X-Git-Url: http://ftp.safe.ca/?p=safe%2Fjmp%2Flinux-2.6;a=blobdiff_plain;f=kernel%2Fsched.c;h=1535f3884b88ebd7c33bff7c0e5970a96980a29d;hp=475138c42548f0f8de664d2a77b0bb13ce52efa8;hb=828c09509b9695271bcbdc53e9fc9a6a737148d2;hpb=00aec93d10a051ea64f83eff75d4065a19508ea6 diff --git a/kernel/sched.c b/kernel/sched.c index 475138c..1535f38 100644 --- a/kernel/sched.c +++ b/kernel/sched.c @@ -39,7 +39,7 @@ #include #include #include -#include +#include #include #include #include @@ -64,7 +64,6 @@ #include #include #include -#include #include #include #include @@ -120,30 +119,6 @@ */ #define RUNTIME_INF ((u64)~0ULL) -#ifdef CONFIG_SMP - -static void double_rq_lock(struct rq *rq1, struct rq *rq2); - -/* - * Divide a load by a sched group cpu_power : (load / sg->__cpu_power) - * Since cpu_power is a 'constant', we can use a reciprocal divide. - */ -static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load) -{ - return reciprocal_divide(load, sg->reciprocal_cpu_power); -} - -/* - * Each time a sched group cpu_power is changed, - * we must compute its reciprocal value - */ -static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val) -{ - sg->__cpu_power += val; - sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power); -} -#endif - static inline int rt_policy(int policy) { if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR)) @@ -309,8 +284,8 @@ void set_tg_uid(struct user_struct *user) /* * Root task group. - * Every UID task group (including init_task_group aka UID-0) will - * be a child to this group. + * Every UID task group (including init_task_group aka UID-0) will + * be a child to this group. */ struct task_group root_task_group; @@ -318,12 +293,12 @@ struct task_group root_task_group; /* Default task group's sched entity on each cpu */ static DEFINE_PER_CPU(struct sched_entity, init_sched_entity); /* Default task group's cfs_rq on each cpu */ -static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp; +static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq); #endif /* CONFIG_FAIR_GROUP_SCHED */ #ifdef CONFIG_RT_GROUP_SCHED static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity); -static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp; +static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq); #endif /* CONFIG_RT_GROUP_SCHED */ #else /* !CONFIG_USER_SCHED */ #define root_task_group init_task_group @@ -401,13 +376,6 @@ static inline void set_task_rq(struct task_struct *p, unsigned int cpu) #else -#ifdef CONFIG_SMP -static int root_task_group_empty(void) -{ - return 1; -} -#endif - static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } static inline struct task_group *task_group(struct task_struct *p) { @@ -537,14 +505,6 @@ struct root_domain { #ifdef CONFIG_SMP struct cpupri cpupri; #endif -#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) - /* - * Preferred wake up cpu nominated by sched_mc balance that will be - * used when most cpus are idle in the system indicating overall very - * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2) - */ - unsigned int sched_mc_preferred_wakeup_cpu; -#endif }; /* @@ -627,6 +587,9 @@ struct rq { struct task_struct *migration_thread; struct list_head migration_queue; + + u64 rt_avg; + u64 age_stamp; #endif /* calc_load related fields */ @@ -666,9 +629,10 @@ struct rq { static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); -static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync) +static inline +void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) { - rq->curr->sched_class->check_preempt_curr(rq, p, sync); + rq->curr->sched_class->check_preempt_curr(rq, p, flags); } static inline int cpu_of(struct rq *rq) @@ -717,15 +681,9 @@ inline void update_rq_clock(struct rq *rq) * This interface allows printk to be called with the runqueue lock * held and know whether or not it is OK to wake up the klogd. */ -int runqueue_is_locked(void) +int runqueue_is_locked(int cpu) { - int cpu = get_cpu(); - struct rq *rq = cpu_rq(cpu); - int ret; - - ret = spin_is_locked(&rq->lock); - put_cpu(); - return ret; + return spin_is_locked(&cpu_rq(cpu)->lock); } /* @@ -822,7 +780,7 @@ static int sched_feat_open(struct inode *inode, struct file *filp) return single_open(filp, sched_feat_show, NULL); } -static struct file_operations sched_feat_fops = { +static const struct file_operations sched_feat_fops = { .open = sched_feat_open, .write = sched_feat_write, .read = seq_read, @@ -863,6 +821,14 @@ unsigned int sysctl_sched_shares_ratelimit = 250000; unsigned int sysctl_sched_shares_thresh = 4; /* + * period over which we average the RT time consumption, measured + * in ms. + * + * default: 1s + */ +const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; + +/* * period over which we measure -rt task cpu usage in us. * default: 1s */ @@ -1280,12 +1246,37 @@ void wake_up_idle_cpu(int cpu) } #endif /* CONFIG_NO_HZ */ +static u64 sched_avg_period(void) +{ + return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2; +} + +static void sched_avg_update(struct rq *rq) +{ + s64 period = sched_avg_period(); + + while ((s64)(rq->clock - rq->age_stamp) > period) { + rq->age_stamp += period; + rq->rt_avg /= 2; + } +} + +static void sched_rt_avg_update(struct rq *rq, u64 rt_delta) +{ + rq->rt_avg += rt_delta; + sched_avg_update(rq); +} + #else /* !CONFIG_SMP */ static void resched_task(struct task_struct *p) { assert_spin_locked(&task_rq(p)->lock); set_tsk_need_resched(p); } + +static void sched_rt_avg_update(struct rq *rq, u64 rt_delta) +{ +} #endif /* CONFIG_SMP */ #if BITS_PER_LONG == 32 @@ -1496,8 +1487,65 @@ static int tg_nop(struct task_group *tg, void *data) #endif #ifdef CONFIG_SMP -static unsigned long source_load(int cpu, int type); -static unsigned long target_load(int cpu, int type); +/* Used instead of source_load when we know the type == 0 */ +static unsigned long weighted_cpuload(const int cpu) +{ + return cpu_rq(cpu)->load.weight; +} + +/* + * Return a low guess at the load of a migration-source cpu weighted + * according to the scheduling class and "nice" value. + * + * We want to under-estimate the load of migration sources, to + * balance conservatively. + */ +static unsigned long source_load(int cpu, int type) +{ + struct rq *rq = cpu_rq(cpu); + unsigned long total = weighted_cpuload(cpu); + + if (type == 0 || !sched_feat(LB_BIAS)) + return total; + + return min(rq->cpu_load[type-1], total); +} + +/* + * Return a high guess at the load of a migration-target cpu weighted + * according to the scheduling class and "nice" value. + */ +static unsigned long target_load(int cpu, int type) +{ + struct rq *rq = cpu_rq(cpu); + unsigned long total = weighted_cpuload(cpu); + + if (type == 0 || !sched_feat(LB_BIAS)) + return total; + + return max(rq->cpu_load[type-1], total); +} + +static struct sched_group *group_of(int cpu) +{ + struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd); + + if (!sd) + return NULL; + + return sd->groups; +} + +static unsigned long power_of(int cpu) +{ + struct sched_group *group = group_of(cpu); + + if (!group) + return SCHED_LOAD_SCALE; + + return group->cpu_power; +} + static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd); static unsigned long cpu_avg_load_per_task(int cpu) @@ -1515,33 +1563,35 @@ static unsigned long cpu_avg_load_per_task(int cpu) #ifdef CONFIG_FAIR_GROUP_SCHED +struct update_shares_data { + unsigned long rq_weight[NR_CPUS]; +}; + +static DEFINE_PER_CPU(struct update_shares_data, update_shares_data); + static void __set_se_shares(struct sched_entity *se, unsigned long shares); /* * Calculate and set the cpu's group shares. */ -static void -update_group_shares_cpu(struct task_group *tg, int cpu, - unsigned long sd_shares, unsigned long sd_rq_weight) +static void update_group_shares_cpu(struct task_group *tg, int cpu, + unsigned long sd_shares, + unsigned long sd_rq_weight, + struct update_shares_data *usd) { - unsigned long rq_weight; - unsigned long shares; + unsigned long shares, rq_weight; int boost = 0; - if (!tg->se[cpu]) - return; - - rq_weight = tg->cfs_rq[cpu]->rq_weight; + rq_weight = usd->rq_weight[cpu]; if (!rq_weight) { boost = 1; rq_weight = NICE_0_LOAD; } /* - * \Sum shares * rq_weight - * shares = ----------------------- - * \Sum rq_weight - * + * \Sum_j shares_j * rq_weight_i + * shares_i = ----------------------------- + * \Sum_j rq_weight_j */ shares = (sd_shares * rq_weight) / sd_rq_weight; shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES); @@ -1552,6 +1602,7 @@ update_group_shares_cpu(struct task_group *tg, int cpu, unsigned long flags; spin_lock_irqsave(&rq->lock, flags); + tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight; tg->cfs_rq[cpu]->shares = boost ? 