atomic_ops.txt: mention local_t
[safe/jmp/linux-2.6] / Documentation / atomic_ops.txt
1                 Semantics and Behavior of Atomic and
2                          Bitmask Operations
3
4                           David S. Miller        
5
6         This document is intended to serve as a guide to Linux port
7 maintainers on how to implement atomic counter, bitops, and spinlock
8 interfaces properly.
9
10         The atomic_t type should be defined as a signed integer.
11 Also, it should be made opaque such that any kind of cast to a normal
12 C integer type will fail.  Something like the following should
13 suffice:
14
15         typedef struct { volatile int counter; } atomic_t;
16
17 local_t is very similar to atomic_t. If the counter is per CPU and only
18 updated by one CPU, local_t is probably more appropriate. Please see
19 Documentation/local_ops.txt for the semantics of local_t.
20
21         The first operations to implement for atomic_t's are the
22 initializers and plain reads.
23
24         #define ATOMIC_INIT(i)          { (i) }
25         #define atomic_set(v, i)        ((v)->counter = (i))
26
27 The first macro is used in definitions, such as:
28
29 static atomic_t my_counter = ATOMIC_INIT(1);
30
31 The second interface can be used at runtime, as in:
32
33         struct foo { atomic_t counter; };
34         ...
35
36         struct foo *k;
37
38         k = kmalloc(sizeof(*k), GFP_KERNEL);
39         if (!k)
40                 return -ENOMEM;
41         atomic_set(&k->counter, 0);
42
43 Next, we have:
44
45         #define atomic_read(v)  ((v)->counter)
46
47 which simply reads the current value of the counter.
48
49 Now, we move onto the actual atomic operation interfaces.
50
51         void atomic_add(int i, atomic_t *v);
52         void atomic_sub(int i, atomic_t *v);
53         void atomic_inc(atomic_t *v);
54         void atomic_dec(atomic_t *v);
55
56 These four routines add and subtract integral values to/from the given
57 atomic_t value.  The first two routines pass explicit integers by
58 which to make the adjustment, whereas the latter two use an implicit
59 adjustment value of "1".
60
61 One very important aspect of these two routines is that they DO NOT
62 require any explicit memory barriers.  They need only perform the
63 atomic_t counter update in an SMP safe manner.
64
65 Next, we have:
66
67         int atomic_inc_return(atomic_t *v);
68         int atomic_dec_return(atomic_t *v);
69
70 These routines add 1 and subtract 1, respectively, from the given
71 atomic_t and return the new counter value after the operation is
72 performed.
73
74 Unlike the above routines, it is required that explicit memory
75 barriers are performed before and after the operation.  It must be
76 done such that all memory operations before and after the atomic
77 operation calls are strongly ordered with respect to the atomic
78 operation itself.
79
80 For example, it should behave as if a smp_mb() call existed both
81 before and after the atomic operation.
82
83 If the atomic instructions used in an implementation provide explicit
84 memory barrier semantics which satisfy the above requirements, that is
85 fine as well.
86
87 Let's move on:
88
89         int atomic_add_return(int i, atomic_t *v);
90         int atomic_sub_return(int i, atomic_t *v);
91
92 These behave just like atomic_{inc,dec}_return() except that an
93 explicit counter adjustment is given instead of the implicit "1".
94 This means that like atomic_{inc,dec}_return(), the memory barrier
95 semantics are required.
96
97 Next:
98
99         int atomic_inc_and_test(atomic_t *v);
100         int atomic_dec_and_test(atomic_t *v);
101
102 These two routines increment and decrement by 1, respectively, the
103 given atomic counter.  They return a boolean indicating whether the
104 resulting counter value was zero or not.
105
106 It requires explicit memory barrier semantics around the operation as
107 above.
108
109         int atomic_sub_and_test(int i, atomic_t *v);
110
111 This is identical to atomic_dec_and_test() except that an explicit
112 decrement is given instead of the implicit "1".  It requires explicit
113 memory barrier semantics around the operation.
114
115         int atomic_add_negative(int i, atomic_t *v);
116
117 The given increment is added to the given atomic counter value.  A
118 boolean is return which indicates whether the resulting counter value
119 is negative.  It requires explicit memory barrier semantics around the
120 operation.
121
122 Then:
123
124         int atomic_cmpxchg(atomic_t *v, int old, int new);
125
126 This performs an atomic compare exchange operation on the atomic value v,
127 with the given old and new values. Like all atomic_xxx operations,
128 atomic_cmpxchg will only satisfy its atomicity semantics as long as all
129 other accesses of *v are performed through atomic_xxx operations.
