Blackfin arch: SMP supporting patchset: Blackfin kernel and memory management code
[safe/jmp/linux-2.6] / arch / blackfin / mm / sram-alloc.c
1 /*
2  * File:         arch/blackfin/mm/sram-alloc.c
3  * Based on:
4  * Author:
5  *
6  * Created:
7  * Description:  SRAM allocator for Blackfin L1 and L2 memory
8  *
9  * Modified:
10  *               Copyright 2004-2008 Analog Devices Inc.
11  *
12  * Bugs:         Enter bugs at http://blackfin.uclinux.org/
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License as published by
16  * the Free Software Foundation; either version 2 of the License, or
17  * (at your option) any later version.
18  *
19  * This program is distributed in the hope that it will be useful,
20  * but WITHOUT ANY WARRANTY; without even the implied warranty of
21  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22  * GNU General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License
25  * along with this program; if not, see the file COPYING, or write
26  * to the Free Software Foundation, Inc.,
27  * 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
28  */
29
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/types.h>
33 #include <linux/miscdevice.h>
34 #include <linux/ioport.h>
35 #include <linux/fcntl.h>
36 #include <linux/init.h>
37 #include <linux/poll.h>
38 #include <linux/proc_fs.h>
39 #include <linux/spinlock.h>
40 #include <linux/rtc.h>
41 #include <asm/blackfin.h>
42 #include "blackfin_sram.h"
43
44 static DEFINE_PER_CPU(spinlock_t, l1sram_lock) ____cacheline_aligned_in_smp;
45 static DEFINE_PER_CPU(spinlock_t, l1_data_sram_lock) ____cacheline_aligned_in_smp;
46 static DEFINE_PER_CPU(spinlock_t, l1_inst_sram_lock) ____cacheline_aligned_in_smp;
47 static spinlock_t l2_sram_lock ____cacheline_aligned_in_smp;
48
49 /* the data structure for L1 scratchpad and DATA SRAM */
50 struct sram_piece {
51         void *paddr;
52         int size;
53         pid_t pid;
54         struct sram_piece *next;
55 };
56
57 static DEFINE_PER_CPU(struct sram_piece, free_l1_ssram_head);
58 static DEFINE_PER_CPU(struct sram_piece, used_l1_ssram_head);
59
60 #if L1_DATA_A_LENGTH != 0
61 static DEFINE_PER_CPU(struct sram_piece, free_l1_data_A_sram_head);
62 static DEFINE_PER_CPU(struct sram_piece, used_l1_data_A_sram_head);
63 #endif
64
65 #if L1_DATA_B_LENGTH != 0
66 static DEFINE_PER_CPU(struct sram_piece, free_l1_data_B_sram_head);
67 static DEFINE_PER_CPU(struct sram_piece, used_l1_data_B_sram_head);
68 #endif
69
70 #if L1_CODE_LENGTH != 0
71 static DEFINE_PER_CPU(struct sram_piece, free_l1_inst_sram_head);
72 static DEFINE_PER_CPU(struct sram_piece, used_l1_inst_sram_head);
73 #endif
74
75 #if L2_LENGTH != 0
76 static struct sram_piece free_l2_sram_head, used_l2_sram_head;
77 #endif
78
79 static struct kmem_cache *sram_piece_cache;
80
81 /* L1 Scratchpad SRAM initialization function */
82 static void __init l1sram_init(void)
83 {
84         unsigned int cpu;
85         for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
86                 per_cpu(free_l1_ssram_head, cpu).next =
87                         kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
88                 if (!per_cpu(free_l1_ssram_head, cpu).next) {
89                         printk(KERN_INFO "Fail to initialize Scratchpad data SRAM.\n");
90                         return;
91                 }
92
93                 per_cpu(free_l1_ssram_head, cpu).next->paddr = (void *)get_l1_scratch_start_cpu(cpu);
94                 per_cpu(free_l1_ssram_head, cpu).next->size = L1_SCRATCH_LENGTH;
95                 per_cpu(free_l1_ssram_head, cpu).next->pid = 0;
96                 per_cpu(free_l1_ssram_head, cpu).next->next = NULL;
97
98                 per_cpu(used_l1_ssram_head, cpu).next = NULL;
99
100                 /* mutex initialize */
101                 spin_lock_init(&per_cpu(l1sram_lock, cpu));
102                 printk(KERN_INFO "Blackfin Scratchpad data SRAM: %d KB\n",
103                         L1_SCRATCH_LENGTH >> 10);
104         }
105 }
106
107 static void __init l1_data_sram_init(void)
108 {
109         unsigned int cpu;
110 #if L1_DATA_A_LENGTH != 0
111         for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
112                 per_cpu(free_l1_data_A_sram_head, cpu).next =
