Linux-2.6.12-rc2
[safe/jmp/linux-2.6] / arch / parisc / mm / init.c
1 /*
2  *  linux/arch/parisc/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright 1999 SuSE GmbH
6  *    changed by Philipp Rumpf
7  *  Copyright 1999 Philipp Rumpf (prumpf@tux.org)
8  *  Copyright 2004 Randolph Chung (tausq@debian.org)
9  *
10  */
11
12 #include <linux/config.h>
13
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/bootmem.h>
17 #include <linux/delay.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>          /* for hppa_dma_ops and pcxl_dma_ops */
20 #include <linux/initrd.h>
21 #include <linux/swap.h>
22 #include <linux/unistd.h>
23 #include <linux/nodemask.h>     /* for node_online_map */
24 #include <linux/pagemap.h>      /* for release_pages and page_cache_release */
25
26 #include <asm/pgalloc.h>
27 #include <asm/tlb.h>
28 #include <asm/pdc_chassis.h>
29 #include <asm/mmzone.h>
30
31 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
32
33 extern char _text;      /* start of kernel code, defined by linker */
34 extern int  data_start;
35 extern char _end;       /* end of BSS, defined by linker */
36 extern char __init_begin, __init_end;
37
38 #ifdef CONFIG_DISCONTIGMEM
39 struct node_map_data node_data[MAX_NUMNODES];
40 bootmem_data_t bmem_data[MAX_NUMNODES];
41 unsigned char pfnnid_map[PFNNID_MAP_MAX];
42 #endif
43
44 static struct resource data_resource = {
45         .name   = "Kernel data",
46         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
47 };
48
49 static struct resource code_resource = {
50         .name   = "Kernel code",
51         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
52 };
53
54 static struct resource pdcdata_resource = {
55         .name   = "PDC data (Page Zero)",
56         .start  = 0,
57         .end    = 0x9ff,
58         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
59 };
60
61 static struct resource sysram_resources[MAX_PHYSMEM_RANGES];
62
63 /* The following array is initialized from the firmware specific
64  * information retrieved in kernel/inventory.c.
65  */
66
67 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES];
68 int npmem_ranges;
69
70 #ifdef __LP64__
71 #define MAX_MEM         (~0UL)
72 #else /* !__LP64__ */
73 #define MAX_MEM         (3584U*1024U*1024U)
74 #endif /* !__LP64__ */
75
76 static unsigned long mem_limit = MAX_MEM;
77
78 static void __init mem_limit_func(void)
79 {
80         char *cp, *end;
81         unsigned long limit;
82         extern char saved_command_line[];
83
84         /* We need this before __setup() functions are called */
85
86         limit = MAX_MEM;
87         for (cp = saved_command_line; *cp; ) {
88                 if (memcmp(cp, "mem=", 4) == 0) {
89                         cp += 4;
90                         limit = memparse(cp, &end);
91                         if (end != cp)
92                                 break;
93                         cp = end;
94                 } else {
95                         while (*cp != ' ' && *cp)
96                                 ++cp;
97                         while (*cp == ' ')
98                                 ++cp;
99                 }
100         }
101
102         if (limit < mem_limit)
103                 mem_limit = limit;
104 }
105
106 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
107
108 static void __init setup_bootmem(void)
109 {
110         unsigned long bootmap_size;
111         unsigned long mem_max;
112         unsigned long bootmap_pages;
113         unsigned long bootmap_start_pfn;
114         unsigned long bootmap_pfn;
115 #ifndef CONFIG_DISCONTIGMEM
116         physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
117         int npmem_holes;
118 #endif
119         int i, sysram_resource_count;
120
121         disable_sr_hashing(); /* Turn off space register hashing */
122
123         /*
124          * Sort the ranges. Since the number of ranges is typically
125          * small, and performance is not an issue here, just do
126          * a simple insertion sort.
