[S390] 1K/2K page table pages.
[safe/jmp/linux-2.6] / arch / s390 / mm / vmem.c
1 /*
2  *  arch/s390/mm/vmem.c
3  *
4  *    Copyright IBM Corp. 2006
5  *    Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
6  */
7
8 #include <linux/bootmem.h>
9 #include <linux/pfn.h>
10 #include <linux/mm.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <asm/pgalloc.h>
14 #include <asm/pgtable.h>
15 #include <asm/setup.h>
16 #include <asm/tlbflush.h>
17
18 static DEFINE_MUTEX(vmem_mutex);
19
20 struct memory_segment {
21         struct list_head list;
22         unsigned long start;
23         unsigned long size;
24 };
25
26 static LIST_HEAD(mem_segs);
27
28 void __meminit memmap_init(unsigned long size, int nid, unsigned long zone,
29                            unsigned long start_pfn)
30 {
31         struct page *start, *end;
32         struct page *map_start, *map_end;
33         int i;
34
35         start = pfn_to_page(start_pfn);
36         end = start + size;
37
38         for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
39                 unsigned long cstart, cend;
40
41                 cstart = PFN_DOWN(memory_chunk[i].addr);
42                 cend = cstart + PFN_DOWN(memory_chunk[i].size);
43
44                 map_start = mem_map + cstart;
45                 map_end = mem_map + cend;
46
47                 if (map_start < start)
48                         map_start = start;
49                 if (map_end > end)
50                         map_end = end;
51
52                 map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1))
53                         / sizeof(struct page);
54                 map_end += ((PFN_ALIGN((unsigned long) map_end)
55                              - (unsigned long) map_end)
56                             / sizeof(struct page));
57
58                 if (map_start < map_end)
59                         memmap_init_zone((unsigned long)(map_end - map_start),
60                                          nid, zone, page_to_pfn(map_start),
61                                          MEMMAP_EARLY);
62         }
63 }
64
65 static void __ref *vmem_alloc_pages(unsigned int order)
66 {
67         if (slab_is_available())
68                 return (void *)__get_free_pages(GFP_KERNEL, order);
69         return alloc_bootmem_pages((1 << order) * PAGE_SIZE);
70 }
71
72 #define vmem_pud_alloc()        ({ BUG(); ((pud_t *) NULL); })
73
74 static inline pmd_t *vmem_pmd_alloc(void)
75 {
76         pmd_t *pmd = NULL;
77
78 #ifdef CONFIG_64BIT
79         pmd = vmem_alloc_pages(2);
80         if (!pmd)
81                 return NULL;
82         clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE*4);
83 #endif
84         return pmd;
85 }
86
87 static pte_t __init_refok *vmem_pte_alloc(void)
88 {
89         pte_t *pte;
90
91         if (slab_is_available())
92                 pte = (pte_t *) page_table_alloc(&init_mm);
93         else
94                 pte = alloc_bootmem(PTRS_PER_PTE * sizeof(pte_t));
95         if (!pte)
96                 return NULL;
97         clear_table((unsigned long *) pte, _PAGE_TYPE_EMPTY,
98                     PTRS_PER_PTE * sizeof(pte_t));
99         return pte;
100 }
101
102 /*
103  * Add a physical memory range to the 1:1 mapping.
104  */
105 static int vmem_add_range(unsigned long start, unsigned long size)
106 {
107         unsigned long address;
108         pgd_t *pg_dir;
109         pud_t *pu_dir;
110         pmd_t *pm_dir;
111         pte_t *pt_dir;
112         pte_t  pte;
113         int ret = -ENOMEM;
114
115         for (address = start; address < start + size; address += PAGE_SIZE) {
116                 pg_dir = pgd_offset_k(address);
117                 if (pgd_none(*pg_dir)) {
118                         pu_dir = vmem_pud_alloc();
119                         if (!pu_dir)
120                                 goto out;
121                         pgd_populate_kernel(&init_mm, pg_dir, pu_dir);
122                 }
123
124                 pu_dir = pud_offset(pg_dir, address);
125                 if (pud_none(*pu_dir)) {
126                         pm_dir = vmem_pmd_alloc();
127                         if (!pm_dir)
128                                 goto out;
129                         pud_populate_kernel(&init_mm, pu_dir, pm_dir);
130                 }
131
132                 pm_dir = pmd_offset(pu_dir, address);
133                 if (pmd_none(*pm_dir)) {
134                         pt_dir = vmem_pte_alloc();
135                         if (!pt_dir)
136                                 goto out;
137                         pmd_populate_kernel(&init_mm, pm_dir, pt_dir);
138                 }
139
140                 pt_dir = pte_offset_kernel(pm_dir, address);
141                 pte = pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL);
142                 *pt_dir = pte;
143         }
144         ret = 0;
145 out:
146         flush_tlb_kernel_range(start, start + size);
147         return ret;
148 }
149
150 /*
151  * Remove a physical memory range from the 1:1 mapping.
