KVM: Fix guest shared interrupt with in-kernel irqchip
[safe/jmp/linux-2.6] / arch / ia64 / kvm / kvm-ia64.c
1 /*
2  * kvm_ia64.c: Basic KVM suppport On Itanium series processors
3  *
4  *
5  *      Copyright (C) 2007, Intel Corporation.
6  *      Xiantao Zhang  (xiantao.zhang@intel.com)
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  *
17  * You should have received a copy of the GNU General Public License along with
18  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
19  * Place - Suite 330, Boston, MA 02111-1307 USA.
20  *
21  */
22
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/gfp.h>
27 #include <linux/fs.h>
28 #include <linux/smp.h>
29 #include <linux/kvm_host.h>
30 #include <linux/kvm.h>
31 #include <linux/bitops.h>
32 #include <linux/hrtimer.h>
33 #include <linux/uaccess.h>
34 #include <linux/intel-iommu.h>
35
36 #include <asm/pgtable.h>
37 #include <asm/gcc_intrin.h>
38 #include <asm/pal.h>
39 #include <asm/cacheflush.h>
40 #include <asm/div64.h>
41 #include <asm/tlb.h>
42 #include <asm/elf.h>
43
44 #include "misc.h"
45 #include "vti.h"
46 #include "iodev.h"
47 #include "ioapic.h"
48 #include "lapic.h"
49 #include "irq.h"
50
51 static unsigned long kvm_vmm_base;
52 static unsigned long kvm_vsa_base;
53 static unsigned long kvm_vm_buffer;
54 static unsigned long kvm_vm_buffer_size;
55 unsigned long kvm_vmm_gp;
56
57 static long vp_env_info;
58
59 static struct kvm_vmm_info *kvm_vmm_info;
60
61 static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);
62
63 struct kvm_stats_debugfs_item debugfs_entries[] = {
64         { NULL }
65 };
66
67 static void kvm_flush_icache(unsigned long start, unsigned long len)
68 {
69         int l;
70
71         for (l = 0; l < (len + 32); l += 32)
72                 ia64_fc(start + l);
73
74         ia64_sync_i();
75         ia64_srlz_i();
76 }
77
78 static void kvm_flush_tlb_all(void)
79 {
80         unsigned long i, j, count0, count1, stride0, stride1, addr;
81         long flags;
82
83         addr    = local_cpu_data->ptce_base;
84         count0  = local_cpu_data->ptce_count[0];
85         count1  = local_cpu_data->ptce_count[1];
86         stride0 = local_cpu_data->ptce_stride[0];
87         stride1 = local_cpu_data->ptce_stride[1];
88
89         local_irq_save(flags);
90         for (i = 0; i < count0; ++i) {
91                 for (j = 0; j < count1; ++j) {
92                         ia64_ptce(addr);
93                         addr += stride1;
94                 }
95                 addr += stride0;
96         }
97         local_irq_restore(flags);
98         ia64_srlz_i();                  /* srlz.i implies srlz.d */
99 }
100
101 long ia64_pal_vp_create(u64 *vpd, u64 *host_iva, u64 *opt_handler)
102 {
103         struct ia64_pal_retval iprv;
104
105         PAL_CALL_STK(iprv, PAL_VP_CREATE, (u64)vpd, (u64)host_iva,
106                         (u64)opt_handler);
107
108         return iprv.status;
109 }
110
111 static  DEFINE_SPINLOCK(vp_lock);
112
113 void kvm_arch_hardware_enable(void *garbage)
114 {
115         long  status;
116         long  tmp_base;
117         unsigned long pte;
118         unsigned long saved_psr;
119         int slot;
120
121         pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
122                                 PAGE_KERNEL));
123         local_irq_save(saved_psr);
124         slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
125         local_irq_restore(saved_psr);
126         if (slot < 0)
127                 return;
128
129         spin_lock(&vp_lock);
130         status = ia64_pal_vp_init_env(kvm_vsa_base ?
131                                 VP_INIT_ENV : VP_INIT_ENV_INITALIZE,
132                         __pa(kvm_vm_buffer), KVM_VM_BUFFER_BASE, &tmp_base);
133         if (status != 0) {
134                 printk(KERN_WARNING"kvm: Failed to Enable VT Support!!!!\n");
135                 return ;
136         }
137
138         if (!kvm_vsa_base) {
139                 kvm_vsa_base = tmp_base;
140                 printk(KERN_INFO"kvm: kvm_vsa_base:0x%lx\n", kvm_vsa_base);
141         }
142         spin_unlock(&vp_lock);
143         ia64_ptr_entry(0x3, slot);
144 }
145
146 void kvm_arch_hardware_disable(void *garbage)
147 {
148
149         long status;
150         int slot;
151         unsigned long pte;
152         unsigned long saved_psr;
153         unsigned long host_iva = ia64_getreg(_IA64_REG_CR_IVA);
154
155         pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
156                                 PAGE_KERNEL));
157
158         local_irq_save(saved_psr);
159         slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
160         local_irq_restore(saved_psr);
161         if (slot < 0)
162                 return;
163
164         status = ia64_pal_vp_exit_env(host_iva);
165         if (status)
166                 printk(KERN_DEBUG"kvm: Failed to disable VT support! :%ld\n",
167                                 status);
168         ia64_ptr_entry(0x3, slot);
169 }
170
171 void kvm_arch_check_processor_compat(void *rtn)
172 {
173         *(int *)rtn = 0;
174 }
175
176 int kvm_dev_ioctl_check_extension(long ext)
177 {
178
179         int r;
180
181         switch (ext) {
182         case KVM_CAP_IRQCHIP:
183         case KVM_CAP_USER_MEMORY:
184         case KVM_CAP_MP_STATE:
185
186                 r = 1;
187                 break;
188         case KVM_CAP_COALESCED_MMIO:
189                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
190                 break;
191         case KVM_CAP_IOMMU:
192                 r = intel_iommu_found();
193                 break;
194         default:
195                 r = 0;
196         }
197         return r;
198
199 }
200
201 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
202                                         gpa_t addr, int len, int is_write)
203 {
204         struct kvm_io_device *dev;
205
206         dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len, is_write);
207
208         return dev;
209 }
210
211 static int handle_vm_error(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
212 {
213         kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
214         kvm_run->hw.hardware_exit_reason = 1;
215         return 0;
216 }
217
218 static int handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
219 {
220         struct kvm_mmio_req *p;
221         struct kvm_io_device *mmio_dev;
222
223         p = kvm_get_vcpu_ioreq(vcpu);
224
225         if ((p->addr & PAGE_MASK) == IOAPIC_DEFAULT_BASE_ADDRESS)
226                 goto mmio;
227         vcpu->mmio_needed = 1;
228         vcpu->mmio_phys_addr = kvm_run->mmio.phys_addr = p->addr;
229         vcpu->mmio_size = kvm_run->mmio.len = p->size;
230         vcpu->mmio_is_write = kvm_run->mmio.is_write = !p->dir;
231
232         if (vcpu->mmio_is_write)
233                 memcpy(vcpu->mmio_data, &p->data, p->size);
234         memcpy(kvm_run->mmio.data, &p->data, p->size);
235         kvm_run->exit_reason = KVM_EXIT_MMIO;
236         return 0;
237 mmio:
238         mmio_dev = vcpu_find_mmio_dev(vcpu, p->addr, p->size, !p->dir);
239         if (mmio_dev) {
240                 if (!p->dir)
241                         kvm_iodevice_write(mmio_dev, p->addr, p->size,
242                                                 &p->data);
243                 else
244                         kvm_iodevice_read(mmio_dev, p->addr, p->size,
245                                                 &p->data);
246
247         } else
248                 printk(KERN_ERR"kvm: No iodevice found! addr:%lx\n", p->addr);
249         p->state = STATE_IORESP_READY;
250
251         return 1;
252 }
253
254 static int handle_pal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
255 {
256         struct exit_ctl_data *p;
257
258         p = kvm_get_exit_data(vcpu);
259
260         if (p->exit_reason == EXIT_REASON_PAL_CALL)
261                 return kvm_pal_emul(vcpu, kvm_run);
262         else {
263                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
264                 kvm_run->hw.hardware_exit_reason = 2;
265                 return 0;
266         }
267 }
268
269 static int handle_sal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
270 {
271         struct exit_ctl_data *p;
272
273         p = kvm_get_exit_data(vcpu);
274
275         if (p->exit_reason == EXIT_REASON_SAL_CALL) {
276                 kvm_sal_emul(vcpu);
277                 return 1;
278         } else {
279                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
280                 kvm_run->hw.hardware_exit_reason = 3;
281                 return 0;
282         }
283
284 }
285
286 /*
287  *  offset: address offset to IPI space.