127          */
128
129         for (i = 1; i < npmem_ranges; i++) {
130                 int j;
131
132                 for (j = i; j > 0; j--) {
133                         unsigned long tmp;
134
135                         if (pmem_ranges[j-1].start_pfn <
136                             pmem_ranges[j].start_pfn) {
137
138                                 break;
139                         }
140                         tmp = pmem_ranges[j-1].start_pfn;
141                         pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn;
142                         pmem_ranges[j].start_pfn = tmp;
143                         tmp = pmem_ranges[j-1].pages;
144                         pmem_ranges[j-1].pages = pmem_ranges[j].pages;
145                         pmem_ranges[j].pages = tmp;
146                 }
147         }
148
149 #ifndef CONFIG_DISCONTIGMEM
150         /*
151          * Throw out ranges that are too far apart (controlled by
152          * MAX_GAP).
153          */
154
155         for (i = 1; i < npmem_ranges; i++) {
156                 if (pmem_ranges[i].start_pfn -
157                         (pmem_ranges[i-1].start_pfn +
158                          pmem_ranges[i-1].pages) > MAX_GAP) {
159                         npmem_ranges = i;
160                         printk("Large gap in memory detected (%ld pages). "
161                                "Consider turning on CONFIG_DISCONTIGMEM\n",
162                                pmem_ranges[i].start_pfn -
163                                (pmem_ranges[i-1].start_pfn +
164                                 pmem_ranges[i-1].pages));
165                         break;
166                 }
167         }
168 #endif
169
170         if (npmem_ranges > 1) {
171
172                 /* Print the memory ranges */
173
174                 printk(KERN_INFO "Memory Ranges:\n");
175
176                 for (i = 0; i < npmem_ranges; i++) {
177                         unsigned long start;
178                         unsigned long size;
179
180                         size = (pmem_ranges[i].pages << PAGE_SHIFT);
181                         start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
182                         printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
183                                 i,start, start + (size - 1), size >> 20);
184                 }
185         }
186
187         sysram_resource_count = npmem_ranges;
188         for (i = 0; i < sysram_resource_count; i++) {
189                 struct resource *res = &sysram_resources[i];
190                 res->name = "System RAM";
191                 res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT;
192                 res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1;
193                 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
194                 request_resource(&iomem_resource, res);
195         }
196
197         /*
198          * For 32 bit kernels we limit the amount of memory we can
199          * support, in order to preserve enough kernel address space
200          * for other purposes. For 64 bit kernels we don't normally
201          * limit the memory, but this mechanism can be used to
202          * artificially limit the amount of memory (and it is written
203          * to work with multiple memory ranges).
204          */
205
206         mem_limit_func();       /* check for "mem=" argument */
207
208         mem_max = 0;
209         num_physpages = 0;
210         for (i = 0; i < npmem_ranges; i++) {
211                 unsigned long rsize;
212
213                 rsize = pmem_ranges[i].pages << PAGE_SHIFT;
214                 if ((mem_max + rsize) > mem_limit) {
215                         printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
216                         if (mem_max == mem_limit)
217                                 npmem_ranges = i;
218                         else {
219                                 pmem_ranges[i].pages =   (mem_limit >> PAGE_SHIFT)
220                                                        - (mem_max >> PAGE_SHIFT);
221                                 npmem_ranges = i + 1;
222                                 mem_max = mem_limit;
223                         }
224                 num_physpages += pmem_ranges[i].pages;
225                         break;
226                 }
227             num_physpages += pmem_ranges[i].pages;
228                 mem_max += rsize;
229         }
230
231         printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
232
233 #ifndef CONFIG_DISCONTIGMEM
234         /* Merge the ranges, keeping track of the holes */
235
236         {
237                 unsigned long end_pfn;
238                 unsigned long hole_pages;
239
240                 npmem_holes = 0;
241                 end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
242                 for (i = 1; i < npmem_ranges; i++) {
243
244                         hole_pages = pmem_ranges[i].start_pfn - end_pfn;
245                         if (hole_pages) {
246                                 pmem_holes[npmem_holes].start_pfn = end_pfn;
247                                 pmem_holes[npmem_holes++].pages = hole_pages;
248                                 end_pfn += hole_pages;
249                         }
250                         end_pfn += pmem_ranges[i].pages;
251                 }
252
253                 pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
254                 npmem_ranges = 1;
255         }
256 #endif
257
258         bootmap_pages = 0;
259         for (i = 0; i < npmem_ranges; i++)
260                 bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages);
261
262         bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT;
263
264 #ifdef CONFIG_DISCONTIGMEM
265         for (i = 0; i < MAX_PHYSMEM_RANGES; i++) {
266                 memset(NODE_DATA(i), 0, sizeof(pg_data_t));
267                 NODE_DATA(i)->bdata = &bmem_data[i];
268         }
269         memset(pfnnid_map, 0xff, sizeof(pfnnid_map));
270
271         for (i = 0; i < npmem_ranges; i++)
272                 node_set_online(i);
273 #endif
274
275         /*
276          * Initialize and free the full range of memory in each range.
