KVM: APIC: get rid of deliver_bitmask
[safe/jmp/linux-2.6] / arch / ia64 / kvm / kvm-ia64.c
1 /*
2  * kvm_ia64.c: Basic KVM suppport On Itanium series processors
3  *
4  *
5  *      Copyright (C) 2007, Intel Corporation.
6  *      Xiantao Zhang  (xiantao.zhang@intel.com)
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  *
17  * You should have received a copy of the GNU General Public License along with
18  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
19  * Place - Suite 330, Boston, MA 02111-1307 USA.
20  *
21  */
22
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/gfp.h>
27 #include <linux/fs.h>
28 #include <linux/smp.h>
29 #include <linux/kvm_host.h>
30 #include <linux/kvm.h>
31 #include <linux/bitops.h>
32 #include <linux/hrtimer.h>
33 #include <linux/uaccess.h>
34 #include <linux/iommu.h>
35 #include <linux/intel-iommu.h>
36
37 #include <asm/pgtable.h>
38 #include <asm/gcc_intrin.h>
39 #include <asm/pal.h>
40 #include <asm/cacheflush.h>
41 #include <asm/div64.h>
42 #include <asm/tlb.h>
43 #include <asm/elf.h>
44
45 #include "misc.h"
46 #include "vti.h"
47 #include "iodev.h"
48 #include "ioapic.h"
49 #include "lapic.h"
50 #include "irq.h"
51
52 static unsigned long kvm_vmm_base;
53 static unsigned long kvm_vsa_base;
54 static unsigned long kvm_vm_buffer;
55 static unsigned long kvm_vm_buffer_size;
56 unsigned long kvm_vmm_gp;
57
58 static long vp_env_info;
59
60 static struct kvm_vmm_info *kvm_vmm_info;
61
62 static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);
63
64 struct kvm_stats_debugfs_item debugfs_entries[] = {
65         { NULL }
66 };
67
68 static void kvm_flush_icache(unsigned long start, unsigned long len)
69 {
70         int l;
71
72         for (l = 0; l < (len + 32); l += 32)
73                 ia64_fc((void *)(start + l));
74
75         ia64_sync_i();
76         ia64_srlz_i();
77 }
78
79 static void kvm_flush_tlb_all(void)
80 {
81         unsigned long i, j, count0, count1, stride0, stride1, addr;
82         long flags;
83
84         addr    = local_cpu_data->ptce_base;
85         count0  = local_cpu_data->ptce_count[0];
86         count1  = local_cpu_data->ptce_count[1];
87         stride0 = local_cpu_data->ptce_stride[0];
88         stride1 = local_cpu_data->ptce_stride[1];
89
90         local_irq_save(flags);
91         for (i = 0; i < count0; ++i) {
92                 for (j = 0; j < count1; ++j) {
93                         ia64_ptce(addr);
94                         addr += stride1;
95                 }
96                 addr += stride0;
97         }
98         local_irq_restore(flags);
99         ia64_srlz_i();                  /* srlz.i implies srlz.d */
100 }
101
102 long ia64_pal_vp_create(u64 *vpd, u64 *host_iva, u64 *opt_handler)
103 {
104         struct ia64_pal_retval iprv;
105
106         PAL_CALL_STK(iprv, PAL_VP_CREATE, (u64)vpd, (u64)host_iva,
107                         (u64)opt_handler);
108
109         return iprv.status;
110 }
111
112 static  DEFINE_SPINLOCK(vp_lock);
113
114 void kvm_arch_hardware_enable(void *garbage)
115 {
116         long  status;
117         long  tmp_base;
118         unsigned long pte;
119         unsigned long saved_psr;
120         int slot;
121
122         pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
123                                 PAGE_KERNEL));
124         local_irq_save(saved_psr);
125         slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
126         local_irq_restore(saved_psr);
127         if (slot < 0)
128                 return;
129
130         spin_lock(&vp_lock);
131         status = ia64_pal_vp_init_env(kvm_vsa_base ?
132                                 VP_INIT_ENV : VP_INIT_ENV_INITALIZE,
133                         __pa(kvm_vm_buffer), KVM_VM_BUFFER_BASE, &tmp_base);
134         if (status != 0) {
135                 printk(KERN_WARNING"kvm: Failed to Enable VT Support!!!!\n");
136                 return ;
137         }
138
139         if (!kvm_vsa_base) {
140                 kvm_vsa_base = tmp_base;
141                 printk(KERN_INFO"kvm: kvm_vsa_base:0x%lx\n", kvm_vsa_base);
142         }
143         spin_unlock(&vp_lock);
144         ia64_ptr_entry(0x3, slot);
145 }
146
147 void kvm_arch_hardware_disable(void *garbage)
148 {
149
150         long status;
151         int slot;
152         unsigned long pte;
153         unsigned long saved_psr;
154         unsigned long host_iva = ia64_getreg(_IA64_REG_CR_IVA);
155
156         pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
157                                 PAGE_KERNEL));
158
159         local_irq_save(saved_psr);
160         slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
161         local_irq_restore(saved_psr);
162         if (slot < 0)
163                 return;
164
165         status = ia64_pal_vp_exit_env(host_iva);
166         if (status)
167                 printk(KERN_DEBUG"kvm: Failed to disable VT support! :%ld\n",
168                                 status);
169         ia64_ptr_entry(0x3, slot);
170 }
171
172 void kvm_arch_check_processor_compat(void *rtn)
173 {
174         *(int *)rtn = 0;
175 }
176
177 int kvm_dev_ioctl_check_extension(long ext)
178 {
179
180         int r;
181
182         switch (ext) {
183         case KVM_CAP_IRQCHIP:
184         case KVM_CAP_MP_STATE:
185         case KVM_CAP_IRQ_INJECT_STATUS:
186                 r = 1;
187                 break;
188         case KVM_CAP_COALESCED_MMIO:
189                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
190                 break;
191         case KVM_CAP_IOMMU:
192                 r = iommu_found();
193                 break;
194         default:
195                 r = 0;
196         }
197         return r;
198
199 }
200
201 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
202                                         gpa_t addr, int len, int is_write)
203 {
204         struct kvm_io_device *dev;
205
206         dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len, is_write);
207
208         return dev;
209 }
210
211 static int handle_vm_error(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
212 {
213         kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
214         kvm_run->hw.hardware_exit_reason = 1;
215         return 0;
216 }
217
218 static int handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
219 {
220         struct kvm_mmio_req *p;
221         struct kvm_io_device *mmio_dev;
222
223         p = kvm_get_vcpu_ioreq(vcpu);
224
225         if ((p->addr & PAGE_MASK) == IOAPIC_DEFAULT_BASE_ADDRESS)
226                 goto mmio;
227         vcpu->mmio_needed = 1;
228         vcpu->mmio_phys_addr = kvm_run->mmio.phys_addr = p->addr;
229         vcpu->mmio_size = kvm_run->mmio.len = p->size;
230         vcpu->mmio_is_write = kvm_run->mmio.is_write = !p->dir;
231
232         if (vcpu->mmio_is_write)
233                 memcpy(vcpu->mmio_data, &p->data, p->size);
234         memcpy(kvm_run->mmio.data, &p->data, p->size);
235         kvm_run->exit_reason = KVM_EXIT_MMIO;
236         return 0;
237 mmio:
238         mmio_dev = vcpu_find_mmio_dev(vcpu, p->addr, p->size, !p->dir);
239         if (mmio_dev) {
240                 if (!p->dir)
241                         kvm_iodevice_write(mmio_dev, p->addr, p->size,
242                                                 &p->data);
243                 else
244                         kvm_iodevice_read(mmio_dev, p->addr, p->size,
245                                                 &p->data);
246
247         } else
248                 printk(KERN_ERR"kvm: No iodevice found! addr:%lx\n", p->addr);
249         p->state = STATE_IORESP_READY;
250
251         return 1;
252 }
253
254 static int handle_pal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
255 {
256         struct exit_ctl_data *p;
257
258         p = kvm_get_exit_data(vcpu);
259
260         if (p->exit_reason == EXIT_REASON_PAL_CALL)
261                 return kvm_pal_emul(vcpu, kvm_run);
262         else {
263                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
264                 kvm_run->hw.hardware_exit_reason = 2;
265                 return 0;
266         }
267 }
268
269 static int handle_sal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
270 {
271         struct exit_ctl_data *p;
272
273         p = kvm_get_exit_data(vcpu);
274
275         if (p->exit_reason == EXIT_REASON_SAL_CALL) {
276                 kvm_sal_emul(vcpu);
277                 return 1;
278         } else {
279                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
280                 kvm_run->hw.hardware_exit_reason = 3;
281                 return 0;
282         }
283
284 }
285
286 static int __apic_accept_irq(struct kvm_vcpu *vcpu, uint64_t vector)
287 {
288         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
289
290         if (!test_and_set_bit(vector, &vpd->irr[0])) {
291                 vcpu->arch.irq_new_pending = 1;
292                 kvm_vcpu_kick(vcpu);
293                 return 1;
294         }
295         return 0;
296 }
297
298 /*
299  *  offset: address offset to IPI space.
