155aa690e4bbf5b821830eab34d824a6ace72ced
[safe/jmp/linux-2.6] / arch / powerpc / platforms / iseries / setup.c
1 /*
2  *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
3  *    Copyright (c) 1999-2000 Grant Erickson <grant@lcse.umn.edu>
4  *
5  *    Description:
6  *      Architecture- / platform-specific boot-time initialization code for
7  *      the IBM iSeries LPAR.  Adapted from original code by Grant Erickson and
8  *      code by Gary Thomas, Cort Dougan <cort@fsmlabs.com>, and Dan Malek
9  *      <dan@net4x.com>.
10  *
11  *      This program is free software; you can redistribute it and/or
12  *      modify it under the terms of the GNU General Public License
13  *      as published by the Free Software Foundation; either version
14  *      2 of the License, or (at your option) any later version.
15  */
16
17 #undef DEBUG
18
19 #include <linux/config.h>
20 #include <linux/init.h>
21 #include <linux/threads.h>
22 #include <linux/smp.h>
23 #include <linux/param.h>
24 #include <linux/string.h>
25 #include <linux/initrd.h>
26 #include <linux/seq_file.h>
27 #include <linux/kdev_t.h>
28 #include <linux/major.h>
29 #include <linux/root_dev.h>
30 #include <linux/kernel.h>
31
32 #include <asm/processor.h>
33 #include <asm/machdep.h>
34 #include <asm/page.h>
35 #include <asm/mmu.h>
36 #include <asm/pgtable.h>
37 #include <asm/mmu_context.h>
38 #include <asm/cputable.h>
39 #include <asm/sections.h>
40 #include <asm/iommu.h>
41 #include <asm/firmware.h>
42 #include <asm/system.h>
43 #include <asm/time.h>
44 #include <asm/paca.h>
45 #include <asm/cache.h>
46 #include <asm/sections.h>
47 #include <asm/abs_addr.h>
48 #include <asm/iseries/hv_lp_config.h>
49 #include <asm/iseries/hv_call_event.h>
50 #include <asm/iseries/hv_call_xm.h>
51 #include <asm/iseries/it_lp_queue.h>
52 #include <asm/iseries/mf.h>
53 #include <asm/iseries/it_exp_vpd_panel.h>
54 #include <asm/iseries/hv_lp_event.h>
55 #include <asm/iseries/lpar_map.h>
56 #include <asm/udbg.h>
57
58 #include "naca.h"
59 #include "setup.h"
60 #include "irq.h"
61 #include "vpd_areas.h"
62 #include "processor_vpd.h"
63 #include "main_store.h"
64 #include "call_sm.h"
65 #include "call_hpt.h"
66
67 #ifdef DEBUG
68 #define DBG(fmt...) udbg_printf(fmt)
69 #else
70 #define DBG(fmt...)
71 #endif
72
73 /* Function Prototypes */
74 static unsigned long build_iSeries_Memory_Map(void);
75 static void iseries_shared_idle(void);
76 static void iseries_dedicated_idle(void);
77 #ifdef CONFIG_PCI
78 extern void iSeries_pci_final_fixup(void);
79 #else
80 static void iSeries_pci_final_fixup(void) { }
81 #endif
82
83 /* Global Variables */
84 int piranha_simulator;
85
86 extern int rd_size;             /* Defined in drivers/block/rd.c */
87 extern unsigned long embedded_sysmap_start;
88 extern unsigned long embedded_sysmap_end;
89
90 extern unsigned long iSeries_recal_tb;
91 extern unsigned long iSeries_recal_titan;
92
93 static unsigned long cmd_mem_limit;
94
95 struct MemoryBlock {
96         unsigned long absStart;
97         unsigned long absEnd;
98         unsigned long logicalStart;
99         unsigned long logicalEnd;
100 };
101
102 /*
103  * Process the main store vpd to determine where the holes in memory are
104  * and return the number of physical blocks and fill in the array of
105  * block data.
106  */
107 static unsigned long iSeries_process_Condor_mainstore_vpd(
108                 struct MemoryBlock *mb_array, unsigned long max_entries)
109 {
110         unsigned long holeFirstChunk, holeSizeChunks;
111         unsigned long numMemoryBlocks = 1;
112         struct IoHriMainStoreSegment4 *msVpd =
113                 (struct IoHriMainStoreSegment4 *)xMsVpd;
114         unsigned long holeStart = msVpd->nonInterleavedBlocksStartAdr;
115         unsigned long holeEnd = msVpd->nonInterleavedBlocksEndAdr;
116         unsigned long holeSize = holeEnd - holeStart;
117
118         printk("Mainstore_VPD: Condor\n");
119         /*
120          * Determine if absolute memory has any
121          * holes so that we can interpret the
122          * access map we get back from the hypervisor
123          * correctly.