277          * Note that the only writing these routines do are to the bootmap,
278          * and we've made sure to locate the bootmap properly so that they
279          * won't be writing over anything important.
280          */
281
282         bootmap_pfn = bootmap_start_pfn;
283         max_pfn = 0;
284         for (i = 0; i < npmem_ranges; i++) {
285                 unsigned long start_pfn;
286                 unsigned long npages;
287
288                 start_pfn = pmem_ranges[i].start_pfn;
289                 npages = pmem_ranges[i].pages;
290
291                 bootmap_size = init_bootmem_node(NODE_DATA(i),
292                                                 bootmap_pfn,
293                                                 start_pfn,
294                                                 (start_pfn + npages) );
295                 free_bootmem_node(NODE_DATA(i),
296                                   (start_pfn << PAGE_SHIFT),
297                                   (npages << PAGE_SHIFT) );
298                 bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
299                 if ((start_pfn + npages) > max_pfn)
300                         max_pfn = start_pfn + npages;
301         }
302
303         if ((bootmap_pfn - bootmap_start_pfn) != bootmap_pages) {
304                 printk(KERN_WARNING "WARNING! bootmap sizing is messed up!\n");
305                 BUG();
306         }
307
308         /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
309
310 #define PDC_CONSOLE_IO_IODC_SIZE 32768
311
312         reserve_bootmem_node(NODE_DATA(0), 0UL,
313                         (unsigned long)(PAGE0->mem_free + PDC_CONSOLE_IO_IODC_SIZE));
314         reserve_bootmem_node(NODE_DATA(0),__pa((unsigned long)&_text),
315                         (unsigned long)(&_end - &_text));
316         reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT),
317                         ((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT));
318
319 #ifndef CONFIG_DISCONTIGMEM
320
321         /* reserve the holes */
322
323         for (i = 0; i < npmem_holes; i++) {
324                 reserve_bootmem_node(NODE_DATA(0),
325                                 (pmem_holes[i].start_pfn << PAGE_SHIFT),
326                                 (pmem_holes[i].pages << PAGE_SHIFT));
327         }
328 #endif
329
330 #ifdef CONFIG_BLK_DEV_INITRD
331         if (initrd_start) {
332                 printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
333                 if (__pa(initrd_start) < mem_max) {
334                         unsigned long initrd_reserve;
335
336                         if (__pa(initrd_end) > mem_max) {
337                                 initrd_reserve = mem_max - __pa(initrd_start);
338                         } else {
339                                 initrd_reserve = initrd_end - initrd_start;
340                         }
341                         initrd_below_start_ok = 1;
342                         printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
343
344                         reserve_bootmem_node(NODE_DATA(0),__pa(initrd_start), initrd_reserve);
345                 }
346         }
347 #endif
348
349         data_resource.start =  virt_to_phys(&data_start);
350         data_resource.end = virt_to_phys(&_end)-1;
351         code_resource.start = virt_to_phys(&_text);
352         code_resource.end = virt_to_phys(&data_start)-1;
353
354         /* We don't know which region the kernel will be in, so try
355          * all of them.