113                         kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
114                 if (!per_cpu(free_l1_data_A_sram_head, cpu).next) {
115                         printk(KERN_INFO "Fail to initialize L1 Data A SRAM.\n");
116                         return;
117                 }
118
119                 per_cpu(free_l1_data_A_sram_head, cpu).next->paddr =
120                         (void *)get_l1_data_a_start_cpu(cpu) + (_ebss_l1 - _sdata_l1);
121                 per_cpu(free_l1_data_A_sram_head, cpu).next->size =
122                         L1_DATA_A_LENGTH - (_ebss_l1 - _sdata_l1);
123                 per_cpu(free_l1_data_A_sram_head, cpu).next->pid = 0;
124                 per_cpu(free_l1_data_A_sram_head, cpu).next->next = NULL;
125
126                 per_cpu(used_l1_data_A_sram_head, cpu).next = NULL;
127
128                 printk(KERN_INFO "Blackfin L1 Data A SRAM: %d KB (%d KB free)\n",
129                         L1_DATA_A_LENGTH >> 10,
130                         per_cpu(free_l1_data_A_sram_head, cpu).next->size >> 10);
131         }
132 #endif
133 #if L1_DATA_B_LENGTH != 0
134         for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
135                 per_cpu(free_l1_data_B_sram_head, cpu).next =
136                         kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
137                 if (!per_cpu(free_l1_data_B_sram_head, cpu).next) {
138                         printk(KERN_INFO "Fail to initialize L1 Data B SRAM.\n");
139                         return;
140                 }
141
142                 per_cpu(free_l1_data_B_sram_head, cpu).next->paddr =
143                         (void *)get_l1_data_b_start_cpu(cpu) + (_ebss_b_l1 - _sdata_b_l1);
144                 per_cpu(free_l1_data_B_sram_head, cpu).next->size =
145                         L1_DATA_B_LENGTH - (_ebss_b_l1 - _sdata_b_l1);
146                 per_cpu(free_l1_data_B_sram_head, cpu).next->pid = 0;
147                 per_cpu(free_l1_data_B_sram_head, cpu).next->next = NULL;
148
149                 per_cpu(used_l1_data_B_sram_head, cpu).next = NULL;
150
151                 printk(KERN_INFO "Blackfin L1 Data B SRAM: %d KB (%d KB free)\n",
152                         L1_DATA_B_LENGTH >> 10,
153                         per_cpu(free_l1_data_B_sram_head, cpu).next->size >> 10);
154                 /* mutex initialize */
155         }
156 #endif
157
158 #if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0
159         for (cpu = 0; cpu < num_possible_cpus(); ++cpu)
160                 spin_lock_init(&per_cpu(l1_data_sram_lock, cpu));
161 #endif
162 }
163
164 static void __init l1_inst_sram_init(void)
165 {
166 #if L1_CODE_LENGTH != 0
167         unsigned int cpu;
168         for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
169                 per_cpu(free_l1_inst_sram_head, cpu).next =
170                         kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
171                 if (!per_cpu(free_l1_inst_sram_head, cpu).next) {
172                         printk(KERN_INFO "Failed to initialize L1 Instruction SRAM\n");
173                         return;
174                 }
175
176                 per_cpu(free_l1_inst_sram_head, cpu).next->paddr =
177                         (void *)get_l1_code_start_cpu(cpu) + (_etext_l1 - _stext_l1);
178                 per_cpu(free_l1_inst_sram_head, cpu).next->size =
179                         L1_CODE_LENGTH - (_etext_l1 - _stext_l1);
180                 per_cpu(free_l1_inst_sram_head, cpu).next->pid = 0;
181                 per_cpu(free_l1_inst_sram_head, cpu).next->next = NULL;
182
183                 per_cpu(used_l1_inst_sram_head, cpu).next = NULL;
184
185                 printk(KERN_INFO "Blackfin L1 Instruction SRAM: %d KB (%d KB free)\n",
186                         L1_CODE_LENGTH >> 10,
187                         per_cpu(free_l1_inst_sram_head, cpu).next->size >> 10);
188
189                 /* mutex initialize */
190                 spin_lock_init(&per_cpu(l1_inst_sram_lock, cpu));
191         }
192 #endif
193 }
194
195 static void __init l2_sram_init(void)
196 {
197 #if L2_LENGTH != 0
198         free_l2_sram_head.next =
199                 kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