300  *  value:  deliver value.
301  */
302 static void vcpu_deliver_ipi(struct kvm_vcpu *vcpu, uint64_t dm,
303                                 uint64_t vector)
304 {
305         switch (dm) {
306         case SAPIC_FIXED:
307                 break;
308         case SAPIC_NMI:
309                 vector = 2;
310                 break;
311         case SAPIC_EXTINT:
312                 vector = 0;
313                 break;
314         case SAPIC_INIT:
315         case SAPIC_PMI:
316         default:
317                 printk(KERN_ERR"kvm: Unimplemented Deliver reserved IPI!\n");
318                 return;
319         }
320         __apic_accept_irq(vcpu, vector);
321 }
322
323 static struct kvm_vcpu *lid_to_vcpu(struct kvm *kvm, unsigned long id,
324                         unsigned long eid)
325 {
326         union ia64_lid lid;
327         int i;
328
329         for (i = 0; i < kvm->arch.online_vcpus; i++) {
330                 if (kvm->vcpus[i]) {
331                         lid.val = VCPU_LID(kvm->vcpus[i]);
332                         if (lid.id == id && lid.eid == eid)
333                                 return kvm->vcpus[i];
334                 }
335         }
336
337         return NULL;
338 }
339
340 static int handle_ipi(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
341 {
342         struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
343         struct kvm_vcpu *target_vcpu;
344         struct kvm_pt_regs *regs;
345         union ia64_ipi_a addr = p->u.ipi_data.addr;
346         union ia64_ipi_d data = p->u.ipi_data.data;
347
348         target_vcpu = lid_to_vcpu(vcpu->kvm, addr.id, addr.eid);
349         if (!target_vcpu)
350                 return handle_vm_error(vcpu, kvm_run);
351
352         if (!target_vcpu->arch.launched) {
353                 regs = vcpu_regs(target_vcpu);
354
355                 regs->cr_iip = vcpu->kvm->arch.rdv_sal_data.boot_ip;
356                 regs->r1 = vcpu->kvm->arch.rdv_sal_data.boot_gp;
357
358                 target_vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
359                 if (waitqueue_active(&target_vcpu->wq))
360                         wake_up_interruptible(&target_vcpu->wq);
361         } else {
362                 vcpu_deliver_ipi(target_vcpu, data.dm, data.vector);
363                 if (target_vcpu != vcpu)
364                         kvm_vcpu_kick(target_vcpu);
365         }
366
367         return 1;
368 }
369
370 struct call_data {
371         struct kvm_ptc_g ptc_g_data;
372         struct kvm_vcpu *vcpu;
373 };
374
375 static void vcpu_global_purge(void *info)
376 {
377         struct call_data *p = (struct call_data *)info;
378         struct kvm_vcpu *vcpu = p->vcpu;
379
380         if (test_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
381                 return;
382
383         set_bit(KVM_REQ_PTC_G, &vcpu->requests);
384         if (vcpu->arch.ptc_g_count < MAX_PTC_G_NUM) {
385                 vcpu->arch.ptc_g_data[vcpu->arch.ptc_g_count++] =
386                                                         p->ptc_g_data;
387         } else {
388                 clear_bit(KVM_REQ_PTC_G, &vcpu->requests);
389                 vcpu->arch.ptc_g_count = 0;
390                 set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
391         }
392 }
393
394 static int handle_global_purge(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
395 {
396         struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
397         struct kvm *kvm = vcpu->kvm;
398         struct call_data call_data;
399         int i;
400
401         call_data.ptc_g_data = p->u.ptc_g_data;
402
403         for (i = 0; i < kvm->arch.online_vcpus; i++) {
404                 if (!kvm->vcpus[i] || kvm->vcpus[i]->arch.mp_state ==
405                                                 KVM_MP_STATE_UNINITIALIZED ||
406                                         vcpu == kvm->vcpus[i])
407                         continue;
408
409                 if (waitqueue_active(&kvm->vcpus[i]->wq))
410                         wake_up_interruptible(&kvm->vcpus[i]->wq);
411
412                 if (kvm->vcpus[i]->cpu != -1) {
413                         call_data.vcpu = kvm->vcpus[i];
414                         smp_call_function_single(kvm->vcpus[i]->cpu,
415                                         vcpu_global_purge, &call_data, 1);
416                 } else
417                         printk(KERN_WARNING"kvm: Uninit vcpu received ipi!\n");
418
419         }
420         return 1;
421 }
422
423 static int handle_switch_rr6(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
424 {
425         return 1;
426 }
427
428 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
429 {
430
431         ktime_t kt;
432         long itc_diff;
433         unsigned long vcpu_now_itc;
434         unsigned long expires;
435         struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
436         unsigned long cyc_per_usec = local_cpu_data->cyc_per_usec;
437         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
438
439         if (irqchip_in_kernel(vcpu->kvm)) {
440
441                 vcpu_now_itc = ia64_getreg(_IA64_REG_AR_ITC) + vcpu->arch.itc_offset;
442
443                 if (time_after(vcpu_now_itc, vpd->itm)) {
444                         vcpu->arch.timer_check = 1;
445                         return 1;
446                 }
447                 itc_diff = vpd->itm - vcpu_now_itc;
448                 if (itc_diff < 0)
449                         itc_diff = -itc_diff;
450
451                 expires = div64_u64(itc_diff, cyc_per_usec);
452                 kt = ktime_set(0, 1000 * expires);
453
454                 vcpu->arch.ht_active = 1;
455                 hrtimer_start(p_ht, kt, HRTIMER_MODE_ABS);
456
457                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
458                 kvm_vcpu_block(vcpu);
459                 hrtimer_cancel(p_ht);
460                 vcpu->arch.ht_active = 0;
461
462                 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
463                         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
464                                 vcpu->arch.mp_state =
465                                         KVM_MP_STATE_RUNNABLE;
466
467                 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
468                         return -EINTR;
469                 return 1;
470         } else {
471                 printk(KERN_ERR"kvm: Unsupported userspace halt!");
472                 return 0;
473         }
474 }
475
476 static int handle_vm_shutdown(struct kvm_vcpu *vcpu,
477                 struct kvm_run *kvm_run)
478 {
479         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
480         return 0;
481 }
482
483 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
484                 struct kvm_run *kvm_run)
485 {
486         return 1;
487 }
488
489 static int handle_vcpu_debug(struct kvm_vcpu *vcpu,
490                                 struct kvm_run *kvm_run)
491 {
492         printk("VMM: %s", vcpu->arch.log_buf);
493         return 1;
494 }
495
496 static int (*kvm_vti_exit_handlers[])(struct kvm_vcpu *vcpu,
497                 struct kvm_run *kvm_run) = {
498         [EXIT_REASON_VM_PANIC]              = handle_vm_error,
499         [EXIT_REASON_MMIO_INSTRUCTION]      = handle_mmio,
500         [EXIT_REASON_PAL_CALL]              = handle_pal_call,
501         [EXIT_REASON_SAL_CALL]              = handle_sal_call,
502         [EXIT_REASON_SWITCH_RR6]            = handle_switch_rr6,
503         [EXIT_REASON_VM_DESTROY]            = handle_vm_shutdown,
504         [EXIT_REASON_EXTERNAL_INTERRUPT]    = handle_external_interrupt,
505         [EXIT_REASON_IPI]                   = handle_ipi,
506         [EXIT_REASON_PTC_G]                 = handle_global_purge,
507         [EXIT_REASON_DEBUG]                 = handle_vcpu_debug,
508
509 };
510
511 static const int kvm_vti_max_exit_handlers =
512                 sizeof(kvm_vti_exit_handlers)/sizeof(*kvm_vti_exit_handlers);
513
514 static uint32_t kvm_get_exit_reason(struct kvm_vcpu *vcpu)
515 {
516         struct exit_ctl_data *p_exit_data;
517
518         p_exit_data = kvm_get_exit_data(vcpu);
519         return p_exit_data->exit_reason;
520 }
521
522 /*
523  * The guest has exited.  See if we can fix it or if we need userspace
524  * assistance.