356          */
357         for (i = 0; i < sysram_resource_count; i++) {
358                 struct resource *res = &sysram_resources[i];
359                 request_resource(res, &code_resource);
360                 request_resource(res, &data_resource);
361         }
362         request_resource(&sysram_resources[0], &pdcdata_resource);
363 }
364
365 void free_initmem(void)
366 {
367         /* FIXME: */
368 #if 0
369         printk(KERN_INFO "NOT FREEING INITMEM (%dk)\n",
370                         (&__init_end - &__init_begin) >> 10);
371         return;
372 #else
373         unsigned long addr;
374         
375         printk(KERN_INFO "Freeing unused kernel memory: ");
376
377 #if 1
378         /* Attempt to catch anyone trying to execute code here
379          * by filling the page with BRK insns.
380          * 
381          * If we disable interrupts for all CPUs, then IPI stops working.
382          * Kinda breaks the global cache flushing.
383          */
384         local_irq_disable();
385
386         memset(&__init_begin, 0x00, 
387                 (unsigned long)&__init_end - (unsigned long)&__init_begin);
388
389         flush_data_cache();
390         asm volatile("sync" : : );
391         flush_icache_range((unsigned long)&__init_begin, (unsigned long)&__init_end);
392         asm volatile("sync" : : );
393
394         local_irq_enable();
395 #endif
396         
397         addr = (unsigned long)(&__init_begin);
398         for (; addr < (unsigned long)(&__init_end); addr += PAGE_SIZE) {
399                 ClearPageReserved(virt_to_page(addr));
400                 set_page_count(virt_to_page(addr), 1);
401                 free_page(addr);
402                 num_physpages++;
403                 totalram_pages++;
404         }
405
406         /* set up a new led state on systems shipped LED State panel */
407         pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
408         
409         printk("%luk freed\n", (unsigned long)(&__init_end - &__init_begin) >> 10);
410 #endif
411 }
412
413 /*
414  * Just an arbitrary offset to serve as a "hole" between mapping areas
415  * (between top of physical memory and a potential pcxl dma mapping
416  * area, and below the vmalloc mapping area).
417  *
418  * The current 32K value just means that there will be a 32K "hole"
419  * between mapping areas. That means that  any out-of-bounds memory
420  * accesses will hopefully be caught. The vmalloc() routines leaves
421  * a hole of 4kB between each vmalloced area for the same reason.
422  */
423
424  /* Leave room for gateway page expansion */
425 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
426 #error KERNEL_MAP_START is in gateway reserved region
427 #endif
428 #define MAP_START (KERNEL_MAP_START)
429
430 #define VM_MAP_OFFSET  (32*1024)
431 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
432                                      & ~(VM_MAP_OFFSET-1)))
433
434 void *vmalloc_start;
435 EXPORT_SYMBOL(vmalloc_start);
436
437 #ifdef CONFIG_PA11
438 unsigned long pcxl_dma_start;
439 #endif
440
441 void __init mem_init(void)
442 {
443         high_memory = __va((max_pfn << PAGE_SHIFT));
444
445 #ifndef CONFIG_DISCONTIGMEM
446         max_mapnr = page_to_pfn(virt_to_page(high_memory - 1)) + 1;
447         totalram_pages += free_all_bootmem();
448 #else
449         {
450                 int i;
451
452                 for (i = 0; i < npmem_ranges; i++)
453                         totalram_pages += free_all_bootmem_node(NODE_DATA(i));
454         }
455 #endif
456
457         printk(KERN_INFO "Memory: %luk available\n", num_physpages << (PAGE_SHIFT-10));
458
459 #ifdef CONFIG_PA11
460         if (hppa_dma_ops == &pcxl_dma_ops) {
461                 pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
462                 vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start + PCXL_DMA_MAP_SIZE);
463         } else {
464                 pcxl_dma_start = 0;
465                 vmalloc_start = SET_MAP_OFFSET(MAP_START);
466         }
467 #else
468         vmalloc_start = SET_MAP_OFFSET(MAP_START);
469 #endif
470
471 }
472
473 int do_check_pgt_cache(int low, int high)
474 {
475         return 0;
476 }
477
478 unsigned long *empty_zero_page;
479
480 void show_mem(void)
481 {
482         int i,free = 0,total = 0,reserved = 0;
483         int shared = 0, cached = 0;
484
485         printk(KERN_INFO "Mem-info:\n");
486         show_free_areas();
487         printk(KERN_INFO "Free swap:     %6ldkB\n",
488                                 nr_swap_pages<<(PAGE_SHIFT-10));
489 #ifndef CONFIG_DISCONTIGMEM
490         i = max_mapnr;
491         while (i-- > 0) {
492                 total++;
493                 if (PageReserved(mem_map+i))
494                         reserved++;
495                 else if (PageSwapCache(mem_map+i))
496                         cached++;
497                 else if (!page_count(&mem_map[i]))
498                         free++;
499                 else
500                         shared += page_count(&mem_map[i]) - 1;