130
131 atomic_cmpxchg requires explicit memory barriers around the operation.
132
133 The semantics for atomic_cmpxchg are the same as those defined for 'cas'
134 below.
135
136 Finally:
137
138         int atomic_add_unless(atomic_t *v, int a, int u);
139
140 If the atomic value v is not equal to u, this function adds a to v, and
141 returns non zero. If v is equal to u then it returns zero. This is done as
142 an atomic operation.
143
144 atomic_add_unless requires explicit memory barriers around the operation.
145
146 atomic_inc_not_zero, equivalent to atomic_add_unless(v, 1, 0)
147
148
149 If a caller requires memory barrier semantics around an atomic_t
150 operation which does not return a value, a set of interfaces are
151 defined which accomplish this:
152
153         void smp_mb__before_atomic_dec(void);
154         void smp_mb__after_atomic_dec(void);
155         void smp_mb__before_atomic_inc(void);
156         void smp_mb__after_atomic_inc(void);
157
158 For example, smp_mb__before_atomic_dec() can be used like so:
159
160         obj->dead = 1;
161         smp_mb__before_atomic_dec();
162         atomic_dec(&obj->ref_count);
163
164 It makes sure that all memory operations preceding the atomic_dec()
165 call are strongly ordered with respect to the atomic counter
166 operation.  In the above example, it guarantees that the assignment of
167 "1" to obj->dead will be globally visible to other cpus before the
168 atomic counter decrement.
169
170 Without the explicit smp_mb__before_atomic_dec() call, the
171 implementation could legally allow the atomic counter update visible
172 to other cpus before the "obj->dead = 1;" assignment.
173
174 The other three interfaces listed are used to provide explicit
175 ordering with respect to memory operations after an atomic_dec() call
176 (smp_mb__after_atomic_dec()) and around atomic_inc() calls
177 (smp_mb__{before,after}_atomic_inc()).
178
179 A missing memory barrier in the cases where they are required by the
180 atomic_t implementation above can have disastrous results.  Here is
181 an example, which follows a pattern occurring frequently in the Linux
182 kernel.  It is the use of atomic counters to implement reference
183 counting, and it works such that once the counter falls to zero it can
184 be guaranteed that no other entity can be accessing the object:
185
186 static void obj_list_add(struct obj *obj)
187 {
188         obj->active = 1;
189         list_add(&obj->list);
190 }
191
192 static void obj_list_del(struct obj *obj)
193 {
194         list_del(&obj->list);
195         obj->active = 0;
196 }
197
198 static void obj_destroy(struct obj *obj)
199 {
200         BUG_ON(obj->active);
201         kfree(obj);
202 }
203
204 struct obj *obj_list_peek(struct list_head *head)
205 {
206         if (!list_empty(head)) {
207                 struct obj *obj;
208
209                 obj = list_entry(head->next, struct obj, list);
210                 atomic_inc(&obj->refcnt);
211                 return obj;
212         }
213         return NULL;
214 }
215
216 void obj_poke(void)
217 {
218         struct obj *obj;
219
220         spin_lock(&global_list_lock);
221         obj = obj_list_peek(&global_list);
222         spin_unlock(&global_list_lock);
223
224         if (obj) {
225                 obj->ops->poke(obj);
226                 if (atomic_dec_and_test(&obj->refcnt))
227                         obj_destroy(obj);
228         }
229 }
230
231 void obj_timeout(struct obj *obj)
232 {
233         spin_lock(&global_list_lock);
234         obj_list_del(obj);
235         spin_unlock(&global_list_lock);
236
237         if (atomic_dec_and_test(&obj->refcnt))
238                 obj_destroy(obj);
239 }
240
241 (This is a simplification of the ARP queue management in the
242  generic neighbour discover code of the networking.  Olaf Kirch
243  found a bug wrt. memory barriers in kfree_skb() that exposed
244  the atomic_t memory barrier requirements quite clearly.)
245
246 Given the above scheme, it must be the case that the obj->active
247 update done by the obj list deletion be visible to other processors
248 before the atomic counter decrement is performed.
249
250 Otherwise, the counter could fall to zero, yet obj->active would still
251 be set, thus triggering the assertion in obj_destroy().  The error
252 sequence looks like this:
253
254         cpu 0                           cpu 1
255         obj_poke()                      obj_timeout()
256         obj = obj_list_peek();
257         ... gains ref to obj, refcnt=2
258                                         obj_list_del(obj);
259                                         obj->active = 0 ...