0 : shares; __set_se_shares(tg->se[cpu], shares); spin_unlock_irqrestore(&rq->lock, flags); @@ -1565,25 +1616,31 @@ update_group_shares_cpu(struct task_group *tg, int cpu, */ static int tg_shares_up(struct task_group *tg, void *data) { - unsigned long weight, rq_weight = 0, eff_weight = 0; - unsigned long shares = 0; + unsigned long weight, rq_weight = 0, shares = 0; + struct update_shares_data *usd; struct sched_domain *sd = data; + unsigned long flags; int i; + if (!tg->se[0]) + return 0; + + local_irq_save(flags); + usd = &__get_cpu_var(update_shares_data); + for_each_cpu(i, sched_domain_span(sd)) { + weight = tg->cfs_rq[i]->load.weight; + usd->rq_weight[i] = weight; + /* * If there are currently no tasks on the cpu pretend there * is one of average load so that when a new task gets to * run here it will not get delayed by group starvation. */ - weight = tg->cfs_rq[i]->load.weight; - tg->cfs_rq[i]->rq_weight = weight; - rq_weight += weight; - if (!weight) weight = NICE_0_LOAD; - eff_weight += weight; + rq_weight += weight; shares += tg->cfs_rq[i]->shares; } @@ -1593,14 +1650,10 @@ static int tg_shares_up(struct task_group *tg, void *data) if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE)) shares = tg->shares; - for_each_cpu(i, sched_domain_span(sd)) { - unsigned long sd_rq_weight = rq_weight; - - if (!tg->cfs_rq[i]->rq_weight) - sd_rq_weight = eff_weight; + for_each_cpu(i, sched_domain_span(sd)) + update_group_shares_cpu(tg, i, shares, rq_weight, usd); - update_group_shares_cpu(tg, i, shares, sd_rq_weight); - } + local_irq_restore(flags); return 0; } @@ -1677,6 +1730,8 @@ static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd) #ifdef CONFIG_PREEMPT +static void double_rq_lock(struct rq *rq1, struct rq *rq2); + /* * fair double_lock_balance: Safely acquires both rq->locks in a fair * way at the expense of forcing extra atomic operations in all @@ -1941,13 +1996,6 @@ static inline void check_class_changed(struct rq *rq, struct task_struct *p, } #ifdef CONFIG_SMP - -/* Used instead of source_load when we know the type == 0 */ -static unsigned long weighted_cpuload(const int cpu) -{ - return cpu_rq(cpu)->load.weight; -} - /* * Is this task likely cache-hot: */ @@ -2005,7 +2053,7 @@ void set_task_cpu(struct task_struct *p, unsigned int new_cpu) if (task_hot(p, old_rq->clock, NULL)) schedstat_inc(p, se.nr_forced2_migrations); #endif - perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS, + perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0); } p->se.vruntime -= old_cfsrq->min_vruntime - @@ -2221,186 +2269,6 @@ void kick_process(struct task_struct *p) preempt_enable(); } EXPORT_SYMBOL_GPL(kick_process); - -/* - * Return a low guess at the load of a migration-source cpu weighted - * according to the scheduling class and "nice" value. - * - * We want to under-estimate the load of migration sources, to - * balance conservatively. - */ -static unsigned long source_load(int cpu, int type) -{ - struct rq *rq = cpu_rq(cpu); - unsigned long total = weighted_cpuload(cpu); - - if (type == 0 || !sched_feat(LB_BIAS)) - return total; - - return min(rq->cpu_load[type-1], total); -} - -/* - * Return a high guess at the load of a migration-target cpu weighted - * according to the scheduling class and "nice" value. - */ -static unsigned long target_load(int cpu, int type) -{ - struct rq *rq = cpu_rq(cpu); - unsigned long total = weighted_cpuload(cpu); - - if (type == 0 || !sched_feat(LB_BIAS)) - return total; - - return max(rq->cpu_load[type-1], total); -} - -/* - * find_idlest_group finds and returns the least busy CPU group within the - * domain. - */ -static struct sched_group * -find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) -{ - struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups; - unsigned long min_load = ULONG_MAX, this_load = 0; - int load_idx = sd->forkexec_idx; - int imbalance = 100 + (sd->imbalance_pct-100)/2; - - do { - unsigned long load, avg_load; - int local_group; - int i; - - /* Skip over this group if it has no CPUs allowed */ - if (!cpumask_intersects(sched_group_cpus(group), - &p->cpus_allowed)) - continue; - - local_group = cpumask_test_cpu(this_cpu, - sched_group_cpus(group)); - - /* Tally up the load of all CPUs in the group */ - avg_load = 0; - - for_each_cpu(i, sched_group_cpus(group)) { - /* Bias balancing toward cpus of our domain */ - if (local_group) - load = source_load(i, load_idx); - else - load = target_load(i, load_idx); - - avg_load += load; - } - - /* Adjust by relative CPU power of the group */ - avg_load = sg_div_cpu_power(group, - avg_load * SCHED_LOAD_SCALE); - - if (local_group) { - this_load = avg_load; - this = group; - } else if (avg_load < min_load) { - min_load = avg_load; - idlest = group; - } - } while (group = group->next, group != sd->groups); - - if (!idlest || 100*this_load < imbalance*min_load) - return NULL; - return idlest; -} - -/* - * find_idlest_cpu - find the idlest cpu among the cpus in group. - */ -static int -find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) -{ - unsigned long load, min_load = ULONG_MAX; - int idlest = -1; - int i; - - /* Traverse only the allowed CPUs */ - for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) { - load = weighted_cpuload(i); - - if (load < min_load || (load == min_load && i == this_cpu)) { - min_load = load; - idlest = i; - } - } - - return idlest; -} - -/* - * sched_balance_self: balance the current task (running on cpu) in domains - * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and - * SD_BALANCE_EXEC. - * - * Balance, ie. select the least loaded group. - * - * Returns the target CPU number, or the same CPU if no balancing is needed. - * - * preempt must be disabled. - */ -static int sched_balance_self(int cpu, int flag) -{ - struct task_struct *t = current; - struct sched_domain *tmp, *sd = NULL; - - for_each_domain(cpu, tmp) { - /* - * If power savings logic is enabled for a domain, stop there. - */ - if (tmp->flags & SD_POWERSAVINGS_BALANCE) - break; - if (tmp->flags & flag) - sd = tmp; - } - - if (sd) - update_shares(sd); - - while (sd) { - struct sched_group *group; - int new_cpu, weight; - - if (!(sd->flags & flag)) { - sd = sd->child; - continue; - } - - group = find_idlest_group(sd, t, cpu); - if (!group) { - sd = sd->child; - continue; - } - - new_cpu = find_idlest_cpu(group, t, cpu); - if (new_cpu == -1 || new_cpu == cpu) { - /* Now try balancing at a lower domain level of cpu */ - sd = sd->child; - continue; - } - - /* Now try balancing at a lower domain level of new_cpu */ - cpu = new_cpu; - weight = cpumask_weight(sched_domain_span(sd)); - sd = NULL; - for_each_domain(cpu, tmp) { - if (weight <= cpumask_weight(sched_domain_span(tmp))) - break; - if (tmp->flags & flag) - sd = tmp; - } - /* while loop will break here if sd == NULL */ - } - - return cpu; -} - #endif /* CONFIG_SMP */ /** @@ -2438,37 +2306,22 @@ void task_oncpu_function_call(struct task_struct *p, * * returns failure only if the task is already active. */ -static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync) +static int try_to_wake_up(struct task_struct *p, unsigned int state, + int wake_flags) { int cpu, orig_cpu, this_cpu, success = 0; unsigned long flags; - long old_state; struct rq *rq; if (!sched_feat(SYNC_WAKEUPS)) - sync = 0; + wake_flags &= ~WF_SYNC; -#ifdef CONFIG_SMP - if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) { - struct sched_domain *sd; - - this_cpu = raw_smp_processor_id(); - cpu = task_cpu(p); - - for_each_domain(this_cpu, sd) { - if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { - update_shares(sd); - break; - } - } - } -#endif + this_cpu = get_cpu(); smp_wmb(); rq = task_rq_lock(p, &flags); update_rq_clock(rq); - old_state = p->state; - if (!