288  *  value:  deliver value.
289  */
290 static void vcpu_deliver_ipi(struct kvm_vcpu *vcpu, uint64_t dm,
291                                 uint64_t vector)
292 {
293         switch (dm) {
294         case SAPIC_FIXED:
295                 kvm_apic_set_irq(vcpu, vector, 0);
296                 break;
297         case SAPIC_NMI:
298                 kvm_apic_set_irq(vcpu, 2, 0);
299                 break;
300         case SAPIC_EXTINT:
301                 kvm_apic_set_irq(vcpu, 0, 0);
302                 break;
303         case SAPIC_INIT:
304         case SAPIC_PMI:
305         default:
306                 printk(KERN_ERR"kvm: Unimplemented Deliver reserved IPI!\n");
307                 break;
308         }
309 }
310
311 static struct kvm_vcpu *lid_to_vcpu(struct kvm *kvm, unsigned long id,
312                         unsigned long eid)
313 {
314         union ia64_lid lid;
315         int i;
316
317         for (i = 0; i < KVM_MAX_VCPUS; i++) {
318                 if (kvm->vcpus[i]) {
319                         lid.val = VCPU_LID(kvm->vcpus[i]);
320                         if (lid.id == id && lid.eid == eid)
321                                 return kvm->vcpus[i];
322                 }
323         }
324
325         return NULL;
326 }
327
328 static int handle_ipi(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
329 {
330         struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
331         struct kvm_vcpu *target_vcpu;
332         struct kvm_pt_regs *regs;
333         union ia64_ipi_a addr = p->u.ipi_data.addr;
334         union ia64_ipi_d data = p->u.ipi_data.data;
335
336         target_vcpu = lid_to_vcpu(vcpu->kvm, addr.id, addr.eid);
337         if (!target_vcpu)
338                 return handle_vm_error(vcpu, kvm_run);
339
340         if (!target_vcpu->arch.launched) {
341                 regs = vcpu_regs(target_vcpu);
342
343                 regs->cr_iip = vcpu->kvm->arch.rdv_sal_data.boot_ip;
344                 regs->r1 = vcpu->kvm->arch.rdv_sal_data.boot_gp;
345
346                 target_vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
347                 if (waitqueue_active(&target_vcpu->wq))
348                         wake_up_interruptible(&target_vcpu->wq);
349         } else {
350                 vcpu_deliver_ipi(target_vcpu, data.dm, data.vector);
351                 if (target_vcpu != vcpu)
352                         kvm_vcpu_kick(target_vcpu);
353         }
354
355         return 1;
356 }
357
358 struct call_data {
359         struct kvm_ptc_g ptc_g_data;
360         struct kvm_vcpu *vcpu;
361 };
362
363 static void vcpu_global_purge(void *info)
364 {
365         struct call_data *p = (struct call_data *)info;
366         struct kvm_vcpu *vcpu = p->vcpu;
367
368         if (test_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
369                 return;
370
371         set_bit(KVM_REQ_PTC_G, &vcpu->requests);
372         if (vcpu->arch.ptc_g_count < MAX_PTC_G_NUM) {
373                 vcpu->arch.ptc_g_data[vcpu->arch.ptc_g_count++] =
374                                                         p->ptc_g_data;
375         } else {
376                 clear_bit(KVM_REQ_PTC_G, &vcpu->requests);
377                 vcpu->arch.ptc_g_count = 0;
378                 set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
379         }
380 }
381
382 static int handle_global_purge(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
383 {
384         struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
385         struct kvm *kvm = vcpu->kvm;
386         struct call_data call_data;
387         int i;
388         call_data.ptc_g_data = p->u.ptc_g_data;
389
390         for (i = 0; i < KVM_MAX_VCPUS; i++) {
391                 if (!kvm->vcpus[i] || kvm->vcpus[i]->arch.mp_state ==
392                                                 KVM_MP_STATE_UNINITIALIZED ||
393                                         vcpu == kvm->vcpus[i])
394                         continue;
395
396                 if (waitqueue_active(&kvm->vcpus[i]->wq))
397                         wake_up_interruptible(&kvm->vcpus[i]->wq);
398
399                 if (kvm->vcpus[i]->cpu != -1) {
400                         call_data.vcpu = kvm->vcpus[i];
401                         smp_call_function_single(kvm->vcpus[i]->cpu,
402                                         vcpu_global_purge, &call_data, 1);
403                 } else
404                         printk(KERN_WARNING"kvm: Uninit vcpu received ipi!\n");
405
406         }
407         return 1;
408 }
409
410 static int handle_switch_rr6(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
411 {
412         return 1;
413 }
414
415 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
416 {
417
418         ktime_t kt;
419         long itc_diff;
420         unsigned long vcpu_now_itc;
421
422         unsigned long expires;
423         struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
424         unsigned long cyc_per_usec = local_cpu_data->cyc_per_usec;
425         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
426
427         vcpu_now_itc = ia64_getreg(_IA64_REG_AR_ITC) + vcpu->arch.itc_offset;
428
429         if (time_after(vcpu_now_itc, vpd->itm)) {
430                 vcpu->arch.timer_check = 1;
431                 return 1;
432         }
433         itc_diff = vpd->itm - vcpu_now_itc;
434         if (itc_diff < 0)
435                 itc_diff = -itc_diff;
436
437         expires = div64_u64(itc_diff, cyc_per_usec);
438         kt = ktime_set(0, 1000 * expires);
439         vcpu->arch.ht_active = 1;
440         hrtimer_start(p_ht, kt, HRTIMER_MODE_ABS);
441
442         if (irqchip_in_kernel(vcpu->kvm)) {
443                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
444                 kvm_vcpu_block(vcpu);
445                 hrtimer_cancel(p_ht);
446                 vcpu->arch.ht_active = 0;
447
448                 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
449                         return -EINTR;
450                 return 1;
451         } else {
452                 printk(KERN_ERR"kvm: Unsupported userspace halt!");
453                 return 0;
454         }
455 }
456
457 static int handle_vm_shutdown(struct kvm_vcpu *vcpu,
458                 struct kvm_run *kvm_run)
459 {
460         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
461         return 0;
462 }
463
464 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
465                 struct kvm_run *kvm_run)
466 {
467         return 1;
468 }
469
470 static int (*kvm_vti_exit_handlers[])(struct kvm_vcpu *vcpu,
471                 struct kvm_run *kvm_run) = {
472         [EXIT_REASON_VM_PANIC]              = handle_vm_error,
473         [EXIT_REASON_MMIO_INSTRUCTION]      = handle_mmio,
474         [EXIT_REASON_PAL_CALL]              = handle_pal_call,
475         [EXIT_REASON_SAL_CALL]              = handle_sal_call,
476         [EXIT_REASON_SWITCH_RR6]            = handle_switch_rr6,
477         [EXIT_REASON_VM_DESTROY]            = handle_vm_shutdown,
478         [EXIT_REASON_EXTERNAL_INTERRUPT]    = handle_external_interrupt,
479         [EXIT_REASON_IPI]                   = handle_ipi,
480         [EXIT_REASON_PTC_G]                 = handle_global_purge,
481
482 };
483
484 static const int kvm_vti_max_exit_handlers =
485                 sizeof(kvm_vti_exit_handlers)/sizeof(*kvm_vti_exit_handlers);
486
487 static void kvm_prepare_guest_switch(struct kvm_vcpu *vcpu)
488 {
489 }
490
491 static uint32_t kvm_get_exit_reason(struct kvm_vcpu *vcpu)
492 {
493         struct exit_ctl_data *p_exit_data;
494
495         p_exit_data = kvm_get_exit_data(vcpu);
496         return p_exit_data->exit_reason;
497 }
498
499 /*
500  * The guest has exited.  See if we can fix it or if we need userspace
501  * assistance.
