
370  */
371 static int __init vmem_convert_memory_chunk(void)
372 {
373         struct memory_segment *seg;
374         int i;
375
376         mutex_lock(&vmem_mutex);
377         for (i = 0; i < MEMORY_CHUNKS; i++) {
378                 if (!memory_chunk[i].size)
379                         continue;
380                 seg = kzalloc(sizeof(*seg), GFP_KERNEL);
381                 if (!seg)
382                         panic("Out of memory...\n");
383                 seg->start = memory_chunk[i].addr;
384                 seg->size = memory_chunk[i].size;
385                 insert_memory_segment(seg);
386         }
387         mutex_unlock(&vmem_mutex);
388         return 0;
389 }
390
391 core_initcall(vmem_convert_memory_chunk);