124          */
125         mb_array[0].logicalStart = 0;
126         mb_array[0].logicalEnd = 0x100000000;
127         mb_array[0].absStart = 0;
128         mb_array[0].absEnd = 0x100000000;
129
130         if (holeSize) {
131                 numMemoryBlocks = 2;
132                 holeStart = holeStart & 0x000fffffffffffff;
133                 holeStart = addr_to_chunk(holeStart);
134                 holeFirstChunk = holeStart;
135                 holeSize = addr_to_chunk(holeSize);
136                 holeSizeChunks = holeSize;
137                 printk( "Main store hole: start chunk = %0lx, size = %0lx chunks\n",
138                                 holeFirstChunk, holeSizeChunks );
139                 mb_array[0].logicalEnd = holeFirstChunk;
140                 mb_array[0].absEnd = holeFirstChunk;
141                 mb_array[1].logicalStart = holeFirstChunk;
142                 mb_array[1].logicalEnd = 0x100000000 - holeSizeChunks;
143                 mb_array[1].absStart = holeFirstChunk + holeSizeChunks;
144                 mb_array[1].absEnd = 0x100000000;
145         }
146         return numMemoryBlocks;
147 }
148
149 #define MaxSegmentAreas                 32
150 #define MaxSegmentAdrRangeBlocks        128
151 #define MaxAreaRangeBlocks              4
152
153 static unsigned long iSeries_process_Regatta_mainstore_vpd(
154                 struct MemoryBlock *mb_array, unsigned long max_entries)
155 {
156         struct IoHriMainStoreSegment5 *msVpdP =
157                 (struct IoHriMainStoreSegment5 *)xMsVpd;
158         unsigned long numSegmentBlocks = 0;
159         u32 existsBits = msVpdP->msAreaExists;
160         unsigned long area_num;
161
162         printk("Mainstore_VPD: Regatta\n");
163
164         for (area_num = 0; area_num < MaxSegmentAreas; ++area_num ) {
165                 unsigned long numAreaBlocks;
166                 struct IoHriMainStoreArea4 *currentArea;
167
168                 if (existsBits & 0x80000000) {
169                         unsigned long block_num;
170
171                         currentArea = &msVpdP->msAreaArray[area_num];
172                         numAreaBlocks = currentArea->numAdrRangeBlocks;
173                         printk("ms_vpd: processing area %2ld  blocks=%ld",
174                                         area_num, numAreaBlocks);
175                         for (block_num = 0; block_num < numAreaBlocks;
176                                         ++block_num ) {
177                                 /* Process an address range block */
178                                 struct MemoryBlock tempBlock;
179                                 unsigned long i;
180
181                                 tempBlock.absStart =
182                                         (unsigned long)currentArea->xAdrRangeBlock[block_num].blockStart;
183                                 tempBlock.absEnd =
184                                         (unsigned long)currentArea->xAdrRangeBlock[block_num].blockEnd;
185                                 tempBlock.logicalStart = 0;
186                                 tempBlock.logicalEnd   = 0;
187                                 printk("\n          block %ld absStart=%016lx absEnd=%016lx",
188                                                 block_num, tempBlock.absStart,
189                                                 tempBlock.absEnd);
190
191                                 for (i = 0; i < numSegmentBlocks; ++i) {
192                                         if (mb_array[i].absStart ==
193                                                         tempBlock.absStart)
194                                                 break;
195                                 }
196                                 if (i == numSegmentBlocks) {
197                                         if (numSegmentBlocks == max_entries)
198                                                 panic("iSeries_process_mainstore_vpd: too many memory blocks");
199                                         mb_array[numSegmentBlocks] = tempBlock;
200                                         ++numSegmentBlocks;
201                                 } else
202                                         printk(" (duplicate)");
203                         }
204                         printk("\n");
205                 }
206                 existsBits <<= 1;
207         }
208         /* Now sort the blocks found into ascending sequence */
209         if (numSegmentBlocks > 1) {
210                 unsigned long m, n;
211
212                 for (m = 0; m < numSegmentBlocks - 1; ++m) {
213                         for (n = numSegmentBlocks - 1; m < n; --n) {
214                                 if (mb_array[n].absStart <
215                                                 mb_array[n-1].absStart) {
216                                         struct MemoryBlock tempBlock;
217
218                                         tempBlock = mb_array[n];
219                                         mb_array[n] = mb_array[n-1];
220                                         mb_array[n-1] = tempBlock;
221                                 }
222                         }
223                 }
224         }
225         /*
226          * Assign "logical" addresses to each block.  These
227          * addresses correspond to the hypervisor "bitmap" space.
228          * Convert all addresses into units of 256K chunks.