525  */
526 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
527 {
528         u32 exit_reason = kvm_get_exit_reason(vcpu);
529         vcpu->arch.last_exit = exit_reason;
530
531         if (exit_reason < kvm_vti_max_exit_handlers
532                         && kvm_vti_exit_handlers[exit_reason])
533                 return kvm_vti_exit_handlers[exit_reason](vcpu, kvm_run);
534         else {
535                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
536                 kvm_run->hw.hardware_exit_reason = exit_reason;
537         }
538         return 0;
539 }
540
541 static inline void vti_set_rr6(unsigned long rr6)
542 {
543         ia64_set_rr(RR6, rr6);
544         ia64_srlz_i();
545 }
546
547 static int kvm_insert_vmm_mapping(struct kvm_vcpu *vcpu)
548 {
549         unsigned long pte;
550         struct kvm *kvm = vcpu->kvm;
551         int r;
552
553         /*Insert a pair of tr to map vmm*/
554         pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
555         r = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
556         if (r < 0)
557                 goto out;
558         vcpu->arch.vmm_tr_slot = r;
559         /*Insert a pairt of tr to map data of vm*/
560         pte = pte_val(mk_pte_phys(__pa(kvm->arch.vm_base), PAGE_KERNEL));
561         r = ia64_itr_entry(0x3, KVM_VM_DATA_BASE,
562                                         pte, KVM_VM_DATA_SHIFT);
563         if (r < 0)
564                 goto out;
565         vcpu->arch.vm_tr_slot = r;
566         r = 0;
567 out:
568         return r;
569
570 }
571
572 static void kvm_purge_vmm_mapping(struct kvm_vcpu *vcpu)
573 {
574
575         ia64_ptr_entry(0x3, vcpu->arch.vmm_tr_slot);
576         ia64_ptr_entry(0x3, vcpu->arch.vm_tr_slot);
577
578 }
579
580 static int kvm_vcpu_pre_transition(struct kvm_vcpu *vcpu)
581 {
582         int cpu = smp_processor_id();
583
584         if (vcpu->arch.last_run_cpu != cpu ||
585                         per_cpu(last_vcpu, cpu) != vcpu) {
586                 per_cpu(last_vcpu, cpu) = vcpu;
587                 vcpu->arch.last_run_cpu = cpu;
588                 kvm_flush_tlb_all();
589         }
590
591         vcpu->arch.host_rr6 = ia64_get_rr(RR6);
592         vti_set_rr6(vcpu->arch.vmm_rr);
593         return kvm_insert_vmm_mapping(vcpu);
594 }
595 static void kvm_vcpu_post_transition(struct kvm_vcpu *vcpu)
596 {
597         kvm_purge_vmm_mapping(vcpu);
598         vti_set_rr6(vcpu->arch.host_rr6);
599 }
600
601 static int  vti_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
602 {
603         union context *host_ctx, *guest_ctx;
604         int r;
605
606         /*Get host and guest context with guest address space.*/
607         host_ctx = kvm_get_host_context(vcpu);
608         guest_ctx = kvm_get_guest_context(vcpu);
609
610         r = kvm_vcpu_pre_transition(vcpu);
611         if (r < 0)
612                 goto out;
613         kvm_vmm_info->tramp_entry(host_ctx, guest_ctx);
614         kvm_vcpu_post_transition(vcpu);
615         r = 0;
616 out:
617         return r;
618 }
619
620 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
621 {
622         int r;
623
624 again:
625         if (signal_pending(current)) {
626                 r = -EINTR;
627                 kvm_run->exit_reason = KVM_EXIT_INTR;
628                 goto out;
629         }
630
631         /*
632          * down_read() may sleep and return with interrupts enabled
633          */
634         down_read(&vcpu->kvm->slots_lock);
635
636         preempt_disable();
637         local_irq_disable();
638
639         vcpu->guest_mode = 1;
640         kvm_guest_enter();
641         r = vti_vcpu_run(vcpu, kvm_run);
642         if (r < 0) {
643                 local_irq_enable();
644                 preempt_enable();
645                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
646                 goto out;
647         }
648
649         vcpu->arch.launched = 1;
650         vcpu->guest_mode = 0;
651         local_irq_enable();
652
653         /*
654          * We must have an instruction between local_irq_enable() and
655          * kvm_guest_exit(), so the timer interrupt isn't delayed by
656          * the interrupt shadow.  The stat.exits increment will do nicely.
657          * But we need to prevent reordering, hence this barrier():
658          */
659         barrier();
660         kvm_guest_exit();
661         up_read(&vcpu->kvm->slots_lock);
662         preempt_enable();
663
664         r = kvm_handle_exit(kvm_run, vcpu);
665
666         if (r > 0) {
667                 if (!need_resched())
668                         goto again;
669         }
670
671 out:
672         if (r > 0) {
673                 kvm_resched(vcpu);
674                 goto again;
675         }
676
677         return r;
678 }
679
680 static void kvm_set_mmio_data(struct kvm_vcpu *vcpu)
681 {
682         struct kvm_mmio_req *p = kvm_get_vcpu_ioreq(vcpu);
683
684         if (!vcpu->mmio_is_write)
685                 memcpy(&p->data, vcpu->mmio_data, 8);
686         p->state = STATE_IORESP_READY;
687 }
688
689 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
690 {
691         int r;
692         sigset_t sigsaved;
693
694         vcpu_load(vcpu);
695
696         if (vcpu->sigset_active)
697                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
698
699         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
700                 kvm_vcpu_block(vcpu);
701                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
702                 r = -EAGAIN;
703                 goto out;
704         }
705
706         if (vcpu->mmio_needed) {
707                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
708                 kvm_set_mmio_data(vcpu);
709                 vcpu->mmio_read_completed = 1;
710                 vcpu->mmio_needed = 0;
711         }
712         r = __vcpu_run(vcpu, kvm_run);
713 out:
714         if (vcpu->sigset_active)
715                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
716
717         vcpu_put(vcpu);
718         return r;
719 }
720
721 static struct kvm *kvm_alloc_kvm(void)
722 {
723
724         struct kvm *kvm;
725         uint64_t  vm_base;
726
727         BUG_ON(sizeof(struct kvm) > KVM_VM_STRUCT_SIZE);
728
729         vm_base = __get_free_pages(GFP_KERNEL, get_order(KVM_VM_DATA_SIZE));
730
731         if (!vm_base)
732                 return ERR_PTR(-ENOMEM);
733
734         memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
735         kvm = (struct kvm *)(vm_base +
736                         offsetof(struct kvm_vm_data, kvm_vm_struct));
737         kvm->arch.vm_base = vm_base;
738         printk(KERN_DEBUG"kvm: vm's data area:0x%lx\n", vm_base);
739
740         return kvm;
741 }
742
743 struct kvm_io_range {
744         unsigned long start;
745         unsigned long size;
746         unsigned long type;
747 };
748
749 static const struct kvm_io_range io_ranges[] = {
750         {VGA_IO_START, VGA_IO_SIZE, GPFN_FRAME_BUFFER},
751         {MMIO_START, MMIO_SIZE, GPFN_LOW_MMIO},
752         {LEGACY_IO_START, LEGACY_IO_SIZE, GPFN_LEGACY_IO},
753         {IO_SAPIC_START, IO_SAPIC_SIZE, GPFN_IOSAPIC},
754         {PIB_START, PIB_SIZE, GPFN_PIB},
755 };
756
757 static void kvm_build_io_pmt(struct kvm *kvm)
758 {
759         unsigned long i, j;
760
761         /* Mark I/O ranges */
762         for (i = 0; i < (sizeof(io_ranges) / sizeof(struct kvm_io_range));
763                                                         i++) {
764                 for (j = io_ranges[i].start;
765                                 j < io_ranges[i].start + io_ranges[i].size;
766                                 j += PAGE_SIZE)
767                         kvm_set_pmt_entry(kvm, j >> PAGE_SHIFT,
768                                         io_ranges[i].type, 0);
769         }
770
771 }
772
773 /*Use unused rids to virtualize guest rid.*/
774 #define GUEST_PHYSICAL_RR0      0x1739
