5c766bd82b0516e1508212de1f64b1ca7fc2417a
[safe/jmp/linux-2.6] / arch / ia64 / kvm / kvm-ia64.c
1 /*
2  * kvm_ia64.c: Basic KVM suppport On Itanium series processors
3  *
4  *
5  *      Copyright (C) 2007, Intel Corporation.
6  *      Xiantao Zhang  (xiantao.zhang@intel.com)
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  *
17  * You should have received a copy of the GNU General Public License along with
18  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
19  * Place - Suite 330, Boston, MA 02111-1307 USA.
20  *
21  */
22
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/gfp.h>
27 #include <linux/fs.h>
28 #include <linux/smp.h>
29 #include <linux/kvm_host.h>
30 #include <linux/kvm.h>
31 #include <linux/bitops.h>
32 #include <linux/hrtimer.h>
33 #include <linux/uaccess.h>
34 #include <linux/iommu.h>
35 #include <linux/intel-iommu.h>
36
37 #include <asm/pgtable.h>
38 #include <asm/gcc_intrin.h>
39 #include <asm/pal.h>
40 #include <asm/cacheflush.h>
41 #include <asm/div64.h>
42 #include <asm/tlb.h>
43 #include <asm/elf.h>
44 #include <asm/sn/addrs.h>
45 #include <asm/sn/clksupport.h>
46 #include <asm/sn/shub_mmr.h>
47
48 #include "misc.h"
49 #include "vti.h"
50 #include "iodev.h"
51 #include "ioapic.h"
52 #include "lapic.h"
53 #include "irq.h"
54
55 static unsigned long kvm_vmm_base;
56 static unsigned long kvm_vsa_base;
57 static unsigned long kvm_vm_buffer;
58 static unsigned long kvm_vm_buffer_size;
59 unsigned long kvm_vmm_gp;
60
61 static long vp_env_info;
62
63 static struct kvm_vmm_info *kvm_vmm_info;
64
65 static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);
66
67 struct kvm_stats_debugfs_item debugfs_entries[] = {
68         { NULL }
69 };
70
71 static unsigned long kvm_get_itc(struct kvm_vcpu *vcpu)
72 {
73 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
74         if (vcpu->kvm->arch.is_sn2)
75                 return rtc_time();
76         else
77 #endif
78                 return ia64_getreg(_IA64_REG_AR_ITC);
79 }
80
81 static void kvm_flush_icache(unsigned long start, unsigned long len)
82 {
83         int l;
84
85         for (l = 0; l < (len + 32); l += 32)
86                 ia64_fc((void *)(start + l));
87
88         ia64_sync_i();
89         ia64_srlz_i();
90 }
91
92 static void kvm_flush_tlb_all(void)
93 {
94         unsigned long i, j, count0, count1, stride0, stride1, addr;
95         long flags;
96
97         addr    = local_cpu_data->ptce_base;
98         count0  = local_cpu_data->ptce_count[0];
99         count1  = local_cpu_data->ptce_count[1];
100         stride0 = local_cpu_data->ptce_stride[0];
101         stride1 = local_cpu_data->ptce_stride[1];
102
103         local_irq_save(flags);
104         for (i = 0; i < count0; ++i) {
105                 for (j = 0; j < count1; ++j) {
106                         ia64_ptce(addr);
107                         addr += stride1;
108                 }
109                 addr += stride0;
110         }
111         local_irq_restore(flags);
112         ia64_srlz_i();                  /* srlz.i implies srlz.d */
113 }
114
115 long ia64_pal_vp_create(u64 *vpd, u64 *host_iva, u64 *opt_handler)
116 {
117         struct ia64_pal_retval iprv;
118
119         PAL_CALL_STK(iprv, PAL_VP_CREATE, (u64)vpd, (u64)host_iva,
120                         (u64)opt_handler);
121
122         return iprv.status;
123 }
124
125 static  DEFINE_SPINLOCK(vp_lock);
126
127 void kvm_arch_hardware_enable(void *garbage)
128 {
129         long  status;
130         long  tmp_base;
131         unsigned long pte;
132         unsigned long saved_psr;
133         int slot;
134
135         pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
136         local_irq_save(saved_psr);
137         slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
138         local_irq_restore(saved_psr);
139         if (slot < 0)
140                 return;
141
142         spin_lock(&vp_lock);
143         status = ia64_pal_vp_init_env(kvm_vsa_base ?
144                                 VP_INIT_ENV : VP_INIT_ENV_INITALIZE,
145                         __pa(kvm_vm_buffer), KVM_VM_BUFFER_BASE, &tmp_base);
146         if (status != 0) {
147                 printk(KERN_WARNING"kvm: Failed to Enable VT Support!!!!\n");
148                 return ;
149         }
150
151         if (!kvm_vsa_base) {
152                 kvm_vsa_base = tmp_base;
153                 printk(KERN_INFO"kvm: kvm_vsa_base:0x%lx\n", kvm_vsa_base);
154         }
155         spin_unlock(&vp_lock);
156         ia64_ptr_entry(0x3, slot);
157 }
158
159 void kvm_arch_hardware_disable(void *garbage)
160 {
161
162         long status;
163         int slot;
164         unsigned long pte;
165         unsigned long saved_psr;
166         unsigned long host_iva = ia64_getreg(_IA64_REG_CR_IVA);
167
168         pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
169                                 PAGE_KERNEL));
170
171         local_irq_save(saved_psr);
172         slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
173         local_irq_restore(saved_psr);
174         if (slot < 0)
175                 return;
176
177         status = ia64_pal_vp_exit_env(host_iva);
178         if (status)
179                 printk(KERN_DEBUG"kvm: Failed to disable VT support! :%ld\n",
180                                 status);
181         ia64_ptr_entry(0x3, slot);
182 }
183
184 void kvm_arch_check_processor_compat(void *rtn)
185 {
186         *(int *)rtn = 0;
187 }
188
189 int kvm_dev_ioctl_check_extension(long ext)
190 {
191
192         int r;
193
194         switch (ext) {
195         case KVM_CAP_IRQCHIP:
196         case KVM_CAP_MP_STATE:
197         case KVM_CAP_IRQ_INJECT_STATUS:
198                 r = 1;
199                 break;
200         case KVM_CAP_COALESCED_MMIO:
201                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
202                 break;
203         case KVM_CAP_IOMMU:
204                 r = iommu_found();
205                 break;
206         default:
207                 r = 0;
208         }
209         return r;
210
211 }
212
213 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
214                                         gpa_t addr, int len, int is_write)
215 {
216         struct kvm_io_device *dev;
217
218         dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len, is_write);
219
220         return dev;
221 }
222
223 static int handle_vm_error(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
224 {
225         kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
226         kvm_run->hw.hardware_exit_reason = 1;
227         return 0;
228 }
229
230 static int handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
231 {
232         struct kvm_mmio_req *p;
233         struct kvm_io_device *mmio_dev;
234
235         p = kvm_get_vcpu_ioreq(vcpu);
236
237         if ((p->addr & PAGE_MASK) == IOAPIC_DEFAULT_BASE_ADDRESS)
238                 goto mmio;
239         vcpu->mmio_needed = 1;
240         vcpu->mmio_phys_addr = kvm_run->mmio.phys_addr = p->addr;
241         vcpu->mmio_size = kvm_run->mmio.len = p->size;
242         vcpu->mmio_is_write = kvm_run->mmio.is_write = !p->dir;
243
244         if (vcpu->mmio_is_write)
245                 memcpy(vcpu->mmio_data, &p->data, p->size);
246         memcpy(kvm_run->mmio.data, &p->data, p->size);
247         kvm_run->exit_reason = KVM_EXIT_MMIO;
248         return 0;
249 mmio:
250         mmio_dev = vcpu_find_mmio_dev(vcpu, p->addr, p->size, !p->dir);
251         if (mmio_dev) {
252                 if (!p->dir)
253                         kvm_iodevice_write(mmio_dev, p->addr, p->size,
254                                                 &p->data);
255                 else
256                         kvm_iodevice_read(mmio_dev, p->addr, p->size,
257                                                 &p->data);
258
259         } else
260                 printk(KERN_ERR"kvm: No iodevice found! addr:%lx\n", p->addr);
261         p->state = STATE_IORESP_READY;
262
263         return 1;
264 }
265
266 static int handle_pal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
267 {
268         struct exit_ctl_data *p;
269
270         p = kvm_get_exit_data(vcpu);
271
272         if (p->exit_reason == EXIT_REASON_PAL_CALL)
273                 return kvm_pal_emul(vcpu, kvm_run);
274         else {
275                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
276                 kvm_run->hw.hardware_exit_reason = 2;
277                 return 0;
278         }
279 }
280
281 static int handle_sal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
282 {
283         struct exit_ctl_data *p;
284
285         p = kvm_get_exit_data(vcpu);
286
287         if (p->exit_reason == EXIT_REASON_SAL_CALL) {
288                 kvm_sal_emul(vcpu);
289                 return 1;
290         } else {
291                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
292                 kvm_run->hw.hardware_exit_reason = 3;
293                 return 0;
294         }
295
296 }
297
298 static int __apic_accept_irq(struct kvm_vcpu *vcpu, uint64_t vector)
299 {
300         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
301
302         if (!test_and_set_bit(vector, &vpd->irr[0])) {
303                 vcpu->arch.irq_new_pending = 1;
304                 kvm_vcpu_kick(vcpu);
305                 return 1;
306         }
307         return 0;
308 }
309
310 /*
311  *  offset: address offset to IPI space.