(old_state & state)) + if (!(p->state & state)) goto out; if (p->se.on_rq) @@ -2476,27 +2329,29 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync) cpu = task_cpu(p); orig_cpu = cpu; - this_cpu = smp_processor_id(); #ifdef CONFIG_SMP if (unlikely(task_running(rq, p))) goto out_activate; - cpu = p->sched_class->select_task_rq(p, sync); - if (cpu != orig_cpu) { + /* + * In order to handle concurrent wakeups and release the rq->lock + * we put the task in TASK_WAKING state. + * + * First fix up the nr_uninterruptible count: + */ + if (task_contributes_to_load(p)) + rq->nr_uninterruptible--; + p->state = TASK_WAKING; + task_rq_unlock(rq, &flags); + + cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, wake_flags); + if (cpu != orig_cpu) set_task_cpu(p, cpu); - task_rq_unlock(rq, &flags); - /* might preempt at this point */ - rq = task_rq_lock(p, &flags); - old_state = p->state; - if (!(old_state & state)) - goto out; - if (p->se.on_rq) - goto out_running; - this_cpu = smp_processor_id(); - cpu = task_cpu(p); - } + rq = task_rq_lock(p, &flags); + WARN_ON(p->state != TASK_WAKING); + cpu = task_cpu(p); #ifdef CONFIG_SCHEDSTATS schedstat_inc(rq, ttwu_count); @@ -2516,7 +2371,7 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync) out_activate: #endif /* CONFIG_SMP */ schedstat_inc(p, se.nr_wakeups); - if (sync) + if (wake_flags & WF_SYNC) schedstat_inc(p, se.nr_wakeups_sync); if (orig_cpu != cpu) schedstat_inc(p, se.nr_wakeups_migrate); @@ -2545,7 +2400,7 @@ out_activate: out_running: trace_sched_wakeup(rq, p, success); - check_preempt_curr(rq, p, sync); + check_preempt_curr(rq, p, wake_flags); p->state = TASK_RUNNING; #ifdef CONFIG_SMP @@ -2554,6 +2409,7 @@ out_running: #endif out: task_rq_unlock(rq, &flags); + put_cpu(); return success; } @@ -2596,6 +2452,7 @@ static void __sched_fork(struct task_struct *p) p->se.avg_overlap = 0; p->se.start_runtime = 0; p->se.avg_wakeup = sysctl_sched_wakeup_granularity; + p->se.avg_running = 0; #ifdef CONFIG_SCHEDSTATS p->se.wait_start = 0; @@ -2657,11 +2514,6 @@ void sched_fork(struct task_struct *p, int clone_flags) __sched_fork(p); -#ifdef CONFIG_SMP - cpu = sched_balance_self(cpu, SD_BALANCE_FORK); -#endif - set_task_cpu(p, cpu); - /* * Make sure we do not leak PI boosting priority to the child. */ @@ -2692,6 +2544,11 @@ void sched_fork(struct task_struct *p, int clone_flags) if (!rt_prio(p->prio)) p->sched_class = &fair_sched_class; +#ifdef CONFIG_SMP + cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0); +#endif + set_task_cpu(p, cpu); + #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) if (likely(sched_info_on())) memset(&p->sched_info, 0, sizeof(p->sched_info)); @@ -2737,7 +2594,7 @@ void wake_up_new_task(struct task_struct *p, unsigned long clone_flags) inc_nr_running(rq); } trace_sched_wakeup_new(rq, p, 1); - check_preempt_curr(rq, p, 0); + check_preempt_curr(rq, p, WF_FORK); #ifdef CONFIG_SMP if (p->sched_class->task_wake_up) p->sched_class->task_wake_up(rq, p); @@ -2861,7 +2718,7 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev) */ prev_state = prev->state; finish_arch_switch(prev); - perf_counter_task_sched_in(current, cpu_of(rq)); + perf_event_task_sched_in(current, cpu_of(rq)); finish_lock_switch(rq, prev); fire_sched_in_preempt_notifiers(current); @@ -3047,6 +2904,19 @@ unsigned long nr_iowait(void) return sum; } +unsigned long nr_iowait_cpu(void) +{ + struct rq *this = this_rq(); + return atomic_read(&this->nr_iowait); +} + +unsigned long this_cpu_load(void) +{ + struct rq *this = this_rq(); + return this->cpu_load[0]; +} + + /* Variables and functions for calc_load */ static atomic_long_t calc_load_tasks; static unsigned long calc_load_update; @@ -3246,7 +3116,7 @@ out: void sched_exec(void) { int new_cpu, this_cpu = get_cpu(); - new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC); + new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0); put_cpu(); if (new_cpu != this_cpu) sched_migrate_task(current, new_cpu); @@ -3461,9 +3331,10 @@ static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, { const struct sched_class *class; - for (class = sched_class_highest; class; class = class->next) + for_each_class(class) { if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle)) return 1; + } return 0; } @@ -3626,7 +3497,7 @@ static inline void update_sd_power_savings_stats(struct sched_group *group, * capacity but still has some space to pick up some load * from other group and save more power */ - if (sgs->sum_nr_running > sgs->group_capacity - 1) + if (sgs->sum_nr_running + 1 > sgs->group_capacity) return; if (sgs->sum_nr_running > sds->leader_nr_running || @@ -3665,11 +3536,6 @@ static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, *imbalance = sds->min_load_per_task; sds->busiest = sds->group_min; - if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) { - cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu = - group_first_cpu(sds->group_leader); - } - return 1; } @@ -3694,6 +3560,102 @@ static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ +unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu) +{ + return SCHED_LOAD_SCALE; +} + +unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu) +{ + return default_scale_freq_power(sd, cpu); +} + +unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu) +{ + unsigned long weight = cpumask_weight(sched_domain_span(sd)); + unsigned long smt_gain = sd->smt_gain; + + smt_gain /= weight; + + return smt_gain; +} + +unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu) +{ + return default_scale_smt_power(sd, cpu); +} + +unsigned long scale_rt_power(int cpu) +{ + struct rq *rq = cpu_rq(cpu); + u64 total, available; + + sched_avg_update(rq); + + total = sched_avg_period() + (rq->clock - rq->age_stamp); + available = total - rq->rt_avg; + + if (unlikely((s64)total < SCHED_LOAD_SCALE)) + total = SCHED_LOAD_SCALE; + + total >>= SCHED_LOAD_SHIFT; + + return div_u64(available, total); +} + +static void update_cpu_power(struct sched_domain *sd, int cpu) +{ + unsigned long weight = cpumask_weight(sched_domain_span(sd)); + unsigned long power = SCHED_LOAD_SCALE; + struct sched_group *sdg = sd->groups; + + if (sched_feat(ARCH_POWER)) + power *= arch_scale_freq_power(sd, cpu); + else + power *= default_scale_freq_power(sd, cpu); + + power >>= SCHED_LOAD_SHIFT; + + if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { + if (sched_feat(ARCH_POWER)) + power *= arch_scale_smt_power(sd, cpu); + else + power *= default_scale_smt_power(sd, cpu); + + power >>= SCHED_LOAD_SHIFT; + } + + power *= scale_rt_power(cpu); + power >>= SCHED_LOAD_SHIFT; + + if (!power) + power = 1; + + sdg->cpu_power = power; +} + +static void update_group_power(struct sched_domain *sd, int cpu) +{ + struct sched_domain *child = sd->child; + struct sched_group *group, *sdg = sd->groups; + unsigned long power; + + if (!child) { + update_cpu_power(sd, cpu); + return; + } + + power = 0; + + group = child->groups; + do { + power += group->cpu_power; + group = group->next; + } while (group != child->groups); + + sdg->cpu_power = power; +} + /** * update_sg_lb_stats - Update sched_group's statistics for load balancing. * @group: sched_group whose statistics are to be updated. @@ -3706,7 +3668,8 @@ static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, * @balance: Should we balance. * @sgs: variable to hold the statistics for this group. */ -static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu, +static inline void update_sg_lb_stats(struct sched_domain *sd, + struct sched_group *group, int this_cpu, enum cpu_idle_type idle, int load_idx, int *sd_idle, int local_group, const struct cpumask *cpus, int *balance, struct sg_lb_stats *sgs) @@ -3717,8 +3680,11 @@ static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu, unsigned long sum_avg_load_per_task; unsigned long avg_load_per_task; - if (local_group) + if (local_group) { balance_cpu = group_first_cpu(group); + if (balance_cpu == this_cpu) + update_group_power(sd, this_cpu); + } /* Tally up the load of all CPUs in the group */ sum_avg_load_per_task = avg_load_per_task = 0; @@ -3767,8 +3733,7 @@ static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu, } /* Adjust by relative CPU power of the group */ - sgs->avg_load = sg_div_cpu_power(group, - sgs->group_load * SCHED_LOAD_SCALE); + sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power; /* @@ -3780,14 +3745,14 @@ static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu, * normalized nr_running number somewhere that negates * the hierarchy? */ - avg_load_per_task = sg_div_cpu_power(group, - sum_avg_load_per_task * SCHED_LOAD_SCALE); + avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) / + group->cpu_power; if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task) sgs->group_imb = 1; - sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE; - + sgs->group_capacity = + DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE); } /** @@ -3805,9 +3770,13 @@ static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu, const struct cpumask *cpus, int *balance, struct sd_lb_stats *sds) { + struct sched_domain *child = sd->child; struct sched_group *group = sd->groups; struct sg_lb_stats sgs; - int load_idx; + int load_idx, prefer_sibling = 0; + + if (child && child->flags & SD_PREFER_SIBLING) + prefer_sibling = 1; init_sd_power_savings_stats(sd, sds, idle); load_idx = get_sd_load_idx(sd, idle); @@ -3818,14 +3787,22 @@ static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu, local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(group)); memset(&sgs, 0, sizeof(sgs)); - update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle, + update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle, local_group, cpus, balance, &sgs); if (local_group && balance && !(*balance)) return; sds->total_load += sgs.group_load; - sds->total_pwr += group->__cpu_power; + sds->total_pwr += group->cpu_power; + + /* + * In case the child domain prefers tasks go to siblings + * first, lower the group capacity to one so that we'll try + * and move all the excess tasks away. + */ + if (prefer_sibling) + sgs.group_capacity = min(sgs.group_capacity, 1UL); if (local_group) { sds->this_load = sgs.avg_load; @@ -3845,7 +3822,6 @@ static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu, update_sd_power_savings_stats(group, sds, local_group, &sgs); group = group->next; } while (group != sd->groups); - } /** @@ -3883,28 +3859,28 @@ static inline void fix_small_imbalance(struct sd_lb_stats *sds, * moving them. */ - pwr_now += sds->busiest->__cpu_power * + pwr_now += sds->busiest->cpu_power * min(sds->busiest_load_per_task, sds->max_load); - pwr_now += sds->this->__cpu_power * + pwr_now += sds->this->cpu_power * min(sds->this_load_per_task, sds->this_load); pwr_now /= SCHED_LOAD_SCALE; /* Amount of load we'd subtract */ - tmp = sg_div_cpu_power(sds->busiest, - sds->busiest_load_per_task * SCHED_LOAD_SCALE); + tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) / + sds->busiest->cpu_power; if (sds->max_load > tmp) - pwr_move += sds->busiest->__cpu_power * + pwr_move += sds->busiest->cpu_power * min(sds->busiest_load_per_task, sds->max_load - tmp); /* Amount of load we'd add */ - if (sds->max_load * sds->busiest->__cpu_power < + if (sds->max_load * sds->busiest->cpu_power < sds->busiest_load_per_task * SCHED_LOAD_SCALE) - tmp = sg_div_cpu_power(sds->this, - sds->max_load * sds->busiest->__cpu_power); + tmp = (sds->max_load * sds->busiest->cpu_power) / + sds->this->cpu_power; else - tmp = sg_div_cpu_power(sds->this, - sds->busiest_load_per_task * SCHED_LOAD_SCALE); - pwr_move += sds->this->__cpu_power * + tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) / + sds->this->cpu_power; + pwr_move += sds->this->cpu_power * min(sds->this_load_per_task, sds->this_load + tmp); pwr_move /= SCHED_LOAD_SCALE; @@ -3939,8 +3915,8 @@ static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu, sds->max_load - sds->busiest_load_per_task); /* How much load to actually move to equalise the imbalance */ - *imbalance = min(max_pull * sds->busiest->__cpu_power, - (sds->avg_load - sds->this_load) * sds->this->__cpu_power) + *imbalance = min(max_pull * sds->busiest->cpu_power, + (sds->avg_load - sds->this_load) * sds->this->cpu_power) / SCHED_LOAD_SCALE; /* @@ -4070,15 +4046,18 @@ find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle, int i; for_each_cpu(i, sched_group_cpus(group)) { + unsigned long power = power_of(i); + unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE); unsigned long wl; if (!cpumask_test_cpu(i, cpus)) continue; rq = cpu_rq(i); - wl = weighted_cpuload(i); + wl = weighted_cpuload(i) * SCHED_LOAD_SCALE; + wl /= power; - if (rq->nr_running == 1 && wl > imbalance) + if (capacity && rq->nr_running == 1 && wl > imbalance) continue; if (wl > max_load) { @@ -5113,17 +5092,16 @@ void account_idle_time(cputime_t cputime) */ void account_process_tick(struct task_struct *p, int user_tick) { - cputime_t one_jiffy = jiffies_to_cputime(1); - cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy); + cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); struct rq *rq = this_rq(); if (user_tick) - account_user_time(p, one_jiffy, one_jiffy_scaled); + account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) - account_system_time(p, HARDIRQ_OFFSET, one_jiffy, + account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy, one_jiffy_scaled); else - account_idle_time(one_jiffy); + account_idle_time(cputime_one_jiffy); } /* @@ -5227,7 +5205,7 @@ void scheduler_tick(void) curr->sched_class->task_tick(rq, curr, 0); spin_unlock(&rq->lock); - perf_counter_task_tick(curr, cpu); + perf_event_task_tick(curr, cpu); #ifdef CONFIG_SMP rq->idle_at_tick = idle_cpu(cpu); @@ -5339,14 +5317,13 @@ static inline void schedule_debug(struct task_struct *prev) #endif } -static void put_prev_task(struct rq *rq, struct task_struct *prev) +static void put_prev_task(struct rq *rq, struct task_struct *p) { - if (prev->state == TASK_RUNNING) { - u64 runtime = prev->se.sum_exec_runtime; + u64 runtime = p->se.sum_exec_runtime - p->se.prev_sum_exec_runtime; - runtime -= prev->se.prev_sum_exec_runtime; - runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost); + update_avg(&p->se.avg_running, runtime); + if (p->state == TASK_RUNNING) { /* * In order to avoid avg_overlap growing stale when we are * indeed overlapping and hence not getting put to sleep, grow @@ -5356,9 +5333,12 @@ static void put_prev_task(struct rq *rq, struct task_struct *prev) * correlates to the amount of cache footprint a task can * build up. */ - update_avg(&prev->se.avg_overlap, runtime); + runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost); + update_avg(&p->se.avg_overlap, runtime); + } else { + update_avg(&p->se.avg_running, 0); } - prev->sched_class->put_prev_task(rq, prev); + p->sched_class->put_prev_task(rq, p); } /* @@ -5407,7 +5387,7 @@ need_resched: preempt_disable(); cpu = smp_processor_id(); rq = cpu_rq(cpu); - rcu_qsctr_inc(cpu); + rcu_sched_qs(cpu); prev = rq->curr; switch_count = &prev->nivcsw; @@ -5441,7 +5421,7 @@ need_resched_nonpreemptible: if (likely(prev != next)) { sched_info_switch(prev, next); - perf_counter_task_sched_out(prev, next, cpu); + perf_event_task_sched_out(prev, next, cpu); rq->nr_switches++; rq->curr = next; @@ -5590,10 +5570,10 @@ asmlinkage void __sched preempt_schedule_irq(void) #endif /* CONFIG_PREEMPT */ -int default_wake_function(wait_queue_t *curr, unsigned mode, int sync, +int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, void *key) { - return try_to_wake_up(curr->private, mode, sync); + return try_to_wake_up(curr->private, mode, wake_flags); } EXPORT_SYMBOL(default_wake_function); @@ -5607,14 +5587,14 @@ EXPORT_SYMBOL(default_wake_function); * zero in this (rare) case, and we handle it by continuing to scan the queue. */ static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, - int nr_exclusive, int sync, void *key) + int nr_exclusive, int wake_flags, void *key) { wait_queue_t *curr, *next; list_for_each_entry_safe(curr, next, &q->task_list, task_list) { unsigned