501         }
502 #else
503         for (i = 0; i < npmem_ranges; i++) {
504                 int j;
505
506                 for (j = node_start_pfn(i); j < node_end_pfn(i); j++) {
507                         struct page *p;
508
509                         p = node_mem_map(i) + j - node_start_pfn(i);
510
511                         total++;
512                         if (PageReserved(p))
513                                 reserved++;
514                         else if (PageSwapCache(p))
515                                 cached++;
516                         else if (!page_count(p))
517                                 free++;
518                         else
519                                 shared += page_count(p) - 1;
520                 }
521         }
522 #endif
523         printk(KERN_INFO "%d pages of RAM\n", total);
524         printk(KERN_INFO "%d reserved pages\n", reserved);
525         printk(KERN_INFO "%d pages shared\n", shared);
526         printk(KERN_INFO "%d pages swap cached\n", cached);
527
528
529 #ifdef CONFIG_DISCONTIGMEM
530         {
531                 struct zonelist *zl;
532                 int i, j, k;
533
534                 for (i = 0; i < npmem_ranges; i++) {
535                         for (j = 0; j < MAX_NR_ZONES; j++) {
536                                 zl = NODE_DATA(i)->node_zonelists + j;
537
538                                 printk("Zone list for zone %d on node %d: ", j, i);
539                                 for (k = 0; zl->zones[k] != NULL; k++) 
540                                         printk("[%d/%s] ", zl->zones[k]->zone_pgdat->node_id, zl->zones[k]->name);
541                                 printk("\n");
542                         }
543                 }
544         }
545 #endif
546 }
547
548
549 static void __init map_pages(unsigned long start_vaddr, unsigned long start_paddr, unsigned long size, pgprot_t pgprot)
550 {
551         pgd_t *pg_dir;
552         pmd_t *pmd;
553         pte_t *pg_table;
554         unsigned long end_paddr;
555         unsigned long start_pmd;
556         unsigned long start_pte;
557         unsigned long tmp1;
558         unsigned long tmp2;
559         unsigned long address;
560         unsigned long ro_start;
561         unsigned long ro_end;
562         unsigned long fv_addr;
563         unsigned long gw_addr;
564         extern const unsigned long fault_vector_20;
565         extern void * const linux_gateway_page;
566
567         ro_start = __pa((unsigned long)&_text);
568         ro_end   = __pa((unsigned long)&data_start);
569         fv_addr  = __pa((unsigned long)&fault_vector_20) & PAGE_MASK;
570         gw_addr  = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK;
571
572         end_paddr = start_paddr + size;
573
574         pg_dir = pgd_offset_k(start_vaddr);
575
576 #if PTRS_PER_PMD == 1
577         start_pmd = 0;
578 #else
579         start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
580 #endif
581         start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
582
583         address = start_paddr;
584         while (address < end_paddr) {
585 #if PTRS_PER_PMD == 1
586                 pmd = (pmd_t *)__pa(pg_dir);
587 #else
588                 pmd = (pmd_t *)pgd_address(*pg_dir);
589
590                 /*
591                  * pmd is physical at this point
592                  */
593
594                 if (!pmd) {
595                         pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE << PMD_ORDER);
596                         pmd = (pmd_t *) __pa(pmd);
597                 }
598
599                 pgd_populate(NULL, pg_dir, __va(pmd));
600 #endif
601                 pg_dir++;
602
603                 /* now change pmd to kernel virtual addresses */
604
605                 pmd = (pmd_t *)__va(pmd) + start_pmd;
606                 for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++,pmd++) {
607
608                         /*
609                          * pg_table is physical at this point
610                          */
611
612                         pg_table = (pte_t *)pmd_address(*pmd);
613                         if (!pg_table) {
614                                 pg_table = (pte_t *)
615                                         alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE);
616                                 pg_table = (pte_t *) __pa(pg_table);
617                         }
618
619                         pmd_populate_kernel(NULL, pmd, __va(pg_table));
620
621                         /* now change pg_table to kernel virtual addresses */
622
623                         pg_table = (pte_t *) __va(pg_table) + start_pte;
624                         for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++,pg_table++) {
625                                 pte_t pte;
626
627                                 /*
628                                  * Map the fault vector writable so we can
629                                  * write the HPMC checksum.