312  *  value:  deliver value.
313  */
314 static void vcpu_deliver_ipi(struct kvm_vcpu *vcpu, uint64_t dm,
315                                 uint64_t vector)
316 {
317         switch (dm) {
318         case SAPIC_FIXED:
319                 break;
320         case SAPIC_NMI:
321                 vector = 2;
322                 break;
323         case SAPIC_EXTINT:
324                 vector = 0;
325                 break;
326         case SAPIC_INIT:
327         case SAPIC_PMI:
328         default:
329                 printk(KERN_ERR"kvm: Unimplemented Deliver reserved IPI!\n");
330                 return;
331         }
332         __apic_accept_irq(vcpu, vector);
333 }
334
335 static struct kvm_vcpu *lid_to_vcpu(struct kvm *kvm, unsigned long id,
336                         unsigned long eid)
337 {
338         union ia64_lid lid;
339         int i;
340         struct kvm_vcpu *vcpu;
341
342         kvm_for_each_vcpu(i, vcpu, kvm) {
343                 lid.val = VCPU_LID(vcpu);
344                 if (lid.id == id && lid.eid == eid)
345                         return vcpu;
346         }
347
348         return NULL;
349 }
350
351 static int handle_ipi(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
352 {
353         struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
354         struct kvm_vcpu *target_vcpu;
355         struct kvm_pt_regs *regs;
356         union ia64_ipi_a addr = p->u.ipi_data.addr;
357         union ia64_ipi_d data = p->u.ipi_data.data;
358
359         target_vcpu = lid_to_vcpu(vcpu->kvm, addr.id, addr.eid);
360         if (!target_vcpu)
361                 return handle_vm_error(vcpu, kvm_run);
362
363         if (!target_vcpu->arch.launched) {
364                 regs = vcpu_regs(target_vcpu);
365
366                 regs->cr_iip = vcpu->kvm->arch.rdv_sal_data.boot_ip;
367                 regs->r1 = vcpu->kvm->arch.rdv_sal_data.boot_gp;
368
369                 target_vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
370                 if (waitqueue_active(&target_vcpu->wq))
371                         wake_up_interruptible(&target_vcpu->wq);
372         } else {
373                 vcpu_deliver_ipi(target_vcpu, data.dm, data.vector);
374                 if (target_vcpu != vcpu)
375                         kvm_vcpu_kick(target_vcpu);
376         }
377
378         return 1;
379 }
380
381 struct call_data {
382         struct kvm_ptc_g ptc_g_data;
383         struct kvm_vcpu *vcpu;
384 };
385
386 static void vcpu_global_purge(void *info)
387 {
388         struct call_data *p = (struct call_data *)info;
389         struct kvm_vcpu *vcpu = p->vcpu;
390
391         if (test_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
392                 return;
393
394         set_bit(KVM_REQ_PTC_G, &vcpu->requests);
395         if (vcpu->arch.ptc_g_count < MAX_PTC_G_NUM) {
396                 vcpu->arch.ptc_g_data[vcpu->arch.ptc_g_count++] =
397                                                         p->ptc_g_data;
398         } else {
399                 clear_bit(KVM_REQ_PTC_G, &vcpu->requests);
400                 vcpu->arch.ptc_g_count = 0;
401                 set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
402         }
403 }
404
405 static int handle_global_purge(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
406 {
407         struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
408         struct kvm *kvm = vcpu->kvm;
409         struct call_data call_data;
410         int i;
411         struct kvm_vcpu *vcpui;
412
413         call_data.ptc_g_data = p->u.ptc_g_data;
414
415         kvm_for_each_vcpu(i, vcpui, kvm) {
416                 if (vcpui->arch.mp_state == KVM_MP_STATE_UNINITIALIZED ||
417                                 vcpu == vcpui)
418                         continue;
419
420                 if (waitqueue_active(&vcpui->wq))
421                         wake_up_interruptible(&vcpui->wq);
422
423                 if (vcpui->cpu != -1) {
424                         call_data.vcpu = vcpui;
425                         smp_call_function_single(vcpui->cpu,
426                                         vcpu_global_purge, &call_data, 1);
427                 } else
428                         printk(KERN_WARNING"kvm: Uninit vcpu received ipi!\n");
429
430         }
431         return 1;
432 }
433
434 static int handle_switch_rr6(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
435 {
436         return 1;
437 }
438
439 static int kvm_sn2_setup_mappings(struct kvm_vcpu *vcpu)
440 {
441         unsigned long pte, rtc_phys_addr, map_addr;
442         int slot;
443
444         map_addr = KVM_VMM_BASE + (1UL << KVM_VMM_SHIFT);
445         rtc_phys_addr = LOCAL_MMR_OFFSET | SH_RTC;
446         pte = pte_val(mk_pte_phys(rtc_phys_addr, PAGE_KERNEL_UC));
447         slot = ia64_itr_entry(0x3, map_addr, pte, PAGE_SHIFT);
448         vcpu->arch.sn_rtc_tr_slot = slot;
449         if (slot < 0) {
450                 printk(KERN_ERR "Mayday mayday! RTC mapping failed!\n");
451                 slot = 0;
452         }
453         return slot;
454 }
455
456 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
457 {
458
459         ktime_t kt;
460         long itc_diff;
461         unsigned long vcpu_now_itc;
462         unsigned long expires;
463         struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
464         unsigned long cyc_per_usec = local_cpu_data->cyc_per_usec;
465         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
466
467         if (irqchip_in_kernel(vcpu->kvm)) {
468
469                 vcpu_now_itc = kvm_get_itc(vcpu) + vcpu->arch.itc_offset;
470
471                 if (time_after(vcpu_now_itc, vpd->itm)) {
472                         vcpu->arch.timer_check = 1;
473                         return 1;
474                 }
475                 itc_diff = vpd->itm - vcpu_now_itc;
476                 if (itc_diff < 0)
477                         itc_diff = -itc_diff;
478
479                 expires = div64_u64(itc_diff, cyc_per_usec);
480                 kt = ktime_set(0, 1000 * expires);
481
482                 vcpu->arch.ht_active = 1;
483                 hrtimer_start(p_ht, kt, HRTIMER_MODE_ABS);
484
485                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
486                 kvm_vcpu_block(vcpu);
487                 hrtimer_cancel(p_ht);
488                 vcpu->arch.ht_active = 0;
489
490                 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests) ||
491                                 kvm_cpu_has_pending_timer(vcpu))
492                         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
493                                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
494
495                 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
496                         return -EINTR;
497                 return 1;
498         } else {
499                 printk(KERN_ERR"kvm: Unsupported userspace halt!");
500                 return 0;
501         }
502 }
503
504 static int handle_vm_shutdown(struct kvm_vcpu *vcpu,
505                 struct kvm_run *kvm_run)
506 {
507         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
508         return 0;
509 }
510
511 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
512                 struct kvm_run *kvm_run)
513 {
514         return 1;
515 }
516
517 static int handle_vcpu_debug(struct kvm_vcpu *vcpu,
518                                 struct kvm_run *kvm_run)
519 {
520         printk("VMM: %s", vcpu->arch.log_buf);
521         return 1;
522 }
523
524 static int (*kvm_vti_exit_handlers[])(struct kvm_vcpu *vcpu,
525                 struct kvm_run *kvm_run) = {
526         [EXIT_REASON_VM_PANIC]              = handle_vm_error,
527         [EXIT_REASON_MMIO_INSTRUCTION]      = handle_mmio,
528         [EXIT_REASON_PAL_CALL]              = handle_pal_call,
529         [EXIT_REASON_SAL_CALL]              = handle_sal_call,
530         [EXIT_REASON_SWITCH_RR6]            = handle_switch_rr6,
531         [EXIT_REASON_VM_DESTROY]            = handle_vm_shutdown,
532         [EXIT_REASON_EXTERNAL_INTERRUPT]    = handle_external_interrupt,
533         [EXIT_REASON_IPI]                   = handle_ipi,
534         [EXIT_REASON_PTC_G]                 = handle_global_purge,
535         [EXIT_REASON_DEBUG]                 = handle_vcpu_debug,
536
537 };
538
539 static const int kvm_vti_max_exit_handlers =
540                 sizeof(kvm_vti_exit_handlers)/sizeof(*kvm_vti_exit_handlers);
541
542 static uint32_t kvm_get_exit_reason(struct kvm_vcpu *vcpu)
543 {
544         struct exit_ctl_data *p_exit_data;
545
546         p_exit_data = kvm_get_exit_data(vcpu);
547         return p_exit_data->exit_reason;
548 }
549
550 /*
551  * The guest has exited.  See if we can fix it or if we need userspace
552  * assistance.