152  * Currently only invalidates page table entries.
153  */
154 static void vmem_remove_range(unsigned long start, unsigned long size)
155 {
156         unsigned long address;
157         pgd_t *pg_dir;
158         pud_t *pu_dir;
159         pmd_t *pm_dir;
160         pte_t *pt_dir;
161         pte_t  pte;
162
163         pte_val(pte) = _PAGE_TYPE_EMPTY;
164         for (address = start; address < start + size; address += PAGE_SIZE) {
165                 pg_dir = pgd_offset_k(address);
166                 pu_dir = pud_offset(pg_dir, address);
167                 if (pud_none(*pu_dir))
168                         continue;
169                 pm_dir = pmd_offset(pu_dir, address);
170                 if (pmd_none(*pm_dir))
171                         continue;
172                 pt_dir = pte_offset_kernel(pm_dir, address);
173                 *pt_dir = pte;
174         }
175         flush_tlb_kernel_range(start, start + size);
176 }
177
178 /*
179  * Add a backed mem_map array to the virtual mem_map array.
180  */
181 static int vmem_add_mem_map(unsigned long start, unsigned long size)
182 {
183         unsigned long address, start_addr, end_addr;
184         struct page *map_start, *map_end;
185         pgd_t *pg_dir;
186         pud_t *pu_dir;
187         pmd_t *pm_dir;
188         pte_t *pt_dir;
189         pte_t  pte;
190         int ret = -ENOMEM;
191
192         map_start = VMEM_MAP + PFN_DOWN(start);
193         map_end = VMEM_MAP + PFN_DOWN(start + size);
194
195         start_addr = (unsigned long) map_start & PAGE_MASK;
196         end_addr = PFN_ALIGN((unsigned long) map_end);
197
198         for (address = start_addr; address < end_addr; address += PAGE_SIZE) {
199                 pg_dir = pgd_offset_k(address);
200                 if (pgd_none(*pg_dir)) {
201                         pu_dir = vmem_pud_alloc();
202                         if (!pu_dir)
203                                 goto out;
204                         pgd_populate_kernel(&init_mm, pg_dir, pu_dir);
205                 }
206
207                 pu_dir = pud_offset(pg_dir, address);
208                 if (pud_none(*pu_dir)) {
209                         pm_dir = vmem_pmd_alloc();
210                         if (!pm_dir)
211                                 goto out;
212                         pud_populate_kernel(&init_mm, pu_dir, pm_dir);
213                 }
214
215                 pm_dir = pmd_offset(pu_dir, address);
216                 if (pmd_none(*pm_dir)) {
217                         pt_dir = vmem_pte_alloc();
218                         if (!pt_dir)
219                                 goto out;
220                         pmd_populate_kernel(&init_mm, pm_dir, pt_dir);
221                 }
222
223                 pt_dir = pte_offset_kernel(pm_dir, address);
224                 if (pte_none(*pt_dir)) {
225                         unsigned long new_page;
226
227                         new_page =__pa(vmem_alloc_pages(0));
228                         if (!new_page)
229                                 goto out;
230                         pte = pfn_pte(new_page >> PAGE_SHIFT, PAGE_KERNEL);
231                         *pt_dir = pte;
232                 }
233         }
234         ret = 0;
235 out:
236         flush_tlb_kernel_range(start_addr, end_addr);
237         return ret;
238 }
239
240 static int vmem_add_mem(unsigned long start, unsigned long size)
241 {
242         int ret;
243
244         ret = vmem_add_mem_map(start, size);
245         if (ret)
246                 return ret;
247         return vmem_add_range(start, size);
248 }
249
250 /*
251  * Add memory segment to the segment list if it doesn't overlap with
252  * an already present segment.