260                                         ... visibility delayed ...
261                                         atomic_dec_and_test()
262                                         ... refcnt drops to 1 ...
263         atomic_dec_and_test()
264         ... refcount drops to 0 ...
265         obj_destroy()
266         BUG() triggers since obj->active
267         still seen as one
268                                         obj->active update visibility occurs
269
270 With the memory barrier semantics required of the atomic_t operations
271 which return values, the above sequence of memory visibility can never
272 happen.  Specifically, in the above case the atomic_dec_and_test()
273 counter decrement would not become globally visible until the
274 obj->active update does.
275
276 As a historical note, 32-bit Sparc used to only allow usage of
277 24-bits of it's atomic_t type.  This was because it used 8 bits
278 as a spinlock for SMP safety.  Sparc32 lacked a "compare and swap"
279 type instruction.  However, 32-bit Sparc has since been moved over
280 to a "hash table of spinlocks" scheme, that allows the full 32-bit
281 counter to be realized.  Essentially, an array of spinlocks are
282 indexed into based upon the address of the atomic_t being operated
283 on, and that lock protects the atomic operation.  Parisc uses the
284 same scheme.
285
286 Another note is that the atomic_t operations returning values are
287 extremely slow on an old 386.
288
289 We will now cover the atomic bitmask operations.  You will find that
290 their SMP and memory barrier semantics are similar in shape and scope
291 to the atomic_t ops above.
292
293 Native atomic bit operations are defined to operate on objects aligned
294 to the size of an "unsigned long" C data type, and are least of that
295 size.  The endianness of the bits within each "unsigned long" are the
296 native endianness of the cpu.
297
298         void set_bit(unsigned long nr, volatile unsigned long *addr);
299         void clear_bit(unsigned long nr, volatile unsigned long *addr);
300         void change_bit(unsigned long nr, volatile unsigned long *addr);
301
302 These routines set, clear, and change, respectively, the bit number
303 indicated by "nr" on the bit mask pointed to by "ADDR".
304
305 They must execute atomically, yet there are no implicit memory barrier
306 semantics required of these interfaces.
307
308         int test_and_set_bit(unsigned long nr, volatile unsigned long *addr);
309         int test_and_clear_bit(unsigned long nr, volatile unsigned long *addr);
310         int test_and_change_bit(unsigned long nr, volatile unsigned long *addr);
311
312 Like the above, except that these routines return a boolean which
313 indicates whether the changed bit was set _BEFORE_ the atomic bit
314 operation.
315
316 WARNING! It is incredibly important that the value be a boolean,
317 ie. "0" or "1".  Do not try to be fancy and save a few instructions by
318 declaring the above to return "long" and just returning something like
319 "old_val & mask" because that will not work.
320
321 For one thing, this return value gets truncated to int in many code
322 paths using these interfaces, so on 64-bit if the bit is set in the
323 upper 32-bits then testers will never see that.
324
325 One great example of where this problem crops up are the thread_info
326 flag operations.  Routines such as test_and_set_ti_thread_flag() chop
327 the return value into an int.  There are other places where things
328 like this occur as well.
329
330 These routines, like the atomic_t counter operations returning values,
331 require explicit memory barrier semantics around their execution.  All
332 memory operations before the atomic bit operation call must be made
333 visible globally before the atomic bit operation is made visible.
334 Likewise, the atomic bit operation must be visible globally before any
335 subsequent memory operation is made visible.  For example:
336
337         obj->dead = 1;
338         if (test_and_set_bit(0, &obj->flags))
339                 /* ... */;
340         obj->killed = 1;
341
342 The implementation of test_and_set_bit() must guarantee that
343 "obj->dead = 1;" is visible to cpus before the atomic memory operation
344 done by test_and_set_bit() becomes visible.  Likewise, the atomic
345 memory operation done by test_and_set_bit() must become visible before
346 "obj->killed = 1;" is visible.
347
348 Finally there is the basic operation:
349
350         int test_bit(unsigned long nr, __const__ volatile unsigned long *addr);
351
352 Which returns a boolean indicating if bit "nr" is set in the bitmask
353 pointed to by "addr".