553  */
554 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
555 {
556         u32 exit_reason = kvm_get_exit_reason(vcpu);
557         vcpu->arch.last_exit = exit_reason;
558
559         if (exit_reason < kvm_vti_max_exit_handlers
560                         && kvm_vti_exit_handlers[exit_reason])
561                 return kvm_vti_exit_handlers[exit_reason](vcpu, kvm_run);
562         else {
563                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
564                 kvm_run->hw.hardware_exit_reason = exit_reason;
565         }
566         return 0;
567 }
568
569 static inline void vti_set_rr6(unsigned long rr6)
570 {
571         ia64_set_rr(RR6, rr6);
572         ia64_srlz_i();
573 }
574
575 static int kvm_insert_vmm_mapping(struct kvm_vcpu *vcpu)
576 {
577         unsigned long pte;
578         struct kvm *kvm = vcpu->kvm;
579         int r;
580
581         /*Insert a pair of tr to map vmm*/
582         pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
583         r = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
584         if (r < 0)
585                 goto out;
586         vcpu->arch.vmm_tr_slot = r;
587         /*Insert a pairt of tr to map data of vm*/
588         pte = pte_val(mk_pte_phys(__pa(kvm->arch.vm_base), PAGE_KERNEL));
589         r = ia64_itr_entry(0x3, KVM_VM_DATA_BASE,
590                                         pte, KVM_VM_DATA_SHIFT);
591         if (r < 0)
592                 goto out;
593         vcpu->arch.vm_tr_slot = r;
594
595 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
596         if (kvm->arch.is_sn2) {
597                 r = kvm_sn2_setup_mappings(vcpu);
598                 if (r < 0)
599                         goto out;
600         }
601 #endif
602
603         r = 0;
604 out:
605         return r;
606 }
607
608 static void kvm_purge_vmm_mapping(struct kvm_vcpu *vcpu)
609 {
610         struct kvm *kvm = vcpu->kvm;
611         ia64_ptr_entry(0x3, vcpu->arch.vmm_tr_slot);
612         ia64_ptr_entry(0x3, vcpu->arch.vm_tr_slot);
613 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
614         if (kvm->arch.is_sn2)
615                 ia64_ptr_entry(0x3, vcpu->arch.sn_rtc_tr_slot);
616 #endif
617 }
618
619 static int kvm_vcpu_pre_transition(struct kvm_vcpu *vcpu)
620 {
621         unsigned long psr;
622         int r;
623         int cpu = smp_processor_id();
624
625         if (vcpu->arch.last_run_cpu != cpu ||
626                         per_cpu(last_vcpu, cpu) != vcpu) {
627                 per_cpu(last_vcpu, cpu) = vcpu;
628                 vcpu->arch.last_run_cpu = cpu;
629                 kvm_flush_tlb_all();
630         }
631
632         vcpu->arch.host_rr6 = ia64_get_rr(RR6);
633         vti_set_rr6(vcpu->arch.vmm_rr);
634         local_irq_save(psr);
635         r = kvm_insert_vmm_mapping(vcpu);
636         local_irq_restore(psr);
637         return r;
638 }
639
640 static void kvm_vcpu_post_transition(struct kvm_vcpu *vcpu)
641 {
642         kvm_purge_vmm_mapping(vcpu);
643         vti_set_rr6(vcpu->arch.host_rr6);
644 }
645
646 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
647 {
648         union context *host_ctx, *guest_ctx;
649         int r;
650
651         /*
652          * down_read() may sleep and return with interrupts enabled
653          */
654         down_read(&vcpu->kvm->slots_lock);
655
656 again:
657         if (signal_pending(current)) {
658                 r = -EINTR;
659                 kvm_run->exit_reason = KVM_EXIT_INTR;
660                 goto out;
661         }
662
663         preempt_disable();
664         local_irq_disable();
665
666         /*Get host and guest context with guest address space.*/
667         host_ctx = kvm_get_host_context(vcpu);
668         guest_ctx = kvm_get_guest_context(vcpu);
669
670         clear_bit(KVM_REQ_KICK, &vcpu->requests);
671
672         r = kvm_vcpu_pre_transition(vcpu);
673         if (r < 0)
674                 goto vcpu_run_fail;
675
676         up_read(&vcpu->kvm->slots_lock);
677         kvm_guest_enter();
678
679         /*
680          * Transition to the guest
681          */
682         kvm_vmm_info->tramp_entry(host_ctx, guest_ctx);
683
684         kvm_vcpu_post_transition(vcpu);
685
686         vcpu->arch.launched = 1;
687         set_bit(KVM_REQ_KICK, &vcpu->requests);
688         local_irq_enable();
689
690         /*
691          * We must have an instruction between local_irq_enable() and
692          * kvm_guest_exit(), so the timer interrupt isn't delayed by
693          * the interrupt shadow.  The stat.exits increment will do nicely.
694          * But we need to prevent reordering, hence this barrier():
695          */
696         barrier();
697         kvm_guest_exit();
698         preempt_enable();
699
700         down_read(&vcpu->kvm->slots_lock);
701
702         r = kvm_handle_exit(kvm_run, vcpu);
703
704         if (r > 0) {
705                 if (!need_resched())
706                         goto again;
707         }
708
709 out:
710         up_read(&vcpu->kvm->slots_lock);
711         if (r > 0) {
712                 kvm_resched(vcpu);
713                 down_read(&vcpu->kvm->slots_lock);
714                 goto again;
715         }
716
717         return r;
718
719 vcpu_run_fail:
720         local_irq_enable();
721         preempt_enable();
722         kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
723         goto out;
724 }
725
726 static void kvm_set_mmio_data(struct kvm_vcpu *vcpu)
727 {
728         struct kvm_mmio_req *p = kvm_get_vcpu_ioreq(vcpu);
729
730         if (!vcpu->mmio_is_write)
731                 memcpy(&p->data, vcpu->mmio_data, 8);
732         p->state = STATE_IORESP_READY;
733 }
734
735 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
736 {
737         int r;
738         sigset_t sigsaved;
739
740         vcpu_load(vcpu);
741
742         if (vcpu->sigset_active)
743                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
744
745         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
746                 kvm_vcpu_block(vcpu);
747                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
748                 r = -EAGAIN;
749                 goto out;
750         }
751
752         if (vcpu->mmio_needed) {
753                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
754                 kvm_set_mmio_data(vcpu);
755                 vcpu->mmio_read_completed = 1;
756                 vcpu->mmio_needed = 0;
757         }
758         r = __vcpu_run(vcpu, kvm_run);
759 out:
760         if (vcpu->sigset_active)
761                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
762
763         vcpu_put(vcpu);
764         return r;
765 }
766
767 static struct kvm *kvm_alloc_kvm(void)
768 {
769
770         struct kvm *kvm;
771         uint64_t  vm_base;
772
773         BUG_ON(sizeof(struct kvm) > KVM_VM_STRUCT_SIZE);
774
775         vm_base = __get_free_pages(GFP_KERNEL, get_order(KVM_VM_DATA_SIZE));
776
777         if (!vm_base)
778                 return ERR_PTR(-ENOMEM);
779
780         memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
781         kvm = (struct kvm *)(vm_base +
782                         offsetof(struct kvm_vm_data, kvm_vm_struct));
783         kvm->arch.vm_base = vm_base;
784         printk(KERN_DEBUG"kvm: vm's data area:0x%lx\n", vm_base);
785
786         return kvm;
787 }
788
789 struct kvm_io_range {
790         unsigned long start;
791         unsigned long size;
792         unsigned long type;
793 };
794
795 static const struct kvm_io_range io_ranges[] = {
796         {VGA_IO_START, VGA_IO_SIZE, GPFN_FRAME_BUFFER},
797         {MMIO_START, MMIO_SIZE, GPFN_LOW_MMIO},
798         {LEGACY_IO_START, LEGACY_IO_SIZE, GPFN_LEGACY_IO},