229          */
230         {
231         unsigned long i, nextBitmapAddress;
232
233         printk("ms_vpd: %ld sorted memory blocks\n", numSegmentBlocks);
234         nextBitmapAddress = 0;
235         for (i = 0; i < numSegmentBlocks; ++i) {
236                 unsigned long length = mb_array[i].absEnd -
237                         mb_array[i].absStart;
238
239                 mb_array[i].logicalStart = nextBitmapAddress;
240                 mb_array[i].logicalEnd = nextBitmapAddress + length;
241                 nextBitmapAddress += length;
242                 printk("          Bitmap range: %016lx - %016lx\n"
243                                 "        Absolute range: %016lx - %016lx\n",
244                                 mb_array[i].logicalStart,
245                                 mb_array[i].logicalEnd,
246                                 mb_array[i].absStart, mb_array[i].absEnd);
247                 mb_array[i].absStart = addr_to_chunk(mb_array[i].absStart &
248                                 0x000fffffffffffff);
249                 mb_array[i].absEnd = addr_to_chunk(mb_array[i].absEnd &
250                                 0x000fffffffffffff);
251                 mb_array[i].logicalStart =
252                         addr_to_chunk(mb_array[i].logicalStart);
253                 mb_array[i].logicalEnd = addr_to_chunk(mb_array[i].logicalEnd);
254         }
255         }
256
257         return numSegmentBlocks;
258 }
259
260 static unsigned long iSeries_process_mainstore_vpd(struct MemoryBlock *mb_array,
261                 unsigned long max_entries)
262 {
263         unsigned long i;
264         unsigned long mem_blocks = 0;
265
266         if (cpu_has_feature(CPU_FTR_SLB))
267                 mem_blocks = iSeries_process_Regatta_mainstore_vpd(mb_array,
268                                 max_entries);
269         else
270                 mem_blocks = iSeries_process_Condor_mainstore_vpd(mb_array,
271                                 max_entries);
272
273         printk("Mainstore_VPD: numMemoryBlocks = %ld \n", mem_blocks);
274         for (i = 0; i < mem_blocks; ++i) {
275                 printk("Mainstore_VPD: block %3ld logical chunks %016lx - %016lx\n"
276                        "                             abs chunks %016lx - %016lx\n",
277                         i, mb_array[i].logicalStart, mb_array[i].logicalEnd,
278                         mb_array[i].absStart, mb_array[i].absEnd);
279         }
280         return mem_blocks;
281 }
282
283 static void __init iSeries_get_cmdline(void)
284 {
285         char *p, *q;
286
287         /* copy the command line parameter from the primary VSP  */
288         HvCallEvent_dmaToSp(cmd_line, 2 * 64* 1024, 256,
289                         HvLpDma_Direction_RemoteToLocal);
290
291         p = cmd_line;
292         q = cmd_line + 255;
293         while(p < q) {
294                 if (!*p || *p == '\n')
295                         break;
296                 ++p;
297         }
298         *p = 0;
299 }
300
301 static void __init iSeries_init_early(void)
302 {
303         DBG(" -> iSeries_init_early()\n");
304
305         ppc64_interrupt_controller = IC_ISERIES;
306
307 #if defined(CONFIG_BLK_DEV_INITRD)
308         /*
309          * If the init RAM disk has been configured and there is
310          * a non-zero starting address for it, set it up
311          */
312         if (naca.xRamDisk) {
313                 initrd_start = (unsigned long)__va(naca.xRamDisk);
314                 initrd_end = initrd_start + naca.xRamDiskSize * HW_PAGE_SIZE;
315                 initrd_below_start_ok = 1;      // ramdisk in kernel space
316                 ROOT_DEV = Root_RAM0;
317                 if (((rd_size * 1024) / HW_PAGE_SIZE) < naca.xRamDiskSize)
318                         rd_size = (naca.xRamDiskSize * HW_PAGE_SIZE) / 1024;
319         } else
320 #endif /* CONFIG_BLK_DEV_INITRD */
321         {
322             /* ROOT_DEV = MKDEV(VIODASD_MAJOR, 1); */
323         }
324
325         iSeries_recal_tb = get_tb();
326         iSeries_recal_titan = HvCallXm_loadTod();
327
328         /*
329          * Initialize the hash table management pointers
330          */
331         hpte_init_iSeries();
332
333         /*
334          * Initialize the DMA/TCE management
335          */
336         iommu_init_early_iSeries();
337
338         /* Initialize machine-dependency vectors */
339 #ifdef CONFIG_SMP
340         smp_init_iSeries();
341 #endif
342         if (itLpNaca.xPirEnvironMode == 0)
343                 piranha_simulator = 1;
344
345         /* Associate Lp Event Queue 0 with processor 0 */
346         HvCallEvent_setLpEventQueueInterruptProc(0, 0);
347
348         mf_init();
349
350         /* If we were passed an initrd, set the ROOT_DEV properly if the values
351          * look sensible. If not, clear initrd reference.