flags = curr->flags; - if (curr->func(curr, mode, sync, key) && + if (curr->func(curr, mode, wake_flags, key) && (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) break; } @@ -5675,16 +5655,16 @@ void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, int nr_exclusive, void *key) { unsigned long flags; - int sync = 1; + int wake_flags = WF_SYNC; if (unlikely(!q)) return; if (unlikely(!nr_exclusive)) - sync = 0; + wake_flags = 0; spin_lock_irqsave(&q->lock, flags); - __wake_up_common(q, mode, nr_exclusive, sync, key); + __wake_up_common(q, mode, nr_exclusive, wake_flags, key); spin_unlock_irqrestore(&q->lock, flags); } EXPORT_SYMBOL_GPL(__wake_up_sync_key); @@ -6695,6 +6675,8 @@ int __cond_resched_lock(spinlock_t *lock) int resched = should_resched(); int ret = 0; + lockdep_assert_held(lock); + if (spin_needbreak(lock) || resched) { spin_unlock(lock); if (resched) @@ -6748,7 +6730,9 @@ void __sched io_schedule(void) delayacct_blkio_start(); atomic_inc(&rq->nr_iowait); + current->in_iowait = 1; schedule(); + current->in_iowait = 0; atomic_dec(&rq->nr_iowait); delayacct_blkio_end(); } @@ -6761,7 +6745,9 @@ long __sched io_schedule_timeout(long timeout) delayacct_blkio_start(); atomic_inc(&rq->nr_iowait); + current->in_iowait = 1; ret = schedule_timeout(timeout); + current->in_iowait = 0; atomic_dec(&rq->nr_iowait); delayacct_blkio_end(); return ret; @@ -6843,25 +6829,10 @@ SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, retval = security_task_getscheduler(p); if (retval) - goto out_unlock; - - /* - * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER - * tasks that are on an otherwise idle runqueue: - */ - time_slice = 0; - if (p->policy == SCHED_RR) { - time_slice = DEF_TIMESLICE; - } else if (p->policy != SCHED_FIFO) { - struct sched_entity *se = &p->se; - unsigned long flags; - struct rq *rq; + goto out_unlock; + + time_slice = p->sched_class->get_rr_interval(p); - rq = task_rq_lock(p, &flags); - if (rq->cfs.load.weight) - time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se)); - task_rq_unlock(rq, &flags); - } read_unlock(&tasklist_lock); jiffies_to_timespec(time_slice, &t); retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; @@ -7078,8 +7049,12 @@ int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) { /* Need help from migration thread: drop lock and wait. */ + struct task_struct *mt = rq->migration_thread; + + get_task_struct(mt); task_rq_unlock(rq, &flags); wake_up_process(rq->migration_thread); + put_task_struct(mt); wait_for_completion(&req.done); tlb_migrate_finish(p->mm); return 0; @@ -7137,6 +7112,11 @@ fail: return ret; } +#define RCU_MIGRATION_IDLE 0 +#define RCU_MIGRATION_NEED_QS 1 +#define RCU_MIGRATION_GOT_QS 2 +#define RCU_MIGRATION_MUST_SYNC 3 + /* * migration_thread - this is a highprio system thread that performs * thread migration by bumping thread off CPU then 'pushing' onto @@ -7144,6 +7124,7 @@ fail: */ static int migration_thread(void *data) { + int badcpu; int cpu = (long)data; struct rq *rq; @@ -7178,8 +7159,17 @@ static int migration_thread(void *data) req = list_entry(head->next, struct migration_req, list); list_del_init(head->next); - spin_unlock(&rq->lock); - __migrate_task(req->task, cpu, req->dest_cpu); + if (req->task != NULL) { + spin_unlock(&rq->lock); + __migrate_task(req->task, cpu, req->dest_cpu); + } else if (likely(cpu == (badcpu = smp_processor_id()))) { + req->dest_cpu = RCU_MIGRATION_GOT_QS; + spin_unlock(&rq->lock); + } else { + req->dest_cpu = RCU_MIGRATION_MUST_SYNC; + spin_unlock(&rq->lock); + WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu); + } local_irq_enable(); complete(&req->done); @@ -7693,7 +7683,7 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) /* * Register at high priority so that task migration (migrate_all_tasks) * happens before everything else. This has to be lower priority than - * the notifier in the perf_counter subsystem, though. + * the notifier in the perf_event subsystem, though. */ static struct notifier_block __cpuinitdata migration_notifier = { .notifier_call = migration_call, @@ -7758,7 +7748,7 @@ static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, break; } - if (!group->__cpu_power) { + if (!group->cpu_power) { printk(KERN_CONT "\n"); printk(KERN_ERR "ERROR: domain->cpu_power not " "set\n"); @@ -7782,9 +7772,9 @@ static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); printk(KERN_CONT " %s", str); - if (group->__cpu_power != SCHED_LOAD_SCALE) { - printk(KERN_CONT " (__cpu_power = %d)", - group->__cpu_power); + if (group->cpu_power != SCHED_LOAD_SCALE) { + printk(KERN_CONT " (cpu_power = %d)", + group->cpu_power); } group = group->next; @@ -7849,9 +7839,7 @@ static int sd_degenerate(struct sched_domain *sd) } /* Following flags don't use groups */ - if (sd->flags & (SD_WAKE_IDLE | - SD_WAKE_AFFINE | - SD_WAKE_BALANCE)) + if (sd->flags & (SD_WAKE_AFFINE)) return 0; return 1; @@ -7868,10 +7856,6 @@ sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) return 0; - /* Does parent contain flags not in child? */ - /* WAKE_BALANCE is a subset of WAKE_AFFINE */ - if (cflags & SD_WAKE_AFFINE) - pflags &= ~SD_WAKE_BALANCE; /* Flags needing groups don't count if only 1 group in parent */ if (parent->groups == parent->groups->next) { pflags &= ~(SD_LOAD_BALANCE | @@ -8069,7 +8053,7 @@ init_sched_build_groups(const struct cpumask *span, continue; cpumask_clear(sched_group_cpus(sg)); - sg->__cpu_power = 0; + sg->cpu_power = 0; for_each_cpu(j, span) { if (group_fn(j, cpu_map, NULL, tmpmask) != group) @@ -8177,6 +8161,39 @@ struct static_sched_domain { DECLARE_BITMAP(span, CONFIG_NR_CPUS); }; +struct s_data { +#ifdef CONFIG_NUMA + int sd_allnodes; + cpumask_var_t domainspan; + cpumask_var_t covered; + cpumask_var_t notcovered; +#endif + cpumask_var_t nodemask; + cpumask_var_t this_sibling_map; + cpumask_var_t this_core_map; + cpumask_var_t send_covered; + cpumask_var_t tmpmask; + struct sched_group **sched_group_nodes; + struct root_domain *rd; +}; + +enum s_alloc { + sa_sched_groups = 0, + sa_rootdomain, + sa_tmpmask, + sa_send_covered, + sa_this_core_map, + sa_this_sibling_map, + sa_nodemask, + sa_sched_group_nodes, +#ifdef CONFIG_NUMA + sa_notcovered, + sa_covered, + sa_domainspan, +#endif + sa_none, +}; + /* * SMT sched-domains: */ @@ -8294,11 +8311,76 @@ static void init_numa_sched_groups_power(struct sched_group *group_head) continue; } - sg_inc_cpu_power(sg, sd->groups->__cpu_power); + sg->cpu_power += sd->groups->cpu_power; } sg = sg->next; } while (sg != group_head); } + +static int build_numa_sched_groups(struct s_data *d, + const struct cpumask *cpu_map, int num) +{ + struct sched_domain *sd; + struct sched_group *sg, *prev; + int n, j; + + cpumask_clear(d->covered); + cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map); + if (cpumask_empty(d->nodemask)) { + d->sched_group_nodes[num] = NULL; + goto out; + } + + sched_domain_node_span(num, d->domainspan); + cpumask_and(d->domainspan, d->domainspan, cpu_map); + + sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(), + GFP_KERNEL, num); + if (!sg) { + printk(KERN_WARNING "Can not alloc domain group for node %d\n", + num); + return -ENOMEM; + } + d->sched_group_nodes[num] = sg; + + for_each_cpu(j, d->nodemask) { + sd = &per_cpu(node_domains, j).sd; + sd->groups = sg; + } + + sg->cpu_power = 0; + cpumask_copy(sched_group_cpus(sg), d->nodemask); + sg->next = sg; + cpumask_or(d->covered, d->covered, d->nodemask); + + prev = sg; + for (j = 0; j < nr_node_ids; j++) { + n = (num + j) % nr_node_ids; + cpumask_complement(d->notcovered, d->covered); + cpumask_and(d->tmpmask, d->notcovered, cpu_map); + cpumask_and(d->tmpmask, d->tmpmask, d->domainspan); + if (cpumask_empty(d->tmpmask)) + break; + cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n)); + if (cpumask_empty(d->tmpmask)) + continue; + sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(), + GFP_KERNEL, num); + if (!sg) { + printk(KERN_WARNING + "Can not alloc domain group for node %d\n", j); + return -ENOMEM; + } + sg->cpu_power = 0; + cpumask_copy(sched_group_cpus(sg), d->tmpmask); + sg->next = prev->next; + cpumask_or(d->covered, d->covered, d->tmpmask); + prev->next = sg; + prev = sg; + } +out: + return 0; +} #endif /* CONFIG_NUMA */ #ifdef CONFIG_NUMA @@ -8352,15 +8434,13 @@ static void free_sched_groups(const struct cpumask *cpu_map, * there are asymmetries in the topology. If there are asymmetries, group * having more cpu_power will pickup more load compared to the group having * less cpu_power. - * - * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents - * the maximum number of tasks a group can handle in the presence of other idle - * or lightly loaded groups in the same sched domain. */ static void init_sched_groups_power(int cpu, struct sched_domain *sd) { struct sched_domain *child; struct sched_group *group; + long power; + int weight; WARN_ON(!sd || !sd->groups); @@ -8369,28 +8449,32 @@ static void init_sched_groups_power(int cpu, struct sched_domain *sd) child = sd->child; - sd->groups->__cpu_power = 0; + sd->groups->cpu_power = 0; - /* - * For perf policy, if the groups in child domain share resources - * (for example cores sharing some portions of the cache hierarchy - * or SMT), then set this domain groups cpu_power such that each group - * can handle only one task, when there are other idle groups in the - * same sched domain. - */ - if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) && - (child->flags & - (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) { - sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE); + if (!child) { + power = SCHED_LOAD_SCALE; + weight = cpumask_weight(sched_domain_span(sd)); + /* + * SMT siblings share the power of a single core. + * Usually multiple threads get a better yield out of + * that one core than a single thread would have, + * reflect that in sd->smt_gain. + */ + if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { + power *= sd->smt_gain; + power /= weight; + power >>= SCHED_LOAD_SHIFT; + } + sd->groups->cpu_power += power; return; } /* - * add cpu_power of each child group to this groups cpu_power + * Add cpu_power of each child group to this groups cpu_power. */ group = child->groups; do { - sg_inc_cpu_power(sd->groups, group->__cpu_power); + sd->groups->cpu_power += group->cpu_power; group = group->next; } while (group != child->groups); } @@ -8457,287 +8541,292 @@ static void set_domain_attribute(struct sched_domain *sd, request = attr->relax_domain_level; if (request < sd->level) { /* turn off idle balance on this domain */ - sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE); + sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); } else { /* turn on idle balance on this domain */ - sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE); + sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); + } +} + +static void __free_domain_allocs(struct s_data *d, enum s_alloc what, + const struct cpumask *cpu_map) +{ + switch (what) { + case sa_sched_groups: + free_sched_groups(cpu_map, d->tmpmask); /* fall through */ + d->sched_group_nodes = NULL; + case sa_rootdomain: + free_rootdomain(d->rd); /* fall through */ + case sa_tmpmask: + free_cpumask_var(d->tmpmask); /* fall through */ + case sa_send_covered: + free_cpumask_var(d->send_covered); /* fall through */ + case sa_this_core_map: + free_cpumask_var(d->this_core_map); /* fall through */ + case sa_this_sibling_map: + free_cpumask_var(d->this_sibling_map); /* fall through */ + case sa_nodemask: + free_cpumask_var(d->nodemask); /* fall through */ + case sa_sched_group_nodes: +#ifdef CONFIG_NUMA + kfree(d->sched_group_nodes); /* fall through */ + case sa_notcovered: + free_cpumask_var(d->notcovered); /* fall through */ + case sa_covered: + free_cpumask_var(d->covered); /* fall through */ + case sa_domainspan: + free_cpumask_var(d->domainspan); /* fall through */ +#endif + case sa_none: + break; } } -/* - * Build sched domains for a given set of cpus and attach the sched domains - * to the individual cpus - */ -static int __build_sched_domains(const struct cpumask *cpu_map, - struct sched_domain_attr *attr) +static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, + const struct cpumask *cpu_map) { - int i, err = -ENOMEM; - struct root_domain *rd; - cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered, - tmpmask; -#ifdef CONFIG_NUMA - cpumask_var_t domainspan, covered, notcovered; - struct sched_group **sched_group_nodes = NULL; - int sd_allnodes = 0; - - if (!alloc_cpumask_var(&domainspan, GFP_KERNEL)) - goto out; - if (!alloc_cpumask_var(&covered, GFP_KERNEL)) - goto free_domainspan; - if (!alloc_cpumask_var(¬covered, GFP_KERNEL)) - goto free_covered; -#endif - - if (!alloc_cpumask_var(&nodemask, GFP_KERNEL)) - goto free_notcovered; - if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL)) - goto free_nodemask; - if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL)) - goto free_this_sibling_map; - if (!alloc_cpumask_var(&send_covered, GFP_KERNEL)) - goto free_this_core_map; - if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL)) - goto free_send_covered; - #ifdef CONFIG_NUMA - /* - * Allocate the per-node list of sched groups - */ - sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *), - GFP_KERNEL); - if (!sched_group_nodes) { + if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL)) + return sa_none; + if (!alloc_cpumask_var(&d->covered, GFP_KERNEL)) + return sa_domainspan; + if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL)) + return sa_covered; + /* Allocate the per-node list of sched groups */ + d->sched_group_nodes = kcalloc(nr_node_ids, + sizeof(struct sched_group *), GFP_KERNEL); + if (!d->sched_group_nodes) { printk(KERN_WARNING "Can not alloc sched group node list\n"); - goto free_tmpmask; - } -#endif - - rd = alloc_rootdomain(); - if (!rd) { + return sa_notcovered; + } + sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes; +#endif + if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL)) + return sa_sched_group_nodes; + if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL)) + return sa_nodemask; + if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL)) + return sa_this_sibling_map; + if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL)) + return sa_this_core_map; + if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL)) + return sa_send_covered; + d->rd = alloc_rootdomain(); + if (!d->rd) { printk(KERN_WARNING "Cannot alloc root domain\n"); - goto free_sched_groups; + return sa_tmpmask; } + return sa_rootdomain; +} +static struct sched_domain *__build_numa_sched_domains(struct s_data *d, + const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i) +{ + struct sched_domain *sd = NULL; #ifdef CONFIG_NUMA - sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes; -#endif - - /* - * Set up domains for cpus specified by the cpu_map. - */ - for_each_cpu(i, cpu_map) { - struct sched_domain *sd = NULL, *p; - - cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map); - -#ifdef CONFIG_NUMA - if (cpumask_weight(cpu_map) > - SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) { - sd = &per_cpu(allnodes_domains, i).sd; - SD_INIT(sd, ALLNODES); - set_domain_attribute(sd, attr); - cpumask_copy(sched_domain_span(sd), cpu_map); - cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask); - p = sd; - sd_allnodes = 1; - } else - p = NULL; + struct sched_domain *parent; - sd = &per_cpu(node_domains, i).sd; - SD_INIT(sd, NODE); + d->sd_allnodes = 0; + if (cpumask_weight(cpu_map) > + SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) { + sd = &per_cpu(allnodes_domains, i).sd; + SD_INIT(sd, ALLNODES); set_domain_attribute(sd, attr); - sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd)); - sd->parent = p; - if (p) - p->child = sd; - cpumask_and(sched_domain_span(sd), - sched_domain_span(sd), cpu_map); + cpumask_copy(sched_domain_span(sd), cpu_map); + cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask); + d->sd_allnodes = 1; + } + parent = sd; + + sd = &per_cpu(node_domains, i).sd; + SD_INIT(sd, NODE); + set_domain_attribute(sd, attr); + sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd)); + sd->parent = parent; + if (parent) + parent->child = sd; + cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map); #endif + return sd; +} - p = sd; - sd = &per_cpu(phys_domains, i).sd; - SD_INIT(sd, CPU); - set_domain_attribute(sd, attr); - cpumask_copy(sched_domain_span(sd), nodemask); - sd->parent = p; - if (p) - p->child = sd; - cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask); +static struct sched_domain *__build_cpu_sched_domain(struct s_data *d, + const struct cpumask *cpu_map, struct sched_domain_attr *attr, + struct sched_domain *parent, int i) +{ + struct sched_domain *sd; + sd = &per_cpu(phys_domains, i).sd; + SD_INIT(sd, CPU); + set_domain_attribute(sd, attr); + cpumask_copy(sched_domain_span(sd), d->nodemask); + sd->parent = parent; + if (parent) + parent->child = sd; + cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask); + return sd; +} +static struct sched_domain *__build_mc_sched_domain(struct s_data *d, + const struct cpumask *cpu_map, struct sched_domain_attr *attr, + struct sched_domain *parent, int i) +{ + struct sched_domain *sd = parent; #ifdef CONFIG_SCHED_MC - p = sd; - sd = &per_cpu(core_domains, i).sd; - SD_INIT(sd, MC); - set_domain_attribute(sd, attr); - cpumask_and(sched_domain_span(sd), cpu_map, - cpu_coregroup_mask(i)); - sd->parent = p; - p->child = sd; - cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask); + sd = &per_cpu(core_domains, i).sd; + SD_INIT(sd, MC); + set_domain_attribute(sd, attr); + cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i)); + sd->parent = parent; + parent->child = sd; + cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask); #endif + return sd; +} +static struct sched_domain *__build_smt_sched_domain(struct s_data *d, + const struct cpumask *cpu_map, struct sched_domain_attr *attr, + struct sched_domain *parent, int i) +{ + struct sched_domain *sd = parent; #ifdef CONFIG_SCHED_SMT - p = sd; - sd = &per_cpu(cpu_domains, i).sd; - SD_INIT(sd, SIBLING); - set_domain_attribute(sd, attr); - cpumask_and(sched_domain_span(sd), - topology_thread_cpumask(i), cpu_map); - sd->parent = p; - p->child = sd; - cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask); + sd = &per_cpu(cpu_domains, i).sd; + SD_INIT(sd, SIBLING); + set_domain_attribute(sd, attr); + cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i)); + sd->parent = parent; + parent->child = sd; + cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask); #endif - } + return sd; +} +static void build_sched_groups(struct s_data *d, enum sched_domain_level l, + const struct cpumask *cpu_map, int cpu) +{ + switch (l) { #ifdef CONFIG_SCHED_SMT - /* Set up CPU (sibling) groups */ - for_each_cpu(i, cpu_map) { - cpumask_and(this_sibling_map, - topology_thread_cpumask(i), cpu_map); - if (i != cpumask_first(this_sibling_map)) - continue; - - init_sched_build_groups(this_sibling_map, cpu_map, - &cpu_to_cpu_group, - send_covered, tmpmask); - } + case SD_LV_SIBLING: /* set up CPU (sibling) groups */ + cpumask_and(d->this_sibling_map, cpu_map, + topology_thread_cpumask(cpu)); + if (cpu == cpumask_first(d->this_sibling_map)) + init_sched_build_groups(d->this_sibling_map, cpu_map, + &cpu_to_cpu_group, + d->send_covered, d->tmpmask); + break; #endif - #ifdef CONFIG_SCHED_MC - /* Set up multi-core groups */ - for_each_cpu(i, cpu_map) { - cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map); - if (i != cpumask_first(this_core_map)) - continue; - - init_sched_build_groups(this_core_map, cpu_map, - &cpu_to_core_group, - send_covered, tmpmask); - } + case SD_LV_MC: /* set up multi-core groups */ + cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu)); + if (cpu == cpumask_first(d->this_core_map)) + init_sched_build_groups(d->this_core_map, cpu_map, + &cpu_to_core_group, + d->send_covered, d->tmpmask); + break; #endif - - /* Set up physical groups */ - for (i = 0; i < nr_node_ids; i++) { - cpumask_and(nodemask, cpumask_of_node(i), cpu_map); - if (cpumask_empty(nodemask)) - continue; - - init_sched_build_groups(nodemask, cpu_map, - &cpu_to_phys_group, - send_covered, tmpmask); - } - + case SD_LV_CPU: /* set up physical groups */ + cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map); + if (!cpumask_empty(d->nodemask)) + init_sched_build_groups(d->nodemask, cpu_map, + &cpu_to_phys_group, + d->send_covered, d->tmpmask); + break; #ifdef CONFIG_NUMA - /* Set up node groups */ - if (sd_allnodes) { - init_sched_build_groups(cpu_map, cpu_map, - &cpu_to_allnodes_group, - send_covered, tmpmask); + case SD_LV_ALLNODES: + init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group, + d->send_covered, d->tmpmask); + break; +#endif + default: + break; } +} - for (i = 0; i < nr_node_ids; i++) { - /* Set up node groups */ - struct sched_group *sg, *prev; - int j; - - cpumask_clear(covered); - cpumask_and(nodemask, cpumask_of_node(i), cpu_map); - if (cpumask_empty(nodemask)) { - sched_group_nodes[i] = NULL; - continue; - } +/* + * Build sched domains for a given set of cpus and attach the sched domains + * to the individual cpus + */ +static int __build_sched_domains(const struct cpumask *cpu_map, + struct sched_domain_attr *attr) +{ + enum s_alloc alloc_state = sa_none; + struct s_data d; + struct sched_domain *sd; + int i; +#ifdef CONFIG_NUMA + d.sd_allnodes = 0; +#endif - sched_domain_node_span(i, domainspan); - cpumask_and(domainspan, domainspan, cpu_map); + alloc_state = __visit_domain_allocation_hell(&d, cpu_map); + if (alloc_state != sa_rootdomain) + goto error; + alloc_state = sa_sched_groups; - sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(), - GFP_KERNEL, i); - if (!sg) { - printk(KERN_WARNING "Can not alloc domain group for " - "node %d\n", i); - goto error; - } - sched_group_nodes[i] = sg; - for_each_cpu(j, nodemask) { - struct sched_domain *sd; + /* + * Set up domains for cpus specified by the cpu_map. + */ + for_each_cpu(i, cpu_map) { + cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)), + cpu_map); - sd = &per_cpu(node_domains, j).sd; - sd->groups = sg; - } - sg->__cpu_power = 0; - cpumask_copy(sched_group_cpus(sg), nodemask); - sg->next = sg; - cpumask_or(covered, covered, nodemask); - prev = sg; + sd = __build_numa_sched_domains(&d, cpu_map, attr, i); + sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i); + sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i); + sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i); + } - for (j = 0; j < nr_node_ids; j++) { - int n = (i + j) % nr_node_ids; + for_each_cpu(i, cpu_map) { + build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i); + build_sched_groups(&d, SD_LV_MC, cpu_map, i); + } - cpumask_complement(notcovered, covered); - cpumask_and(tmpmask, notcovered, cpu_map); - cpumask_and(tmpmask, tmpmask, domainspan); - if (cpumask_empty(tmpmask)) - break; + /* Set up physical groups */ + for (i = 0; i < nr_node_ids; i++) + build_sched_groups(&d, SD_LV_CPU, cpu_map, i); - cpumask_and(tmpmask, tmpmask, cpumask_of_node(n)); - if (cpumask_empty(tmpmask)) - continue; +#ifdef CONFIG_NUMA + /* Set up node groups */ + if (d.sd_allnodes) + build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0); - sg = kmalloc_node(sizeof(struct sched_group) + - cpumask_size(), - GFP_KERNEL, i); - if (!sg) { - printk(KERN_WARNING - "Can not alloc domain group for node %d\n", j); - goto error; - } - sg->__cpu_power = 0; - cpumask_copy(sched_group_cpus(sg), tmpmask); - sg->next = prev->next; - cpumask_or(covered, covered, tmpmask); - prev->next = sg; - prev = sg; - } - } + for (i = 0; i < nr_node_ids; i++) + if (build_numa_sched_groups(&d, cpu_map, i)) + goto error; #endif /* Calculate CPU power for physical packages and nodes */ #ifdef CONFIG_SCHED_SMT for_each_cpu(i, cpu_map) { - struct sched_domain *sd = &per_cpu(cpu_domains, i).sd; - + sd = &per_cpu(cpu_domains, i).sd; init_sched_groups_power(i, sd); } #endif #ifdef CONFIG_SCHED_MC for_each_cpu(i, cpu_map) { - struct sched_domain *sd = &per_cpu(core_domains, i).sd; - + sd = &per_cpu(core_domains, i).sd; init_sched_groups_power(i, sd); } #endif for_each_cpu(i, cpu_map) { - struct sched_domain *sd = &per_cpu(phys_domains, i).sd; - + sd = &per_cpu(phys_domains, i).sd; init_sched_groups_power(i, sd); } #ifdef CONFIG_NUMA for (i = 0; i < nr_node_ids; i++) - init_numa_sched_groups_power(sched_group_nodes[i]); + init_numa_sched_groups_power(d.sched_group_nodes[i]); - if (sd_allnodes) { + if (d.sd_allnodes) { struct sched_group *sg; cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg, - tmpmask); + d.tmpmask); init_numa_sched_groups_power(sg); } #endif /* Attach the domains */ for_each_cpu(i, cpu_map) { - struct sched_domain *sd; #ifdef CONFIG_SCHED_SMT sd = &per_cpu(cpu_domains, i).sd; #elif defined(CONFIG_SCHED_MC) @@ -8745,44 +8834,16 @@ static int __build_sched_domains(const struct cpumask *cpu_map, #else sd = &per_cpu(phys_domains, i).sd; #endif - cpu_attach_domain(sd, rd, i); + cpu_attach_domain(sd, d.rd, i); } - err = 0; - -free_tmpmask: - free_cpumask_var(tmpmask); -free_send_covered: - free_cpumask_var(send_covered); -free_this_core_map: - free_cpumask_var(this_core_map); -free_this_sibling_map: - free_cpumask_var(this_sibling_map); -free_nodemask: - free_cpumask_var(nodemask); -free_notcovered: -#ifdef CONFIG_NUMA - free_cpumask_var(notcovered); -free_covered: - free_cpumask_var(covered); -free_domainspan: - free_cpumask_var(domainspan); -out: -#endif - return err; - -free_sched_groups: -#ifdef CONFIG_NUMA - kfree(sched_group_nodes); -#endif - goto free_tmpmask; + d.sched_group_nodes = NULL; /* don't free this we still need it */ + __free_domain_allocs(&d, sa_tmpmask, cpu_map); + return 0; -#ifdef CONFIG_NUMA error: - free_sched_groups(cpu_map, tmpmask); - free_rootdomain(rd); - goto free_tmpmask; -#endif + __free_domain_allocs(&d, alloc_state, cpu_map); + return -ENOMEM; } static int build_sched_domains(const struct cpumask *cpu_map) @@ -9101,6 +9162,7 @@ void __init sched_init_smp(void) cpumask_var_t non_isolated_cpus; alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); + alloc_cpumask_var(&fallback_doms, GFP_KERNEL); #if defined(CONFIG_NUMA) sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **), @@ -9132,7 +9194,6 @@ void __init sched_init_smp(void) sched_init_granularity(); free_cpumask_var(non_isolated_cpus); - alloc_cpumask_var(&fallback_doms, GFP_KERNEL); init_sched_rt_class(); } #else @@ -9390,11 +9451,11 @@ void __init sched_init(void) * system cpu resource, based on the weight assigned to root * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished * by letting tasks of init_task_group sit in a separate cfs_rq - * (init_cfs_rq) and having one entity represent this group of + * (init_tg_cfs_rq) and having one entity represent this group of * tasks in rq->cfs (i.e init_task_group->se[] != NULL). */ init_tg_cfs_entry(&init_task_group, - &per_cpu(init_cfs_rq, i), + &per_cpu(init_tg_cfs_rq, i), &per_cpu(init_sched_entity, i), i, 1, root_task_group.se[i]); @@ -9479,7 +9540,7 @@ void __init sched_init(void) alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); #endif /* SMP */ - perf_counter_init(); + perf_event_init(); scheduler_running = 1; } @@ -10251,7 +10312,7 @@ static int sched_rt_global_constraints(void) #endif /* CONFIG_RT_GROUP_SCHED */ int sched_rt_handler(struct ctl_table *table, int write, - struct file *filp, void __user *buffer, size_t *lenp, + void __user *buffer, size_t *lenp, loff_t *ppos) { int ret; @@ -10262,7 +10323,7 @@ int sched_rt_handler(struct ctl_table *table, int write, old_period = sysctl_sched_rt_period; old_runtime = sysctl_sched_rt_runtime; - ret = proc_dointvec(table, write, filp, buffer, lenp, ppos); + ret = proc_dointvec(table, write, buffer, lenp, ppos); if (!ret && write) { ret = sched_rt_global_constraints(); @@ -10316,8 +10377,7 @@ cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) } static int -cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, - struct task_struct *tsk) +cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk) { #ifdef CONFIG_RT_GROUP_SCHED if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk)) @@ -10327,15 +10387,45 @@ cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, if (tsk->sched_class != &fair_sched_class) return -EINVAL; #endif + return 0; +} +static int +cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, + struct task_struct *tsk, bool threadgroup) +{ + int retval = cpu_cgroup_can_attach_task(cgrp, tsk); + if (retval) + return retval; + if (threadgroup) { + struct task_struct *c; + rcu_read_lock(); + list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) { + retval = cpu_cgroup_can_attach_task(cgrp, c); + if (retval) { + rcu_read_unlock(); + return retval; + } + } + rcu_read_unlock(); + } return 0; } static void cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, - struct cgroup *old_cont, struct task_struct *tsk) + struct cgroup *old_cont, struct task_struct *tsk, + bool threadgroup) { sched_move_task(tsk); + if (threadgroup) { + struct task_struct *c; + rcu_read_lock(); + list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) { + sched_move_task(c); + } + rcu_read_unlock(); + } } #ifdef CONFIG_FAIR_GROUP_SCHED @@ -10675,3 +10765,113 @@ struct cgroup_subsys cpuacct_subsys = { .subsys_id = cpuacct_subsys_id, }; #endif /* CONFIG_CGROUP_CPUACCT */ + +#ifndef CONFIG_SMP + +int rcu_expedited_torture_stats(char *page) +{ + return 0; +} +EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats); + +void synchronize_sched_expedited(void) +{ +} +EXPORT_SYMBOL_GPL(synchronize_sched_expedited); + +#else /* #ifndef CONFIG_SMP */ + +static DEFINE_PER_CPU(struct migration_req, rcu_migration_req); +static DEFINE_MUTEX(rcu_sched_expedited_mutex); + +#define RCU_EXPEDITED_STATE_POST -2 +#define RCU_EXPEDITED_STATE_IDLE -1 + +static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE; + +int rcu_expedited_torture_stats(char *page) +{ + int cnt = 0; + int cpu; + + cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state); + for_each_online_cpu(cpu) { + cnt += sprintf(&page[cnt], " %d:%d", + cpu, per_cpu(rcu_migration_req, cpu).dest_cpu); + } + cnt += sprintf(&page[cnt], "\n"); + return cnt; +} +EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats); + +static long synchronize_sched_expedited_count; + +/* + * Wait for an rcu-sched grace period to elapse, but use "big hammer" + * approach to force grace period to end quickly. This consumes + * significant time on all CPUs, and is thus not recommended for + * any sort of common-case code. + * + * Note that it is illegal to call this function while holding any + * lock that is acquired by a CPU-hotplug notifier. Failing to + * observe this restriction will result in deadlock. + */ +void synchronize_sched_expedited(void) +{ + int cpu; + unsigned long flags; + bool need_full_sync = 0; + struct rq *rq; + struct migration_req *req; + long snap; + int trycount = 0; + + smp_mb(); /* ensure prior mod happens before capturing snap. */ + snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1; + get_online_cpus(); + while (!mutex_trylock(&rcu_sched_expedited_mutex)) { + put_online_cpus(); + if (trycount++ < 10) + udelay(trycount * num_online_cpus()); + else { + synchronize_sched(); + return; + } + if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) { + smp_mb(); /* ensure test happens before caller kfree */ + return; + } + get_online_cpus(); + } + rcu_expedited_state = RCU_EXPEDITED_STATE_POST; + for_each_online_cpu(cpu) { + rq = cpu_rq(cpu); + req = &per_cpu(rcu_migration_req, cpu); + init_completion(&req->done); + req->task = NULL; + req->dest_cpu = RCU_MIGRATION_NEED_QS; + spin_lock_irqsave(&rq->lock, flags); + list_add(&req->list, &rq->migration_queue); + spin_unlock_irqrestore(&rq->lock, flags); + wake_up_process(rq->migration_thread); + } + for_each_online_cpu(cpu) { + rcu_expedited_state = cpu; + req = &per_cpu(rcu_migration_req, cpu); + rq = cpu_rq(cpu); + wait_for_completion(&req->done); + spin_lock_irqsave(&rq->lock, flags); + if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC)) + need_full_sync = 1; + req->dest_cpu = RCU_MIGRATION_IDLE; + spin_unlock_irqrestore(&rq->lock, flags); + } + rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE; + mutex_unlock(&rcu_sched_expedited_mutex); + put_online_cpus(); + if (need_full_sync) + synchronize_sched(); +} +EXPORT_SYMBOL_GPL(synchronize_sched_expedited); + +#endif /* #else #ifndef CONFIG_SMP */