775 #define GUEST_PHYSICAL_RR4      0x2739
776 #define VMM_INIT_RR             0x1660
777
778 static void kvm_init_vm(struct kvm *kvm)
779 {
780         BUG_ON(!kvm);
781
782         kvm->arch.metaphysical_rr0 = GUEST_PHYSICAL_RR0;
783         kvm->arch.metaphysical_rr4 = GUEST_PHYSICAL_RR4;
784         kvm->arch.vmm_init_rr = VMM_INIT_RR;
785
786         /*
787          *Fill P2M entries for MMIO/IO ranges
788          */
789         kvm_build_io_pmt(kvm);
790
791         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
792
793         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
794         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
795 }
796
797 struct  kvm *kvm_arch_create_vm(void)
798 {
799         struct kvm *kvm = kvm_alloc_kvm();
800
801         if (IS_ERR(kvm))
802                 return ERR_PTR(-ENOMEM);
803         kvm_init_vm(kvm);
804
805         kvm->arch.online_vcpus = 0;
806
807         return kvm;
808
809 }
810
811 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm,
812                                         struct kvm_irqchip *chip)
813 {
814         int r;
815
816         r = 0;
817         switch (chip->chip_id) {
818         case KVM_IRQCHIP_IOAPIC:
819                 memcpy(&chip->chip.ioapic, ioapic_irqchip(kvm),
820                                 sizeof(struct kvm_ioapic_state));
821                 break;
822         default:
823                 r = -EINVAL;
824                 break;
825         }
826         return r;
827 }
828
829 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
830 {
831         int r;
832
833         r = 0;
834         switch (chip->chip_id) {
835         case KVM_IRQCHIP_IOAPIC:
836                 memcpy(ioapic_irqchip(kvm),
837                                 &chip->chip.ioapic,
838                                 sizeof(struct kvm_ioapic_state));
839                 break;
840         default:
841                 r = -EINVAL;
842                 break;
843         }
844         return r;
845 }
846
847 #define RESTORE_REGS(_x) vcpu->arch._x = regs->_x
848
849 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
850 {
851         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
852         int i;
853
854         vcpu_load(vcpu);
855
856         for (i = 0; i < 16; i++) {
857                 vpd->vgr[i] = regs->vpd.vgr[i];
858                 vpd->vbgr[i] = regs->vpd.vbgr[i];
859         }
860         for (i = 0; i < 128; i++)
861                 vpd->vcr[i] = regs->vpd.vcr[i];
862         vpd->vhpi = regs->vpd.vhpi;
863         vpd->vnat = regs->vpd.vnat;
864         vpd->vbnat = regs->vpd.vbnat;
865         vpd->vpsr = regs->vpd.vpsr;
866
867         vpd->vpr = regs->vpd.vpr;
868
869         memcpy(&vcpu->arch.guest, &regs->saved_guest, sizeof(union context));
870
871         RESTORE_REGS(mp_state);
872         RESTORE_REGS(vmm_rr);
873         memcpy(vcpu->arch.itrs, regs->itrs, sizeof(struct thash_data) * NITRS);
874         memcpy(vcpu->arch.dtrs, regs->dtrs, sizeof(struct thash_data) * NDTRS);
875         RESTORE_REGS(itr_regions);
876         RESTORE_REGS(dtr_regions);
877         RESTORE_REGS(tc_regions);
878         RESTORE_REGS(irq_check);
879         RESTORE_REGS(itc_check);
880         RESTORE_REGS(timer_check);
881         RESTORE_REGS(timer_pending);
882         RESTORE_REGS(last_itc);
883         for (i = 0; i < 8; i++) {
884                 vcpu->arch.vrr[i] = regs->vrr[i];
885                 vcpu->arch.ibr[i] = regs->ibr[i];
886                 vcpu->arch.dbr[i] = regs->dbr[i];
887         }
888         for (i = 0; i < 4; i++)
889                 vcpu->arch.insvc[i] = regs->insvc[i];
890         RESTORE_REGS(xtp);
891         RESTORE_REGS(metaphysical_rr0);
892         RESTORE_REGS(metaphysical_rr4);
893         RESTORE_REGS(metaphysical_saved_rr0);
894         RESTORE_REGS(metaphysical_saved_rr4);
895         RESTORE_REGS(fp_psr);
896         RESTORE_REGS(saved_gp);
897
898         vcpu->arch.irq_new_pending = 1;
899         vcpu->arch.itc_offset = regs->saved_itc - ia64_getreg(_IA64_REG_AR_ITC);
900         set_bit(KVM_REQ_RESUME, &vcpu->requests);
901
902         vcpu_put(vcpu);
903
904         return 0;
905 }
906
907 long kvm_arch_vm_ioctl(struct file *filp,
908                 unsigned int ioctl, unsigned long arg)
909 {
910         struct kvm *kvm = filp->private_data;
911         void __user *argp = (void __user *)arg;
912         int r = -EINVAL;
913
914         switch (ioctl) {
915         case KVM_SET_MEMORY_REGION: {
916                 struct kvm_memory_region kvm_mem;
917                 struct kvm_userspace_memory_region kvm_userspace_mem;
918
919                 r = -EFAULT;
920                 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
921                         goto out;
922                 kvm_userspace_mem.slot = kvm_mem.slot;
923                 kvm_userspace_mem.flags = kvm_mem.flags;
924                 kvm_userspace_mem.guest_phys_addr =
925                                         kvm_mem.guest_phys_addr;
926                 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
927                 r = kvm_vm_ioctl_set_memory_region(kvm,
928                                         &kvm_userspace_mem, 0);
929                 if (r)
930                         goto out;
931                 break;
932                 }
933         case KVM_CREATE_IRQCHIP:
934                 r = -EFAULT;
935                 r = kvm_ioapic_init(kvm);
936                 if (r)
937                         goto out;
938                 r = kvm_setup_default_irq_routing(kvm);
939                 if (r) {
940                         kfree(kvm->arch.vioapic);
941                         goto out;
942                 }
943                 break;
944         case KVM_IRQ_LINE_STATUS:
945         case KVM_IRQ_LINE: {
946                 struct kvm_irq_level irq_event;
947
948                 r = -EFAULT;
949                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
950                         goto out;
951                 if (irqchip_in_kernel(kvm)) {
952                         __s32 status;
953                         mutex_lock(&kvm->lock);
954                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
955                                     irq_event.irq, irq_event.level);
956                         mutex_unlock(&kvm->lock);
957                         if (ioctl == KVM_IRQ_LINE_STATUS) {
958                                 irq_event.status = status;
959                                 if (copy_to_user(argp, &irq_event,
960                                                         sizeof irq_event))
961                                         goto out;
962                         }
963                         r = 0;
964                 }
965                 break;
966                 }
967         case KVM_GET_IRQCHIP: {
968                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
969                 struct kvm_irqchip chip;
970
971                 r = -EFAULT;
972                 if (copy_from_user(&chip, argp, sizeof chip))
973                                 goto out;
974                 r = -ENXIO;
975                 if (!irqchip_in_kernel(kvm))
976                         goto out;
977                 r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
978                 if (r)
979                         goto out;
980                 r = -EFAULT;
981                 if (copy_to_user(argp, &chip, sizeof chip))
982                                 goto out;
983                 r = 0;
984                 break;
985                 }
986         case KVM_SET_IRQCHIP: {
987                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
988                 struct kvm_irqchip chip;
989
990                 r = -EFAULT;
991                 if (copy_from_user(&chip, argp, sizeof chip))
992                                 goto out;
993                 r = -ENXIO;
994                 if (!irqchip_in_kernel(kvm))