352          */
353 #ifdef CONFIG_BLK_DEV_INITRD
354         if (initrd_start >= KERNELBASE && initrd_end >= KERNELBASE &&
355             initrd_end > initrd_start)
356                 ROOT_DEV = Root_RAM0;
357         else
358                 initrd_start = initrd_end = 0;
359 #endif /* CONFIG_BLK_DEV_INITRD */
360
361         DBG(" <- iSeries_init_early()\n");
362 }
363
364 struct mschunks_map mschunks_map = {
365         /* XXX We don't use these, but Piranha might need them. */
366         .chunk_size  = MSCHUNKS_CHUNK_SIZE,
367         .chunk_shift = MSCHUNKS_CHUNK_SHIFT,
368         .chunk_mask  = MSCHUNKS_OFFSET_MASK,
369 };
370 EXPORT_SYMBOL(mschunks_map);
371
372 void mschunks_alloc(unsigned long num_chunks)
373 {
374         klimit = _ALIGN(klimit, sizeof(u32));
375         mschunks_map.mapping = (u32 *)klimit;
376         klimit += num_chunks * sizeof(u32);
377         mschunks_map.num_chunks = num_chunks;
378 }
379
380 /*
381  * The iSeries may have very large memories ( > 128 GB ) and a partition
382  * may get memory in "chunks" that may be anywhere in the 2**52 real
383  * address space.  The chunks are 256K in size.  To map this to the
384  * memory model Linux expects, the AS/400 specific code builds a
385  * translation table to translate what Linux thinks are "physical"
386  * addresses to the actual real addresses.  This allows us to make
387  * it appear to Linux that we have contiguous memory starting at
388  * physical address zero while in fact this could be far from the truth.
389  * To avoid confusion, I'll let the words physical and/or real address
390  * apply to the Linux addresses while I'll use "absolute address" to
391  * refer to the actual hardware real address.
392  *
393  * build_iSeries_Memory_Map gets information from the Hypervisor and
394  * looks at the Main Store VPD to determine the absolute addresses
395  * of the memory that has been assigned to our partition and builds
396  * a table used to translate Linux's physical addresses to these
397  * absolute addresses.  Absolute addresses are needed when
398  * communicating with the hypervisor (e.g. to build HPT entries)
399  *
400  * Returns the physical memory size
401  */
402
403 static unsigned long __init build_iSeries_Memory_Map(void)
404 {
405         u32 loadAreaFirstChunk, loadAreaLastChunk, loadAreaSize;
406         u32 nextPhysChunk;
407         u32 hptFirstChunk, hptLastChunk, hptSizeChunks, hptSizePages;
408         u32 totalChunks,moreChunks;
409         u32 currChunk, thisChunk, absChunk;
410         u32 currDword;
411         u32 chunkBit;
412         u64 map;
413         struct MemoryBlock mb[32];
414         unsigned long numMemoryBlocks, curBlock;
415
416         /* Chunk size on iSeries is 256K bytes */
417         totalChunks = (u32)HvLpConfig_getMsChunks();
418         mschunks_alloc(totalChunks);
419
420         /*
421          * Get absolute address of our load area
422          * and map it to physical address 0
423          * This guarantees that the loadarea ends up at physical 0
424          * otherwise, it might not be returned by PLIC as the first
425          * chunks
426          */
427
428         loadAreaFirstChunk = (u32)addr_to_chunk(itLpNaca.xLoadAreaAddr);
429         loadAreaSize =  itLpNaca.xLoadAreaChunks;
430
431         /*
432          * Only add the pages already mapped here.
433          * Otherwise we might add the hpt pages
434          * The rest of the pages of the load area
435          * aren't in the HPT yet and can still
436          * be assigned an arbitrary physical address
437          */
438         if ((loadAreaSize * 64) > HvPagesToMap)
439                 loadAreaSize = HvPagesToMap / 64;
440
441         loadAreaLastChunk = loadAreaFirstChunk + loadAreaSize - 1;
442
443         /*
444          * TODO Do we need to do something if the HPT is in the 64MB load area?