630                                  */
631                                 if (address >= ro_start && address < ro_end
632                                                         && address != fv_addr
633                                                         && address != gw_addr)
634                                     pte = __mk_pte(address, PAGE_KERNEL_RO);
635                                 else
636                                     pte = __mk_pte(address, pgprot);
637
638                                 if (address >= end_paddr)
639                                         pte_val(pte) = 0;
640
641                                 set_pte(pg_table, pte);
642
643                                 address += PAGE_SIZE;
644                         }
645                         start_pte = 0;
646
647                         if (address >= end_paddr)
648                             break;
649                 }
650                 start_pmd = 0;
651         }
652 }
653
654 /*
655  * pagetable_init() sets up the page tables
656  *
657  * Note that gateway_init() places the Linux gateway page at page 0.
658  * Since gateway pages cannot be dereferenced this has the desirable
659  * side effect of trapping those pesky NULL-reference errors in the
660  * kernel.
661  */
662 static void __init pagetable_init(void)
663 {
664         int range;
665
666         /* Map each physical memory range to its kernel vaddr */
667
668         for (range = 0; range < npmem_ranges; range++) {
669                 unsigned long start_paddr;
670                 unsigned long end_paddr;
671                 unsigned long size;
672
673                 start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
674                 end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT);
675                 size = pmem_ranges[range].pages << PAGE_SHIFT;
676
677                 map_pages((unsigned long)__va(start_paddr), start_paddr,
678                         size, PAGE_KERNEL);
679         }
680
681 #ifdef CONFIG_BLK_DEV_INITRD
682         if (initrd_end && initrd_end > mem_limit) {
683                 printk("initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
684                 map_pages(initrd_start, __pa(initrd_start),
685                         initrd_end - initrd_start, PAGE_KERNEL);
686         }
687 #endif
688
689         empty_zero_page = alloc_bootmem_pages(PAGE_SIZE);
690         memset(empty_zero_page, 0, PAGE_SIZE);
691 }
692
693 static void __init gateway_init(void)
694 {
695         unsigned long linux_gateway_page_addr;
696         /* FIXME: This is 'const' in order to trick the compiler
697            into not treating it as DP-relative data. */
698         extern void * const linux_gateway_page;
699
700         linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
701
702         /*
703          * Setup Linux Gateway page.
704          *
705          * The Linux gateway page will reside in kernel space (on virtual
706          * page 0), so it doesn't need to be aliased into user space.
707          */
708
709         map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
710                 PAGE_SIZE, PAGE_GATEWAY);
711 }
712
713 #ifdef CONFIG_HPUX
714 void
715 map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm)
716 {
717         pgd_t *pg_dir;
718         pmd_t *pmd;
719         pte_t *pg_table;
720         unsigned long start_pmd;
721         unsigned long start_pte;
722         unsigned long address;
723         unsigned long hpux_gw_page_addr;
724         /* FIXME: This is 'const' in order to trick the compiler
725            into not treating it as DP-relative data. */
726         extern void * const hpux_gateway_page;
727
728         hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK;
729
730         /*
731          * Setup HP-UX Gateway page.
732          *
733          * The HP-UX gateway page resides in the user address space,
734          * so it needs to be aliased into each process.