995                         goto out;
996                 r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
997                 if (r)
998                         goto out;
999                 r = 0;
1000                 break;
1001                 }
1002         default:
1003                 ;
1004         }
1005 out:
1006         return r;
1007 }
1008
1009 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1010                 struct kvm_sregs *sregs)
1011 {
1012         return -EINVAL;
1013 }
1014
1015 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1016                 struct kvm_sregs *sregs)
1017 {
1018         return -EINVAL;
1019
1020 }
1021 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1022                 struct kvm_translation *tr)
1023 {
1024
1025         return -EINVAL;
1026 }
1027
1028 static int kvm_alloc_vmm_area(void)
1029 {
1030         if (!kvm_vmm_base && (kvm_vm_buffer_size < KVM_VM_BUFFER_SIZE)) {
1031                 kvm_vmm_base = __get_free_pages(GFP_KERNEL,
1032                                 get_order(KVM_VMM_SIZE));
1033                 if (!kvm_vmm_base)
1034                         return -ENOMEM;
1035
1036                 memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1037                 kvm_vm_buffer = kvm_vmm_base + VMM_SIZE;
1038
1039                 printk(KERN_DEBUG"kvm:VMM's Base Addr:0x%lx, vm_buffer:0x%lx\n",
1040                                 kvm_vmm_base, kvm_vm_buffer);
1041         }
1042
1043         return 0;
1044 }
1045
1046 static void kvm_free_vmm_area(void)
1047 {
1048         if (kvm_vmm_base) {
1049                 /*Zero this area before free to avoid bits leak!!*/
1050                 memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1051                 free_pages(kvm_vmm_base, get_order(KVM_VMM_SIZE));
1052                 kvm_vmm_base  = 0;
1053                 kvm_vm_buffer = 0;
1054                 kvm_vsa_base = 0;
1055         }
1056 }
1057
1058 static void vti_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1059 {
1060 }
1061
1062 static int vti_init_vpd(struct kvm_vcpu *vcpu)
1063 {
1064         int i;
1065         union cpuid3_t cpuid3;
1066         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1067
1068         if (IS_ERR(vpd))
1069                 return PTR_ERR(vpd);
1070
1071         /* CPUID init */
1072         for (i = 0; i < 5; i++)
1073                 vpd->vcpuid[i] = ia64_get_cpuid(i);
1074
1075         /* Limit the CPUID number to 5 */
1076         cpuid3.value = vpd->vcpuid[3];
1077         cpuid3.number = 4;      /* 5 - 1 */
1078         vpd->vcpuid[3] = cpuid3.value;
1079
1080         /*Set vac and vdc fields*/
1081         vpd->vac.a_from_int_cr = 1;
1082         vpd->vac.a_to_int_cr = 1;
1083         vpd->vac.a_from_psr = 1;
1084         vpd->vac.a_from_cpuid = 1;
1085         vpd->vac.a_cover = 1;
1086         vpd->vac.a_bsw = 1;
1087         vpd->vac.a_int = 1;
1088         vpd->vdc.d_vmsw = 1;
1089
1090         /*Set virtual buffer*/
1091         vpd->virt_env_vaddr = KVM_VM_BUFFER_BASE;
1092
1093         return 0;
1094 }
1095
1096 static int vti_create_vp(struct kvm_vcpu *vcpu)
1097 {
1098         long ret;
1099         struct vpd *vpd = vcpu->arch.vpd;
1100         unsigned long  vmm_ivt;
1101
1102         vmm_ivt = kvm_vmm_info->vmm_ivt;
1103
1104         printk(KERN_DEBUG "kvm: vcpu:%p,ivt: 0x%lx\n", vcpu, vmm_ivt);
1105
1106         ret = ia64_pal_vp_create((u64 *)vpd, (u64 *)vmm_ivt, 0);
1107
1108         if (ret) {
1109                 printk(KERN_ERR"kvm: ia64_pal_vp_create failed!\n");
1110                 return -EINVAL;
1111         }
1112         return 0;
1113 }
1114
1115 static void init_ptce_info(struct kvm_vcpu *vcpu)
1116 {
1117         ia64_ptce_info_t ptce = {0};
1118
1119         ia64_get_ptce(&ptce);
1120         vcpu->arch.ptce_base = ptce.base;
1121         vcpu->arch.ptce_count[0] = ptce.count[0];
1122         vcpu->arch.ptce_count[1] = ptce.count[1];
1123         vcpu->arch.ptce_stride[0] = ptce.stride[0];
1124         vcpu->arch.ptce_stride[1] = ptce.stride[1];
1125 }
1126
1127 static void kvm_migrate_hlt_timer(struct kvm_vcpu *vcpu)
1128 {
1129         struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
1130
1131         if (hrtimer_cancel(p_ht))
1132                 hrtimer_start_expires(p_ht, HRTIMER_MODE_ABS);
1133 }
1134
1135 static enum hrtimer_restart hlt_timer_fn(struct hrtimer *data)
1136 {
1137         struct kvm_vcpu *vcpu;
1138         wait_queue_head_t *q;
1139
1140         vcpu  = container_of(data, struct kvm_vcpu, arch.hlt_timer);
1141         q = &vcpu->wq;
1142
1143         if (vcpu->arch.mp_state != KVM_MP_STATE_HALTED)
1144                 goto out;
1145
1146         if (waitqueue_active(q))
1147                 wake_up_interruptible(q);
1148
1149 out:
1150         vcpu->arch.timer_fired = 1;
1151         vcpu->arch.timer_check = 1;
1152         return HRTIMER_NORESTART;
1153 }
1154
1155 #define PALE_RESET_ENTRY    0x80000000ffffffb0UL
1156
1157 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1158 {
1159         struct kvm_vcpu *v;
1160         int r;
1161         int i;
1162         long itc_offset;
1163         struct kvm *kvm = vcpu->kvm;
1164         struct kvm_pt_regs *regs = vcpu_regs(vcpu);
1165
1166         union context *p_ctx = &vcpu->arch.guest;
1167         struct kvm_vcpu *vmm_vcpu = to_guest(vcpu->kvm, vcpu);
1168
1169         /*Init vcpu context for first run.*/
1170         if (IS_ERR(vmm_vcpu))
1171                 return PTR_ERR(vmm_vcpu);
1172
1173         if (vcpu->vcpu_id == 0) {
1174                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
1175
1176                 /*Set entry address for first run.*/
1177                 regs->cr_iip = PALE_RESET_ENTRY;
1178
1179                 /*Initialize itc offset for vcpus*/
1180                 itc_offset = 0UL - ia64_getreg(_IA64_REG_AR_ITC);
1181                 for (i = 0; i < kvm->arch.online_vcpus; i++) {
1182                         v = (struct kvm_vcpu *)((char *)vcpu +
1183                                         sizeof(struct kvm_vcpu_data) * i);
1184                         v->arch.itc_offset = itc_offset;
1185                         v->arch.last_itc = 0;
1186                 }
1187         } else
1188                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
1189
1190         r = -ENOMEM;
1191         vcpu->arch.apic = kzalloc(sizeof(struct kvm_lapic), GFP_KERNEL);
1192         if (!vcpu->arch.apic)
1193                 goto out;
1194         vcpu->arch.apic->vcpu = vcpu;
1195
1196         p_ctx->gr[1] = 0;
1197         p_ctx->gr[12] = (unsigned long)((char *)vmm_vcpu + KVM_STK_OFFSET);
1198         p_ctx->gr[13] = (unsigned long)vmm_vcpu;
1199         p_ctx->psr = 0x1008522000UL;
1200         p_ctx->ar[40] = FPSR_DEFAULT; /*fpsr*/
1201         p_ctx->caller_unat = 0;
1202         p_ctx->pr = 0x0;
1203         p_ctx->ar[36] = 0x0; /*unat*/
1204         p_ctx->ar[19] = 0x0; /*rnat*/
1205         p_ctx->ar[18] = (unsigned long)vmm_vcpu +
1206                                 ((sizeof(struct kvm_vcpu)+15) & ~15);
1207         p_ctx->ar[64] = 0x0; /*pfs*/
1208         p_ctx->cr[0] = 0x7e04UL;
1209         p_ctx->cr[2] = (unsigned long)kvm_vmm_info->vmm_ivt;
1210         p_ctx->cr[8] = 0x3c;
1211
1212         /*Initilize region register*/
1213         p_ctx->rr[0] = 0x30;
1214         p_ctx->rr[1] = 0x30;
1215         p_ctx->rr[2] = 0x30;
1216         p_ctx->rr[3] = 0x30;
1217         p_ctx->rr[4] = 0x30;
1218         p_ctx->rr[5] = 0x30;
1219         p_ctx->rr[7] = 0x30;
1220
1221         /*Initilize branch register 0*/
1222         p_ctx->br[0] = *(unsigned long *)kvm_vmm_info->vmm_entry;
1223
1224         vcpu->arch.vmm_rr = kvm->arch.vmm_init_rr;
1225         vcpu->arch.metaphysical_rr0 = kvm->arch.metaphysical_rr0;
1226         vcpu->arch.metaphysical_rr4 = kvm->arch.metaphysical_rr4;
1227