799         {IO_SAPIC_START, IO_SAPIC_SIZE, GPFN_IOSAPIC},
800         {PIB_START, PIB_SIZE, GPFN_PIB},
801 };
802
803 static void kvm_build_io_pmt(struct kvm *kvm)
804 {
805         unsigned long i, j;
806
807         /* Mark I/O ranges */
808         for (i = 0; i < (sizeof(io_ranges) / sizeof(struct kvm_io_range));
809                                                         i++) {
810                 for (j = io_ranges[i].start;
811                                 j < io_ranges[i].start + io_ranges[i].size;
812                                 j += PAGE_SIZE)
813                         kvm_set_pmt_entry(kvm, j >> PAGE_SHIFT,
814                                         io_ranges[i].type, 0);
815         }
816
817 }
818
819 /*Use unused rids to virtualize guest rid.*/
820 #define GUEST_PHYSICAL_RR0      0x1739
821 #define GUEST_PHYSICAL_RR4      0x2739
822 #define VMM_INIT_RR             0x1660
823
824 static void kvm_init_vm(struct kvm *kvm)
825 {
826         BUG_ON(!kvm);
827
828         kvm->arch.metaphysical_rr0 = GUEST_PHYSICAL_RR0;
829         kvm->arch.metaphysical_rr4 = GUEST_PHYSICAL_RR4;
830         kvm->arch.vmm_init_rr = VMM_INIT_RR;
831
832         /*
833          *Fill P2M entries for MMIO/IO ranges
834          */
835         kvm_build_io_pmt(kvm);
836
837         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
838
839         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
840         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
841 }
842
843 struct  kvm *kvm_arch_create_vm(void)
844 {
845         struct kvm *kvm = kvm_alloc_kvm();
846
847         if (IS_ERR(kvm))
848                 return ERR_PTR(-ENOMEM);
849
850         kvm->arch.is_sn2 = ia64_platform_is("sn2");
851
852         kvm_init_vm(kvm);
853
854         return kvm;
855
856 }
857
858 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm,
859                                         struct kvm_irqchip *chip)
860 {
861         int r;
862
863         r = 0;
864         switch (chip->chip_id) {
865         case KVM_IRQCHIP_IOAPIC:
866                 memcpy(&chip->chip.ioapic, ioapic_irqchip(kvm),
867                                 sizeof(struct kvm_ioapic_state));
868                 break;
869         default:
870                 r = -EINVAL;
871                 break;
872         }
873         return r;
874 }
875
876 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
877 {
878         int r;
879
880         r = 0;
881         switch (chip->chip_id) {
882         case KVM_IRQCHIP_IOAPIC:
883                 memcpy(ioapic_irqchip(kvm),
884                                 &chip->chip.ioapic,
885                                 sizeof(struct kvm_ioapic_state));
886                 break;
887         default:
888                 r = -EINVAL;
889                 break;
890         }
891         return r;
892 }
893
894 #define RESTORE_REGS(_x) vcpu->arch._x = regs->_x
895
896 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
897 {
898         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
899         int i;
900
901         vcpu_load(vcpu);
902
903         for (i = 0; i < 16; i++) {
904                 vpd->vgr[i] = regs->vpd.vgr[i];
905                 vpd->vbgr[i] = regs->vpd.vbgr[i];
906         }
907         for (i = 0; i < 128; i++)
908                 vpd->vcr[i] = regs->vpd.vcr[i];
909         vpd->vhpi = regs->vpd.vhpi;
910         vpd->vnat = regs->vpd.vnat;
911         vpd->vbnat = regs->vpd.vbnat;
912         vpd->vpsr = regs->vpd.vpsr;
913
914         vpd->vpr = regs->vpd.vpr;
915
916         memcpy(&vcpu->arch.guest, &regs->saved_guest, sizeof(union context));
917
918         RESTORE_REGS(mp_state);
919         RESTORE_REGS(vmm_rr);
920         memcpy(vcpu->arch.itrs, regs->itrs, sizeof(struct thash_data) * NITRS);
921         memcpy(vcpu->arch.dtrs, regs->dtrs, sizeof(struct thash_data) * NDTRS);
922         RESTORE_REGS(itr_regions);
923         RESTORE_REGS(dtr_regions);
924         RESTORE_REGS(tc_regions);
925         RESTORE_REGS(irq_check);
926         RESTORE_REGS(itc_check);
927         RESTORE_REGS(timer_check);
928         RESTORE_REGS(timer_pending);
929         RESTORE_REGS(last_itc);
930         for (i = 0; i < 8; i++) {
931                 vcpu->arch.vrr[i] = regs->vrr[i];
932                 vcpu->arch.ibr[i] = regs->ibr[i];
933                 vcpu->arch.dbr[i] = regs->dbr[i];
934         }
935         for (i = 0; i < 4; i++)
936                 vcpu->arch.insvc[i] = regs->insvc[i];
937         RESTORE_REGS(xtp);
938         RESTORE_REGS(metaphysical_rr0);
939         RESTORE_REGS(metaphysical_rr4);
940         RESTORE_REGS(metaphysical_saved_rr0);
941         RESTORE_REGS(metaphysical_saved_rr4);
942         RESTORE_REGS(fp_psr);
943         RESTORE_REGS(saved_gp);
944
945         vcpu->arch.irq_new_pending = 1;
946         vcpu->arch.itc_offset = regs->saved_itc - kvm_get_itc(vcpu);
947         set_bit(KVM_REQ_RESUME, &vcpu->requests);
948
949         vcpu_put(vcpu);
950
951         return 0;
952 }
953
954 long kvm_arch_vm_ioctl(struct file *filp,
955                 unsigned int ioctl, unsigned long arg)
956 {
957         struct kvm *kvm = filp->private_data;
958         void __user *argp = (void __user *)arg;
959         int r = -EINVAL;
960
961         switch (ioctl) {
962         case KVM_SET_MEMORY_REGION: {
963                 struct kvm_memory_region kvm_mem;
964                 struct kvm_userspace_memory_region kvm_userspace_mem;
965
966                 r = -EFAULT;
967                 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
968                         goto out;
969                 kvm_userspace_mem.slot = kvm_mem.slot;
970                 kvm_userspace_mem.flags = kvm_mem.flags;
971                 kvm_userspace_mem.guest_phys_addr =
972                                         kvm_mem.guest_phys_addr;
973                 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
974                 r = kvm_vm_ioctl_set_memory_region(kvm,
975                                         &kvm_userspace_mem, 0);
976                 if (r)
977                         goto out;
978                 break;
979                 }
980         case KVM_CREATE_IRQCHIP:
981                 r = -EFAULT;
982                 r = kvm_ioapic_init(kvm);
983                 if (r)
984                         goto out;
985                 r = kvm_setup_default_irq_routing(kvm);
986                 if (r) {
987                         kfree(kvm->arch.vioapic);
988                         goto out;
989                 }
990                 break;
991         case KVM_IRQ_LINE_STATUS:
992         case KVM_IRQ_LINE: {
993                 struct kvm_irq_level irq_event;
994
995                 r = -EFAULT;
996                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
997                         goto out;
998                 if (irqchip_in_kernel(kvm)) {
999                         __s32 status;
1000                         mutex_lock(&kvm->irq_lock);
1001                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1002                                     irq_event.irq, irq_event.level);
1003                         mutex_unlock(&kvm->irq_lock);
1004                         if (ioctl == KVM_IRQ_LINE_STATUS) {
1005                                 irq_event.status = status;
1006                                 if (copy_to_user(argp, &irq_event,
1007                                                         sizeof irq_event))
1008                                         goto out;
1009                         }
1010                         r = 0;
1011                 }
1012                 break;
1013                 }
1014         case KVM_GET_IRQCHIP: {
1015                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1016                 struct kvm_irqchip chip;