200         if (!free_l2_sram_head.next) {
201                 printk(KERN_INFO "Fail to initialize L2 SRAM.\n");
202                 return;
203         }
204
205         free_l2_sram_head.next->paddr =
206                 (void *)L2_START + (_ebss_l2 - _stext_l2);
207         free_l2_sram_head.next->size =
208                 L2_LENGTH - (_ebss_l2 - _stext_l2);
209         free_l2_sram_head.next->pid = 0;
210         free_l2_sram_head.next->next = NULL;
211
212         used_l2_sram_head.next = NULL;
213
214         printk(KERN_INFO "Blackfin L2 SRAM: %d KB (%d KB free)\n",
215                 L2_LENGTH >> 10,
216                 free_l2_sram_head.next->size >> 10);
217 #endif
218
219         /* mutex initialize */
220         spin_lock_init(&l2_sram_lock);
221 }
222
223 void __init bfin_sram_init(void)
224 {
225         sram_piece_cache = kmem_cache_create("sram_piece_cache",
226                                 sizeof(struct sram_piece),
227                                 0, SLAB_PANIC, NULL);
228
229         l1sram_init();
230         l1_data_sram_init();
231         l1_inst_sram_init();
232         l2_sram_init();
233 }
234
235 /* SRAM allocate function */
236 static void *_sram_alloc(size_t size, struct sram_piece *pfree_head,
237                 struct sram_piece *pused_head)
238 {
239         struct sram_piece *pslot, *plast, *pavail;
240
241         if (size <= 0 || !pfree_head || !pused_head)
242                 return NULL;
243
244         /* Align the size */
245         size = (size + 3) & ~3;
246
247         pslot = pfree_head->next;
248         plast = pfree_head;
249
250         /* search an available piece slot */
251         while (pslot != NULL && size > pslot->size) {
252                 plast = pslot;
253                 pslot = pslot->next;
254         }
255
256         if (!pslot)
257                 return NULL;
258
259         if (pslot->size == size) {
260                 plast->next = pslot->next;
261                 pavail = pslot;
262         } else {
263                 pavail = kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
264
265                 if (!pavail)
266                         return NULL;
267
268                 pavail->paddr = pslot->paddr;
269                 pavail->size = size;
270                 pslot->paddr += size;
271                 pslot->size -= size;
272         }
273
274         pavail->pid = current->pid;
275
276         pslot = pused_head->next;
277         plast = pused_head;
278
279         /* insert new piece into used piece list !!! */
280         while (pslot != NULL && pavail->paddr < pslot->paddr) {
281                 plast = pslot;
282                 pslot = pslot->next;
283         }
284
285         pavail->next = pslot;
286         plast->next = pavail;
287
288         return pavail->paddr;
289 }
290
291 /* Allocate the largest available block.  */
292 static void *_sram_alloc_max(struct sram_piece *pfree_head,
293                                 struct sram_piece *pused_head,
294                                 unsigned long *psize)
295 {
296         struct sram_piece *pslot, *pmax;
297
298         if (!pfree_head || !pused_head)
299                 return NULL;
300
301         pmax = pslot = pfree_head->next;
302
303         /* search an available piece slot */
304         while (pslot != NULL) {
305                 if (pslot->size > pmax->size)
306                         pmax = pslot;
307                 pslot = pslot->next;
308         }
309
310         if (!pmax)
311                 return NULL;
312
313         *psize = pmax->size;
314
315         return _sram_alloc(*psize, pfree_head, pused_head);
316 }
317
318 /* SRAM free function */
319 static int _sram_free(const void *addr,
320                         struct sram_piece *pfree_head,
321                         struct sram_piece *pused_head)
322 {
323         struct sram_piece *pslot, *plast, *pavail;
324
325         if (!pfree_head || !pused_head)
326                 return -1;
327
328         /* search the relevant memory slot */
329         pslot = pused_head->next;
330         plast = pused_head;
331
332         /* search an available piece slot */
333         while (pslot != NULL && pslot->paddr != addr) {