502  */
503 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
504 {
505         u32 exit_reason = kvm_get_exit_reason(vcpu);
506         vcpu->arch.last_exit = exit_reason;
507
508         if (exit_reason < kvm_vti_max_exit_handlers
509                         && kvm_vti_exit_handlers[exit_reason])
510                 return kvm_vti_exit_handlers[exit_reason](vcpu, kvm_run);
511         else {
512                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
513                 kvm_run->hw.hardware_exit_reason = exit_reason;
514         }
515         return 0;
516 }
517
518 static inline void vti_set_rr6(unsigned long rr6)
519 {
520         ia64_set_rr(RR6, rr6);
521         ia64_srlz_i();
522 }
523
524 static int kvm_insert_vmm_mapping(struct kvm_vcpu *vcpu)
525 {
526         unsigned long pte;
527         struct kvm *kvm = vcpu->kvm;
528         int r;
529
530         /*Insert a pair of tr to map vmm*/
531         pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
532         r = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
533         if (r < 0)
534                 goto out;
535         vcpu->arch.vmm_tr_slot = r;
536         /*Insert a pairt of tr to map data of vm*/
537         pte = pte_val(mk_pte_phys(__pa(kvm->arch.vm_base), PAGE_KERNEL));
538         r = ia64_itr_entry(0x3, KVM_VM_DATA_BASE,
539                                         pte, KVM_VM_DATA_SHIFT);
540         if (r < 0)
541                 goto out;
542         vcpu->arch.vm_tr_slot = r;
543         r = 0;
544 out:
545         return r;
546
547 }
548
549 static void kvm_purge_vmm_mapping(struct kvm_vcpu *vcpu)
550 {
551
552         ia64_ptr_entry(0x3, vcpu->arch.vmm_tr_slot);
553         ia64_ptr_entry(0x3, vcpu->arch.vm_tr_slot);
554
555 }
556
557 static int kvm_vcpu_pre_transition(struct kvm_vcpu *vcpu)
558 {
559         int cpu = smp_processor_id();
560
561         if (vcpu->arch.last_run_cpu != cpu ||
562                         per_cpu(last_vcpu, cpu) != vcpu) {
563                 per_cpu(last_vcpu, cpu) = vcpu;
564                 vcpu->arch.last_run_cpu = cpu;
565                 kvm_flush_tlb_all();
566         }
567
568         vcpu->arch.host_rr6 = ia64_get_rr(RR6);
569         vti_set_rr6(vcpu->arch.vmm_rr);
570         return kvm_insert_vmm_mapping(vcpu);
571 }
572 static void kvm_vcpu_post_transition(struct kvm_vcpu *vcpu)
573 {
574         kvm_purge_vmm_mapping(vcpu);
575         vti_set_rr6(vcpu->arch.host_rr6);
576 }
577
578 static int  vti_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
579 {
580         union context *host_ctx, *guest_ctx;
581         int r;
582
583         /*Get host and guest context with guest address space.*/
584         host_ctx = kvm_get_host_context(vcpu);
585         guest_ctx = kvm_get_guest_context(vcpu);
586
587         r = kvm_vcpu_pre_transition(vcpu);
588         if (r < 0)
589                 goto out;
590         kvm_vmm_info->tramp_entry(host_ctx, guest_ctx);
591         kvm_vcpu_post_transition(vcpu);
592         r = 0;
593 out:
594         return r;
595 }
596
597 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
598 {
599         int r;
600
601 again:
602         preempt_disable();
603
604         kvm_prepare_guest_switch(vcpu);
605         local_irq_disable();
606
607         if (signal_pending(current)) {
608                 local_irq_enable();
609                 preempt_enable();
610                 r = -EINTR;
611                 kvm_run->exit_reason = KVM_EXIT_INTR;
612                 goto out;
613         }
614
615         vcpu->guest_mode = 1;
616         kvm_guest_enter();
617
618         r = vti_vcpu_run(vcpu, kvm_run);
619         if (r < 0) {
620                 local_irq_enable();
621                 preempt_enable();
622                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
623                 goto out;
624         }
625
626         vcpu->arch.launched = 1;
627         vcpu->guest_mode = 0;
628         local_irq_enable();
629
630         /*
631          * We must have an instruction between local_irq_enable() and
632          * kvm_guest_exit(), so the timer interrupt isn't delayed by
633          * the interrupt shadow.  The stat.exits increment will do nicely.
634          * But we need to prevent reordering, hence this barrier():
635          */
636         barrier();
637
638         kvm_guest_exit();
639
640         preempt_enable();
641
642         r = kvm_handle_exit(kvm_run, vcpu);
643
644         if (r > 0) {
645                 if (!need_resched())
646                         goto again;
647         }
648
649 out:
650         if (r > 0) {
651                 kvm_resched(vcpu);
652                 goto again;
653         }
654
655         return r;
656 }
657
658 static void kvm_set_mmio_data(struct kvm_vcpu *vcpu)
659 {
660         struct kvm_mmio_req *p = kvm_get_vcpu_ioreq(vcpu);
661
662         if (!vcpu->mmio_is_write)
663                 memcpy(&p->data, vcpu->mmio_data, 8);
664         p->state = STATE_IORESP_READY;
665 }
666
667 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
668 {
669         int r;
670         sigset_t sigsaved;
671
672         vcpu_load(vcpu);
673
674         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
675                 kvm_vcpu_block(vcpu);
676                 vcpu_put(vcpu);
677                 return -EAGAIN;
678         }
679
680         if (vcpu->sigset_active)
681                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
682
683         if (vcpu->mmio_needed) {
684                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
685                 kvm_set_mmio_data(vcpu);
686                 vcpu->mmio_read_completed = 1;
687                 vcpu->mmio_needed = 0;
688         }
689         r = __vcpu_run(vcpu, kvm_run);
690
691         if (vcpu->sigset_active)
692                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
693
694         vcpu_put(vcpu);
695         return r;
696 }
697
698 /*
699  * Allocate 16M memory for every vm to hold its specific data.
700  * Its memory map is defined in kvm_host.h.