1228         hrtimer_init(&vcpu->arch.hlt_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1229         vcpu->arch.hlt_timer.function = hlt_timer_fn;
1230
1231         vcpu->arch.last_run_cpu = -1;
1232         vcpu->arch.vpd = (struct vpd *)VPD_BASE(vcpu->vcpu_id);
1233         vcpu->arch.vsa_base = kvm_vsa_base;
1234         vcpu->arch.__gp = kvm_vmm_gp;
1235         vcpu->arch.dirty_log_lock_pa = __pa(&kvm->arch.dirty_log_lock);
1236         vcpu->arch.vhpt.hash = (struct thash_data *)VHPT_BASE(vcpu->vcpu_id);
1237         vcpu->arch.vtlb.hash = (struct thash_data *)VTLB_BASE(vcpu->vcpu_id);
1238         init_ptce_info(vcpu);
1239
1240         r = 0;
1241 out:
1242         return r;
1243 }
1244
1245 static int vti_vcpu_setup(struct kvm_vcpu *vcpu, int id)
1246 {
1247         unsigned long psr;
1248         int r;
1249
1250         local_irq_save(psr);
1251         r = kvm_insert_vmm_mapping(vcpu);
1252         if (r)
1253                 goto fail;
1254         r = kvm_vcpu_init(vcpu, vcpu->kvm, id);
1255         if (r)
1256                 goto fail;
1257
1258         r = vti_init_vpd(vcpu);
1259         if (r) {
1260                 printk(KERN_DEBUG"kvm: vpd init error!!\n");
1261                 goto uninit;
1262         }
1263
1264         r = vti_create_vp(vcpu);
1265         if (r)
1266                 goto uninit;
1267
1268         kvm_purge_vmm_mapping(vcpu);
1269         local_irq_restore(psr);
1270
1271         return 0;
1272 uninit:
1273         kvm_vcpu_uninit(vcpu);
1274 fail:
1275         local_irq_restore(psr);
1276         return r;
1277 }
1278
1279 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
1280                 unsigned int id)
1281 {
1282         struct kvm_vcpu *vcpu;
1283         unsigned long vm_base = kvm->arch.vm_base;
1284         int r;
1285         int cpu;
1286
1287         BUG_ON(sizeof(struct kvm_vcpu) > VCPU_STRUCT_SIZE/2);
1288
1289         r = -EINVAL;
1290         if (id >= KVM_MAX_VCPUS) {
1291                 printk(KERN_ERR"kvm: Can't configure vcpus > %ld",
1292                                 KVM_MAX_VCPUS);
1293                 goto fail;
1294         }
1295
1296         r = -ENOMEM;
1297         if (!vm_base) {
1298                 printk(KERN_ERR"kvm: Create vcpu[%d] error!\n", id);
1299                 goto fail;
1300         }
1301         vcpu = (struct kvm_vcpu *)(vm_base + offsetof(struct kvm_vm_data,
1302                                         vcpu_data[id].vcpu_struct));
1303         vcpu->kvm = kvm;
1304
1305         cpu = get_cpu();
1306         vti_vcpu_load(vcpu, cpu);
1307         r = vti_vcpu_setup(vcpu, id);
1308         put_cpu();
1309
1310         if (r) {
1311                 printk(KERN_DEBUG"kvm: vcpu_setup error!!\n");
1312                 goto fail;
1313         }
1314
1315         kvm->arch.online_vcpus++;
1316
1317         return vcpu;
1318 fail:
1319         return ERR_PTR(r);
1320 }
1321
1322 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1323 {
1324         return 0;
1325 }
1326
1327 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1328 {
1329         return -EINVAL;
1330 }
1331
1332 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1333 {
1334         return -EINVAL;
1335 }
1336
1337 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1338                                         struct kvm_guest_debug *dbg)
1339 {
1340         return -EINVAL;
1341 }
1342
1343 static void free_kvm(struct kvm *kvm)
1344 {
1345         unsigned long vm_base = kvm->arch.vm_base;
1346
1347         if (vm_base) {
1348                 memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
1349                 free_pages(vm_base, get_order(KVM_VM_DATA_SIZE));
1350         }
1351
1352 }
1353
1354 static void kvm_release_vm_pages(struct kvm *kvm)
1355 {
1356         struct kvm_memory_slot *memslot;
1357         int i, j;
1358         unsigned long base_gfn;
1359
1360         for (i = 0; i < kvm->nmemslots; i++) {
1361                 memslot = &kvm->memslots[i];
1362                 base_gfn = memslot->base_gfn;
1363
1364                 for (j = 0; j < memslot->npages; j++) {
1365                         if (memslot->rmap[j])
1366                                 put_page((struct page *)memslot->rmap[j]);
1367                 }
1368         }
1369 }
1370
1371 void kvm_arch_sync_events(struct kvm *kvm)
1372 {
1373 }
1374
1375 void kvm_arch_destroy_vm(struct kvm *kvm)
1376 {
1377         kvm_iommu_unmap_guest(kvm);
1378 #ifdef  KVM_CAP_DEVICE_ASSIGNMENT
1379         kvm_free_all_assigned_devices(kvm);
1380 #endif
1381         kfree(kvm->arch.vioapic);
1382         kvm_release_vm_pages(kvm);
1383         kvm_free_physmem(kvm);
1384         free_kvm(kvm);
1385 }
1386
1387 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1388 {
1389 }
1390
1391 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1392 {
1393         if (cpu != vcpu->cpu) {
1394                 vcpu->cpu = cpu;
1395                 if (vcpu->arch.ht_active)
1396                         kvm_migrate_hlt_timer(vcpu);
1397         }
1398 }
1399
1400 #define SAVE_REGS(_x)   regs->_x = vcpu->arch._x
1401
1402 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1403 {
1404         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1405         int i;
1406
1407         vcpu_load(vcpu);
1408
1409         for (i = 0; i < 16; i++) {
1410                 regs->vpd.vgr[i] = vpd->vgr[i];
1411                 regs->vpd.vbgr[i] = vpd->vbgr[i];
1412         }
1413         for (i = 0; i < 128; i++)
1414                 regs->vpd.vcr[i] = vpd->vcr[i];
1415         regs->vpd.vhpi = vpd->vhpi;
1416         regs->vpd.vnat = vpd->vnat;
1417         regs->vpd.vbnat = vpd->vbnat;
1418         regs->vpd.vpsr = vpd->vpsr;
1419         regs->vpd.vpr = vpd->vpr;
1420
1421         memcpy(&regs->saved_guest, &vcpu->arch.guest, sizeof(union context));
1422
1423         SAVE_REGS(mp_state);
1424         SAVE_REGS(vmm_rr);
1425         memcpy(regs->itrs, vcpu->arch.itrs, sizeof(struct thash_data) * NITRS);
1426         memcpy(regs->dtrs, vcpu->arch.dtrs, sizeof(struct thash_data) * NDTRS);
1427         SAVE_REGS(itr_regions);
1428         SAVE_REGS(dtr_regions);
1429         SAVE_REGS(tc_regions);
1430         SAVE_REGS(irq_check);
1431         SAVE_REGS(itc_check);
1432         SAVE_REGS(timer_check);
1433         SAVE_REGS(timer_pending);
1434         SAVE_REGS(last_itc);
1435         for (i = 0; i < 8; i++) {
1436                 regs->vrr[i] = vcpu->arch.vrr[i];
1437                 regs->ibr[i] = vcpu->arch.ibr[i];
1438                 regs->dbr[i] = vcpu->arch.dbr[i];
1439         }
1440         for (i = 0; i < 4; i++)
1441                 regs->insvc[i] = vcpu->arch.insvc[i];
1442         regs->saved_itc = vcpu->arch.itc_offset + ia64_getreg(_IA64_REG_AR_ITC);
1443         SAVE_REGS(xtp);
1444         SAVE_REGS(metaphysical_rr0);
1445         SAVE_REGS(metaphysical_rr4);
1446         SAVE_REGS(metaphysical_saved_rr0);
1447         SAVE_REGS(metaphysical_saved_rr4);
1448         SAVE_REGS(fp_psr);
1449         SAVE_REGS(saved_gp);
1450
1451         vcpu_put(vcpu);
1452         return 0;
1453 }
1454
1455 int kvm_arch_vcpu_ioctl_get_stack(struct kvm_vcpu *vcpu,
1456                                   struct kvm_ia64_vcpu_stack *stack)
1457 {
1458         memcpy(stack, vcpu, sizeof(struct kvm_ia64_vcpu_stack));
1459         return 0;
1460 }
1461
1462 int kvm_arch_vcpu_ioctl_set_stack(struct kvm_vcpu *vcpu,
1463                                   struct kvm_ia64_vcpu_stack *stack)
1464 {
1465         memcpy(vcpu + 1, &stack->stack[0] + sizeof(struct kvm_vcpu),
1466                sizeof(struct kvm_ia64_vcpu_stack) - sizeof(struct kvm_vcpu));
1467
1468         vcpu->arch.exit_data = ((struct kvm_vcpu *)stack)->arch.exit_data;
1469         return 0;
1470 }
1471
1472 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
1473 {
1474
1475         hrtimer_cancel(&vcpu->arch.hlt_timer);
1476         kfree(vcpu->arch.apic);
1477 }
1478
1479
1480 long kvm_arch_vcpu_ioctl(struct file *filp,