1017
1018                 r = -EFAULT;
1019                 if (copy_from_user(&chip, argp, sizeof chip))
1020                                 goto out;
1021                 r = -ENXIO;
1022                 if (!irqchip_in_kernel(kvm))
1023                         goto out;
1024                 r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
1025                 if (r)
1026                         goto out;
1027                 r = -EFAULT;
1028                 if (copy_to_user(argp, &chip, sizeof chip))
1029                                 goto out;
1030                 r = 0;
1031                 break;
1032                 }
1033         case KVM_SET_IRQCHIP: {
1034                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1035                 struct kvm_irqchip chip;
1036
1037                 r = -EFAULT;
1038                 if (copy_from_user(&chip, argp, sizeof chip))
1039                                 goto out;
1040                 r = -ENXIO;
1041                 if (!irqchip_in_kernel(kvm))
1042                         goto out;
1043                 r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
1044                 if (r)
1045                         goto out;
1046                 r = 0;
1047                 break;
1048                 }
1049         default:
1050                 ;
1051         }
1052 out:
1053         return r;
1054 }
1055
1056 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1057                 struct kvm_sregs *sregs)
1058 {
1059         return -EINVAL;
1060 }
1061
1062 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1063                 struct kvm_sregs *sregs)
1064 {
1065         return -EINVAL;
1066
1067 }
1068 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1069                 struct kvm_translation *tr)
1070 {
1071
1072         return -EINVAL;
1073 }
1074
1075 static int kvm_alloc_vmm_area(void)
1076 {
1077         if (!kvm_vmm_base && (kvm_vm_buffer_size < KVM_VM_BUFFER_SIZE)) {
1078                 kvm_vmm_base = __get_free_pages(GFP_KERNEL,
1079                                 get_order(KVM_VMM_SIZE));
1080                 if (!kvm_vmm_base)
1081                         return -ENOMEM;
1082
1083                 memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1084                 kvm_vm_buffer = kvm_vmm_base + VMM_SIZE;
1085
1086                 printk(KERN_DEBUG"kvm:VMM's Base Addr:0x%lx, vm_buffer:0x%lx\n",
1087                                 kvm_vmm_base, kvm_vm_buffer);
1088         }
1089
1090         return 0;
1091 }
1092
1093 static void kvm_free_vmm_area(void)
1094 {
1095         if (kvm_vmm_base) {
1096                 /*Zero this area before free to avoid bits leak!!*/
1097                 memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1098                 free_pages(kvm_vmm_base, get_order(KVM_VMM_SIZE));
1099                 kvm_vmm_base  = 0;
1100                 kvm_vm_buffer = 0;
1101                 kvm_vsa_base = 0;
1102         }
1103 }
1104
1105 static int vti_init_vpd(struct kvm_vcpu *vcpu)
1106 {
1107         int i;
1108         union cpuid3_t cpuid3;
1109         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1110
1111         if (IS_ERR(vpd))
1112                 return PTR_ERR(vpd);
1113
1114         /* CPUID init */
1115         for (i = 0; i < 5; i++)
1116                 vpd->vcpuid[i] = ia64_get_cpuid(i);
1117
1118         /* Limit the CPUID number to 5 */
1119         cpuid3.value = vpd->vcpuid[3];
1120         cpuid3.number = 4;      /* 5 - 1 */
1121         vpd->vcpuid[3] = cpuid3.value;
1122
1123         /*Set vac and vdc fields*/
1124         vpd->vac.a_from_int_cr = 1;
1125         vpd->vac.a_to_int_cr = 1;
1126         vpd->vac.a_from_psr = 1;
1127         vpd->vac.a_from_cpuid = 1;
1128         vpd->vac.a_cover = 1;
1129         vpd->vac.a_bsw = 1;
1130         vpd->vac.a_int = 1;
1131         vpd->vdc.d_vmsw = 1;
1132
1133         /*Set virtual buffer*/
1134         vpd->virt_env_vaddr = KVM_VM_BUFFER_BASE;
1135
1136         return 0;
1137 }
1138
1139 static int vti_create_vp(struct kvm_vcpu *vcpu)
1140 {
1141         long ret;
1142         struct vpd *vpd = vcpu->arch.vpd;
1143         unsigned long  vmm_ivt;
1144
1145         vmm_ivt = kvm_vmm_info->vmm_ivt;
1146
1147         printk(KERN_DEBUG "kvm: vcpu:%p,ivt: 0x%lx\n", vcpu, vmm_ivt);
1148
1149         ret = ia64_pal_vp_create((u64 *)vpd, (u64 *)vmm_ivt, 0);
1150
1151         if (ret) {
1152                 printk(KERN_ERR"kvm: ia64_pal_vp_create failed!\n");
1153                 return -EINVAL;
1154         }
1155         return 0;
1156 }
1157
1158 static void init_ptce_info(struct kvm_vcpu *vcpu)
1159 {
1160         ia64_ptce_info_t ptce = {0};
1161
1162         ia64_get_ptce(&ptce);
1163         vcpu->arch.ptce_base = ptce.base;
1164         vcpu->arch.ptce_count[0] = ptce.count[0];
1165         vcpu->arch.ptce_count[1] = ptce.count[1];
1166         vcpu->arch.ptce_stride[0] = ptce.stride[0];
1167         vcpu->arch.ptce_stride[1] = ptce.stride[1];
1168 }
1169
1170 static void kvm_migrate_hlt_timer(struct kvm_vcpu *vcpu)
1171 {
1172         struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
1173
1174         if (hrtimer_cancel(p_ht))
1175                 hrtimer_start_expires(p_ht, HRTIMER_MODE_ABS);
1176 }
1177
1178 static enum hrtimer_restart hlt_timer_fn(struct hrtimer *data)
1179 {
1180         struct kvm_vcpu *vcpu;
1181         wait_queue_head_t *q;
1182
1183         vcpu  = container_of(data, struct kvm_vcpu, arch.hlt_timer);
1184         q = &vcpu->wq;
1185
1186         if (vcpu->arch.mp_state != KVM_MP_STATE_HALTED)
1187                 goto out;
1188
1189         if (waitqueue_active(q))
1190                 wake_up_interruptible(q);
1191
1192 out:
1193         vcpu->arch.timer_fired = 1;
1194         vcpu->arch.timer_check = 1;
1195         return HRTIMER_NORESTART;
1196 }
1197
1198 #define PALE_RESET_ENTRY    0x80000000ffffffb0UL
1199
1200 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1201 {
1202         struct kvm_vcpu *v;
1203         int r;
1204         int i;
1205         long itc_offset;
1206         struct kvm *kvm = vcpu->kvm;
1207         struct kvm_pt_regs *regs = vcpu_regs(vcpu);
1208
1209         union context *p_ctx = &vcpu->arch.guest;
1210         struct kvm_vcpu *vmm_vcpu = to_guest(vcpu->kvm, vcpu);
1211
1212         /*Init vcpu context for first run.*/
1213         if (IS_ERR(vmm_vcpu))
1214                 return PTR_ERR(vmm_vcpu);
1215
1216         if (kvm_vcpu_is_bsp(vcpu)) {
1217                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
1218
1219                 /*Set entry address for first run.*/
1220                 regs->cr_iip = PALE_RESET_ENTRY;
1221
1222                 /*Initialize itc offset for vcpus*/
1223                 itc_offset = 0UL - kvm_get_itc(vcpu);
1224                 for (i = 0; i < KVM_MAX_VCPUS; i++) {
1225                         v = (struct kvm_vcpu *)((char *)vcpu +
1226                                         sizeof(struct kvm_vcpu_data) * i);
1227                         v->arch.itc_offset = itc_offset;
1228                         v->arch.last_itc = 0;
1229                 }
1230         } else
1231                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
1232
1233         r = -ENOMEM;
1234         vcpu->arch.apic = kzalloc(sizeof(struct kvm_lapic), GFP_KERNEL);
1235         if (!vcpu->arch.apic)
1236                 goto out;
1237         vcpu->arch.apic->vcpu = vcpu;
1238
1239         p_ctx->gr[1] = 0;
1240         p_ctx->gr[12] = (unsigned long)((char *)vmm_vcpu + KVM_STK_OFFSET);
1241         p_ctx->gr[13] = (unsigned long)vmm_vcpu;
1242         p_ctx->psr = 0x1008522000UL;