701  */
702 static struct kvm *kvm_alloc_kvm(void)
703 {
704
705         struct kvm *kvm;
706         uint64_t  vm_base;
707
708         vm_base = __get_free_pages(GFP_KERNEL, get_order(KVM_VM_DATA_SIZE));
709
710         if (!vm_base)
711                 return ERR_PTR(-ENOMEM);
712         printk(KERN_DEBUG"kvm: VM data's base Address:0x%lx\n", vm_base);
713
714         /* Zero all pages before use! */
715         memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
716
717         kvm = (struct kvm *)(vm_base + KVM_VM_OFS);
718         kvm->arch.vm_base = vm_base;
719
720         return kvm;
721 }
722
723 struct kvm_io_range {
724         unsigned long start;
725         unsigned long size;
726         unsigned long type;
727 };
728
729 static const struct kvm_io_range io_ranges[] = {
730         {VGA_IO_START, VGA_IO_SIZE, GPFN_FRAME_BUFFER},
731         {MMIO_START, MMIO_SIZE, GPFN_LOW_MMIO},
732         {LEGACY_IO_START, LEGACY_IO_SIZE, GPFN_LEGACY_IO},
733         {IO_SAPIC_START, IO_SAPIC_SIZE, GPFN_IOSAPIC},
734         {PIB_START, PIB_SIZE, GPFN_PIB},
735 };
736
737 static void kvm_build_io_pmt(struct kvm *kvm)
738 {
739         unsigned long i, j;
740
741         /* Mark I/O ranges */
742         for (i = 0; i < (sizeof(io_ranges) / sizeof(struct kvm_io_range));
743                                                         i++) {
744                 for (j = io_ranges[i].start;
745                                 j < io_ranges[i].start + io_ranges[i].size;
746                                 j += PAGE_SIZE)
747                         kvm_set_pmt_entry(kvm, j >> PAGE_SHIFT,
748                                         io_ranges[i].type, 0);
749         }
750
751 }
752
753 /*Use unused rids to virtualize guest rid.*/
754 #define GUEST_PHYSICAL_RR0      0x1739
755 #define GUEST_PHYSICAL_RR4      0x2739
756 #define VMM_INIT_RR             0x1660
757
758 static void kvm_init_vm(struct kvm *kvm)
759 {
760         long vm_base;
761
762         BUG_ON(!kvm);
763
764         kvm->arch.metaphysical_rr0 = GUEST_PHYSICAL_RR0;
765         kvm->arch.metaphysical_rr4 = GUEST_PHYSICAL_RR4;
766         kvm->arch.vmm_init_rr = VMM_INIT_RR;
767
768         vm_base = kvm->arch.vm_base;
769         if (vm_base) {
770                 kvm->arch.vhpt_base = vm_base + KVM_VHPT_OFS;
771                 kvm->arch.vtlb_base = vm_base + KVM_VTLB_OFS;
772                 kvm->arch.vpd_base  = vm_base + KVM_VPD_OFS;
773         }
774
775         /*
776          *Fill P2M entries for MMIO/IO ranges
777          */
778         kvm_build_io_pmt(kvm);
779
780         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
781
782         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
783         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
784 }
785
786 struct  kvm *kvm_arch_create_vm(void)
787 {
788         struct kvm *kvm = kvm_alloc_kvm();
789
790         if (IS_ERR(kvm))
791                 return ERR_PTR(-ENOMEM);
792         kvm_init_vm(kvm);
793
794         return kvm;
795
796 }
797
798 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm,
799                                         struct kvm_irqchip *chip)
800 {
801         int r;
802
803         r = 0;
804         switch (chip->chip_id) {
805         case KVM_IRQCHIP_IOAPIC:
806                 memcpy(&chip->chip.ioapic, ioapic_irqchip(kvm),
807                                 sizeof(struct kvm_ioapic_state));
808                 break;
809         default:
810                 r = -EINVAL;
811                 break;
812         }
813         return r;
814 }
815
816 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
817 {
818         int r;
819
820         r = 0;
821         switch (chip->chip_id) {
822         case KVM_IRQCHIP_IOAPIC:
823                 memcpy(ioapic_irqchip(kvm),
824                                 &chip->chip.ioapic,
825                                 sizeof(struct kvm_ioapic_state));
826                 break;
827         default:
828                 r = -EINVAL;
829                 break;
830         }
831         return r;
832 }
833
834 #define RESTORE_REGS(_x) vcpu->arch._x = regs->_x
835
836 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
837 {
838         int i;
839         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
840         int r;
841
842         vcpu_load(vcpu);
843
844         for (i = 0; i < 16; i++) {
845                 vpd->vgr[i] = regs->vpd.vgr[i];
846                 vpd->vbgr[i] = regs->vpd.vbgr[i];
847         }
848         for (i = 0; i < 128; i++)
849                 vpd->vcr[i] = regs->vpd.vcr[i];
850         vpd->vhpi = regs->vpd.vhpi;
851         vpd->vnat = regs->vpd.vnat;
852         vpd->vbnat = regs->vpd.vbnat;
853         vpd->vpsr = regs->vpd.vpsr;
854
855         vpd->vpr = regs->vpd.vpr;
856
857         r = -EFAULT;
858         r = copy_from_user(&vcpu->arch.guest, regs->saved_guest,
859                                                 sizeof(union context));
860         if (r)
861                 goto out;
862         r = copy_from_user(vcpu + 1, regs->saved_stack +
863                         sizeof(struct kvm_vcpu),
864                         IA64_STK_OFFSET - sizeof(struct kvm_vcpu));
865         if (r)
866                 goto out;
867         vcpu->arch.exit_data =
868                 ((struct kvm_vcpu *)(regs->saved_stack))->arch.exit_data;
869
870         RESTORE_REGS(mp_state);
871         RESTORE_REGS(vmm_rr);
872         memcpy(vcpu->arch.itrs, regs->itrs, sizeof(struct thash_data) * NITRS);
873         memcpy(vcpu->arch.dtrs, regs->dtrs, sizeof(struct thash_data) * NDTRS);
874         RESTORE_REGS(itr_regions);
875         RESTORE_REGS(dtr_regions);
876         RESTORE_REGS(tc_regions);
877         RESTORE_REGS(irq_check);
878         RESTORE_REGS(itc_check);
879         RESTORE_REGS(timer_check);
880         RESTORE_REGS(timer_pending);
881         RESTORE_REGS(last_itc);
882         for (i = 0; i < 8; i++) {
883                 vcpu->arch.vrr[i] = regs->vrr[i];
884                 vcpu->arch.ibr[i] = regs->ibr[i];
885                 vcpu->arch.dbr[i] = regs->dbr[i];
886         }
887         for (i = 0; i < 4; i++)
888                 vcpu->arch.insvc[i] = regs->insvc[i];
889         RESTORE_REGS(xtp);
890         RESTORE_REGS(metaphysical_rr0);
891         RESTORE_REGS(metaphysical_rr4);
892         RESTORE_REGS(metaphysical_saved_rr0);
893         RESTORE_REGS(metaphysical_saved_rr4);
894         RESTORE_REGS(fp_psr);
895         RESTORE_REGS(saved_gp);
896
897         vcpu->arch.irq_new_pending = 1;
898         vcpu->arch.itc_offset = regs->saved_itc - ia64_getreg(_IA64_REG_AR_ITC);
899         set_bit(KVM_REQ_RESUME, &vcpu->requests);
900
901         vcpu_put(vcpu);
902         r = 0;
903 out:
904         return r;
905 }
906
907 long kvm_arch_vm_ioctl(struct file *filp,
908                 unsigned int ioctl, unsigned long arg)
909 {
910         struct kvm *kvm = filp->private_data;
911         void __user *argp = (void __user *)arg;
912         int r = -EINVAL;
913
914         switch (ioctl) {
915         case KVM_SET_MEMORY_REGION: {
916                 struct kvm_memory_region kvm_mem;
917                 struct kvm_userspace_memory_region kvm_userspace_mem;
918
919                 r = -EFAULT;
920                 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
921                         goto out;
922                 kvm_userspace_mem.slot = kvm_mem.slot;
923                 kvm_userspace_mem.flags = kvm_mem.flags;
924                 kvm_userspace_mem.guest_phys_addr =
925                                         kvm_mem.guest_phys_addr;
926                 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