334                 plast = pslot;
335                 pslot = pslot->next;
336         }
337
338         if (!pslot)
339                 return -1;
340
341         plast->next = pslot->next;
342         pavail = pslot;
343         pavail->pid = 0;
344
345         /* insert free pieces back to the free list */
346         pslot = pfree_head->next;
347         plast = pfree_head;
348
349         while (pslot != NULL && addr > pslot->paddr) {
350                 plast = pslot;
351                 pslot = pslot->next;
352         }
353
354         if (plast != pfree_head && plast->paddr + plast->size == pavail->paddr) {
355                 plast->size += pavail->size;
356                 kmem_cache_free(sram_piece_cache, pavail);
357         } else {
358                 pavail->next = plast->next;
359                 plast->next = pavail;
360                 plast = pavail;
361         }
362
363         if (pslot && plast->paddr + plast->size == pslot->paddr) {
364                 plast->size += pslot->size;
365                 plast->next = pslot->next;
366                 kmem_cache_free(sram_piece_cache, pslot);
367         }
368
369         return 0;
370 }
371
372 int sram_free(const void *addr)
373 {
374
375 #if L1_CODE_LENGTH != 0
376         if (addr >= (void *)get_l1_code_start()
377                  && addr < (void *)(get_l1_code_start() + L1_CODE_LENGTH))
378                 return l1_inst_sram_free(addr);
379         else
380 #endif
381 #if L1_DATA_A_LENGTH != 0
382         if (addr >= (void *)get_l1_data_a_start()
383                  && addr < (void *)(get_l1_data_a_start() + L1_DATA_A_LENGTH))
384                 return l1_data_A_sram_free(addr);
385         else
386 #endif
387 #if L1_DATA_B_LENGTH != 0
388         if (addr >= (void *)get_l1_data_b_start()
389                  && addr < (void *)(get_l1_data_b_start() + L1_DATA_B_LENGTH))
390                 return l1_data_B_sram_free(addr);
391         else
392 #endif
393 #if L2_LENGTH != 0
394         if (addr >= (void *)L2_START
395                  && addr < (void *)(L2_START + L2_LENGTH))
396                 return l2_sram_free(addr);
397         else
398 #endif
399                 return -1;
400 }
401 EXPORT_SYMBOL(sram_free);
402
403 void *l1_data_A_sram_alloc(size_t size)
404 {
405         unsigned long flags;
406         void *addr = NULL;
407         unsigned int cpu;
408
409         cpu = get_cpu();
410         /* add mutex operation */
411         spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
412
413 #if L1_DATA_A_LENGTH != 0
414         addr = _sram_alloc(size, &per_cpu(free_l1_data_A_sram_head, cpu),
415                         &per_cpu(used_l1_data_A_sram_head, cpu));
416 #endif
417
418         /* add mutex operation */
419         spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
420         put_cpu();
421
422         pr_debug("Allocated address in l1_data_A_sram_alloc is 0x%lx+0x%lx\n",
423                  (long unsigned int)addr, size);
424
425         return addr;
426 }
427 EXPORT_SYMBOL(l1_data_A_sram_alloc);
428
429 int l1_data_A_sram_free(const void *addr)
430 {
431         unsigned long flags;
432         int ret;
433         unsigned int cpu;
434
435         cpu = get_cpu();
436         /* add mutex operation */
437         spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
438
439 #if L1_DATA_A_LENGTH != 0
440         ret = _sram_free(addr, &per_cpu(free_l1_data_A_sram_head, cpu),
441                         &per_cpu(used_l1_data_A_sram_head, cpu));
442 #else
443         ret = -1;
444 #endif
445
446         /* add mutex operation */
447         spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
448         put_cpu();
449
450         return ret;
451 }
452 EXPORT_SYMBOL(l1_data_A_sram_free);
453
454 void *l1_data_B_sram_alloc(size_t size)
455 {
456 #if L1_DATA_B_LENGTH != 0
457         unsigned long flags;
458         void *addr;
459         unsigned int cpu;
460
461         cpu = get_cpu();
462         /* add mutex operation */
463         spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
464
465         addr = _sram_alloc(size, &per_cpu(free_l1_data_B_sram_head, cpu),
466                         &per_cpu(used_l1_data_B_sram_head, cpu));
467
468         /* add mutex operation */