1481                          unsigned int ioctl, unsigned long arg)
1482 {
1483         struct kvm_vcpu *vcpu = filp->private_data;
1484         void __user *argp = (void __user *)arg;
1485         struct kvm_ia64_vcpu_stack *stack = NULL;
1486         long r;
1487
1488         switch (ioctl) {
1489         case KVM_IA64_VCPU_GET_STACK: {
1490                 struct kvm_ia64_vcpu_stack __user *user_stack;
1491                 void __user *first_p = argp;
1492
1493                 r = -EFAULT;
1494                 if (copy_from_user(&user_stack, first_p, sizeof(void *)))
1495                         goto out;
1496
1497                 if (!access_ok(VERIFY_WRITE, user_stack,
1498                                sizeof(struct kvm_ia64_vcpu_stack))) {
1499                         printk(KERN_INFO "KVM_IA64_VCPU_GET_STACK: "
1500                                "Illegal user destination address for stack\n");
1501                         goto out;
1502                 }
1503                 stack = kzalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
1504                 if (!stack) {
1505                         r = -ENOMEM;
1506                         goto out;
1507                 }
1508
1509                 r = kvm_arch_vcpu_ioctl_get_stack(vcpu, stack);
1510                 if (r)
1511                         goto out;
1512
1513                 if (copy_to_user(user_stack, stack,
1514                                  sizeof(struct kvm_ia64_vcpu_stack)))
1515                         goto out;
1516
1517                 break;
1518         }
1519         case KVM_IA64_VCPU_SET_STACK: {
1520                 struct kvm_ia64_vcpu_stack __user *user_stack;
1521                 void __user *first_p = argp;
1522
1523                 r = -EFAULT;
1524                 if (copy_from_user(&user_stack, first_p, sizeof(void *)))
1525                         goto out;
1526
1527                 if (!access_ok(VERIFY_READ, user_stack,
1528                             sizeof(struct kvm_ia64_vcpu_stack))) {
1529                         printk(KERN_INFO "KVM_IA64_VCPU_SET_STACK: "
1530                                "Illegal user address for stack\n");
1531                         goto out;
1532                 }
1533                 stack = kmalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
1534                 if (!stack) {
1535                         r = -ENOMEM;
1536                         goto out;
1537                 }
1538                 if (copy_from_user(stack, user_stack,
1539                                    sizeof(struct kvm_ia64_vcpu_stack)))
1540                         goto out;
1541
1542                 r = kvm_arch_vcpu_ioctl_set_stack(vcpu, stack);
1543                 break;
1544         }
1545
1546         default:
1547                 r = -EINVAL;
1548         }
1549
1550 out:
1551         kfree(stack);
1552         return r;
1553 }
1554
1555 int kvm_arch_set_memory_region(struct kvm *kvm,
1556                 struct kvm_userspace_memory_region *mem,
1557                 struct kvm_memory_slot old,
1558                 int user_alloc)
1559 {
1560         unsigned long i;
1561         unsigned long pfn;
1562         int npages = mem->memory_size >> PAGE_SHIFT;
1563         struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
1564         unsigned long base_gfn = memslot->base_gfn;
1565
1566         if (base_gfn + npages > (KVM_MAX_MEM_SIZE >> PAGE_SHIFT))
1567                 return -ENOMEM;
1568
1569         for (i = 0; i < npages; i++) {
1570                 pfn = gfn_to_pfn(kvm, base_gfn + i);
1571                 if (!kvm_is_mmio_pfn(pfn)) {
1572                         kvm_set_pmt_entry(kvm, base_gfn + i,
1573                                         pfn << PAGE_SHIFT,
1574                                 _PAGE_AR_RWX | _PAGE_MA_WB);
1575                         memslot->rmap[i] = (unsigned long)pfn_to_page(pfn);
1576                 } else {
1577                         kvm_set_pmt_entry(kvm, base_gfn + i,
1578                                         GPFN_PHYS_MMIO | (pfn << PAGE_SHIFT),
1579                                         _PAGE_MA_UC);
1580                         memslot->rmap[i] = 0;
1581                         }
1582         }
1583
1584         return 0;
1585 }
1586
1587 void kvm_arch_flush_shadow(struct kvm *kvm)
1588 {
1589 }
1590
1591 long kvm_arch_dev_ioctl(struct file *filp,
1592                         unsigned int ioctl, unsigned long arg)
1593 {
1594         return -EINVAL;
1595 }
1596
1597 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
1598 {
1599         kvm_vcpu_uninit(vcpu);
1600 }
1601
1602 static int vti_cpu_has_kvm_support(void)
1603 {
1604         long  avail = 1, status = 1, control = 1;
1605         long ret;
1606
1607         ret = ia64_pal_proc_get_features(&avail, &status, &control, 0);
1608         if (ret)
1609                 goto out;
1610
1611         if (!(avail & PAL_PROC_VM_BIT))
1612                 goto out;
1613
1614         printk(KERN_DEBUG"kvm: Hardware Supports VT\n");
1615
1616         ret = ia64_pal_vp_env_info(&kvm_vm_buffer_size, &vp_env_info);
1617         if (ret)
1618                 goto out;
1619         printk(KERN_DEBUG"kvm: VM Buffer Size:0x%lx\n", kvm_vm_buffer_size);
1620
1621         if (!(vp_env_info & VP_OPCODE)) {
1622                 printk(KERN_WARNING"kvm: No opcode ability on hardware, "
1623                                 "vm_env_info:0x%lx\n", vp_env_info);
1624         }
1625
1626         return 1;
1627 out:
1628         return 0;
1629 }
1630
1631 static int kvm_relocate_vmm(struct kvm_vmm_info *vmm_info,
1632                                                 struct module *module)
1633 {
1634         unsigned long module_base;
1635         unsigned long vmm_size;
1636
1637         unsigned long vmm_offset, func_offset, fdesc_offset;
1638         struct fdesc *p_fdesc;
1639
1640         BUG_ON(!module);
1641
1642         if (!kvm_vmm_base) {
1643                 printk("kvm: kvm area hasn't been initilized yet!!\n");
1644                 return -EFAULT;
1645         }
1646
1647         /*Calculate new position of relocated vmm module.*/
1648         module_base = (unsigned long)module->module_core;
1649         vmm_size = module->core_size;
1650         if (unlikely(vmm_size > KVM_VMM_SIZE))
1651                 return -EFAULT;
1652
1653         memcpy((void *)kvm_vmm_base, (void *)module_base, vmm_size);
1654         kvm_flush_icache(kvm_vmm_base, vmm_size);
1655
1656         /*Recalculate kvm_vmm_info based on new VMM*/
1657         vmm_offset = vmm_info->vmm_ivt - module_base;
1658         kvm_vmm_info->vmm_ivt = KVM_VMM_BASE + vmm_offset;
1659         printk(KERN_DEBUG"kvm: Relocated VMM's IVT Base Addr:%lx\n",
1660                         kvm_vmm_info->vmm_ivt);
1661
1662         fdesc_offset = (unsigned long)vmm_info->vmm_entry - module_base;
1663         kvm_vmm_info->vmm_entry = (kvm_vmm_entry *)(KVM_VMM_BASE +
1664                                                         fdesc_offset);
1665         func_offset = *(unsigned long *)vmm_info->vmm_entry - module_base;
1666         p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1667         p_fdesc->ip = KVM_VMM_BASE + func_offset;
1668         p_fdesc->gp = KVM_VMM_BASE+(p_fdesc->gp - module_base);
1669
1670         printk(KERN_DEBUG"kvm: Relocated VMM's Init Entry Addr:%lx\n",
1671                         KVM_VMM_BASE+func_offset);
1672
1673         fdesc_offset = (unsigned long)vmm_info->tramp_entry - module_base;
1674         kvm_vmm_info->tramp_entry = (kvm_tramp_entry *)(KVM_VMM_BASE +
1675                         fdesc_offset);
1676         func_offset = *(unsigned long *)vmm_info->tramp_entry - module_base;
1677         p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1678         p_fdesc->ip = KVM_VMM_BASE + func_offset;
1679         p_fdesc->gp = KVM_VMM_BASE + (p_fdesc->gp - module_base);
1680
1681         kvm_vmm_gp = p_fdesc->gp;