1243         p_ctx->ar[40] = FPSR_DEFAULT; /*fpsr*/
1244         p_ctx->caller_unat = 0;
1245         p_ctx->pr = 0x0;
1246         p_ctx->ar[36] = 0x0; /*unat*/
1247         p_ctx->ar[19] = 0x0; /*rnat*/
1248         p_ctx->ar[18] = (unsigned long)vmm_vcpu +
1249                                 ((sizeof(struct kvm_vcpu)+15) & ~15);
1250         p_ctx->ar[64] = 0x0; /*pfs*/
1251         p_ctx->cr[0] = 0x7e04UL;
1252         p_ctx->cr[2] = (unsigned long)kvm_vmm_info->vmm_ivt;
1253         p_ctx->cr[8] = 0x3c;
1254
1255         /*Initilize region register*/
1256         p_ctx->rr[0] = 0x30;
1257         p_ctx->rr[1] = 0x30;
1258         p_ctx->rr[2] = 0x30;
1259         p_ctx->rr[3] = 0x30;
1260         p_ctx->rr[4] = 0x30;
1261         p_ctx->rr[5] = 0x30;
1262         p_ctx->rr[7] = 0x30;
1263
1264         /*Initilize branch register 0*/
1265         p_ctx->br[0] = *(unsigned long *)kvm_vmm_info->vmm_entry;
1266
1267         vcpu->arch.vmm_rr = kvm->arch.vmm_init_rr;
1268         vcpu->arch.metaphysical_rr0 = kvm->arch.metaphysical_rr0;
1269         vcpu->arch.metaphysical_rr4 = kvm->arch.metaphysical_rr4;
1270
1271         hrtimer_init(&vcpu->arch.hlt_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1272         vcpu->arch.hlt_timer.function = hlt_timer_fn;
1273
1274         vcpu->arch.last_run_cpu = -1;
1275         vcpu->arch.vpd = (struct vpd *)VPD_BASE(vcpu->vcpu_id);
1276         vcpu->arch.vsa_base = kvm_vsa_base;
1277         vcpu->arch.__gp = kvm_vmm_gp;
1278         vcpu->arch.dirty_log_lock_pa = __pa(&kvm->arch.dirty_log_lock);
1279         vcpu->arch.vhpt.hash = (struct thash_data *)VHPT_BASE(vcpu->vcpu_id);
1280         vcpu->arch.vtlb.hash = (struct thash_data *)VTLB_BASE(vcpu->vcpu_id);
1281         init_ptce_info(vcpu);
1282
1283         r = 0;
1284 out:
1285         return r;
1286 }
1287
1288 static int vti_vcpu_setup(struct kvm_vcpu *vcpu, int id)
1289 {
1290         unsigned long psr;
1291         int r;
1292
1293         local_irq_save(psr);
1294         r = kvm_insert_vmm_mapping(vcpu);
1295         local_irq_restore(psr);
1296         if (r)
1297                 goto fail;
1298         r = kvm_vcpu_init(vcpu, vcpu->kvm, id);
1299         if (r)
1300                 goto fail;
1301
1302         r = vti_init_vpd(vcpu);
1303         if (r) {
1304                 printk(KERN_DEBUG"kvm: vpd init error!!\n");
1305                 goto uninit;
1306         }
1307
1308         r = vti_create_vp(vcpu);
1309         if (r)
1310                 goto uninit;
1311
1312         kvm_purge_vmm_mapping(vcpu);
1313
1314         return 0;
1315 uninit:
1316         kvm_vcpu_uninit(vcpu);
1317 fail:
1318         return r;
1319 }
1320
1321 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
1322                 unsigned int id)
1323 {
1324         struct kvm_vcpu *vcpu;
1325         unsigned long vm_base = kvm->arch.vm_base;
1326         int r;
1327         int cpu;
1328
1329         BUG_ON(sizeof(struct kvm_vcpu) > VCPU_STRUCT_SIZE/2);
1330
1331         r = -EINVAL;
1332         if (id >= KVM_MAX_VCPUS) {
1333                 printk(KERN_ERR"kvm: Can't configure vcpus > %ld",
1334                                 KVM_MAX_VCPUS);
1335                 goto fail;
1336         }
1337
1338         r = -ENOMEM;
1339         if (!vm_base) {
1340                 printk(KERN_ERR"kvm: Create vcpu[%d] error!\n", id);
1341                 goto fail;
1342         }
1343         vcpu = (struct kvm_vcpu *)(vm_base + offsetof(struct kvm_vm_data,
1344                                         vcpu_data[id].vcpu_struct));
1345         vcpu->kvm = kvm;
1346
1347         cpu = get_cpu();
1348         r = vti_vcpu_setup(vcpu, id);
1349         put_cpu();
1350
1351         if (r) {
1352                 printk(KERN_DEBUG"kvm: vcpu_setup error!!\n");
1353                 goto fail;
1354         }
1355
1356         return vcpu;
1357 fail:
1358         return ERR_PTR(r);
1359 }
1360
1361 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1362 {
1363         return 0;
1364 }
1365
1366 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1367 {
1368         return -EINVAL;
1369 }
1370
1371 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1372 {
1373         return -EINVAL;
1374 }
1375
1376 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1377                                         struct kvm_guest_debug *dbg)
1378 {
1379         return -EINVAL;
1380 }
1381
1382 static void free_kvm(struct kvm *kvm)
1383 {
1384         unsigned long vm_base = kvm->arch.vm_base;
1385
1386         if (vm_base) {
1387                 memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
1388                 free_pages(vm_base, get_order(KVM_VM_DATA_SIZE));
1389         }
1390
1391 }
1392
1393 static void kvm_release_vm_pages(struct kvm *kvm)
1394 {
1395         struct kvm_memory_slot *memslot;
1396         int i, j;
1397         unsigned long base_gfn;
1398
1399         for (i = 0; i < kvm->nmemslots; i++) {
1400                 memslot = &kvm->memslots[i];
1401                 base_gfn = memslot->base_gfn;
1402
1403                 for (j = 0; j < memslot->npages; j++) {
1404                         if (memslot->rmap[j])
1405                                 put_page((struct page *)memslot->rmap[j]);
1406                 }
1407         }
1408 }
1409
1410 void kvm_arch_sync_events(struct kvm *kvm)
1411 {
1412 }
1413
1414 void kvm_arch_destroy_vm(struct kvm *kvm)
1415 {
1416         kvm_iommu_unmap_guest(kvm);
1417 #ifdef  KVM_CAP_DEVICE_ASSIGNMENT
1418         kvm_free_all_assigned_devices(kvm);
1419 #endif
1420         kfree(kvm->arch.vioapic);
1421         kvm_release_vm_pages(kvm);
1422         kvm_free_physmem(kvm);
1423         free_kvm(kvm);
1424 }
1425
1426 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1427 {
1428 }
1429
1430 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1431 {
1432         if (cpu != vcpu->cpu) {
1433                 vcpu->cpu = cpu;
1434                 if (vcpu->arch.ht_active)
1435                         kvm_migrate_hlt_timer(vcpu);
1436         }
1437 }
1438
1439 #define SAVE_REGS(_x)   regs->_x = vcpu->arch._x
1440
1441 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1442 {
1443         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1444         int i;
1445
1446         vcpu_load(vcpu);
1447
1448         for (i = 0; i < 16; i++) {
1449                 regs->vpd.vgr[i] = vpd->vgr[i];
1450                 regs->vpd.vbgr[i] = vpd->vbgr[i];
1451         }
1452         for (i = 0; i < 128; i++)
1453                 regs->vpd.vcr[i] = vpd->vcr[i];
1454         regs->vpd.vhpi = vpd->vhpi;
1455         regs->vpd.vnat = vpd->vnat;
1456         regs->vpd.vbnat = vpd->vbnat;
1457         regs->vpd.vpsr = vpd->vpsr;
1458         regs->vpd.vpr = vpd->vpr;
1459
1460         memcpy(&regs->saved_guest, &vcpu->arch.guest, sizeof(union context));
1461
1462         SAVE_REGS(mp_state);
1463         SAVE_REGS(vmm_rr);
1464         memcpy(regs->itrs, vcpu->arch.itrs, sizeof(struct thash_data) * NITRS);
1465         memcpy(regs->dtrs, vcpu->arch.dtrs, sizeof(struct thash_data) * NDTRS);
1466         SAVE_REGS(itr_regions);
1467         SAVE_REGS(dtr_regions);
1468         SAVE_REGS(tc_regions);
1469         SAVE_REGS(irq_check);
1470         SAVE_REGS(itc_check);
1471         SAVE_REGS(timer_check);
1472         SAVE_REGS(timer_pending);
1473         SAVE_REGS(last_itc);
1474         for (i = 0; i < 8; i++) {
1475                 regs->vrr[i] = vcpu->arch.vrr[i];
1476                 regs->ibr[i] = vcpu->arch.ibr[i];
1477                 regs->dbr[i] = vcpu->arch.dbr[i];
1478         }
1479         for (i = 0; i < 4; i++)
1480                 regs->insvc[i] = vcpu->arch.insvc[i];
1481         regs->saved_itc = vcpu->arch.itc_offset + kvm_get_itc(vcpu);