469         spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
470         put_cpu();
471
472         pr_debug("Allocated address in l1_data_B_sram_alloc is 0x%lx+0x%lx\n",
473                  (long unsigned int)addr, size);
474
475         return addr;
476 #else
477         return NULL;
478 #endif
479 }
480 EXPORT_SYMBOL(l1_data_B_sram_alloc);
481
482 int l1_data_B_sram_free(const void *addr)
483 {
484 #if L1_DATA_B_LENGTH != 0
485         unsigned long flags;
486         int ret;
487         unsigned int cpu;
488
489         cpu = get_cpu();
490         /* add mutex operation */
491         spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
492
493         ret = _sram_free(addr, &per_cpu(free_l1_data_B_sram_head, cpu),
494                         &per_cpu(used_l1_data_B_sram_head, cpu));
495
496         /* add mutex operation */
497         spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
498         put_cpu();
499
500         return ret;
501 #else
502         return -1;
503 #endif
504 }
505 EXPORT_SYMBOL(l1_data_B_sram_free);
506
507 void *l1_data_sram_alloc(size_t size)
508 {
509         void *addr = l1_data_A_sram_alloc(size);
510
511         if (!addr)
512                 addr = l1_data_B_sram_alloc(size);
513
514         return addr;
515 }
516 EXPORT_SYMBOL(l1_data_sram_alloc);
517
518 void *l1_data_sram_zalloc(size_t size)
519 {
520         void *addr = l1_data_sram_alloc(size);
521
522         if (addr)
523                 memset(addr, 0x00, size);
524
525         return addr;
526 }
527 EXPORT_SYMBOL(l1_data_sram_zalloc);
528
529 int l1_data_sram_free(const void *addr)
530 {
531         int ret;
532         ret = l1_data_A_sram_free(addr);
533         if (ret == -1)
534                 ret = l1_data_B_sram_free(addr);
535         return ret;
536 }
537 EXPORT_SYMBOL(l1_data_sram_free);
538
539 void *l1_inst_sram_alloc(size_t size)
540 {
541 #if L1_CODE_LENGTH != 0
542         unsigned long flags;
543         void *addr;
544         unsigned int cpu;
545
546         cpu = get_cpu();
547         /* add mutex operation */
548         spin_lock_irqsave(&per_cpu(l1_inst_sram_lock, cpu), flags);
549
550         addr = _sram_alloc(size, &per_cpu(free_l1_inst_sram_head, cpu),
551                         &per_cpu(used_l1_inst_sram_head, cpu));
552
553         /* add mutex operation */
554         spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock, cpu), flags);
555         put_cpu();
556
557         pr_debug("Allocated address in l1_inst_sram_alloc is 0x%lx+0x%lx\n",
558                  (long unsigned int)addr, size);
559
560         return addr;
561 #else
562         return NULL;
563 #endif
564 }
565 EXPORT_SYMBOL(l1_inst_sram_alloc);
566
567 int l1_inst_sram_free(const void *addr)
568 {
569 #if L1_CODE_LENGTH != 0
570         unsigned long flags;
571         int ret;
572         unsigned int cpu;
573
574         cpu = get_cpu();
575         /* add mutex operation */
576         spin_lock_irqsave(&per_cpu(l1_inst_sram_lock, cpu), flags);
577
578         ret = _sram_free(addr, &per_cpu(free_l1_inst_sram_head, cpu),
579                         &per_cpu(used_l1_inst_sram_head, cpu));
580
581         /* add mutex operation */
582         spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock, cpu), flags);
583         put_cpu();
584
585         return ret;
586 #else
587         return -1;
588 #endif
589 }
590 EXPORT_SYMBOL(l1_inst_sram_free);
591
592 /* L1 Scratchpad memory allocate function */
593 void *l1sram_alloc(size_t size)
594 {
595         unsigned long flags;
596         void *addr;
597         unsigned int cpu;
598
599         cpu = get_cpu();
600         /* add mutex operation */
601         spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
602
603         addr = _sram_alloc(size, &per_cpu(free_l1_ssram_head, cpu),
604                         &per_cpu(used_l1_ssram_head, cpu));
605
606         /* add mutex operation */
607         spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
608         put_cpu();
609
610         return addr;
611 }
612
613 /* L1 Scratchpad memory allocate function */
614 void *l1sram_alloc_max(size_t *psize)
615 {
616         unsigned long flags;
617         void *addr;
618         unsigned int cpu;