1682
1683         printk(KERN_DEBUG"kvm: Relocated VMM's Entry IP:%p\n",
1684                                                 kvm_vmm_info->vmm_entry);
1685         printk(KERN_DEBUG"kvm: Relocated VMM's Trampoline Entry IP:0x%lx\n",
1686                                                 KVM_VMM_BASE + func_offset);
1687
1688         return 0;
1689 }
1690
1691 int kvm_arch_init(void *opaque)
1692 {
1693         int r;
1694         struct kvm_vmm_info *vmm_info = (struct kvm_vmm_info *)opaque;
1695
1696         if (!vti_cpu_has_kvm_support()) {
1697                 printk(KERN_ERR "kvm: No Hardware Virtualization Support!\n");
1698                 r = -EOPNOTSUPP;
1699                 goto out;
1700         }
1701
1702         if (kvm_vmm_info) {
1703                 printk(KERN_ERR "kvm: Already loaded VMM module!\n");
1704                 r = -EEXIST;
1705                 goto out;
1706         }
1707
1708         r = -ENOMEM;
1709         kvm_vmm_info = kzalloc(sizeof(struct kvm_vmm_info), GFP_KERNEL);
1710         if (!kvm_vmm_info)
1711                 goto out;
1712
1713         if (kvm_alloc_vmm_area())
1714                 goto out_free0;
1715
1716         r = kvm_relocate_vmm(vmm_info, vmm_info->module);
1717         if (r)
1718                 goto out_free1;
1719
1720         return 0;
1721
1722 out_free1:
1723         kvm_free_vmm_area();
1724 out_free0:
1725         kfree(kvm_vmm_info);
1726 out:
1727         return r;
1728 }
1729
1730 void kvm_arch_exit(void)
1731 {
1732         kvm_free_vmm_area();
1733         kfree(kvm_vmm_info);
1734         kvm_vmm_info = NULL;
1735 }
1736
1737 static int kvm_ia64_sync_dirty_log(struct kvm *kvm,
1738                 struct kvm_dirty_log *log)
1739 {
1740         struct kvm_memory_slot *memslot;
1741         int r, i;
1742         long n, base;
1743         unsigned long *dirty_bitmap = (unsigned long *)(kvm->arch.vm_base +
1744                         offsetof(struct kvm_vm_data, kvm_mem_dirty_log));
1745
1746         r = -EINVAL;
1747         if (log->slot >= KVM_MEMORY_SLOTS)
1748                 goto out;
1749
1750         memslot = &kvm->memslots[log->slot];
1751         r = -ENOENT;
1752         if (!memslot->dirty_bitmap)
1753                 goto out;
1754
1755         n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1756         base = memslot->base_gfn / BITS_PER_LONG;
1757
1758         for (i = 0; i < n/sizeof(long); ++i) {
1759                 memslot->dirty_bitmap[i] = dirty_bitmap[base + i];
1760                 dirty_bitmap[base + i] = 0;
1761         }
1762         r = 0;
1763 out:
1764         return r;
1765 }
1766
1767 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1768                 struct kvm_dirty_log *log)
1769 {
1770         int r;
1771         int n;
1772         struct kvm_memory_slot *memslot;
1773         int is_dirty = 0;
1774
1775         spin_lock(&kvm->arch.dirty_log_lock);
1776
1777         r = kvm_ia64_sync_dirty_log(kvm, log);
1778         if (r)
1779                 goto out;
1780
1781         r = kvm_get_dirty_log(kvm, log, &is_dirty);
1782         if (r)
1783                 goto out;
1784
1785         /* If nothing is dirty, don't bother messing with page tables. */
1786         if (is_dirty) {
1787                 kvm_flush_remote_tlbs(kvm);
1788                 memslot = &kvm->memslots[log->slot];
1789                 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1790                 memset(memslot->dirty_bitmap, 0, n);
1791         }
1792         r = 0;
1793 out:
1794         spin_unlock(&kvm->arch.dirty_log_lock);
1795         return r;
1796 }
1797
1798 int kvm_arch_hardware_setup(void)
1799 {
1800         return 0;
1801 }
1802
1803 void kvm_arch_hardware_unsetup(void)
1804 {
1805 }
1806
1807 static void vcpu_kick_intr(void *info)
1808 {
1809 #ifdef DEBUG
1810         struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
1811         printk(KERN_DEBUG"vcpu_kick_intr %p \n", vcpu);
1812 #endif
1813 }
1814
1815 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1816 {
1817         int ipi_pcpu = vcpu->cpu;
1818         int cpu = get_cpu();
1819
1820         if (waitqueue_active(&vcpu->wq))
1821                 wake_up_interruptible(&vcpu->wq);
1822
1823         if (vcpu->guest_mode && cpu != ipi_pcpu)
1824                 smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
1825         put_cpu();
1826 }
1827
1828 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq)
1829 {
1830         return __apic_accept_irq(vcpu, irq->vector);
1831 }
1832
1833 int kvm_apic_match_physical_addr(struct kvm_lapic *apic, u16 dest)
1834 {
1835         return apic->vcpu->vcpu_id == dest;
1836 }
1837
1838 int kvm_apic_match_logical_addr(struct kvm_lapic *apic, u8 mda)
1839 {
1840         return 0;
1841 }
1842
1843 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
1844 {
1845         return vcpu1->arch.xtp - vcpu2->arch.xtp;
1846 }
1847
1848 int kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
1849                 int short_hand, int dest, int dest_mode)
1850 {
1851         struct kvm_lapic *target = vcpu->arch.apic;
1852         return (dest_mode == 0) ?
1853                 kvm_apic_match_physical_addr(target, dest) :
1854                 kvm_apic_match_logical_addr(target, dest);
1855 }
1856
1857 static int find_highest_bits(int *dat)
1858 {
1859         u32  bits, bitnum;
1860         int i;
1861
1862         /* loop for all 256 bits */
1863         for (i = 7; i >= 0 ; i--) {
1864                 bits = dat[i];
1865                 if (bits) {
1866                         bitnum = fls(bits);
1867                         return i * 32 + bitnum - 1;
1868                 }
1869         }
1870
1871         return -1;
1872 }
1873
1874 int kvm_highest_pending_irq(struct kvm_vcpu *vcpu)
1875 {
1876     struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1877
1878     if (vpd->irr[0] & (1UL << NMI_VECTOR))
1879                 return NMI_VECTOR;
1880     if (vpd->irr[0] & (1UL << ExtINT_VECTOR))
1881                 return ExtINT_VECTOR;
1882
1883     return find_highest_bits((int *)&vpd->irr[0]);
1884 }
1885
1886 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu)
1887 {
1888         if (kvm_highest_pending_irq(vcpu) != -1)
1889                 return 1;
1890         return 0;
1891 }
1892
1893 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1894 {
1895         return vcpu->arch.timer_fired;
1896 }
1897
1898 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1899 {
1900         return gfn;
1901 }
1902
1903 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
1904 {
1905         return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE;
1906 }
1907
1908 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1909                                     struct kvm_mp_state *mp_state)
1910 {
1911         vcpu_load(vcpu);
1912         mp_state->mp_state = vcpu->arch.mp_state;
1913         vcpu_put(vcpu);
1914         return 0;
1915 }
1916
1917 static int vcpu_reset(struct kvm_vcpu *vcpu)
1918 {
1919         int r;
1920         long psr;
1921         local_irq_save(psr);
1922         r = kvm_insert_vmm_mapping(vcpu);
1923         if (r)
1924                 goto fail;
1925
1926         vcpu->arch.launched = 0;
1927         kvm_arch_vcpu_uninit(vcpu);
1928         r = kvm_arch_vcpu_init(vcpu);
1929         if (r)
1930                 goto fail;
1931
1932         kvm_purge_vmm_mapping(vcpu);
1933         r = 0;
1934 fail:
1935         local_irq_restore(psr);
1936         return r;
1937 }
1938
1939 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1940                                     struct kvm_mp_state *mp_state)
1941 {
1942         int r = 0;
1943
1944         vcpu_load(vcpu);
1945         vcpu->arch.mp_state = mp_state->mp_state;
1946         if (vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)
1947                 r = vcpu_reset(vcpu);
1948         vcpu_put(vcpu);
1949         return r;
1950 }