445          * This would be required if the itLpNaca.xLoadAreaChunks includes
446          * the HPT size
447          */
448
449         printk("Mapping load area - physical addr = 0000000000000000\n"
450                 "                    absolute addr = %016lx\n",
451                 chunk_to_addr(loadAreaFirstChunk));
452         printk("Load area size %dK\n", loadAreaSize * 256);
453
454         for (nextPhysChunk = 0; nextPhysChunk < loadAreaSize; ++nextPhysChunk)
455                 mschunks_map.mapping[nextPhysChunk] =
456                         loadAreaFirstChunk + nextPhysChunk;
457
458         /*
459          * Get absolute address of our HPT and remember it so
460          * we won't map it to any physical address
461          */
462         hptFirstChunk = (u32)addr_to_chunk(HvCallHpt_getHptAddress());
463         hptSizePages = (u32)HvCallHpt_getHptPages();
464         hptSizeChunks = hptSizePages >>
465                 (MSCHUNKS_CHUNK_SHIFT - HW_PAGE_SHIFT);
466         hptLastChunk = hptFirstChunk + hptSizeChunks - 1;
467
468         printk("HPT absolute addr = %016lx, size = %dK\n",
469                         chunk_to_addr(hptFirstChunk), hptSizeChunks * 256);
470
471         /*
472          * Determine if absolute memory has any
473          * holes so that we can interpret the
474          * access map we get back from the hypervisor
475          * correctly.
476          */
477         numMemoryBlocks = iSeries_process_mainstore_vpd(mb, 32);
478
479         /*
480          * Process the main store access map from the hypervisor
481          * to build up our physical -> absolute translation table
482          */
483         curBlock = 0;
484         currChunk = 0;
485         currDword = 0;
486         moreChunks = totalChunks;
487
488         while (moreChunks) {
489                 map = HvCallSm_get64BitsOfAccessMap(itLpNaca.xLpIndex,
490                                 currDword);
491                 thisChunk = currChunk;
492                 while (map) {
493                         chunkBit = map >> 63;
494                         map <<= 1;
495                         if (chunkBit) {
496                                 --moreChunks;
497                                 while (thisChunk >= mb[curBlock].logicalEnd) {
498                                         ++curBlock;
499                                         if (curBlock >= numMemoryBlocks)
500                                                 panic("out of memory blocks");
501                                 }
502                                 if (thisChunk < mb[curBlock].logicalStart)
503                                         panic("memory block error");
504
505                                 absChunk = mb[curBlock].absStart +
506                                         (thisChunk - mb[curBlock].logicalStart);
507                                 if (((absChunk < hptFirstChunk) ||
508                                      (absChunk > hptLastChunk)) &&
509                                     ((absChunk < loadAreaFirstChunk) ||
510                                      (absChunk > loadAreaLastChunk))) {
511                                         mschunks_map.mapping[nextPhysChunk] =
512                                                 absChunk;
513                                         ++nextPhysChunk;
514                                 }
515                         }
516                         ++thisChunk;
517                 }
518                 ++currDword;
519                 currChunk += 64;
520         }
521
522         /*
523          * main store size (in chunks) is
524          *   totalChunks - hptSizeChunks
525          * which should be equal to
526          *   nextPhysChunk
527          */
528         return chunk_to_addr(nextPhysChunk);
529 }
530
531 /*
532  * Document me.
533  */
534 static void __init iSeries_setup_arch(void)
535 {
536         if (get_lppaca()->shared_proc) {
537                 ppc_md.idle_loop = iseries_shared_idle;
538                 printk(KERN_INFO "Using shared processor idle loop\n");
539         } else {
540                 ppc_md.idle_loop = iseries_dedicated_idle;
541                 printk(KERN_INFO "Using dedicated idle loop\n");
542         }
543
544         /* Setup the Lp Event Queue */
545         setup_hvlpevent_queue();
546
547         printk("Max  logical processors = %d\n",
548                         itVpdAreas.xSlicMaxLogicalProcs);
549         printk("Max physical processors = %d\n",
550                         itVpdAreas.xSlicMaxPhysicalProcs);
551 }
552
553 static void iSeries_show_cpuinfo(struct seq_file *m)
554 {
555         seq_printf(m, "machine\t\t: 64-bit iSeries Logical Partition\n");
556 }
557
558 static void __init iSeries_progress(char * st, unsigned short code)
559 {
560         printk("Progress: [%04x] - %s\n", (unsigned)code, st);
561         mf_display_progress(code);
562 }
563
564 static void __init iSeries_fixup_klimit(void)
565 {
566         /*
567          * Change klimit to take into account any ram disk
568          * that may be included
569          */
570         if (naca.xRamDisk)
571                 klimit = KERNELBASE + (u64)naca.xRamDisk +
572                         (naca.xRamDiskSize * HW_PAGE_SIZE);
573         else {
574                 /*
575                  * No ram disk was included - check and see if there
576                  * was an embedded system map.  Change klimit to take
577                  * into account any embedded system map
578                  */
579                 if (embedded_sysmap_end)
580                         klimit = KERNELBASE + ((embedded_sysmap_end + 4095) &
581                                         0xfffffffffffff000);
582         }
583 }
584
585 static int __init iSeries_src_init(void)
586 {
587         /* clear the progress line */
588         ppc_md.progress(" ", 0xffff);
589         return 0;
590 }
591
592 late_initcall(iSeries_src_init);
593
594 static inline void process_iSeries_events(void)
595 {
596         asm volatile ("li 0,0x5555; sc" : : : "r0", "r3");
597 }
598
599 static void yield_shared_processor(void)
600 {
601         unsigned long tb;
602
603         HvCall_setEnabledInterrupts(HvCall_MaskIPI |
604                                     HvCall_MaskLpEvent |
605                                     HvCall_MaskLpProd |
606                                     HvCall_MaskTimeout);
607
608         tb = get_tb();
609         /* Compute future tb value when yield should expire */
610         HvCall_yieldProcessor(HvCall_YieldTimed, tb+tb_ticks_per_jiffy);
611
612         /*
613          * The decrementer stops during the yield.  Force a fake decrementer
614          * here and let the timer_interrupt code sort out the actual time.