927                 r = kvm_vm_ioctl_set_memory_region(kvm,
928                                         &kvm_userspace_mem, 0);
929                 if (r)
930                         goto out;
931                 break;
932                 }
933         case KVM_CREATE_IRQCHIP:
934                 r = -EFAULT;
935                 r = kvm_ioapic_init(kvm);
936                 if (r)
937                         goto out;
938                 break;
939         case KVM_IRQ_LINE: {
940                 struct kvm_irq_level irq_event;
941
942                 r = -EFAULT;
943                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
944                         goto out;
945                 if (irqchip_in_kernel(kvm)) {
946                         mutex_lock(&kvm->lock);
947                         kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
948                                     irq_event.irq, irq_event.level);
949                         mutex_unlock(&kvm->lock);
950                         r = 0;
951                 }
952                 break;
953                 }
954         case KVM_GET_IRQCHIP: {
955                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
956                 struct kvm_irqchip chip;
957
958                 r = -EFAULT;
959                 if (copy_from_user(&chip, argp, sizeof chip))
960                                 goto out;
961                 r = -ENXIO;
962                 if (!irqchip_in_kernel(kvm))
963                         goto out;
964                 r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
965                 if (r)
966                         goto out;
967                 r = -EFAULT;
968                 if (copy_to_user(argp, &chip, sizeof chip))
969                                 goto out;
970                 r = 0;
971                 break;
972                 }
973         case KVM_SET_IRQCHIP: {
974                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
975                 struct kvm_irqchip chip;
976
977                 r = -EFAULT;
978                 if (copy_from_user(&chip, argp, sizeof chip))
979                                 goto out;
980                 r = -ENXIO;
981                 if (!irqchip_in_kernel(kvm))
982                         goto out;
983                 r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
984                 if (r)
985                         goto out;
986                 r = 0;
987                 break;
988                 }
989         default:
990                 ;
991         }
992 out:
993         return r;
994 }
995
996 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
997                 struct kvm_sregs *sregs)
998 {
999         return -EINVAL;
1000 }
1001
1002 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1003                 struct kvm_sregs *sregs)
1004 {
1005         return -EINVAL;
1006
1007 }
1008 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1009                 struct kvm_translation *tr)
1010 {
1011
1012         return -EINVAL;
1013 }
1014
1015 static int kvm_alloc_vmm_area(void)
1016 {
1017         if (!kvm_vmm_base && (kvm_vm_buffer_size < KVM_VM_BUFFER_SIZE)) {
1018                 kvm_vmm_base = __get_free_pages(GFP_KERNEL,
1019                                 get_order(KVM_VMM_SIZE));
1020                 if (!kvm_vmm_base)
1021                         return -ENOMEM;
1022
1023                 memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1024                 kvm_vm_buffer = kvm_vmm_base + VMM_SIZE;
1025
1026                 printk(KERN_DEBUG"kvm:VMM's Base Addr:0x%lx, vm_buffer:0x%lx\n",
1027                                 kvm_vmm_base, kvm_vm_buffer);
1028         }
1029
1030         return 0;
1031 }
1032
1033 static void kvm_free_vmm_area(void)
1034 {
1035         if (kvm_vmm_base) {
1036                 /*Zero this area before free to avoid bits leak!!*/
1037                 memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1038                 free_pages(kvm_vmm_base, get_order(KVM_VMM_SIZE));
1039                 kvm_vmm_base  = 0;
1040                 kvm_vm_buffer = 0;
1041                 kvm_vsa_base = 0;
1042         }
1043 }
1044
1045 static void vti_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1046 {
1047 }
1048
1049 static int vti_init_vpd(struct kvm_vcpu *vcpu)
1050 {
1051         int i;
1052         union cpuid3_t cpuid3;
1053         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1054
1055         if (IS_ERR(vpd))
1056                 return PTR_ERR(vpd);
1057
1058         /* CPUID init */
1059         for (i = 0; i < 5; i++)
1060                 vpd->vcpuid[i] = ia64_get_cpuid(i);
1061
1062         /* Limit the CPUID number to 5 */
1063         cpuid3.value = vpd->vcpuid[3];
1064         cpuid3.number = 4;      /* 5 - 1 */
1065         vpd->vcpuid[3] = cpuid3.value;
1066
1067         /*Set vac and vdc fields*/
1068         vpd->vac.a_from_int_cr = 1;
1069         vpd->vac.a_to_int_cr = 1;
1070         vpd->vac.a_from_psr = 1;
1071         vpd->vac.a_from_cpuid = 1;
1072         vpd->vac.a_cover = 1;
1073         vpd->vac.a_bsw = 1;
1074         vpd->vac.a_int = 1;
1075         vpd->vdc.d_vmsw = 1;
1076
1077         /*Set virtual buffer*/
1078         vpd->virt_env_vaddr = KVM_VM_BUFFER_BASE;
1079
1080         return 0;
1081 }
1082
1083 static int vti_create_vp(struct kvm_vcpu *vcpu)
1084 {
1085         long ret;
1086         struct vpd *vpd = vcpu->arch.vpd;
1087         unsigned long  vmm_ivt;
1088
1089         vmm_ivt = kvm_vmm_info->vmm_ivt;
1090
1091         printk(KERN_DEBUG "kvm: vcpu:%p,ivt: 0x%lx\n", vcpu, vmm_ivt);
1092
1093         ret = ia64_pal_vp_create((u64 *)vpd, (u64 *)vmm_ivt, 0);
1094
1095         if (ret) {
1096                 printk(KERN_ERR"kvm: ia64_pal_vp_create failed!\n");
1097                 return -EINVAL;
1098         }
1099         return 0;
1100 }
1101
1102 static void init_ptce_info(struct kvm_vcpu *vcpu)
1103 {
1104         ia64_ptce_info_t ptce = {0};
1105
1106         ia64_get_ptce(&ptce);
1107         vcpu->arch.ptce_base = ptce.base;
1108         vcpu->arch.ptce_count[0] = ptce.count[0];
1109         vcpu->arch.ptce_count[1] = ptce.count[1];
1110         vcpu->arch.ptce_stride[0] = ptce.stride[0];
1111         vcpu->arch.ptce_stride[1] = ptce.stride[1];
1112 }
1113
1114 static void kvm_migrate_hlt_timer(struct kvm_vcpu *vcpu)
1115 {
1116         struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
1117
1118         if (hrtimer_cancel(p_ht))
1119                 hrtimer_start_expires(p_ht, HRTIMER_MODE_ABS);
1120 }
1121
1122 static enum hrtimer_restart hlt_timer_fn(struct hrtimer *data)
1123 {
1124         struct kvm_vcpu *vcpu;
1125         wait_queue_head_t *q;
1126
1127         vcpu  = container_of(data, struct kvm_vcpu, arch.hlt_timer);
1128         if (vcpu->arch.mp_state != KVM_MP_STATE_HALTED)
1129                 goto out;
1130
1131         q = &vcpu->wq;
1132         if (waitqueue_active(q)) {
1133                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
1134                 wake_up_interruptible(q);
1135         }
1136 out:
1137         vcpu->arch.timer_check = 1;
1138         return HRTIMER_NORESTART;
1139 }
1140
1141 #define PALE_RESET_ENTRY    0x80000000ffffffb0UL
1142
1143 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1144 {
1145         struct kvm_vcpu *v;
1146         int r;
1147         int i;
1148         long itc_offset;
1149         struct kvm *kvm = vcpu->kvm;
1150         struct kvm_pt_regs *regs = vcpu_regs(vcpu);
1151
1152         union context *p_ctx = &vcpu->arch.guest;
1153         struct kvm_vcpu *vmm_vcpu = to_guest(vcpu->kvm, vcpu);
1154
1155         /*Init vcpu context for first run.*/