1482         SAVE_REGS(xtp);
1483         SAVE_REGS(metaphysical_rr0);
1484         SAVE_REGS(metaphysical_rr4);
1485         SAVE_REGS(metaphysical_saved_rr0);
1486         SAVE_REGS(metaphysical_saved_rr4);
1487         SAVE_REGS(fp_psr);
1488         SAVE_REGS(saved_gp);
1489
1490         vcpu_put(vcpu);
1491         return 0;
1492 }
1493
1494 int kvm_arch_vcpu_ioctl_get_stack(struct kvm_vcpu *vcpu,
1495                                   struct kvm_ia64_vcpu_stack *stack)
1496 {
1497         memcpy(stack, vcpu, sizeof(struct kvm_ia64_vcpu_stack));
1498         return 0;
1499 }
1500
1501 int kvm_arch_vcpu_ioctl_set_stack(struct kvm_vcpu *vcpu,
1502                                   struct kvm_ia64_vcpu_stack *stack)
1503 {
1504         memcpy(vcpu + 1, &stack->stack[0] + sizeof(struct kvm_vcpu),
1505                sizeof(struct kvm_ia64_vcpu_stack) - sizeof(struct kvm_vcpu));
1506
1507         vcpu->arch.exit_data = ((struct kvm_vcpu *)stack)->arch.exit_data;
1508         return 0;
1509 }
1510
1511 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
1512 {
1513
1514         hrtimer_cancel(&vcpu->arch.hlt_timer);
1515         kfree(vcpu->arch.apic);
1516 }
1517
1518
1519 long kvm_arch_vcpu_ioctl(struct file *filp,
1520                          unsigned int ioctl, unsigned long arg)
1521 {
1522         struct kvm_vcpu *vcpu = filp->private_data;
1523         void __user *argp = (void __user *)arg;
1524         struct kvm_ia64_vcpu_stack *stack = NULL;
1525         long r;
1526
1527         switch (ioctl) {
1528         case KVM_IA64_VCPU_GET_STACK: {
1529                 struct kvm_ia64_vcpu_stack __user *user_stack;
1530                 void __user *first_p = argp;
1531
1532                 r = -EFAULT;
1533                 if (copy_from_user(&user_stack, first_p, sizeof(void *)))
1534                         goto out;
1535
1536                 if (!access_ok(VERIFY_WRITE, user_stack,
1537                                sizeof(struct kvm_ia64_vcpu_stack))) {
1538                         printk(KERN_INFO "KVM_IA64_VCPU_GET_STACK: "
1539                                "Illegal user destination address for stack\n");
1540                         goto out;
1541                 }
1542                 stack = kzalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
1543                 if (!stack) {
1544                         r = -ENOMEM;
1545                         goto out;
1546                 }
1547
1548                 r = kvm_arch_vcpu_ioctl_get_stack(vcpu, stack);
1549                 if (r)
1550                         goto out;
1551
1552                 if (copy_to_user(user_stack, stack,
1553                                  sizeof(struct kvm_ia64_vcpu_stack)))
1554                         goto out;
1555
1556                 break;
1557         }
1558         case KVM_IA64_VCPU_SET_STACK: {
1559                 struct kvm_ia64_vcpu_stack __user *user_stack;
1560                 void __user *first_p = argp;
1561
1562                 r = -EFAULT;
1563                 if (copy_from_user(&user_stack, first_p, sizeof(void *)))
1564                         goto out;
1565
1566                 if (!access_ok(VERIFY_READ, user_stack,
1567                             sizeof(struct kvm_ia64_vcpu_stack))) {
1568                         printk(KERN_INFO "KVM_IA64_VCPU_SET_STACK: "
1569                                "Illegal user address for stack\n");
1570                         goto out;
1571                 }
1572                 stack = kmalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
1573                 if (!stack) {
1574                         r = -ENOMEM;
1575                         goto out;
1576                 }
1577                 if (copy_from_user(stack, user_stack,
1578                                    sizeof(struct kvm_ia64_vcpu_stack)))
1579                         goto out;
1580
1581                 r = kvm_arch_vcpu_ioctl_set_stack(vcpu, stack);
1582                 break;
1583         }
1584
1585         default:
1586                 r = -EINVAL;
1587         }
1588
1589 out:
1590         kfree(stack);
1591         return r;
1592 }
1593
1594 int kvm_arch_set_memory_region(struct kvm *kvm,
1595                 struct kvm_userspace_memory_region *mem,
1596                 struct kvm_memory_slot old,
1597                 int user_alloc)
1598 {
1599         unsigned long i;
1600         unsigned long pfn;
1601         int npages = mem->memory_size >> PAGE_SHIFT;
1602         struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
1603         unsigned long base_gfn = memslot->base_gfn;
1604
1605         if (base_gfn + npages > (KVM_MAX_MEM_SIZE >> PAGE_SHIFT))
1606                 return -ENOMEM;
1607
1608         for (i = 0; i < npages; i++) {
1609                 pfn = gfn_to_pfn(kvm, base_gfn + i);
1610                 if (!kvm_is_mmio_pfn(pfn)) {
1611                         kvm_set_pmt_entry(kvm, base_gfn + i,
1612                                         pfn << PAGE_SHIFT,
1613                                 _PAGE_AR_RWX | _PAGE_MA_WB);
1614                         memslot->rmap[i] = (unsigned long)pfn_to_page(pfn);
1615                 } else {
1616                         kvm_set_pmt_entry(kvm, base_gfn + i,
1617                                         GPFN_PHYS_MMIO | (pfn << PAGE_SHIFT),
1618                                         _PAGE_MA_UC);
1619                         memslot->rmap[i] = 0;
1620                         }
1621         }
1622
1623         return 0;
1624 }
1625
1626 void kvm_arch_flush_shadow(struct kvm *kvm)
1627 {
1628         kvm_flush_remote_tlbs(kvm);
1629 }
1630
1631 long kvm_arch_dev_ioctl(struct file *filp,
1632                         unsigned int ioctl, unsigned long arg)
1633 {
1634         return -EINVAL;
1635 }
1636
1637 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
1638 {
1639         kvm_vcpu_uninit(vcpu);
1640 }
1641
1642 static int vti_cpu_has_kvm_support(void)
1643 {
1644         long  avail = 1, status = 1, control = 1;
1645         long ret;
1646
1647         ret = ia64_pal_proc_get_features(&avail, &status, &control, 0);
1648         if (ret)
1649                 goto out;
1650
1651         if (!(avail & PAL_PROC_VM_BIT))
1652                 goto out;
1653
1654         printk(KERN_DEBUG"kvm: Hardware Supports VT\n");
1655
1656         ret = ia64_pal_vp_env_info(&kvm_vm_buffer_size, &vp_env_info);
1657         if (ret)
1658                 goto out;
1659         printk(KERN_DEBUG"kvm: VM Buffer Size:0x%lx\n", kvm_vm_buffer_size);
1660
1661         if (!(vp_env_info & VP_OPCODE)) {
1662                 printk(KERN_WARNING"kvm: No opcode ability on hardware, "
1663                                 "vm_env_info:0x%lx\n", vp_env_info);
1664         }
1665
1666         return 1;
1667 out:
1668         return 0;
1669 }
1670
1671
1672 /*
1673  * On SN2, the ITC isn't stable, so copy in fast path code to use the
1674  * SN2 RTC, replacing the ITC based default verion.
1675  */
1676 static void kvm_patch_vmm(struct kvm_vmm_info *vmm_info,
1677                           struct module *module)
1678 {
1679         unsigned long new_ar, new_ar_sn2;
1680         unsigned long module_base;
1681
1682         if (!ia64_platform_is("sn2"))
1683                 return;
1684
1685         module_base = (unsigned long)module->module_core;
1686
1687         new_ar = kvm_vmm_base + vmm_info->patch_mov_ar - module_base;
1688         new_ar_sn2 = kvm_vmm_base + vmm_info->patch_mov_ar_sn2 - module_base;
1689
1690         printk(KERN_INFO "kvm: Patching ITC emulation to use SGI SN2 RTC "
1691                "as source\n");
1692
1693         /*
1694          * Copy the SN2 version of mov_ar into place. They are both
1695          * the same size, so 6 bundles is sufficient (6 * 0x10).