615          */
616         get_lppaca()->int_dword.fields.decr_int = 1;
617         ppc64_runlatch_on();
618         process_iSeries_events();
619 }
620
621 static void iseries_shared_idle(void)
622 {
623         while (1) {
624                 while (!need_resched() && !hvlpevent_is_pending()) {
625                         local_irq_disable();
626                         ppc64_runlatch_off();
627
628                         /* Recheck with irqs off */
629                         if (!need_resched() && !hvlpevent_is_pending())
630                                 yield_shared_processor();
631
632                         HMT_medium();
633                         local_irq_enable();
634                 }
635
636                 ppc64_runlatch_on();
637
638                 if (hvlpevent_is_pending())
639                         process_iSeries_events();
640
641                 preempt_enable_no_resched();
642                 schedule();
643                 preempt_disable();
644         }
645 }
646
647 static void iseries_dedicated_idle(void)
648 {
649         set_thread_flag(TIF_POLLING_NRFLAG);
650
651         while (1) {
652                 if (!need_resched()) {
653                         while (!need_resched()) {
654                                 ppc64_runlatch_off();
655                                 HMT_low();
656
657                                 if (hvlpevent_is_pending()) {
658                                         HMT_medium();
659                                         ppc64_runlatch_on();
660                                         process_iSeries_events();
661                                 }
662                         }
663
664                         HMT_medium();
665                 }
666
667                 ppc64_runlatch_on();
668                 preempt_enable_no_resched();
669                 schedule();
670                 preempt_disable();
671         }
672 }
673
674 #ifndef CONFIG_PCI
675 void __init iSeries_init_IRQ(void) { }
676 #endif
677
678 static int __init iseries_probe(int platform)
679 {
680         if (PLATFORM_ISERIES_LPAR != platform)
681                 return 0;
682
683         powerpc_firmware_features |= FW_FEATURE_ISERIES;
684         powerpc_firmware_features |= FW_FEATURE_LPAR;
685
686         return 1;
687 }
688
689 struct machdep_calls __initdata iseries_md = {
690         .setup_arch     = iSeries_setup_arch,
691         .show_cpuinfo   = iSeries_show_cpuinfo,
692         .init_IRQ       = iSeries_init_IRQ,
693         .get_irq        = iSeries_get_irq,
694         .init_early     = iSeries_init_early,
695         .pcibios_fixup  = iSeries_pci_final_fixup,
696         .restart        = mf_reboot,
697         .power_off      = mf_power_off,
698         .halt           = mf_power_off,
699         .get_boot_time  = iSeries_get_boot_time,
700         .set_rtc_time   = iSeries_set_rtc_time,
701         .get_rtc_time   = iSeries_get_rtc_time,
702         .calibrate_decr = generic_calibrate_decr,
703         .progress       = iSeries_progress,
704         .probe          = iseries_probe,
705         /* XXX Implement enable_pmcs for iSeries */
706 };
707
708 struct blob {
709         unsigned char data[PAGE_SIZE];
710         unsigned long next;
711 };
712
713 struct iseries_flat_dt {
714         struct boot_param_header header;
715         u64 reserve_map[2];
716         struct blob dt;
717         struct blob strings;
718 };
719
720 struct iseries_flat_dt iseries_dt;
721
722 void dt_init(struct iseries_flat_dt *dt)
723 {
724         dt->header.off_mem_rsvmap =
725                 offsetof(struct iseries_flat_dt, reserve_map);
726         dt->header.off_dt_struct = offsetof(struct iseries_flat_dt, dt);
727         dt->header.off_dt_strings = offsetof(struct iseries_flat_dt, strings);
728         dt->header.totalsize = sizeof(struct iseries_flat_dt);
729         dt->header.dt_strings_size = sizeof(struct blob);
730
731         /* There is no notion of hardware cpu id on iSeries */
732         dt->header.boot_cpuid_phys = smp_processor_id();