619
620         cpu = get_cpu();
621         /* add mutex operation */
622         spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
623
624         addr = _sram_alloc_max(&per_cpu(free_l1_ssram_head, cpu),
625                         &per_cpu(used_l1_ssram_head, cpu), psize);
626
627         /* add mutex operation */
628         spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
629         put_cpu();
630
631         return addr;
632 }
633
634 /* L1 Scratchpad memory free function */
635 int l1sram_free(const void *addr)
636 {
637         unsigned long flags;
638         int ret;
639         unsigned int cpu;
640
641         cpu = get_cpu();
642         /* add mutex operation */
643         spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
644
645         ret = _sram_free(addr, &per_cpu(free_l1_ssram_head, cpu),
646                         &per_cpu(used_l1_ssram_head, cpu));
647
648         /* add mutex operation */
649         spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
650         put_cpu();
651
652         return ret;
653 }
654
655 void *l2_sram_alloc(size_t size)
656 {
657 #if L2_LENGTH != 0
658         unsigned long flags;
659         void *addr;
660
661         /* add mutex operation */
662         spin_lock_irqsave(&l2_sram_lock, flags);
663
664         addr = _sram_alloc(size, &free_l2_sram_head,
665                         &used_l2_sram_head);
666
667         /* add mutex operation */
668         spin_unlock_irqrestore(&l2_sram_lock, flags);
669
670         pr_debug("Allocated address in l2_sram_alloc is 0x%lx+0x%lx\n",
671                  (long unsigned int)addr, size);
672
673         return addr;
674 #else
675         return NULL;
676 #endif
677 }
678 EXPORT_SYMBOL(l2_sram_alloc);
679
680 void *l2_sram_zalloc(size_t size)
681 {
682         void *addr = l2_sram_alloc(size);
683
684         if (addr)
685                 memset(addr, 0x00, size);
686
687         return addr;
688 }
689 EXPORT_SYMBOL(l2_sram_zalloc);
690
691 int l2_sram_free(const void *addr)
692 {
693 #if L2_LENGTH != 0
694         unsigned long flags;
695         int ret;
696
697         /* add mutex operation */
698         spin_lock_irqsave(&l2_sram_lock, flags);
699
700         ret = _sram_free(addr, &free_l2_sram_head,
701                         &used_l2_sram_head);
702
703         /* add mutex operation */
704         spin_unlock_irqrestore(&l2_sram_lock, flags);
705
706         return ret;
707 #else
708         return -1;
709 #endif
710 }
711 EXPORT_SYMBOL(l2_sram_free);
712
713 int sram_free_with_lsl(const void *addr)
714 {
715         struct sram_list_struct *lsl, **tmp;
716         struct mm_struct *mm = current->mm;
717
718         for (tmp = &mm->context.sram_list; *tmp; tmp = &(*tmp)->next)
719                 if ((*tmp)->addr == addr)
720                         goto found;
721         return -1;
722 found:
723         lsl = *tmp;
724         sram_free(addr);
725         *tmp = lsl->next;
726         kfree(lsl);
727
728         return 0;
729 }
730 EXPORT_SYMBOL(sram_free_with_lsl);
731
732 void *sram_alloc_with_lsl(size_t size, unsigned long flags)
733 {
734         void *addr = NULL;
735         struct sram_list_struct *lsl = NULL;
736         struct mm_struct *mm = current->mm;
737
738         lsl = kzalloc(sizeof(struct sram_list_struct), GFP_KERNEL);
739         if (!lsl)
740                 return NULL;
741
742         if (flags & L1_INST_SRAM)
743                 addr = l1_inst_sram_alloc(size);
744
745         if (addr == NULL && (flags & L1_DATA_A_SRAM))
746                 addr = l1_data_A_sram_alloc(size);
747
748         if (addr == NULL && (flags & L1_DATA_B_SRAM))
749                 addr = l1_data_B_sram_alloc(size);
750
751         if (addr == NULL && (flags & L2_SRAM))
752                 addr = l2_sram_alloc(size);
753
754         if (addr == NULL) {
755                 kfree(lsl);
756                 return NULL;
757         }
758         lsl->addr = addr;
759         lsl->length = size;
760         lsl->next = mm->context.sram_list;
761         mm->context.sram_list = lsl;
762         return addr;
763 }
764 EXPORT_SYMBOL(sram_alloc_with_lsl);
765
766 #ifdef CONFIG_PROC_FS
767 /* Once we get a real allocator, we'll throw all of this away.