735          */
736
737         pg_dir = pgd_offset(mm,hpux_gw_page_addr);
738
739 #if PTRS_PER_PMD == 1
740         start_pmd = 0;
741 #else
742         start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
743 #endif
744         start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
745
746         address = __pa(&hpux_gateway_page);
747 #if PTRS_PER_PMD == 1
748         pmd = (pmd_t *)__pa(pg_dir);
749 #else
750         pmd = (pmd_t *) pgd_address(*pg_dir);
751
752         /*
753          * pmd is physical at this point
754          */
755
756         if (!pmd) {
757                 pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL);
758                 pmd = (pmd_t *) __pa(pmd);
759         }
760
761         __pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd);
762 #endif
763         /* now change pmd to kernel virtual addresses */
764
765         pmd = (pmd_t *)__va(pmd) + start_pmd;
766
767         /*
768          * pg_table is physical at this point
769          */
770
771         pg_table = (pte_t *) pmd_address(*pmd);
772         if (!pg_table)
773                 pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL));
774
775         __pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table);
776
777         /* now change pg_table to kernel virtual addresses */
778
779         pg_table = (pte_t *) __va(pg_table) + start_pte;
780         set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY));
781 }
782 EXPORT_SYMBOL(map_hpux_gateway_page);
783 #endif
784
785 extern void flush_tlb_all_local(void);
786
787 void __init paging_init(void)
788 {
789         int i;
790
791         setup_bootmem();
792         pagetable_init();
793         gateway_init();
794         flush_cache_all_local(); /* start with known state */
795         flush_tlb_all_local();
796
797         for (i = 0; i < npmem_ranges; i++) {
798                 unsigned long zones_size[MAX_NR_ZONES] = { 0, 0, 0 };
799
800                 /* We have an IOMMU, so all memory can go into a single
801                    ZONE_DMA zone. */
802                 zones_size[ZONE_DMA] = pmem_ranges[i].pages;
803
804 #ifdef CONFIG_DISCONTIGMEM
805                 /* Need to initialize the pfnnid_map before we can initialize
806                    the zone */
807                 {
808                     int j;
809                     for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT);
810                          j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT);
811                          j++) {
812                         pfnnid_map[j] = i;
813                     }
814                 }
815 #endif
816
817                 free_area_init_node(i, NODE_DATA(i), zones_size,
818                                 pmem_ranges[i].start_pfn, NULL);
819         }
820 }
821
822 #ifdef CONFIG_PA20
823
824 /*
825  * Currently, all PA20 chips have 18 bit protection id's, which is the
826  * limiting factor (space ids are 32 bits).
827  */
828
829 #define NR_SPACE_IDS 262144
830
831 #else
832
833 /*
834  * Currently we have a one-to-one relationship between space id's and
835  * protection id's. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
836  * support 15 bit protection id's, so that is the limiting factor.
837  * PCXT' has 18 bit protection id's, but only 16 bit spaceids, so it's
838  * probably not worth the effort for a special case here.