253  */
254 static int insert_memory_segment(struct memory_segment *seg)
255 {
256         struct memory_segment *tmp;
257
258         if (seg->start + seg->size >= VMEM_MAX_PHYS ||
259             seg->start + seg->size < seg->start)
260                 return -ERANGE;
261
262         list_for_each_entry(tmp, &mem_segs, list) {
263                 if (seg->start >= tmp->start + tmp->size)
264                         continue;
265                 if (seg->start + seg->size <= tmp->start)
266                         continue;
267                 return -ENOSPC;
268         }
269         list_add(&seg->list, &mem_segs);
270         return 0;
271 }
272
273 /*
274  * Remove memory segment from the segment list.
275  */
276 static void remove_memory_segment(struct memory_segment *seg)
277 {
278         list_del(&seg->list);
279 }
280
281 static void __remove_shared_memory(struct memory_segment *seg)
282 {
283         remove_memory_segment(seg);
284         vmem_remove_range(seg->start, seg->size);
285 }
286
287 int remove_shared_memory(unsigned long start, unsigned long size)
288 {
289         struct memory_segment *seg;
290         int ret;
291
292         mutex_lock(&vmem_mutex);
293
294         ret = -ENOENT;
295         list_for_each_entry(seg, &mem_segs, list) {
296                 if (seg->start == start && seg->size == size)
297                         break;
298         }
299
300         if (seg->start != start || seg->size != size)
301                 goto out;
302
303         ret = 0;
304         __remove_shared_memory(seg);
305         kfree(seg);
306 out:
307         mutex_unlock(&vmem_mutex);
308         return ret;
309 }
310
311 int add_shared_memory(unsigned long start, unsigned long size)
312 {
313         struct memory_segment *seg;
314         struct page *page;
315         unsigned long pfn, num_pfn, end_pfn;
316         int ret;
317
318         mutex_lock(&vmem_mutex);
319         ret = -ENOMEM;
320         seg = kzalloc(sizeof(*seg), GFP_KERNEL);
321         if (!seg)
322                 goto out;
323         seg->start = start;
324         seg->size = size;
325
326         ret = insert_memory_segment(seg);
327         if (ret)
328                 goto out_free;
329
330         ret = vmem_add_mem(start, size);
331         if (ret)
332                 goto out_remove;
333
334         pfn = PFN_DOWN(start);
335         num_pfn = PFN_DOWN(size);
336         end_pfn = pfn + num_pfn;
337
338         page = pfn_to_page(pfn);
339         memset(page, 0, num_pfn * sizeof(struct page));
340
341         for (; pfn < end_pfn; pfn++) {
342                 page = pfn_to_page(pfn);
343                 init_page_count(page);
344                 reset_page_mapcount(page);
345                 SetPageReserved(page);
346                 INIT_LIST_HEAD(&page->lru);
347         }
348         goto out;
349
350 out_remove:
351         __remove_shared_memory(seg);
352 out_free:
353         kfree(seg);
354 out:
355         mutex_unlock(&vmem_mutex);
356         return ret;
357 }
358
359 /*
360  * map whole physical memory to virtual memory (identity mapping)
361  * we reserve enough space in the vmalloc area for vmemmap to hotplug
362  * additional memory segments.
363  */
364 void __init vmem_map_init(void)
365 {
366         int i;
367
368         INIT_LIST_HEAD(&init_mm.context.crst_list);
369         INIT_LIST_HEAD(&init_mm.context.pgtable_list);
370         init_mm.context.noexec = 0;
371         NODE_DATA(0)->node_mem_map = VMEM_MAP;
372         for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++)
373                 vmem_add_mem(memory_chunk[i].addr, memory_chunk[i].size);
374 }
375
376 /*
377  * Convert memory chunk array to a memory segment list so there is a single
378  * list that contains both r/w memory and shared memory segments.
379  */
380 static int __init vmem_convert_memory_chunk(void)
381 {
382         struct memory_segment *seg;
383         int i;
384
385         mutex_lock(&vmem_mutex);
386         for (i = 0; i < MEMORY_CHUNKS; i++) {
387                 if (!memory_chunk[i].size)
388                         continue;
389                 seg = kzalloc(sizeof(*seg), GFP_KERNEL);
390                 if (!seg)
391                         panic("Out of memory...\n");
392                 seg->start = memory_chunk[i].addr;
393                 seg->size = memory_chunk[i].size;
394                 insert_memory_segment(seg);
395         }
396         mutex_unlock(&vmem_mutex);
397         return 0;
398 }
399
400 core_initcall(vmem_convert_memory_chunk);