1696          */
1697         memcpy((void *)new_ar, (void *)new_ar_sn2, 0x60);
1698 }
1699
1700 static int kvm_relocate_vmm(struct kvm_vmm_info *vmm_info,
1701                             struct module *module)
1702 {
1703         unsigned long module_base;
1704         unsigned long vmm_size;
1705
1706         unsigned long vmm_offset, func_offset, fdesc_offset;
1707         struct fdesc *p_fdesc;
1708
1709         BUG_ON(!module);
1710
1711         if (!kvm_vmm_base) {
1712                 printk("kvm: kvm area hasn't been initilized yet!!\n");
1713                 return -EFAULT;
1714         }
1715
1716         /*Calculate new position of relocated vmm module.*/
1717         module_base = (unsigned long)module->module_core;
1718         vmm_size = module->core_size;
1719         if (unlikely(vmm_size > KVM_VMM_SIZE))
1720                 return -EFAULT;
1721
1722         memcpy((void *)kvm_vmm_base, (void *)module_base, vmm_size);
1723         kvm_patch_vmm(vmm_info, module);
1724         kvm_flush_icache(kvm_vmm_base, vmm_size);
1725
1726         /*Recalculate kvm_vmm_info based on new VMM*/
1727         vmm_offset = vmm_info->vmm_ivt - module_base;
1728         kvm_vmm_info->vmm_ivt = KVM_VMM_BASE + vmm_offset;
1729         printk(KERN_DEBUG"kvm: Relocated VMM's IVT Base Addr:%lx\n",
1730                         kvm_vmm_info->vmm_ivt);
1731
1732         fdesc_offset = (unsigned long)vmm_info->vmm_entry - module_base;
1733         kvm_vmm_info->vmm_entry = (kvm_vmm_entry *)(KVM_VMM_BASE +
1734                                                         fdesc_offset);
1735         func_offset = *(unsigned long *)vmm_info->vmm_entry - module_base;
1736         p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1737         p_fdesc->ip = KVM_VMM_BASE + func_offset;
1738         p_fdesc->gp = KVM_VMM_BASE+(p_fdesc->gp - module_base);
1739
1740         printk(KERN_DEBUG"kvm: Relocated VMM's Init Entry Addr:%lx\n",
1741                         KVM_VMM_BASE+func_offset);
1742
1743         fdesc_offset = (unsigned long)vmm_info->tramp_entry - module_base;
1744         kvm_vmm_info->tramp_entry = (kvm_tramp_entry *)(KVM_VMM_BASE +
1745                         fdesc_offset);
1746         func_offset = *(unsigned long *)vmm_info->tramp_entry - module_base;
1747         p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1748         p_fdesc->ip = KVM_VMM_BASE + func_offset;
1749         p_fdesc->gp = KVM_VMM_BASE + (p_fdesc->gp - module_base);
1750
1751         kvm_vmm_gp = p_fdesc->gp;
1752
1753         printk(KERN_DEBUG"kvm: Relocated VMM's Entry IP:%p\n",
1754                                                 kvm_vmm_info->vmm_entry);
1755         printk(KERN_DEBUG"kvm: Relocated VMM's Trampoline Entry IP:0x%lx\n",
1756                                                 KVM_VMM_BASE + func_offset);
1757
1758         return 0;
1759 }
1760
1761 int kvm_arch_init(void *opaque)
1762 {
1763         int r;
1764         struct kvm_vmm_info *vmm_info = (struct kvm_vmm_info *)opaque;
1765
1766         if (!vti_cpu_has_kvm_support()) {
1767                 printk(KERN_ERR "kvm: No Hardware Virtualization Support!\n");
1768                 r = -EOPNOTSUPP;
1769                 goto out;
1770         }
1771
1772         if (kvm_vmm_info) {
1773                 printk(KERN_ERR "kvm: Already loaded VMM module!\n");
1774                 r = -EEXIST;
1775                 goto out;
1776         }
1777
1778         r = -ENOMEM;
1779         kvm_vmm_info = kzalloc(sizeof(struct kvm_vmm_info), GFP_KERNEL);
1780         if (!kvm_vmm_info)
1781                 goto out;
1782
1783         if (kvm_alloc_vmm_area())
1784                 goto out_free0;
1785
1786         r = kvm_relocate_vmm(vmm_info, vmm_info->module);
1787         if (r)
1788                 goto out_free1;
1789
1790         return 0;
1791
1792 out_free1:
1793         kvm_free_vmm_area();
1794 out_free0:
1795         kfree(kvm_vmm_info);
1796 out:
1797         return r;
1798 }
1799
1800 void kvm_arch_exit(void)
1801 {
1802         kvm_free_vmm_area();
1803         kfree(kvm_vmm_info);
1804         kvm_vmm_info = NULL;
1805 }
1806
1807 static int kvm_ia64_sync_dirty_log(struct kvm *kvm,
1808                 struct kvm_dirty_log *log)
1809 {
1810         struct kvm_memory_slot *memslot;
1811         int r, i;
1812         long n, base;
1813         unsigned long *dirty_bitmap = (unsigned long *)(kvm->arch.vm_base +
1814                         offsetof(struct kvm_vm_data, kvm_mem_dirty_log));
1815
1816         r = -EINVAL;
1817         if (log->slot >= KVM_MEMORY_SLOTS)
1818                 goto out;
1819
1820         memslot = &kvm->memslots[log->slot];
1821         r = -ENOENT;
1822         if (!memslot->dirty_bitmap)
1823                 goto out;
1824
1825         n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1826         base = memslot->base_gfn / BITS_PER_LONG;
1827
1828         for (i = 0; i < n/sizeof(long); ++i) {
1829                 memslot->dirty_bitmap[i] = dirty_bitmap[base + i];
1830                 dirty_bitmap[base + i] = 0;
1831         }
1832         r = 0;
1833 out:
1834         return r;
1835 }
1836
1837 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1838                 struct kvm_dirty_log *log)
1839 {
1840         int r;
1841         int n;
1842         struct kvm_memory_slot *memslot;
1843         int is_dirty = 0;
1844
1845         spin_lock(&kvm->arch.dirty_log_lock);
1846
1847         r = kvm_ia64_sync_dirty_log(kvm, log);
1848         if (r)
1849                 goto out;
1850
1851         r = kvm_get_dirty_log(kvm, log, &is_dirty);
1852         if (r)
1853                 goto out;
1854
1855         /* If nothing is dirty, don't bother messing with page tables. */
1856         if (is_dirty) {
1857                 kvm_flush_remote_tlbs(kvm);
1858                 memslot = &kvm->memslots[log->slot];
1859                 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1860                 memset(memslot->dirty_bitmap, 0, n);
1861         }
1862         r = 0;
1863 out:
1864         spin_unlock(&kvm->arch.dirty_log_lock);
1865         return r;
1866 }
1867
1868 int kvm_arch_hardware_setup(void)
1869 {
1870         return 0;
1871 }
1872
1873 void kvm_arch_hardware_unsetup(void)
1874 {
1875 }
1876
1877 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1878 {
1879         int me;
1880         int cpu = vcpu->cpu;
1881
1882         if (waitqueue_active(&vcpu->wq))
1883                 wake_up_interruptible(&vcpu->wq);
1884
1885         me = get_cpu();
1886         if (cpu != me && (unsigned) cpu < nr_cpu_ids && cpu_online(cpu))
1887                 if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
1888                         smp_send_reschedule(cpu);
1889         put_cpu();
1890 }
1891
1892 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq)
1893 {
1894         return __apic_accept_irq(vcpu, irq->vector);
1895 }
1896
1897 int kvm_apic_match_physical_addr(struct kvm_lapic *apic, u16 dest)
1898 {
1899         return apic->vcpu->vcpu_id == dest;
1900 }
1901
1902 int kvm_apic_match_logical_addr(struct kvm_lapic *apic, u8 mda)
1903 {
1904         return 0;
1905 }
1906
1907 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
1908 {
1909         return vcpu1->arch.xtp - vcpu2->arch.xtp;
1910 }
1911
1912 int kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
1913                 int short_hand, int dest, int dest_mode)
1914 {
1915         struct kvm_lapic *target = vcpu->arch.apic;
1916         return (dest_mode == 0) ?
1917                 kvm_apic_match_physical_addr(target, dest) :
1918                 kvm_apic_match_logical_addr(target, dest);
1919 }
1920
1921 static int find_highest_bits(int *dat)
1922 {
1923         u32  bits, bitnum;
1924         int i;
1925
1926         /* loop for all 256 bits */
1927         for (i = 7; i >= 0 ; i--) {
1928                 bits = dat[i];
1929                 if (bits) {
1930                         bitnum = fls(bits);
1931                         return i * 32 + bitnum - 1;
1932                 }
1933         }
1934
1935         return -1;
1936 }
1937
1938 int kvm_highest_pending_irq(struct kvm_vcpu *vcpu)
1939 {
1940     struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1941
1942     if (vpd->irr[0] & (1UL << NMI_VECTOR))
1943                 return NMI_VECTOR;
1944     if (vpd->irr[0] & (1UL << ExtINT_VECTOR))
1945                 return ExtINT_VECTOR;
1946
1947     return find_highest_bits((int *)&vpd->irr[0]);
1948 }
1949
1950 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu)
1951 {
1952         if (kvm_highest_pending_irq(vcpu) != -1)
1953                 return 1;
1954         return 0;
1955 }
1956
1957 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
1958 {
1959         /* do real check here */
1960         return 1;
1961 }
1962
1963 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1964 {
1965         return vcpu->arch.timer_fired;
1966 }
1967
1968 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1969 {
1970         return gfn;
1971 }
1972
1973 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
1974 {
1975         return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE;
1976 }
1977
1978 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1979                                     struct kvm_mp_state *mp_state)
1980 {
1981         vcpu_load(vcpu);
1982         mp_state->mp_state = vcpu->arch.mp_state;
1983         vcpu_put(vcpu);
1984         return 0;
1985 }
1986
1987 static int vcpu_reset(struct kvm_vcpu *vcpu)
1988 {
1989         int r;
1990         long psr;
1991         local_irq_save(psr);
1992         r = kvm_insert_vmm_mapping(vcpu);
1993         local_irq_restore(psr);
1994         if (r)
1995                 goto fail;
1996
1997         vcpu->arch.launched = 0;
1998         kvm_arch_vcpu_uninit(vcpu);
1999         r = kvm_arch_vcpu_init(vcpu);
2000         if (r)
2001                 goto fail;
2002
2003         kvm_purge_vmm_mapping(vcpu);
2004         r = 0;
2005 fail:
2006         return r;
2007 }
2008
2009 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
2010                                     struct kvm_mp_state *mp_state)
2011 {
2012         int r = 0;
2013
2014         vcpu_load(vcpu);
2015         vcpu->arch.mp_state = mp_state->mp_state;
2016         if (vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)
2017                 r = vcpu_reset(vcpu);
2018         vcpu_put(vcpu);
2019         return r;
2020 }