733
734         dt->dt.next = (unsigned long)&dt->dt.data;
735         dt->strings.next = (unsigned long)&dt->strings.data;
736
737         dt->header.magic = OF_DT_HEADER;
738         dt->header.version = 0x10;
739         dt->header.last_comp_version = 0x10;
740
741         dt->reserve_map[0] = 0;
742         dt->reserve_map[1] = 0;
743 }
744
745 void dt_check_blob(struct blob *b)
746 {
747         if (b->next >= (unsigned long)&b->next) {
748                 DBG("Ran out of space in flat device tree blob!\n");
749                 BUG();
750         }
751 }
752
753 void dt_push_u32(struct iseries_flat_dt *dt, u32 value)
754 {
755         *((u32*)dt->dt.next) = value;
756         dt->dt.next += sizeof(u32);
757
758         dt_check_blob(&dt->dt);
759 }
760
761 void dt_push_u64(struct iseries_flat_dt *dt, u64 value)
762 {
763         *((u64*)dt->dt.next) = value;
764         dt->dt.next += sizeof(u64);
765
766         dt_check_blob(&dt->dt);
767 }
768
769 unsigned long dt_push_bytes(struct blob *blob, char *data, int len)
770 {
771         unsigned long start = blob->next - (unsigned long)blob->data;
772
773         memcpy((char *)blob->next, data, len);
774         blob->next = _ALIGN(blob->next + len, 4);
775
776         dt_check_blob(blob);
777
778         return start;
779 }
780
781 void dt_start_node(struct iseries_flat_dt *dt, char *name)
782 {
783         dt_push_u32(dt, OF_DT_BEGIN_NODE);
784         dt_push_bytes(&dt->dt, name, strlen(name) + 1);
785 }
786
787 #define dt_end_node(dt) dt_push_u32(dt, OF_DT_END_NODE)
788
789 void dt_prop(struct iseries_flat_dt *dt, char *name, char *data, int len)
790 {
791         unsigned long offset;
792
793         dt_push_u32(dt, OF_DT_PROP);
794
795         /* Length of the data */
796         dt_push_u32(dt, len);
797
798         /* Put the property name in the string blob. */
799         offset = dt_push_bytes(&dt->strings, name, strlen(name) + 1);
800
801         /* The offset of the properties name in the string blob. */
802         dt_push_u32(dt, (u32)offset);
803
804         /* The actual data. */
805         dt_push_bytes(&dt->dt, data, len);
806 }
807
808 void dt_prop_str(struct iseries_flat_dt *dt, char *name, char *data)
809 {
810         dt_prop(dt, name, data, strlen(data) + 1); /* + 1 for NULL */
811 }
812
813 void dt_prop_u32(struct iseries_flat_dt *dt, char *name, u32 data)
814 {
815         dt_prop(dt, name, (char *)&data, sizeof(u32));
816 }
817
818 void dt_prop_u64(struct iseries_flat_dt *dt, char *name, u64 data)
819 {
820         dt_prop(dt, name, (char *)&data, sizeof(u64));
821 }
822
823 void dt_prop_u64_list(struct iseries_flat_dt *dt, char *name, u64 *data, int n)
824 {
825         dt_prop(dt, name, (char *)data, sizeof(u64) * n);
826 }
827
828 void dt_prop_u32_list(struct iseries_flat_dt *dt, char *name, u32 *data, int n)
829 {
830         dt_prop(dt, name, (char *)data, sizeof(u32) * n);
831 }
832
833 void dt_prop_empty(struct iseries_flat_dt *dt, char *name)
834 {
835         dt_prop(dt, name, NULL, 0);
836 }
837
838 void dt_cpus(struct iseries_flat_dt *dt)
839 {
840         unsigned char buf[32];
841         unsigned char *p;
842         unsigned int i, index;
843         struct IoHriProcessorVpd *d;
844         u32 pft_size[2];
845
846         /* yuck */
847         snprintf(buf, 32, "PowerPC,%s", cur_cpu_spec->cpu_name);
848         p = strchr(buf, ' ');
849         if (!p) p = buf + strlen(buf);
850
851         dt_start_node(dt, "cpus");
852         dt_prop_u32(dt, "#address-cells", 1);
853         dt_prop_u32(dt, "#size-cells", 0);
854
855         pft_size[0] = 0; /* NUMA CEC cookie, 0 for non NUMA  */
856         pft_size[1] = __ilog2(HvCallHpt_getHptPages() * HW_PAGE_SIZE);
857
858         for (i = 0; i < NR_CPUS; i++) {
859                 if (lppaca[i].dyn_proc_status >= 2)
860                         continue;
861
862                 snprintf(p, 32 - (p - buf), "@%d", i);
863                 dt_start_node(dt, buf);
864
865                 dt_prop_str(dt, "device_type", "cpu");