1156         if (IS_ERR(vmm_vcpu))
1157                 return PTR_ERR(vmm_vcpu);
1158
1159         if (vcpu->vcpu_id == 0) {
1160                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
1161
1162                 /*Set entry address for first run.*/
1163                 regs->cr_iip = PALE_RESET_ENTRY;
1164
1165                 /*Initilize itc offset for vcpus*/
1166                 itc_offset = 0UL - ia64_getreg(_IA64_REG_AR_ITC);
1167                 for (i = 0; i < MAX_VCPU_NUM; i++) {
1168                         v = (struct kvm_vcpu *)((char *)vcpu + VCPU_SIZE * i);
1169                         v->arch.itc_offset = itc_offset;
1170                         v->arch.last_itc = 0;
1171                 }
1172         } else
1173                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
1174
1175         r = -ENOMEM;
1176         vcpu->arch.apic = kzalloc(sizeof(struct kvm_lapic), GFP_KERNEL);
1177         if (!vcpu->arch.apic)
1178                 goto out;
1179         vcpu->arch.apic->vcpu = vcpu;
1180
1181         p_ctx->gr[1] = 0;
1182         p_ctx->gr[12] = (unsigned long)((char *)vmm_vcpu + IA64_STK_OFFSET);
1183         p_ctx->gr[13] = (unsigned long)vmm_vcpu;
1184         p_ctx->psr = 0x1008522000UL;
1185         p_ctx->ar[40] = FPSR_DEFAULT; /*fpsr*/
1186         p_ctx->caller_unat = 0;
1187         p_ctx->pr = 0x0;
1188         p_ctx->ar[36] = 0x0; /*unat*/
1189         p_ctx->ar[19] = 0x0; /*rnat*/
1190         p_ctx->ar[18] = (unsigned long)vmm_vcpu +
1191                                 ((sizeof(struct kvm_vcpu)+15) & ~15);
1192         p_ctx->ar[64] = 0x0; /*pfs*/
1193         p_ctx->cr[0] = 0x7e04UL;
1194         p_ctx->cr[2] = (unsigned long)kvm_vmm_info->vmm_ivt;
1195         p_ctx->cr[8] = 0x3c;
1196
1197         /*Initilize region register*/
1198         p_ctx->rr[0] = 0x30;
1199         p_ctx->rr[1] = 0x30;
1200         p_ctx->rr[2] = 0x30;
1201         p_ctx->rr[3] = 0x30;
1202         p_ctx->rr[4] = 0x30;
1203         p_ctx->rr[5] = 0x30;
1204         p_ctx->rr[7] = 0x30;
1205
1206         /*Initilize branch register 0*/
1207         p_ctx->br[0] = *(unsigned long *)kvm_vmm_info->vmm_entry;
1208
1209         vcpu->arch.vmm_rr = kvm->arch.vmm_init_rr;
1210         vcpu->arch.metaphysical_rr0 = kvm->arch.metaphysical_rr0;
1211         vcpu->arch.metaphysical_rr4 = kvm->arch.metaphysical_rr4;
1212
1213         hrtimer_init(&vcpu->arch.hlt_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1214         vcpu->arch.hlt_timer.function = hlt_timer_fn;
1215
1216         vcpu->arch.last_run_cpu = -1;
1217         vcpu->arch.vpd = (struct vpd *)VPD_ADDR(vcpu->vcpu_id);
1218         vcpu->arch.vsa_base = kvm_vsa_base;
1219         vcpu->arch.__gp = kvm_vmm_gp;
1220         vcpu->arch.dirty_log_lock_pa = __pa(&kvm->arch.dirty_log_lock);
1221         vcpu->arch.vhpt.hash = (struct thash_data *)VHPT_ADDR(vcpu->vcpu_id);
1222         vcpu->arch.vtlb.hash = (struct thash_data *)VTLB_ADDR(vcpu->vcpu_id);
1223         init_ptce_info(vcpu);
1224
1225         r = 0;
1226 out:
1227         return r;
1228 }
1229
1230 static int vti_vcpu_setup(struct kvm_vcpu *vcpu, int id)
1231 {
1232         unsigned long psr;
1233         int r;
1234
1235         local_irq_save(psr);
1236         r = kvm_insert_vmm_mapping(vcpu);
1237         if (r)
1238                 goto fail;
1239         r = kvm_vcpu_init(vcpu, vcpu->kvm, id);
1240         if (r)
1241                 goto fail;
1242
1243         r = vti_init_vpd(vcpu);
1244         if (r) {
1245                 printk(KERN_DEBUG"kvm: vpd init error!!\n");
1246                 goto uninit;
1247         }
1248
1249         r = vti_create_vp(vcpu);
1250         if (r)
1251                 goto uninit;
1252
1253         kvm_purge_vmm_mapping(vcpu);
1254         local_irq_restore(psr);
1255
1256         return 0;
1257 uninit:
1258         kvm_vcpu_uninit(vcpu);
1259 fail:
1260         local_irq_restore(psr);
1261         return r;
1262 }
1263
1264 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
1265                 unsigned int id)
1266 {
1267         struct kvm_vcpu *vcpu;
1268         unsigned long vm_base = kvm->arch.vm_base;
1269         int r;
1270         int cpu;
1271
1272         r = -ENOMEM;
1273         if (!vm_base) {
1274                 printk(KERN_ERR"kvm: Create vcpu[%d] error!\n", id);
1275                 goto fail;
1276         }
1277         vcpu = (struct kvm_vcpu *)(vm_base + KVM_VCPU_OFS + VCPU_SIZE * id);
1278         vcpu->kvm = kvm;
1279
1280         cpu = get_cpu();
1281         vti_vcpu_load(vcpu, cpu);
1282         r = vti_vcpu_setup(vcpu, id);
1283         put_cpu();
1284
1285         if (r) {
1286                 printk(KERN_DEBUG"kvm: vcpu_setup error!!\n");
1287                 goto fail;
1288         }
1289
1290         return vcpu;
1291 fail:
1292         return ERR_PTR(r);
1293 }
1294
1295 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1296 {
1297         return 0;
1298 }
1299
1300 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1301 {
1302         return -EINVAL;
1303 }
1304
1305 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1306 {
1307         return -EINVAL;
1308 }
1309
1310 int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
1311                 struct kvm_debug_guest *dbg)
1312 {
1313         return -EINVAL;
1314 }
1315
1316 static void free_kvm(struct kvm *kvm)
1317 {
1318         unsigned long vm_base = kvm->arch.vm_base;
1319
1320         if (vm_base) {
1321                 memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
1322                 free_pages(vm_base, get_order(KVM_VM_DATA_SIZE));
1323         }
1324
1325 }
1326
1327 static void kvm_release_vm_pages(struct kvm *kvm)
1328 {
1329         struct kvm_memory_slot *memslot;
1330         int i, j;
1331         unsigned long base_gfn;
1332
1333         for (i = 0; i < kvm->nmemslots; i++) {
1334                 memslot = &kvm->memslots[i];
1335                 base_gfn = memslot->base_gfn;
1336
1337                 for (j = 0; j < memslot->npages; j++) {
1338                         if (memslot->rmap[j])
1339                                 put_page((struct page *)memslot->rmap[j]);
1340                 }
1341         }
1342 }
1343
1344 void kvm_arch_destroy_vm(struct kvm *kvm)
1345 {
1346         kvm_iommu_unmap_guest(kvm);
1347 #ifdef  KVM_CAP_DEVICE_ASSIGNMENT
1348         kvm_free_all_assigned_devices(kvm);
1349 #endif
1350         kfree(kvm->arch.vioapic);
1351         kvm_release_vm_pages(kvm);
1352         kvm_free_physmem(kvm);
1353         free_kvm(kvm);
1354 }
1355
1356 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1357 {
1358 }
1359
1360 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1361 {
1362         if (cpu != vcpu->cpu) {
1363                 vcpu->cpu = cpu;
1364                 if (vcpu->arch.ht_active)
1365                         kvm_migrate_hlt_timer(vcpu);
1366         }
1367 }
1368
1369 #define SAVE_REGS(_x)   regs->_x = vcpu->arch._x
1370
1371 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1372 {
1373         int i;
1374         int r;
1375         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1376         vcpu_load(vcpu);
1377
1378         for (i = 0; i < 16; i++) {
1379                 regs->vpd.vgr[i] = vpd->vgr[i];
1380                 regs->vpd.vbgr[i] = vpd->vbgr[i];
1381         }
1382         for (i = 0; i < 128; i++)
1383                 regs->vpd.vcr[i] = vpd->vcr[i];
1384         regs->vpd.vhpi = vpd->vhpi;
1385         regs->vpd.vnat = vpd->vnat;
1386         regs->vpd.vbnat = vpd->vbnat;
1387         regs->vpd.vpsr = vpd->vpsr;
1388         regs->vpd.vpr = vpd->vpr;
1389
1390         r = -EFAULT;