354
355 If explicit memory barriers are required around clear_bit() (which
356 does not return a value, and thus does not need to provide memory
357 barrier semantics), two interfaces are provided:
358
359         void smp_mb__before_clear_bit(void);
360         void smp_mb__after_clear_bit(void);
361
362 They are used as follows, and are akin to their atomic_t operation
363 brothers:
364
365         /* All memory operations before this call will
366          * be globally visible before the clear_bit().
367          */
368         smp_mb__before_clear_bit();
369         clear_bit( ... );
370
371         /* The clear_bit() will be visible before all
372          * subsequent memory operations.
373          */
374          smp_mb__after_clear_bit();
375
376 Finally, there are non-atomic versions of the bitmask operations
377 provided.  They are used in contexts where some other higher-level SMP
378 locking scheme is being used to protect the bitmask, and thus less
379 expensive non-atomic operations may be used in the implementation.
380 They have names similar to the above bitmask operation interfaces,
381 except that two underscores are prefixed to the interface name.
382
383         void __set_bit(unsigned long nr, volatile unsigned long *addr);
384         void __clear_bit(unsigned long nr, volatile unsigned long *addr);
385         void __change_bit(unsigned long nr, volatile unsigned long *addr);
386         int __test_and_set_bit(unsigned long nr, volatile unsigned long *addr);
387         int __test_and_clear_bit(unsigned long nr, volatile unsigned long *addr);
388         int __test_and_change_bit(unsigned long nr, volatile unsigned long *addr);
389
390 These non-atomic variants also do not require any special memory
391 barrier semantics.
392
393 The routines xchg() and cmpxchg() need the same exact memory barriers
394 as the atomic and bit operations returning values.
395
396 Spinlocks and rwlocks have memory barrier expectations as well.
397 The rule to follow is simple:
398
399 1) When acquiring a lock, the implementation must make it globally
400    visible before any subsequent memory operation.
401
402 2) When releasing a lock, the implementation must make it such that
403    all previous memory operations are globally visible before the
404    lock release.
405
406 Which finally brings us to _atomic_dec_and_lock().  There is an
407 architecture-neutral version implemented in lib/dec_and_lock.c,
408 but most platforms will wish to optimize this in assembler.
409
410         int _atomic_dec_and_lock(atomic_t *atomic, spinlock_t *lock);
411
412 Atomically decrement the given counter, and if will drop to zero
413 atomically acquire the given spinlock and perform the decrement
414 of the counter to zero.  If it does not drop to zero, do nothing
415 with the spinlock.
416
417 It is actually pretty simple to get the memory barrier correct.
418 Simply satisfy the spinlock grab requirements, which is make
419 sure the spinlock operation is globally visible before any
420 subsequent memory operation.
421
422 We can demonstrate this operation more clearly if we define
423 an abstract atomic operation:
424
425         long cas(long *mem, long old, long new);
426
427 "cas" stands for "compare and swap".  It atomically:
428
429 1) Compares "old" with the value currently at "mem".
430 2) If they are equal, "new" is written to "mem".
431 3) Regardless, the current value at "mem" is returned.
432
433 As an example usage, here is what an atomic counter update
434 might look like:
435
436 void example_atomic_inc(long *counter)
437 {
438         long old, new, ret;
439
440         while (1) {
441                 old = *counter;
442                 new = old + 1;
443
444                 ret = cas(counter, old, new);
445                 if (ret == old)
446                         break;
447         }
448 }
449
450 Let's use cas() in order to build a pseudo-C atomic_dec_and_lock():
451
452 int _atomic_dec_and_lock(atomic_t *atomic, spinlock_t *lock)
453 {
454         long old, new, ret;
455         int went_to_zero;
456
457         went_to_zero = 0;
458         while (1) {
459                 old = atomic_read(atomic);
460                 new = old - 1;
461                 if (new == 0) {
462                         went_to_zero = 1;
463                         spin_lock(lock);
464                 }
465                 ret = cas(atomic, old, new);
466                 if (ret == old)
467                         break;
468                 if (went_to_zero) {
469                         spin_unlock(lock);
470                         went_to_zero = 0;
471                 }
472         }
473
474         return went_to_zero;
475 }
476
477 Now, as far as memory barriers go, as long as spin_lock()
478 strictly orders all subsequent memory operations (including
479 the cas()) with respect to itself, things will be fine.
480
481 Said another way, _atomic_dec_and_lock() must guarantee that
482 a counter dropping to zero is never made visible before the
483 spinlock being acquired.
484
485 Note that this also means that for the case where the counter
486 is not dropping to zero, there are no memory ordering
487 requirements.