866
867                 index = lppaca[i].dyn_hv_phys_proc_index;
868                 d = &xIoHriProcessorVpd[index];
869
870                 dt_prop_u32(dt, "i-cache-size", d->xInstCacheSize * 1024);
871                 dt_prop_u32(dt, "i-cache-line-size", d->xInstCacheOperandSize);
872
873                 dt_prop_u32(dt, "d-cache-size", d->xDataL1CacheSizeKB * 1024);
874                 dt_prop_u32(dt, "d-cache-line-size", d->xDataCacheOperandSize);
875
876                 /* magic conversions to Hz copied from old code */
877                 dt_prop_u32(dt, "clock-frequency",
878                         ((1UL << 34) * 1000000) / d->xProcFreq);
879                 dt_prop_u32(dt, "timebase-frequency",
880                         ((1UL << 32) * 1000000) / d->xTimeBaseFreq);
881
882                 dt_prop_u32(dt, "reg", i);
883
884                 dt_prop_u32_list(dt, "ibm,pft-size", pft_size, 2);
885
886                 dt_end_node(dt);
887         }
888
889         dt_end_node(dt);
890 }
891
892 void dt_model(struct iseries_flat_dt *dt)
893 {
894         char buf[16] = "IBM,";
895
896         /* "IBM," + mfgId[2:3] + systemSerial[1:5] */
897         strne2a(buf + 4, xItExtVpdPanel.mfgID + 2, 2);
898         strne2a(buf + 6, xItExtVpdPanel.systemSerial + 1, 5);
899         buf[11] = '\0';
900         dt_prop_str(dt, "system-id", buf);
901
902         /* "IBM," + machineType[0:4] */
903         strne2a(buf + 4, xItExtVpdPanel.machineType, 4);
904         buf[8] = '\0';
905         dt_prop_str(dt, "model", buf);
906
907         dt_prop_str(dt, "compatible", "IBM,iSeries");
908 }
909
910 void build_flat_dt(struct iseries_flat_dt *dt, unsigned long phys_mem_size)
911 {
912         u64 tmp[2];
913
914         dt_init(dt);
915
916         dt_start_node(dt, "");
917
918         dt_prop_u32(dt, "#address-cells", 2);
919         dt_prop_u32(dt, "#size-cells", 2);
920         dt_model(dt);
921
922         /* /memory */
923         dt_start_node(dt, "memory@0");
924         dt_prop_str(dt, "name", "memory");
925         dt_prop_str(dt, "device_type", "memory");
926         tmp[0] = 0;
927         tmp[1] = phys_mem_size;
928         dt_prop_u64_list(dt, "reg", tmp, 2);
929         dt_end_node(dt);
930
931         /* /chosen */
932         dt_start_node(dt, "chosen");
933         dt_prop_u32(dt, "linux,platform", PLATFORM_ISERIES_LPAR);
934         dt_prop_str(dt, "bootargs", cmd_line);
935         if (cmd_mem_limit)
936                 dt_prop_u64(dt, "linux,memory-limit", cmd_mem_limit);
937         dt_end_node(dt);
938
939         dt_cpus(dt);
940
941         dt_end_node(dt);
942
943         dt_push_u32(dt, OF_DT_END);
944 }
945
946 void * __init iSeries_early_setup(void)
947 {
948         unsigned long phys_mem_size;
949
950         iSeries_fixup_klimit();
951
952         /*
953          * Initialize the table which translate Linux physical addresses to
954          * AS/400 absolute addresses
955          */
956         phys_mem_size = build_iSeries_Memory_Map();
957
958         iSeries_get_cmdline();
959
960         /* Save unparsed command line copy for /proc/cmdline */
961         strlcpy(saved_command_line, cmd_line, COMMAND_LINE_SIZE);
962
963         /* Parse early parameters, in particular mem=x */
964         parse_early_param();
965
966         build_flat_dt(&iseries_dt, phys_mem_size);
967
968         return (void *) __pa(&iseries_dt);
969 }
970
971 /*
972  * On iSeries we just parse the mem=X option from the command line.
973  * On pSeries it's a bit more complicated, see prom_init_mem()
974  */
975 static int __init early_parsemem(char *p)
976 {
977         if (p)
978                 cmd_mem_limit = ALIGN(memparse(p, &p), PAGE_SIZE);
979         return 0;
980 }
981 early_param("mem", early_parsemem);
982
983 static void hvputc(char c)
984 {
985         if (c == '\n')
986                 hvputc('\r');
987
988         HvCall_writeLogBuffer(&c, 1);
989 }
990
991 void __init udbg_init_iseries(void)
992 {
993         udbg_putc = hvputc;
994 }