1391         r = copy_to_user(regs->saved_guest, &vcpu->arch.guest,
1392                                         sizeof(union context));
1393         if (r)
1394                 goto out;
1395         r = copy_to_user(regs->saved_stack, (void *)vcpu, IA64_STK_OFFSET);
1396         if (r)
1397                 goto out;
1398         SAVE_REGS(mp_state);
1399         SAVE_REGS(vmm_rr);
1400         memcpy(regs->itrs, vcpu->arch.itrs, sizeof(struct thash_data) * NITRS);
1401         memcpy(regs->dtrs, vcpu->arch.dtrs, sizeof(struct thash_data) * NDTRS);
1402         SAVE_REGS(itr_regions);
1403         SAVE_REGS(dtr_regions);
1404         SAVE_REGS(tc_regions);
1405         SAVE_REGS(irq_check);
1406         SAVE_REGS(itc_check);
1407         SAVE_REGS(timer_check);
1408         SAVE_REGS(timer_pending);
1409         SAVE_REGS(last_itc);
1410         for (i = 0; i < 8; i++) {
1411                 regs->vrr[i] = vcpu->arch.vrr[i];
1412                 regs->ibr[i] = vcpu->arch.ibr[i];
1413                 regs->dbr[i] = vcpu->arch.dbr[i];
1414         }
1415         for (i = 0; i < 4; i++)
1416                 regs->insvc[i] = vcpu->arch.insvc[i];
1417         regs->saved_itc = vcpu->arch.itc_offset + ia64_getreg(_IA64_REG_AR_ITC);
1418         SAVE_REGS(xtp);
1419         SAVE_REGS(metaphysical_rr0);
1420         SAVE_REGS(metaphysical_rr4);
1421         SAVE_REGS(metaphysical_saved_rr0);
1422         SAVE_REGS(metaphysical_saved_rr4);
1423         SAVE_REGS(fp_psr);
1424         SAVE_REGS(saved_gp);
1425         vcpu_put(vcpu);
1426         r = 0;
1427 out:
1428         return r;
1429 }
1430
1431 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
1432 {
1433
1434         hrtimer_cancel(&vcpu->arch.hlt_timer);
1435         kfree(vcpu->arch.apic);
1436 }
1437
1438
1439 long kvm_arch_vcpu_ioctl(struct file *filp,
1440                 unsigned int ioctl, unsigned long arg)
1441 {
1442         return -EINVAL;
1443 }
1444
1445 int kvm_arch_set_memory_region(struct kvm *kvm,
1446                 struct kvm_userspace_memory_region *mem,
1447                 struct kvm_memory_slot old,
1448                 int user_alloc)
1449 {
1450         unsigned long i;
1451         unsigned long pfn;
1452         int npages = mem->memory_size >> PAGE_SHIFT;
1453         struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
1454         unsigned long base_gfn = memslot->base_gfn;
1455
1456         for (i = 0; i < npages; i++) {
1457                 pfn = gfn_to_pfn(kvm, base_gfn + i);
1458                 if (!kvm_is_mmio_pfn(pfn)) {
1459                         kvm_set_pmt_entry(kvm, base_gfn + i,
1460                                         pfn << PAGE_SHIFT,
1461                                 _PAGE_AR_RWX | _PAGE_MA_WB);
1462                         memslot->rmap[i] = (unsigned long)pfn_to_page(pfn);
1463                 } else {
1464                         kvm_set_pmt_entry(kvm, base_gfn + i,
1465                                         GPFN_PHYS_MMIO | (pfn << PAGE_SHIFT),
1466                                         _PAGE_MA_UC);
1467                         memslot->rmap[i] = 0;
1468                         }
1469         }
1470
1471         return 0;
1472 }
1473
1474 void kvm_arch_flush_shadow(struct kvm *kvm)
1475 {
1476 }
1477
1478 long kvm_arch_dev_ioctl(struct file *filp,
1479                 unsigned int ioctl, unsigned long arg)
1480 {
1481         return -EINVAL;
1482 }
1483
1484 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
1485 {
1486         kvm_vcpu_uninit(vcpu);
1487 }
1488
1489 static int vti_cpu_has_kvm_support(void)
1490 {
1491         long  avail = 1, status = 1, control = 1;
1492         long ret;
1493
1494         ret = ia64_pal_proc_get_features(&avail, &status, &control, 0);
1495         if (ret)
1496                 goto out;
1497
1498         if (!(avail & PAL_PROC_VM_BIT))
1499                 goto out;
1500
1501         printk(KERN_DEBUG"kvm: Hardware Supports VT\n");
1502
1503         ret = ia64_pal_vp_env_info(&kvm_vm_buffer_size, &vp_env_info);
1504         if (ret)
1505                 goto out;
1506         printk(KERN_DEBUG"kvm: VM Buffer Size:0x%lx\n", kvm_vm_buffer_size);
1507
1508         if (!(vp_env_info & VP_OPCODE)) {
1509                 printk(KERN_WARNING"kvm: No opcode ability on hardware, "
1510                                 "vm_env_info:0x%lx\n", vp_env_info);
1511         }
1512
1513         return 1;
1514 out:
1515         return 0;
1516 }
1517
1518 static int kvm_relocate_vmm(struct kvm_vmm_info *vmm_info,
1519                                                 struct module *module)
1520 {
1521         unsigned long module_base;
1522         unsigned long vmm_size;
1523
1524         unsigned long vmm_offset, func_offset, fdesc_offset;
1525         struct fdesc *p_fdesc;
1526
1527         BUG_ON(!module);
1528
1529         if (!kvm_vmm_base) {
1530                 printk("kvm: kvm area hasn't been initilized yet!!\n");
1531                 return -EFAULT;
1532         }
1533
1534         /*Calculate new position of relocated vmm module.*/
1535         module_base = (unsigned long)module->module_core;
1536         vmm_size = module->core_size;
1537         if (unlikely(vmm_size > KVM_VMM_SIZE))
1538                 return -EFAULT;
1539
1540         memcpy((void *)kvm_vmm_base, (void *)module_base, vmm_size);
1541         kvm_flush_icache(kvm_vmm_base, vmm_size);
1542
1543         /*Recalculate kvm_vmm_info based on new VMM*/
1544         vmm_offset = vmm_info->vmm_ivt - module_base;
1545         kvm_vmm_info->vmm_ivt = KVM_VMM_BASE + vmm_offset;
1546         printk(KERN_DEBUG"kvm: Relocated VMM's IVT Base Addr:%lx\n",
1547                         kvm_vmm_info->vmm_ivt);
1548
1549         fdesc_offset = (unsigned long)vmm_info->vmm_entry - module_base;
1550         kvm_vmm_info->vmm_entry = (kvm_vmm_entry *)(KVM_VMM_BASE +
1551                                                         fdesc_offset);
1552         func_offset = *(unsigned long *)vmm_info->vmm_entry - module_base;
1553         p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1554         p_fdesc->ip = KVM_VMM_BASE + func_offset;
1555         p_fdesc->gp = KVM_VMM_BASE+(p_fdesc->gp - module_base);
1556
1557         printk(KERN_DEBUG"kvm: Relocated VMM's Init Entry Addr:%lx\n",
1558                         KVM_VMM_BASE+func_offset);
1559
1560         fdesc_offset = (unsigned long)vmm_info->tramp_entry - module_base;
1561         kvm_vmm_info->tramp_entry = (kvm_tramp_entry *)(KVM_VMM_BASE +
1562                         fdesc_offset);
1563         func_offset = *(unsigned long *)vmm_info->tramp_entry - module_base;
1564         p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1565         p_fdesc->ip = KVM_VMM_BASE + func_offset;
1566         p_fdesc->gp = KVM_VMM_BASE + (p_fdesc->gp - module_base);
1567
1568         kvm_vmm_gp = p_fdesc->gp;
1569
1570         printk(KERN_DEBUG"kvm: Relocated VMM's Entry IP:%p\n",
1571                                                 kvm_vmm_info->vmm_entry);
1572         printk(KERN_DEBUG"kvm: Relocated VMM's Trampoline Entry IP:0x%lx\n",
1573                                                 KVM_VMM_BASE + func_offset);
1574
1575         return 0;
1576 }
1577
1578 int kvm_arch_init(void *opaque)
1579 {
1580         int r;
1581         struct kvm_vmm_info *vmm_info = (struct kvm_vmm_info *)opaque;
1582
1583         if (!vti_cpu_has_kvm_support()) {
1584                 printk(KERN_ERR "kvm: No Hardware Virtualization Support!\n");
1585                 r = -EOPNOTSUPP;
1586                 goto out;
1587         }
1588
1589         if (kvm_vmm_info) {
1590                 printk(KERN_ERR "kvm: Already loaded VMM module!\n");