839  */
840
841 #define NR_SPACE_IDS 32768
842
843 #endif  /* !CONFIG_PA20 */
844
845 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
846 #define SID_ARRAY_SIZE  (NR_SPACE_IDS / (8 * sizeof(long)))
847
848 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
849 static unsigned long dirty_space_id[SID_ARRAY_SIZE];
850 static unsigned long space_id_index;
851 static unsigned long free_space_ids = NR_SPACE_IDS - 1;
852 static unsigned long dirty_space_ids = 0;
853
854 static DEFINE_SPINLOCK(sid_lock);
855
856 unsigned long alloc_sid(void)
857 {
858         unsigned long index;
859
860         spin_lock(&sid_lock);
861
862         if (free_space_ids == 0) {
863                 if (dirty_space_ids != 0) {
864                         spin_unlock(&sid_lock);
865                         flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
866                         spin_lock(&sid_lock);
867                 }
868                 if (free_space_ids == 0)
869                         BUG();
870         }
871
872         free_space_ids--;
873
874         index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
875         space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
876         space_id_index = index;
877
878         spin_unlock(&sid_lock);
879
880         return index << SPACEID_SHIFT;
881 }
882
883 void free_sid(unsigned long spaceid)
884 {
885         unsigned long index = spaceid >> SPACEID_SHIFT;
886         unsigned long *dirty_space_offset;
887
888         dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
889         index &= (BITS_PER_LONG - 1);
890
891         spin_lock(&sid_lock);
892
893         if (*dirty_space_offset & (1L << index))
894             BUG(); /* attempt to free space id twice */
895
896         *dirty_space_offset |= (1L << index);
897         dirty_space_ids++;
898
899         spin_unlock(&sid_lock);
900 }
901
902
903 #ifdef CONFIG_SMP
904 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
905 {
906         int i;
907
908         /* NOTE: sid_lock must be held upon entry */
909
910         *ndirtyptr = dirty_space_ids;
911         if (dirty_space_ids != 0) {
912             for (i = 0; i < SID_ARRAY_SIZE; i++) {
913                 dirty_array[i] = dirty_space_id[i];
914                 dirty_space_id[i] = 0;
915             }
916             dirty_space_ids = 0;
917         }
918
919         return;
920 }
921
922 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
923 {
924         int i;
925
926         /* NOTE: sid_lock must be held upon entry */
927
928         if (ndirty != 0) {
929                 for (i = 0; i < SID_ARRAY_SIZE; i++) {
930                         space_id[i] ^= dirty_array[i];
931                 }
932
933                 free_space_ids += ndirty;
934                 space_id_index = 0;
935         }
936 }
937
938 #else /* CONFIG_SMP */
939
940 static void recycle_sids(void)
941 {
942         int i;
943
944         /* NOTE: sid_lock must be held upon entry */
945
946         if (dirty_space_ids != 0) {
947                 for (i = 0; i < SID_ARRAY_SIZE; i++) {
948                         space_id[i] ^= dirty_space_id[i];
949                         dirty_space_id[i] = 0;
950                 }
951
952                 free_space_ids += dirty_space_ids;
953                 dirty_space_ids = 0;
954                 space_id_index = 0;
955         }
956 }
957 #endif
958
959 /*
960  * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
961  * purged, we can safely reuse the space ids that were released but
962  * not flushed from the tlb.
963  */
964
965 #ifdef CONFIG_SMP
966
967 static unsigned long recycle_ndirty;
968 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
969 static unsigned int recycle_inuse = 0;
970
971 void flush_tlb_all(void)
972 {
973         int do_recycle;
974
975         do_recycle = 0;
976         spin_lock(&sid_lock);
977         if (dirty_space_ids > RECYCLE_THRESHOLD) {
978             if (recycle_inuse) {
979                 BUG();  /* FIXME: Use a semaphore/wait queue here */
980             }
981             get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
982             recycle_inuse++;
983             do_recycle++;
984         }
985         spin_unlock(&sid_lock);
986         on_each_cpu((void (*)(void *))flush_tlb_all_local, NULL, 1, 1);
987         if (do_recycle) {
988             spin_lock(&sid_lock);
989             recycle_sids(recycle_ndirty,recycle_dirty_array);
990             recycle_inuse = 0;
991             spin_unlock(&sid_lock);
992         }
993 }
994 #else
995 void flush_tlb_all(void)
996 {
997         spin_lock(&sid_lock);
998         flush_tlb_all_local();
999         recycle_sids();
1000         spin_unlock(&sid_lock);
1001 }
1002 #endif
1003
1004 #ifdef CONFIG_BLK_DEV_INITRD
1005 void free_initrd_mem(unsigned long start, unsigned long end)
1006 {
1007 #if 0
1008         if (start < end)
1009                 printk(KERN_INFO "Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1010         for (; start < end; start += PAGE_SIZE) {
1011                 ClearPageReserved(virt_to_page(start));
1012                 set_page_count(virt_to_page(start), 1);
1013                 free_page(start);
1014                 num_physpages++;
1015                 totalram_pages++;
1016         }
1017 #endif
1018 }
1019 #endif