768  * Until then, we need some sort of visibility into the L1 alloc.
769  */
770 /* Need to keep line of output the same.  Currently, that is 44 bytes
771  * (including newline).
772  */
773 static int _sram_proc_read(char *buf, int *len, int count, const char *desc,
774                 struct sram_piece *pfree_head,
775                 struct sram_piece *pused_head)
776 {
777         struct sram_piece *pslot;
778
779         if (!pfree_head || !pused_head)
780                 return -1;
781
782         *len += sprintf(&buf[*len], "--- SRAM %-14s Size   PID State     \n", desc);
783
784         /* search the relevant memory slot */
785         pslot = pused_head->next;
786
787         while (pslot != NULL) {
788                 *len += sprintf(&buf[*len], "%p-%p %10i %5i %-10s\n",
789                         pslot->paddr, pslot->paddr + pslot->size,
790                         pslot->size, pslot->pid, "ALLOCATED");
791
792                 pslot = pslot->next;
793         }
794
795         pslot = pfree_head->next;
796
797         while (pslot != NULL) {
798                 *len += sprintf(&buf[*len], "%p-%p %10i %5i %-10s\n",
799                         pslot->paddr, pslot->paddr + pslot->size,
800                         pslot->size, pslot->pid, "FREE");
801
802                 pslot = pslot->next;
803         }
804
805         return 0;
806 }
807 static int sram_proc_read(char *buf, char **start, off_t offset, int count,
808                 int *eof, void *data)
809 {
810         int len = 0;
811         unsigned int cpu;
812
813         for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
814                 if (_sram_proc_read(buf, &len, count, "Scratchpad",
815                         &per_cpu(free_l1_ssram_head, cpu), &per_cpu(used_l1_ssram_head, cpu)))
816                         goto not_done;
817 #if L1_DATA_A_LENGTH != 0
818                 if (_sram_proc_read(buf, &len, count, "L1 Data A",
819                         &per_cpu(free_l1_data_A_sram_head, cpu),
820                         &per_cpu(used_l1_data_A_sram_head, cpu)))
821                         goto not_done;
822 #endif
823 #if L1_DATA_B_LENGTH != 0
824                 if (_sram_proc_read(buf, &len, count, "L1 Data B",
825                         &per_cpu(free_l1_data_B_sram_head, cpu),
826                         &per_cpu(used_l1_data_B_sram_head, cpu)))
827                         goto not_done;
828 #endif
829 #if L1_CODE_LENGTH != 0
830                 if (_sram_proc_read(buf, &len, count, "L1 Instruction",
831                         &per_cpu(free_l1_inst_sram_head, cpu),
832                         &per_cpu(used_l1_inst_sram_head, cpu)))
833                         goto not_done;
834 #endif
835         }
836 #if L2_LENGTH != 0
837         if (_sram_proc_read(buf, &len, count, "L2", &free_l2_sram_head,
838                 &used_l2_sram_head))
839                 goto not_done;
840 #endif
841         *eof = 1;
842  not_done:
843         return len;
844 }
845
846 static int __init sram_proc_init(void)
847 {
848         struct proc_dir_entry *ptr;
849         ptr = create_proc_entry("sram", S_IFREG | S_IRUGO, NULL);
850         if (!ptr) {
851                 printk(KERN_WARNING "unable to create /proc/sram\n");
852                 return -1;
853         }
854         ptr->owner = THIS_MODULE;
855         ptr->read_proc = sram_proc_read;
856         return 0;
857 }
858 late_initcall(sram_proc_init);
859 #endif