1591                 r = -EEXIST;
1592                 goto out;
1593         }
1594
1595         r = -ENOMEM;
1596         kvm_vmm_info = kzalloc(sizeof(struct kvm_vmm_info), GFP_KERNEL);
1597         if (!kvm_vmm_info)
1598                 goto out;
1599
1600         if (kvm_alloc_vmm_area())
1601                 goto out_free0;
1602
1603         r = kvm_relocate_vmm(vmm_info, vmm_info->module);
1604         if (r)
1605                 goto out_free1;
1606
1607         return 0;
1608
1609 out_free1:
1610         kvm_free_vmm_area();
1611 out_free0:
1612         kfree(kvm_vmm_info);
1613 out:
1614         return r;
1615 }
1616
1617 void kvm_arch_exit(void)
1618 {
1619         kvm_free_vmm_area();
1620         kfree(kvm_vmm_info);
1621         kvm_vmm_info = NULL;
1622 }
1623
1624 static int kvm_ia64_sync_dirty_log(struct kvm *kvm,
1625                 struct kvm_dirty_log *log)
1626 {
1627         struct kvm_memory_slot *memslot;
1628         int r, i;
1629         long n, base;
1630         unsigned long *dirty_bitmap = (unsigned long *)((void *)kvm - KVM_VM_OFS
1631                                         + KVM_MEM_DIRTY_LOG_OFS);
1632
1633         r = -EINVAL;
1634         if (log->slot >= KVM_MEMORY_SLOTS)
1635                 goto out;
1636
1637         memslot = &kvm->memslots[log->slot];
1638         r = -ENOENT;
1639         if (!memslot->dirty_bitmap)
1640                 goto out;
1641
1642         n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1643         base = memslot->base_gfn / BITS_PER_LONG;
1644
1645         for (i = 0; i < n/sizeof(long); ++i) {
1646                 memslot->dirty_bitmap[i] = dirty_bitmap[base + i];
1647                 dirty_bitmap[base + i] = 0;
1648         }
1649         r = 0;
1650 out:
1651         return r;
1652 }
1653
1654 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1655                 struct kvm_dirty_log *log)
1656 {
1657         int r;
1658         int n;
1659         struct kvm_memory_slot *memslot;
1660         int is_dirty = 0;
1661
1662         spin_lock(&kvm->arch.dirty_log_lock);
1663
1664         r = kvm_ia64_sync_dirty_log(kvm, log);
1665         if (r)
1666                 goto out;
1667
1668         r = kvm_get_dirty_log(kvm, log, &is_dirty);
1669         if (r)
1670                 goto out;
1671
1672         /* If nothing is dirty, don't bother messing with page tables. */
1673         if (is_dirty) {
1674                 kvm_flush_remote_tlbs(kvm);
1675                 memslot = &kvm->memslots[log->slot];
1676                 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1677                 memset(memslot->dirty_bitmap, 0, n);
1678         }
1679         r = 0;
1680 out:
1681         spin_unlock(&kvm->arch.dirty_log_lock);
1682         return r;
1683 }
1684
1685 int kvm_arch_hardware_setup(void)
1686 {
1687         return 0;
1688 }
1689
1690 void kvm_arch_hardware_unsetup(void)
1691 {
1692 }
1693
1694 static void vcpu_kick_intr(void *info)
1695 {
1696 #ifdef DEBUG
1697         struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
1698         printk(KERN_DEBUG"vcpu_kick_intr %p \n", vcpu);
1699 #endif
1700 }
1701
1702 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1703 {
1704         int ipi_pcpu = vcpu->cpu;
1705
1706         if (waitqueue_active(&vcpu->wq))
1707                 wake_up_interruptible(&vcpu->wq);
1708
1709         if (vcpu->guest_mode)
1710                 smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
1711 }
1712
1713 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, u8 vec, u8 trig)
1714 {
1715
1716         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1717
1718         if (!test_and_set_bit(vec, &vpd->irr[0])) {
1719                 vcpu->arch.irq_new_pending = 1;
1720                  if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
1721                         kvm_vcpu_kick(vcpu);
1722                 else if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) {
1723                         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
1724                         if (waitqueue_active(&vcpu->wq))
1725                                 wake_up_interruptible(&vcpu->wq);
1726                 }
1727                 return 1;
1728         }
1729         return 0;
1730 }
1731
1732 int kvm_apic_match_physical_addr(struct kvm_lapic *apic, u16 dest)
1733 {
1734         return apic->vcpu->vcpu_id == dest;
1735 }
1736
1737 int kvm_apic_match_logical_addr(struct kvm_lapic *apic, u8 mda)
1738 {
1739         return 0;
1740 }
1741
1742 struct kvm_vcpu *kvm_get_lowest_prio_vcpu(struct kvm *kvm, u8 vector,
1743                                        unsigned long bitmap)
1744 {
1745         struct kvm_vcpu *lvcpu = kvm->vcpus[0];
1746         int i;
1747
1748         for (i = 1; i < KVM_MAX_VCPUS; i++) {
1749                 if (!kvm->vcpus[i])
1750                         continue;
1751                 if (lvcpu->arch.xtp > kvm->vcpus[i]->arch.xtp)
1752                         lvcpu = kvm->vcpus[i];
1753         }
1754
1755         return lvcpu;
1756 }
1757
1758 static int find_highest_bits(int *dat)
1759 {
1760         u32  bits, bitnum;
1761         int i;
1762
1763         /* loop for all 256 bits */
1764         for (i = 7; i >= 0 ; i--) {
1765                 bits = dat[i];
1766                 if (bits) {
1767                         bitnum = fls(bits);
1768                         return i * 32 + bitnum - 1;
1769                 }
1770         }
1771
1772         return -1;
1773 }
1774
1775 int kvm_highest_pending_irq(struct kvm_vcpu *vcpu)
1776 {
1777     struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1778
1779     if (vpd->irr[0] & (1UL << NMI_VECTOR))
1780                 return NMI_VECTOR;
1781     if (vpd->irr[0] & (1UL << ExtINT_VECTOR))
1782                 return ExtINT_VECTOR;
1783
1784     return find_highest_bits((int *)&vpd->irr[0]);
1785 }
1786
1787 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu)
1788 {
1789         if (kvm_highest_pending_irq(vcpu) != -1)
1790                 return 1;
1791         return 0;
1792 }
1793
1794 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1795 {
1796         return 0;
1797 }
1798
1799 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1800 {
1801         return gfn;
1802 }
1803
1804 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
1805 {
1806         return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE;
1807 }
1808
1809 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1810                                     struct kvm_mp_state *mp_state)
1811 {
1812         vcpu_load(vcpu);
1813         mp_state->mp_state = vcpu->arch.mp_state;
1814         vcpu_put(vcpu);
1815         return 0;
1816 }
1817
1818 static int vcpu_reset(struct kvm_vcpu *vcpu)
1819 {
1820         int r;
1821         long psr;
1822         local_irq_save(psr);
1823         r = kvm_insert_vmm_mapping(vcpu);
1824         if (r)
1825                 goto fail;
1826
1827         vcpu->arch.launched = 0;
1828         kvm_arch_vcpu_uninit(vcpu);
1829         r = kvm_arch_vcpu_init(vcpu);
1830         if (r)
1831                 goto fail;
1832
1833         kvm_purge_vmm_mapping(vcpu);
1834         r = 0;
1835 fail:
1836         local_irq_restore(psr);
1837         return r;
1838 }
1839
1840 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1841                                     struct kvm_mp_state *mp_state)
1842 {
1843         int r = 0;
1844
1845         vcpu_load(vcpu);
1846         vcpu->arch.mp_state = mp_state->mp_state;
1847         if (vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)
1848                 r = vcpu_reset(vcpu);
1849         vcpu_put(vcpu);
1850         return r;
1851 }